ai-content-maker/.venv/Lib/site-packages/nltk/cluster/util.py

301 lines
9.5 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
# Natural Language Toolkit: Clusterer Utilities
#
# Copyright (C) 2001-2023 NLTK Project
# Author: Trevor Cohn <tacohn@cs.mu.oz.au>
# Contributor: J Richard Snape
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT
import copy
from abc import abstractmethod
from math import sqrt
from sys import stdout
try:
import numpy
except ImportError:
pass
from nltk.cluster.api import ClusterI
class VectorSpaceClusterer(ClusterI):
"""
Abstract clusterer which takes tokens and maps them into a vector space.
Optionally performs singular value decomposition to reduce the
dimensionality.
"""
def __init__(self, normalise=False, svd_dimensions=None):
"""
:param normalise: should vectors be normalised to length 1
:type normalise: boolean
:param svd_dimensions: number of dimensions to use in reducing vector
dimensionsionality with SVD
:type svd_dimensions: int
"""
self._Tt = None
self._should_normalise = normalise
self._svd_dimensions = svd_dimensions
def cluster(self, vectors, assign_clusters=False, trace=False):
assert len(vectors) > 0
# normalise the vectors
if self._should_normalise:
vectors = list(map(self._normalise, vectors))
# use SVD to reduce the dimensionality
if self._svd_dimensions and self._svd_dimensions < len(vectors[0]):
[u, d, vt] = numpy.linalg.svd(numpy.transpose(numpy.array(vectors)))
S = d[: self._svd_dimensions] * numpy.identity(
self._svd_dimensions, numpy.float64
)
T = u[:, : self._svd_dimensions]
Dt = vt[: self._svd_dimensions, :]
vectors = numpy.transpose(numpy.dot(S, Dt))
self._Tt = numpy.transpose(T)
# call abstract method to cluster the vectors
self.cluster_vectorspace(vectors, trace)
# assign the vectors to clusters
if assign_clusters:
return [self.classify(vector) for vector in vectors]
@abstractmethod
def cluster_vectorspace(self, vectors, trace):
"""
Finds the clusters using the given set of vectors.
"""
def classify(self, vector):
if self._should_normalise:
vector = self._normalise(vector)
if self._Tt is not None:
vector = numpy.dot(self._Tt, vector)
cluster = self.classify_vectorspace(vector)
return self.cluster_name(cluster)
@abstractmethod
def classify_vectorspace(self, vector):
"""
Returns the index of the appropriate cluster for the vector.
"""
def likelihood(self, vector, label):
if self._should_normalise:
vector = self._normalise(vector)
if self._Tt is not None:
vector = numpy.dot(self._Tt, vector)
return self.likelihood_vectorspace(vector, label)
def likelihood_vectorspace(self, vector, cluster):
"""
Returns the likelihood of the vector belonging to the cluster.
"""
predicted = self.classify_vectorspace(vector)
return 1.0 if cluster == predicted else 0.0
def vector(self, vector):
"""
Returns the vector after normalisation and dimensionality reduction
"""
if self._should_normalise:
vector = self._normalise(vector)
if self._Tt is not None:
vector = numpy.dot(self._Tt, vector)
return vector
def _normalise(self, vector):
"""
Normalises the vector to unit length.
"""
return vector / sqrt(numpy.dot(vector, vector))
def euclidean_distance(u, v):
"""
Returns the euclidean distance between vectors u and v. This is equivalent
to the length of the vector (u - v).
"""
diff = u - v
return sqrt(numpy.dot(diff, diff))
def cosine_distance(u, v):
"""
Returns 1 minus the cosine of the angle between vectors v and u. This is
equal to ``1 - (u.v / |u||v|)``.
"""
return 1 - (numpy.dot(u, v) / (sqrt(numpy.dot(u, u)) * sqrt(numpy.dot(v, v))))
class _DendrogramNode:
"""Tree node of a dendrogram."""
def __init__(self, value, *children):
self._value = value
self._children = children
def leaves(self, values=True):
if self._children:
leaves = []
for child in self._children:
leaves.extend(child.leaves(values))
return leaves
elif values:
return [self._value]
else:
return [self]
def groups(self, n):
queue = [(self._value, self)]
while len(queue) < n:
priority, node = queue.pop()
if not node._children:
queue.push((priority, node))
break
for child in node._children:
if child._children:
queue.append((child._value, child))
else:
queue.append((0, child))
# makes the earliest merges at the start, latest at the end
queue.sort()
groups = []
for priority, node in queue:
groups.append(node.leaves())
return groups
def __lt__(self, comparator):
return cosine_distance(self._value, comparator._value) < 0
class Dendrogram:
"""
Represents a dendrogram, a tree with a specified branching order. This
must be initialised with the leaf items, then iteratively call merge for
each branch. This class constructs a tree representing the order of calls
to the merge function.
"""
def __init__(self, items=[]):
"""
:param items: the items at the leaves of the dendrogram
:type items: sequence of (any)
"""
self._items = [_DendrogramNode(item) for item in items]
self._original_items = copy.copy(self._items)
self._merge = 1
def merge(self, *indices):
"""
Merges nodes at given indices in the dendrogram. The nodes will be
combined which then replaces the first node specified. All other nodes
involved in the merge will be removed.
:param indices: indices of the items to merge (at least two)
:type indices: seq of int
"""
assert len(indices) >= 2
node = _DendrogramNode(self._merge, *(self._items[i] for i in indices))
self._merge += 1
self._items[indices[0]] = node
for i in indices[1:]:
del self._items[i]
def groups(self, n):
"""
Finds the n-groups of items (leaves) reachable from a cut at depth n.
:param n: number of groups
:type n: int
"""
if len(self._items) > 1:
root = _DendrogramNode(self._merge, *self._items)
else:
root = self._items[0]
return root.groups(n)
def show(self, leaf_labels=[]):
"""
Print the dendrogram in ASCII art to standard out.
:param leaf_labels: an optional list of strings to use for labeling the
leaves
:type leaf_labels: list
"""
# ASCII rendering characters
JOIN, HLINK, VLINK = "+", "-", "|"
# find the root (or create one)
if len(self._items) > 1:
root = _DendrogramNode(self._merge, *self._items)
else:
root = self._items[0]
leaves = self._original_items
if leaf_labels:
last_row = leaf_labels
else:
last_row = ["%s" % leaf._value for leaf in leaves]
# find the bottom row and the best cell width
width = max(map(len, last_row)) + 1
lhalf = width // 2
rhalf = int(width - lhalf - 1)
# display functions
def format(centre, left=" ", right=" "):
return f"{lhalf * left}{centre}{right * rhalf}"
def display(str):
stdout.write(str)
# for each merge, top down
queue = [(root._value, root)]
verticals = [format(" ") for leaf in leaves]
while queue:
priority, node = queue.pop()
child_left_leaf = list(map(lambda c: c.leaves(False)[0], node._children))
indices = list(map(leaves.index, child_left_leaf))
if child_left_leaf:
min_idx = min(indices)
max_idx = max(indices)
for i in range(len(leaves)):
if leaves[i] in child_left_leaf:
if i == min_idx:
display(format(JOIN, " ", HLINK))
elif i == max_idx:
display(format(JOIN, HLINK, " "))
else:
display(format(JOIN, HLINK, HLINK))
verticals[i] = format(VLINK)
elif min_idx <= i <= max_idx:
display(format(HLINK, HLINK, HLINK))
else:
display(verticals[i])
display("\n")
for child in node._children:
if child._children:
queue.append((child._value, child))
queue.sort()
for vertical in verticals:
display(vertical)
display("\n")
# finally, display the last line
display("".join(item.center(width) for item in last_row))
display("\n")
def __repr__(self):
if len(self._items) > 1:
root = _DendrogramNode(self._merge, *self._items)
else:
root = self._items[0]
leaves = root.leaves(False)
return "<Dendrogram with %d leaves>" % len(leaves)