323 lines
12 KiB
Python
323 lines
12 KiB
Python
|
import pytest
|
||
|
|
||
|
import networkx as nx
|
||
|
from networkx.utils import edges_equal, graphs_equal, nodes_equal
|
||
|
|
||
|
np = pytest.importorskip("numpy")
|
||
|
pd = pytest.importorskip("pandas")
|
||
|
|
||
|
|
||
|
class TestConvertPandas:
|
||
|
def setup_method(self):
|
||
|
self.rng = np.random.RandomState(seed=5)
|
||
|
ints = self.rng.randint(1, 11, size=(3, 2))
|
||
|
a = ["A", "B", "C"]
|
||
|
b = ["D", "A", "E"]
|
||
|
df = pd.DataFrame(ints, columns=["weight", "cost"])
|
||
|
df[0] = a # Column label 0 (int)
|
||
|
df["b"] = b # Column label 'b' (str)
|
||
|
self.df = df
|
||
|
|
||
|
mdf = pd.DataFrame([[4, 16, "A", "D"]], columns=["weight", "cost", 0, "b"])
|
||
|
self.mdf = pd.concat([df, mdf])
|
||
|
|
||
|
def test_exceptions(self):
|
||
|
G = pd.DataFrame(["a"]) # adj
|
||
|
pytest.raises(nx.NetworkXError, nx.to_networkx_graph, G)
|
||
|
G = pd.DataFrame(["a", 0.0]) # elist
|
||
|
pytest.raises(nx.NetworkXError, nx.to_networkx_graph, G)
|
||
|
df = pd.DataFrame([[1, 1], [1, 0]], dtype=int, index=[1, 2], columns=["a", "b"])
|
||
|
pytest.raises(nx.NetworkXError, nx.from_pandas_adjacency, df)
|
||
|
|
||
|
def test_from_edgelist_all_attr(self):
|
||
|
Gtrue = nx.Graph(
|
||
|
[
|
||
|
("E", "C", {"cost": 9, "weight": 10}),
|
||
|
("B", "A", {"cost": 1, "weight": 7}),
|
||
|
("A", "D", {"cost": 7, "weight": 4}),
|
||
|
]
|
||
|
)
|
||
|
G = nx.from_pandas_edgelist(self.df, 0, "b", True)
|
||
|
assert graphs_equal(G, Gtrue)
|
||
|
# MultiGraph
|
||
|
MGtrue = nx.MultiGraph(Gtrue)
|
||
|
MGtrue.add_edge("A", "D", cost=16, weight=4)
|
||
|
MG = nx.from_pandas_edgelist(self.mdf, 0, "b", True, nx.MultiGraph())
|
||
|
assert graphs_equal(MG, MGtrue)
|
||
|
|
||
|
def test_from_edgelist_multi_attr(self):
|
||
|
Gtrue = nx.Graph(
|
||
|
[
|
||
|
("E", "C", {"cost": 9, "weight": 10}),
|
||
|
("B", "A", {"cost": 1, "weight": 7}),
|
||
|
("A", "D", {"cost": 7, "weight": 4}),
|
||
|
]
|
||
|
)
|
||
|
G = nx.from_pandas_edgelist(self.df, 0, "b", ["weight", "cost"])
|
||
|
assert graphs_equal(G, Gtrue)
|
||
|
|
||
|
def test_from_edgelist_multi_attr_incl_target(self):
|
||
|
Gtrue = nx.Graph(
|
||
|
[
|
||
|
("E", "C", {0: "C", "b": "E", "weight": 10}),
|
||
|
("B", "A", {0: "B", "b": "A", "weight": 7}),
|
||
|
("A", "D", {0: "A", "b": "D", "weight": 4}),
|
||
|
]
|
||
|
)
|
||
|
G = nx.from_pandas_edgelist(self.df, 0, "b", [0, "b", "weight"])
|
||
|
assert graphs_equal(G, Gtrue)
|
||
|
|
||
|
def test_from_edgelist_multidigraph_and_edge_attr(self):
|
||
|
# example from issue #2374
|
||
|
edges = [
|
||
|
("X1", "X4", {"Co": "zA", "Mi": 0, "St": "X1"}),
|
||
|
("X1", "X4", {"Co": "zB", "Mi": 54, "St": "X2"}),
|
||
|
("X1", "X4", {"Co": "zB", "Mi": 49, "St": "X3"}),
|
||
|
("X1", "X4", {"Co": "zB", "Mi": 44, "St": "X4"}),
|
||
|
("Y1", "Y3", {"Co": "zC", "Mi": 0, "St": "Y1"}),
|
||
|
("Y1", "Y3", {"Co": "zC", "Mi": 34, "St": "Y2"}),
|
||
|
("Y1", "Y3", {"Co": "zC", "Mi": 29, "St": "X2"}),
|
||
|
("Y1", "Y3", {"Co": "zC", "Mi": 24, "St": "Y3"}),
|
||
|
("Z1", "Z3", {"Co": "zD", "Mi": 0, "St": "Z1"}),
|
||
|
("Z1", "Z3", {"Co": "zD", "Mi": 14, "St": "X3"}),
|
||
|
]
|
||
|
Gtrue = nx.MultiDiGraph(edges)
|
||
|
data = {
|
||
|
"O": ["X1", "X1", "X1", "X1", "Y1", "Y1", "Y1", "Y1", "Z1", "Z1"],
|
||
|
"D": ["X4", "X4", "X4", "X4", "Y3", "Y3", "Y3", "Y3", "Z3", "Z3"],
|
||
|
"St": ["X1", "X2", "X3", "X4", "Y1", "Y2", "X2", "Y3", "Z1", "X3"],
|
||
|
"Co": ["zA", "zB", "zB", "zB", "zC", "zC", "zC", "zC", "zD", "zD"],
|
||
|
"Mi": [0, 54, 49, 44, 0, 34, 29, 24, 0, 14],
|
||
|
}
|
||
|
df = pd.DataFrame.from_dict(data)
|
||
|
G1 = nx.from_pandas_edgelist(
|
||
|
df, source="O", target="D", edge_attr=True, create_using=nx.MultiDiGraph
|
||
|
)
|
||
|
G2 = nx.from_pandas_edgelist(
|
||
|
df,
|
||
|
source="O",
|
||
|
target="D",
|
||
|
edge_attr=["St", "Co", "Mi"],
|
||
|
create_using=nx.MultiDiGraph,
|
||
|
)
|
||
|
assert graphs_equal(G1, Gtrue)
|
||
|
assert graphs_equal(G2, Gtrue)
|
||
|
|
||
|
def test_from_edgelist_one_attr(self):
|
||
|
Gtrue = nx.Graph(
|
||
|
[
|
||
|
("E", "C", {"weight": 10}),
|
||
|
("B", "A", {"weight": 7}),
|
||
|
("A", "D", {"weight": 4}),
|
||
|
]
|
||
|
)
|
||
|
G = nx.from_pandas_edgelist(self.df, 0, "b", "weight")
|
||
|
assert graphs_equal(G, Gtrue)
|
||
|
|
||
|
def test_from_edgelist_int_attr_name(self):
|
||
|
# note: this also tests that edge_attr can be `source`
|
||
|
Gtrue = nx.Graph(
|
||
|
[("E", "C", {0: "C"}), ("B", "A", {0: "B"}), ("A", "D", {0: "A"})]
|
||
|
)
|
||
|
G = nx.from_pandas_edgelist(self.df, 0, "b", 0)
|
||
|
assert graphs_equal(G, Gtrue)
|
||
|
|
||
|
def test_from_edgelist_invalid_attr(self):
|
||
|
pytest.raises(
|
||
|
nx.NetworkXError, nx.from_pandas_edgelist, self.df, 0, "b", "misspell"
|
||
|
)
|
||
|
pytest.raises(nx.NetworkXError, nx.from_pandas_edgelist, self.df, 0, "b", 1)
|
||
|
# see Issue #3562
|
||
|
edgeframe = pd.DataFrame([[0, 1], [1, 2], [2, 0]], columns=["s", "t"])
|
||
|
pytest.raises(
|
||
|
nx.NetworkXError, nx.from_pandas_edgelist, edgeframe, "s", "t", True
|
||
|
)
|
||
|
pytest.raises(
|
||
|
nx.NetworkXError, nx.from_pandas_edgelist, edgeframe, "s", "t", "weight"
|
||
|
)
|
||
|
pytest.raises(
|
||
|
nx.NetworkXError,
|
||
|
nx.from_pandas_edgelist,
|
||
|
edgeframe,
|
||
|
"s",
|
||
|
"t",
|
||
|
["weight", "size"],
|
||
|
)
|
||
|
|
||
|
def test_from_edgelist_no_attr(self):
|
||
|
Gtrue = nx.Graph([("E", "C", {}), ("B", "A", {}), ("A", "D", {})])
|
||
|
G = nx.from_pandas_edgelist(self.df, 0, "b")
|
||
|
assert graphs_equal(G, Gtrue)
|
||
|
|
||
|
def test_from_edgelist(self):
|
||
|
# Pandas DataFrame
|
||
|
G = nx.cycle_graph(10)
|
||
|
G.add_weighted_edges_from((u, v, u) for u, v in list(G.edges))
|
||
|
|
||
|
edgelist = nx.to_edgelist(G)
|
||
|
source = [s for s, t, d in edgelist]
|
||
|
target = [t for s, t, d in edgelist]
|
||
|
weight = [d["weight"] for s, t, d in edgelist]
|
||
|
edges = pd.DataFrame({"source": source, "target": target, "weight": weight})
|
||
|
|
||
|
GG = nx.from_pandas_edgelist(edges, edge_attr="weight")
|
||
|
assert nodes_equal(G.nodes(), GG.nodes())
|
||
|
assert edges_equal(G.edges(), GG.edges())
|
||
|
GW = nx.to_networkx_graph(edges, create_using=nx.Graph)
|
||
|
assert nodes_equal(G.nodes(), GW.nodes())
|
||
|
assert edges_equal(G.edges(), GW.edges())
|
||
|
|
||
|
def test_to_edgelist_default_source_or_target_col_exists(self):
|
||
|
|
||
|
G = nx.path_graph(10)
|
||
|
G.add_weighted_edges_from((u, v, u) for u, v in list(G.edges))
|
||
|
nx.set_edge_attributes(G, 0, name="source")
|
||
|
pytest.raises(nx.NetworkXError, nx.to_pandas_edgelist, G)
|
||
|
|
||
|
# drop source column to test an exception raised for the target column
|
||
|
for u, v, d in G.edges(data=True):
|
||
|
d.pop("source", None)
|
||
|
|
||
|
nx.set_edge_attributes(G, 0, name="target")
|
||
|
pytest.raises(nx.NetworkXError, nx.to_pandas_edgelist, G)
|
||
|
|
||
|
def test_to_edgelist_custom_source_or_target_col_exists(self):
|
||
|
|
||
|
G = nx.path_graph(10)
|
||
|
G.add_weighted_edges_from((u, v, u) for u, v in list(G.edges))
|
||
|
nx.set_edge_attributes(G, 0, name="source_col_name")
|
||
|
pytest.raises(
|
||
|
nx.NetworkXError, nx.to_pandas_edgelist, G, source="source_col_name"
|
||
|
)
|
||
|
|
||
|
# drop source column to test an exception raised for the target column
|
||
|
for u, v, d in G.edges(data=True):
|
||
|
d.pop("source_col_name", None)
|
||
|
|
||
|
nx.set_edge_attributes(G, 0, name="target_col_name")
|
||
|
pytest.raises(
|
||
|
nx.NetworkXError, nx.to_pandas_edgelist, G, target="target_col_name"
|
||
|
)
|
||
|
|
||
|
def test_to_edgelist_edge_key_col_exists(self):
|
||
|
G = nx.path_graph(10, create_using=nx.MultiGraph)
|
||
|
G.add_weighted_edges_from((u, v, u) for u, v in list(G.edges()))
|
||
|
nx.set_edge_attributes(G, 0, name="edge_key_name")
|
||
|
pytest.raises(
|
||
|
nx.NetworkXError, nx.to_pandas_edgelist, G, edge_key="edge_key_name"
|
||
|
)
|
||
|
|
||
|
def test_from_adjacency(self):
|
||
|
nodelist = [1, 2]
|
||
|
dftrue = pd.DataFrame(
|
||
|
[[1, 1], [1, 0]], dtype=int, index=nodelist, columns=nodelist
|
||
|
)
|
||
|
G = nx.Graph([(1, 1), (1, 2)])
|
||
|
df = nx.to_pandas_adjacency(G, dtype=int)
|
||
|
pd.testing.assert_frame_equal(df, dftrue)
|
||
|
|
||
|
@pytest.mark.parametrize("graph", [nx.Graph, nx.MultiGraph])
|
||
|
def test_roundtrip(self, graph):
|
||
|
# edgelist
|
||
|
Gtrue = graph([(1, 1), (1, 2)])
|
||
|
df = nx.to_pandas_edgelist(Gtrue)
|
||
|
G = nx.from_pandas_edgelist(df, create_using=graph)
|
||
|
assert graphs_equal(Gtrue, G)
|
||
|
# adjacency
|
||
|
adj = {1: {1: {"weight": 1}, 2: {"weight": 1}}, 2: {1: {"weight": 1}}}
|
||
|
Gtrue = graph(adj)
|
||
|
df = nx.to_pandas_adjacency(Gtrue, dtype=int)
|
||
|
G = nx.from_pandas_adjacency(df, create_using=graph)
|
||
|
assert graphs_equal(Gtrue, G)
|
||
|
|
||
|
def test_from_adjacency_named(self):
|
||
|
# example from issue #3105
|
||
|
data = {
|
||
|
"A": {"A": 0, "B": 0, "C": 0},
|
||
|
"B": {"A": 1, "B": 0, "C": 0},
|
||
|
"C": {"A": 0, "B": 1, "C": 0},
|
||
|
}
|
||
|
dftrue = pd.DataFrame(data, dtype=np.intp)
|
||
|
df = dftrue[["A", "C", "B"]]
|
||
|
G = nx.from_pandas_adjacency(df, create_using=nx.DiGraph())
|
||
|
df = nx.to_pandas_adjacency(G, dtype=np.intp)
|
||
|
pd.testing.assert_frame_equal(df, dftrue)
|
||
|
|
||
|
def test_edgekey_with_multigraph(self):
|
||
|
df = pd.DataFrame(
|
||
|
{
|
||
|
"source": {"A": "N1", "B": "N2", "C": "N1", "D": "N1"},
|
||
|
"target": {"A": "N2", "B": "N3", "C": "N1", "D": "N2"},
|
||
|
"attr1": {"A": "F1", "B": "F2", "C": "F3", "D": "F4"},
|
||
|
"attr2": {"A": 1, "B": 0, "C": 0, "D": 0},
|
||
|
"attr3": {"A": 0, "B": 1, "C": 0, "D": 1},
|
||
|
}
|
||
|
)
|
||
|
Gtrue = nx.MultiGraph(
|
||
|
[
|
||
|
("N1", "N2", "F1", {"attr2": 1, "attr3": 0}),
|
||
|
("N2", "N3", "F2", {"attr2": 0, "attr3": 1}),
|
||
|
("N1", "N1", "F3", {"attr2": 0, "attr3": 0}),
|
||
|
("N1", "N2", "F4", {"attr2": 0, "attr3": 1}),
|
||
|
]
|
||
|
)
|
||
|
# example from issue #4065
|
||
|
G = nx.from_pandas_edgelist(
|
||
|
df,
|
||
|
source="source",
|
||
|
target="target",
|
||
|
edge_attr=["attr2", "attr3"],
|
||
|
edge_key="attr1",
|
||
|
create_using=nx.MultiGraph(),
|
||
|
)
|
||
|
assert graphs_equal(G, Gtrue)
|
||
|
|
||
|
df_roundtrip = nx.to_pandas_edgelist(G, edge_key="attr1")
|
||
|
df_roundtrip = df_roundtrip.sort_values("attr1")
|
||
|
df_roundtrip.index = ["A", "B", "C", "D"]
|
||
|
pd.testing.assert_frame_equal(
|
||
|
df, df_roundtrip[["source", "target", "attr1", "attr2", "attr3"]]
|
||
|
)
|
||
|
|
||
|
def test_edgekey_with_normal_graph_no_action(self):
|
||
|
Gtrue = nx.Graph(
|
||
|
[
|
||
|
("E", "C", {"cost": 9, "weight": 10}),
|
||
|
("B", "A", {"cost": 1, "weight": 7}),
|
||
|
("A", "D", {"cost": 7, "weight": 4}),
|
||
|
]
|
||
|
)
|
||
|
G = nx.from_pandas_edgelist(self.df, 0, "b", True, edge_key="weight")
|
||
|
assert graphs_equal(G, Gtrue)
|
||
|
|
||
|
def test_nonexisting_edgekey_raises(self):
|
||
|
with pytest.raises(nx.exception.NetworkXError):
|
||
|
nx.from_pandas_edgelist(
|
||
|
self.df,
|
||
|
source="source",
|
||
|
target="target",
|
||
|
edge_key="Not_real",
|
||
|
edge_attr=True,
|
||
|
create_using=nx.MultiGraph(),
|
||
|
)
|
||
|
|
||
|
|
||
|
def test_to_pandas_adjacency_with_nodelist():
|
||
|
G = nx.complete_graph(5)
|
||
|
nodelist = [1, 4]
|
||
|
expected = pd.DataFrame(
|
||
|
[[0, 1], [1, 0]], dtype=int, index=nodelist, columns=nodelist
|
||
|
)
|
||
|
pd.testing.assert_frame_equal(
|
||
|
expected, nx.to_pandas_adjacency(G, nodelist, dtype=int)
|
||
|
)
|
||
|
|
||
|
|
||
|
def test_to_pandas_edgelist_with_nodelist():
|
||
|
G = nx.Graph()
|
||
|
G.add_edges_from([(0, 1), (1, 2), (1, 3)], weight=2.0)
|
||
|
G.add_edge(0, 5, weight=100)
|
||
|
df = nx.to_pandas_edgelist(G, nodelist=[1, 2])
|
||
|
assert 0 not in df["source"].to_numpy()
|
||
|
assert 100 not in df["weight"].to_numpy()
|