888 lines
30 KiB
Python
888 lines
30 KiB
Python
|
#
|
||
|
# Natural Language Toolkit: Sentiment Analyzer
|
||
|
#
|
||
|
# Copyright (C) 2001-2023 NLTK Project
|
||
|
# Author: Pierpaolo Pantone <24alsecondo@gmail.com>
|
||
|
# URL: <https://www.nltk.org/>
|
||
|
# For license information, see LICENSE.TXT
|
||
|
|
||
|
"""
|
||
|
Utility methods for Sentiment Analysis.
|
||
|
"""
|
||
|
|
||
|
import codecs
|
||
|
import csv
|
||
|
import json
|
||
|
import pickle
|
||
|
import random
|
||
|
import re
|
||
|
import sys
|
||
|
import time
|
||
|
from copy import deepcopy
|
||
|
|
||
|
import nltk
|
||
|
from nltk.corpus import CategorizedPlaintextCorpusReader
|
||
|
from nltk.data import load
|
||
|
from nltk.tokenize.casual import EMOTICON_RE
|
||
|
|
||
|
# ////////////////////////////////////////////////////////////
|
||
|
# { Regular expressions
|
||
|
# ////////////////////////////////////////////////////////////
|
||
|
|
||
|
# Regular expression for negation by Christopher Potts
|
||
|
NEGATION = r"""
|
||
|
(?:
|
||
|
^(?:never|no|nothing|nowhere|noone|none|not|
|
||
|
havent|hasnt|hadnt|cant|couldnt|shouldnt|
|
||
|
wont|wouldnt|dont|doesnt|didnt|isnt|arent|aint
|
||
|
)$
|
||
|
)
|
||
|
|
|
||
|
n't"""
|
||
|
|
||
|
NEGATION_RE = re.compile(NEGATION, re.VERBOSE)
|
||
|
|
||
|
CLAUSE_PUNCT = r"^[.:;!?]$"
|
||
|
CLAUSE_PUNCT_RE = re.compile(CLAUSE_PUNCT)
|
||
|
|
||
|
# Happy and sad emoticons
|
||
|
|
||
|
HAPPY = {
|
||
|
":-)",
|
||
|
":)",
|
||
|
";)",
|
||
|
":o)",
|
||
|
":]",
|
||
|
":3",
|
||
|
":c)",
|
||
|
":>",
|
||
|
"=]",
|
||
|
"8)",
|
||
|
"=)",
|
||
|
":}",
|
||
|
":^)",
|
||
|
":-D",
|
||
|
":D",
|
||
|
"8-D",
|
||
|
"8D",
|
||
|
"x-D",
|
||
|
"xD",
|
||
|
"X-D",
|
||
|
"XD",
|
||
|
"=-D",
|
||
|
"=D",
|
||
|
"=-3",
|
||
|
"=3",
|
||
|
":-))",
|
||
|
":'-)",
|
||
|
":')",
|
||
|
":*",
|
||
|
":^*",
|
||
|
">:P",
|
||
|
":-P",
|
||
|
":P",
|
||
|
"X-P",
|
||
|
"x-p",
|
||
|
"xp",
|
||
|
"XP",
|
||
|
":-p",
|
||
|
":p",
|
||
|
"=p",
|
||
|
":-b",
|
||
|
":b",
|
||
|
">:)",
|
||
|
">;)",
|
||
|
">:-)",
|
||
|
"<3",
|
||
|
}
|
||
|
|
||
|
SAD = {
|
||
|
":L",
|
||
|
":-/",
|
||
|
">:/",
|
||
|
":S",
|
||
|
">:[",
|
||
|
":@",
|
||
|
":-(",
|
||
|
":[",
|
||
|
":-||",
|
||
|
"=L",
|
||
|
":<",
|
||
|
":-[",
|
||
|
":-<",
|
||
|
"=\\",
|
||
|
"=/",
|
||
|
">:(",
|
||
|
":(",
|
||
|
">.<",
|
||
|
":'-(",
|
||
|
":'(",
|
||
|
":\\",
|
||
|
":-c",
|
||
|
":c",
|
||
|
":{",
|
||
|
">:\\",
|
||
|
";(",
|
||
|
}
|
||
|
|
||
|
|
||
|
def timer(method):
|
||
|
"""
|
||
|
A timer decorator to measure execution performance of methods.
|
||
|
"""
|
||
|
|
||
|
def timed(*args, **kw):
|
||
|
start = time.time()
|
||
|
result = method(*args, **kw)
|
||
|
end = time.time()
|
||
|
tot_time = end - start
|
||
|
hours = tot_time // 3600
|
||
|
mins = tot_time // 60 % 60
|
||
|
# in Python 2.x round() will return a float, so we convert it to int
|
||
|
secs = int(round(tot_time % 60))
|
||
|
if hours == 0 and mins == 0 and secs < 10:
|
||
|
print(f"[TIMER] {method.__name__}(): {method.__name__:.3f} seconds")
|
||
|
else:
|
||
|
print(f"[TIMER] {method.__name__}(): {hours}h {mins}m {secs}s")
|
||
|
return result
|
||
|
|
||
|
return timed
|
||
|
|
||
|
|
||
|
# ////////////////////////////////////////////////////////////
|
||
|
# { Feature extractor functions
|
||
|
# ////////////////////////////////////////////////////////////
|
||
|
"""
|
||
|
Feature extractor functions are declared outside the SentimentAnalyzer class.
|
||
|
Users should have the possibility to create their own feature extractors
|
||
|
without modifying SentimentAnalyzer.
|
||
|
"""
|
||
|
|
||
|
|
||
|
def extract_unigram_feats(document, unigrams, handle_negation=False):
|
||
|
"""
|
||
|
Populate a dictionary of unigram features, reflecting the presence/absence in
|
||
|
the document of each of the tokens in `unigrams`.
|
||
|
|
||
|
:param document: a list of words/tokens.
|
||
|
:param unigrams: a list of words/tokens whose presence/absence has to be
|
||
|
checked in `document`.
|
||
|
:param handle_negation: if `handle_negation == True` apply `mark_negation`
|
||
|
method to `document` before checking for unigram presence/absence.
|
||
|
:return: a dictionary of unigram features {unigram : boolean}.
|
||
|
|
||
|
>>> words = ['ice', 'police', 'riot']
|
||
|
>>> document = 'ice is melting due to global warming'.split()
|
||
|
>>> sorted(extract_unigram_feats(document, words).items())
|
||
|
[('contains(ice)', True), ('contains(police)', False), ('contains(riot)', False)]
|
||
|
"""
|
||
|
features = {}
|
||
|
if handle_negation:
|
||
|
document = mark_negation(document)
|
||
|
for word in unigrams:
|
||
|
features[f"contains({word})"] = word in set(document)
|
||
|
return features
|
||
|
|
||
|
|
||
|
def extract_bigram_feats(document, bigrams):
|
||
|
"""
|
||
|
Populate a dictionary of bigram features, reflecting the presence/absence in
|
||
|
the document of each of the tokens in `bigrams`. This extractor function only
|
||
|
considers contiguous bigrams obtained by `nltk.bigrams`.
|
||
|
|
||
|
:param document: a list of words/tokens.
|
||
|
:param unigrams: a list of bigrams whose presence/absence has to be
|
||
|
checked in `document`.
|
||
|
:return: a dictionary of bigram features {bigram : boolean}.
|
||
|
|
||
|
>>> bigrams = [('global', 'warming'), ('police', 'prevented'), ('love', 'you')]
|
||
|
>>> document = 'ice is melting due to global warming'.split()
|
||
|
>>> sorted(extract_bigram_feats(document, bigrams).items()) # doctest: +NORMALIZE_WHITESPACE
|
||
|
[('contains(global - warming)', True), ('contains(love - you)', False),
|
||
|
('contains(police - prevented)', False)]
|
||
|
"""
|
||
|
features = {}
|
||
|
for bigr in bigrams:
|
||
|
features[f"contains({bigr[0]} - {bigr[1]})"] = bigr in nltk.bigrams(document)
|
||
|
return features
|
||
|
|
||
|
|
||
|
# ////////////////////////////////////////////////////////////
|
||
|
# { Helper Functions
|
||
|
# ////////////////////////////////////////////////////////////
|
||
|
|
||
|
|
||
|
def mark_negation(document, double_neg_flip=False, shallow=False):
|
||
|
"""
|
||
|
Append _NEG suffix to words that appear in the scope between a negation
|
||
|
and a punctuation mark.
|
||
|
|
||
|
:param document: a list of words/tokens, or a tuple (words, label).
|
||
|
:param shallow: if True, the method will modify the original document in place.
|
||
|
:param double_neg_flip: if True, double negation is considered affirmation
|
||
|
(we activate/deactivate negation scope every time we find a negation).
|
||
|
:return: if `shallow == True` the method will modify the original document
|
||
|
and return it. If `shallow == False` the method will return a modified
|
||
|
document, leaving the original unmodified.
|
||
|
|
||
|
>>> sent = "I didn't like this movie . It was bad .".split()
|
||
|
>>> mark_negation(sent)
|
||
|
['I', "didn't", 'like_NEG', 'this_NEG', 'movie_NEG', '.', 'It', 'was', 'bad', '.']
|
||
|
"""
|
||
|
if not shallow:
|
||
|
document = deepcopy(document)
|
||
|
# check if the document is labeled. If so, do not consider the label.
|
||
|
labeled = document and isinstance(document[0], (tuple, list))
|
||
|
if labeled:
|
||
|
doc = document[0]
|
||
|
else:
|
||
|
doc = document
|
||
|
neg_scope = False
|
||
|
for i, word in enumerate(doc):
|
||
|
if NEGATION_RE.search(word):
|
||
|
if not neg_scope or (neg_scope and double_neg_flip):
|
||
|
neg_scope = not neg_scope
|
||
|
continue
|
||
|
else:
|
||
|
doc[i] += "_NEG"
|
||
|
elif neg_scope and CLAUSE_PUNCT_RE.search(word):
|
||
|
neg_scope = not neg_scope
|
||
|
elif neg_scope and not CLAUSE_PUNCT_RE.search(word):
|
||
|
doc[i] += "_NEG"
|
||
|
|
||
|
return document
|
||
|
|
||
|
|
||
|
def output_markdown(filename, **kwargs):
|
||
|
"""
|
||
|
Write the output of an analysis to a file.
|
||
|
"""
|
||
|
with codecs.open(filename, "at") as outfile:
|
||
|
text = "\n*** \n\n"
|
||
|
text += "{} \n\n".format(time.strftime("%d/%m/%Y, %H:%M"))
|
||
|
for k in sorted(kwargs):
|
||
|
if isinstance(kwargs[k], dict):
|
||
|
dictionary = kwargs[k]
|
||
|
text += f" - **{k}:**\n"
|
||
|
for entry in sorted(dictionary):
|
||
|
text += f" - {entry}: {dictionary[entry]} \n"
|
||
|
elif isinstance(kwargs[k], list):
|
||
|
text += f" - **{k}:**\n"
|
||
|
for entry in kwargs[k]:
|
||
|
text += f" - {entry}\n"
|
||
|
else:
|
||
|
text += f" - **{k}:** {kwargs[k]} \n"
|
||
|
outfile.write(text)
|
||
|
|
||
|
|
||
|
def split_train_test(all_instances, n=None):
|
||
|
"""
|
||
|
Randomly split `n` instances of the dataset into train and test sets.
|
||
|
|
||
|
:param all_instances: a list of instances (e.g. documents) that will be split.
|
||
|
:param n: the number of instances to consider (in case we want to use only a
|
||
|
subset).
|
||
|
:return: two lists of instances. Train set is 8/10 of the total and test set
|
||
|
is 2/10 of the total.
|
||
|
"""
|
||
|
random.seed(12345)
|
||
|
random.shuffle(all_instances)
|
||
|
if not n or n > len(all_instances):
|
||
|
n = len(all_instances)
|
||
|
train_set = all_instances[: int(0.8 * n)]
|
||
|
test_set = all_instances[int(0.8 * n) : n]
|
||
|
|
||
|
return train_set, test_set
|
||
|
|
||
|
|
||
|
def _show_plot(x_values, y_values, x_labels=None, y_labels=None):
|
||
|
try:
|
||
|
import matplotlib.pyplot as plt
|
||
|
except ImportError as e:
|
||
|
raise ImportError(
|
||
|
"The plot function requires matplotlib to be installed."
|
||
|
"See https://matplotlib.org/"
|
||
|
) from e
|
||
|
|
||
|
plt.locator_params(axis="y", nbins=3)
|
||
|
axes = plt.axes()
|
||
|
axes.yaxis.grid()
|
||
|
plt.plot(x_values, y_values, "ro", color="red")
|
||
|
plt.ylim(ymin=-1.2, ymax=1.2)
|
||
|
plt.tight_layout(pad=5)
|
||
|
if x_labels:
|
||
|
plt.xticks(x_values, x_labels, rotation="vertical")
|
||
|
if y_labels:
|
||
|
plt.yticks([-1, 0, 1], y_labels, rotation="horizontal")
|
||
|
# Pad margins so that markers are not clipped by the axes
|
||
|
plt.margins(0.2)
|
||
|
plt.show()
|
||
|
|
||
|
|
||
|
# ////////////////////////////////////////////////////////////
|
||
|
# { Parsing and conversion functions
|
||
|
# ////////////////////////////////////////////////////////////
|
||
|
|
||
|
|
||
|
def json2csv_preprocess(
|
||
|
json_file,
|
||
|
outfile,
|
||
|
fields,
|
||
|
encoding="utf8",
|
||
|
errors="replace",
|
||
|
gzip_compress=False,
|
||
|
skip_retweets=True,
|
||
|
skip_tongue_tweets=True,
|
||
|
skip_ambiguous_tweets=True,
|
||
|
strip_off_emoticons=True,
|
||
|
remove_duplicates=True,
|
||
|
limit=None,
|
||
|
):
|
||
|
"""
|
||
|
Convert json file to csv file, preprocessing each row to obtain a suitable
|
||
|
dataset for tweets Semantic Analysis.
|
||
|
|
||
|
:param json_file: the original json file containing tweets.
|
||
|
:param outfile: the output csv filename.
|
||
|
:param fields: a list of fields that will be extracted from the json file and
|
||
|
kept in the output csv file.
|
||
|
:param encoding: the encoding of the files.
|
||
|
:param errors: the error handling strategy for the output writer.
|
||
|
:param gzip_compress: if True, create a compressed GZIP file.
|
||
|
|
||
|
:param skip_retweets: if True, remove retweets.
|
||
|
:param skip_tongue_tweets: if True, remove tweets containing ":P" and ":-P"
|
||
|
emoticons.
|
||
|
:param skip_ambiguous_tweets: if True, remove tweets containing both happy
|
||
|
and sad emoticons.
|
||
|
:param strip_off_emoticons: if True, strip off emoticons from all tweets.
|
||
|
:param remove_duplicates: if True, remove tweets appearing more than once.
|
||
|
:param limit: an integer to set the number of tweets to convert. After the
|
||
|
limit is reached the conversion will stop. It can be useful to create
|
||
|
subsets of the original tweets json data.
|
||
|
"""
|
||
|
with codecs.open(json_file, encoding=encoding) as fp:
|
||
|
(writer, outf) = _outf_writer(outfile, encoding, errors, gzip_compress)
|
||
|
# write the list of fields as header
|
||
|
writer.writerow(fields)
|
||
|
|
||
|
if remove_duplicates == True:
|
||
|
tweets_cache = []
|
||
|
i = 0
|
||
|
for line in fp:
|
||
|
tweet = json.loads(line)
|
||
|
row = extract_fields(tweet, fields)
|
||
|
try:
|
||
|
text = row[fields.index("text")]
|
||
|
# Remove retweets
|
||
|
if skip_retweets == True:
|
||
|
if re.search(r"\bRT\b", text):
|
||
|
continue
|
||
|
# Remove tweets containing ":P" and ":-P" emoticons
|
||
|
if skip_tongue_tweets == True:
|
||
|
if re.search(r"\:\-?P\b", text):
|
||
|
continue
|
||
|
# Remove tweets containing both happy and sad emoticons
|
||
|
if skip_ambiguous_tweets == True:
|
||
|
all_emoticons = EMOTICON_RE.findall(text)
|
||
|
if all_emoticons:
|
||
|
if (set(all_emoticons) & HAPPY) and (set(all_emoticons) & SAD):
|
||
|
continue
|
||
|
# Strip off emoticons from all tweets
|
||
|
if strip_off_emoticons == True:
|
||
|
row[fields.index("text")] = re.sub(
|
||
|
r"(?!\n)\s+", " ", EMOTICON_RE.sub("", text)
|
||
|
)
|
||
|
# Remove duplicate tweets
|
||
|
if remove_duplicates == True:
|
||
|
if row[fields.index("text")] in tweets_cache:
|
||
|
continue
|
||
|
else:
|
||
|
tweets_cache.append(row[fields.index("text")])
|
||
|
except ValueError:
|
||
|
pass
|
||
|
writer.writerow(row)
|
||
|
i += 1
|
||
|
if limit and i >= limit:
|
||
|
break
|
||
|
outf.close()
|
||
|
|
||
|
|
||
|
def parse_tweets_set(
|
||
|
filename, label, word_tokenizer=None, sent_tokenizer=None, skip_header=True
|
||
|
):
|
||
|
"""
|
||
|
Parse csv file containing tweets and output data a list of (text, label) tuples.
|
||
|
|
||
|
:param filename: the input csv filename.
|
||
|
:param label: the label to be appended to each tweet contained in the csv file.
|
||
|
:param word_tokenizer: the tokenizer instance that will be used to tokenize
|
||
|
each sentence into tokens (e.g. WordPunctTokenizer() or BlanklineTokenizer()).
|
||
|
If no word_tokenizer is specified, tweets will not be tokenized.
|
||
|
:param sent_tokenizer: the tokenizer that will be used to split each tweet into
|
||
|
sentences.
|
||
|
:param skip_header: if True, skip the first line of the csv file (which usually
|
||
|
contains headers).
|
||
|
|
||
|
:return: a list of (text, label) tuples.
|
||
|
"""
|
||
|
tweets = []
|
||
|
if not sent_tokenizer:
|
||
|
sent_tokenizer = load("tokenizers/punkt/english.pickle")
|
||
|
|
||
|
with codecs.open(filename, "rt") as csvfile:
|
||
|
reader = csv.reader(csvfile)
|
||
|
if skip_header == True:
|
||
|
next(reader, None) # skip the header
|
||
|
i = 0
|
||
|
for tweet_id, text in reader:
|
||
|
# text = text[1]
|
||
|
i += 1
|
||
|
sys.stdout.write(f"Loaded {i} tweets\r")
|
||
|
# Apply sentence and word tokenizer to text
|
||
|
if word_tokenizer:
|
||
|
tweet = [
|
||
|
w
|
||
|
for sent in sent_tokenizer.tokenize(text)
|
||
|
for w in word_tokenizer.tokenize(sent)
|
||
|
]
|
||
|
else:
|
||
|
tweet = text
|
||
|
tweets.append((tweet, label))
|
||
|
|
||
|
print(f"Loaded {i} tweets")
|
||
|
return tweets
|
||
|
|
||
|
|
||
|
# ////////////////////////////////////////////////////////////
|
||
|
# { Demos
|
||
|
# ////////////////////////////////////////////////////////////
|
||
|
|
||
|
|
||
|
def demo_tweets(trainer, n_instances=None, output=None):
|
||
|
"""
|
||
|
Train and test Naive Bayes classifier on 10000 tweets, tokenized using
|
||
|
TweetTokenizer.
|
||
|
Features are composed of:
|
||
|
|
||
|
- 1000 most frequent unigrams
|
||
|
- 100 top bigrams (using BigramAssocMeasures.pmi)
|
||
|
|
||
|
:param trainer: `train` method of a classifier.
|
||
|
:param n_instances: the number of total tweets that have to be used for
|
||
|
training and testing. Tweets will be equally split between positive and
|
||
|
negative.
|
||
|
:param output: the output file where results have to be reported.
|
||
|
"""
|
||
|
from nltk.corpus import stopwords, twitter_samples
|
||
|
from nltk.sentiment import SentimentAnalyzer
|
||
|
from nltk.tokenize import TweetTokenizer
|
||
|
|
||
|
# Different customizations for the TweetTokenizer
|
||
|
tokenizer = TweetTokenizer(preserve_case=False)
|
||
|
# tokenizer = TweetTokenizer(preserve_case=True, strip_handles=True)
|
||
|
# tokenizer = TweetTokenizer(reduce_len=True, strip_handles=True)
|
||
|
|
||
|
if n_instances is not None:
|
||
|
n_instances = int(n_instances / 2)
|
||
|
|
||
|
fields = ["id", "text"]
|
||
|
positive_json = twitter_samples.abspath("positive_tweets.json")
|
||
|
positive_csv = "positive_tweets.csv"
|
||
|
json2csv_preprocess(positive_json, positive_csv, fields, limit=n_instances)
|
||
|
|
||
|
negative_json = twitter_samples.abspath("negative_tweets.json")
|
||
|
negative_csv = "negative_tweets.csv"
|
||
|
json2csv_preprocess(negative_json, negative_csv, fields, limit=n_instances)
|
||
|
|
||
|
neg_docs = parse_tweets_set(negative_csv, label="neg", word_tokenizer=tokenizer)
|
||
|
pos_docs = parse_tweets_set(positive_csv, label="pos", word_tokenizer=tokenizer)
|
||
|
|
||
|
# We separately split subjective and objective instances to keep a balanced
|
||
|
# uniform class distribution in both train and test sets.
|
||
|
train_pos_docs, test_pos_docs = split_train_test(pos_docs)
|
||
|
train_neg_docs, test_neg_docs = split_train_test(neg_docs)
|
||
|
|
||
|
training_tweets = train_pos_docs + train_neg_docs
|
||
|
testing_tweets = test_pos_docs + test_neg_docs
|
||
|
|
||
|
sentim_analyzer = SentimentAnalyzer()
|
||
|
# stopwords = stopwords.words('english')
|
||
|
# all_words = [word for word in sentim_analyzer.all_words(training_tweets) if word.lower() not in stopwords]
|
||
|
all_words = [word for word in sentim_analyzer.all_words(training_tweets)]
|
||
|
|
||
|
# Add simple unigram word features
|
||
|
unigram_feats = sentim_analyzer.unigram_word_feats(all_words, top_n=1000)
|
||
|
sentim_analyzer.add_feat_extractor(extract_unigram_feats, unigrams=unigram_feats)
|
||
|
|
||
|
# Add bigram collocation features
|
||
|
bigram_collocs_feats = sentim_analyzer.bigram_collocation_feats(
|
||
|
[tweet[0] for tweet in training_tweets], top_n=100, min_freq=12
|
||
|
)
|
||
|
sentim_analyzer.add_feat_extractor(
|
||
|
extract_bigram_feats, bigrams=bigram_collocs_feats
|
||
|
)
|
||
|
|
||
|
training_set = sentim_analyzer.apply_features(training_tweets)
|
||
|
test_set = sentim_analyzer.apply_features(testing_tweets)
|
||
|
|
||
|
classifier = sentim_analyzer.train(trainer, training_set)
|
||
|
# classifier = sentim_analyzer.train(trainer, training_set, max_iter=4)
|
||
|
try:
|
||
|
classifier.show_most_informative_features()
|
||
|
except AttributeError:
|
||
|
print(
|
||
|
"Your classifier does not provide a show_most_informative_features() method."
|
||
|
)
|
||
|
results = sentim_analyzer.evaluate(test_set)
|
||
|
|
||
|
if output:
|
||
|
extr = [f.__name__ for f in sentim_analyzer.feat_extractors]
|
||
|
output_markdown(
|
||
|
output,
|
||
|
Dataset="labeled_tweets",
|
||
|
Classifier=type(classifier).__name__,
|
||
|
Tokenizer=tokenizer.__class__.__name__,
|
||
|
Feats=extr,
|
||
|
Results=results,
|
||
|
Instances=n_instances,
|
||
|
)
|
||
|
|
||
|
|
||
|
def demo_movie_reviews(trainer, n_instances=None, output=None):
|
||
|
"""
|
||
|
Train classifier on all instances of the Movie Reviews dataset.
|
||
|
The corpus has been preprocessed using the default sentence tokenizer and
|
||
|
WordPunctTokenizer.
|
||
|
Features are composed of:
|
||
|
|
||
|
- most frequent unigrams
|
||
|
|
||
|
:param trainer: `train` method of a classifier.
|
||
|
:param n_instances: the number of total reviews that have to be used for
|
||
|
training and testing. Reviews will be equally split between positive and
|
||
|
negative.
|
||
|
:param output: the output file where results have to be reported.
|
||
|
"""
|
||
|
from nltk.corpus import movie_reviews
|
||
|
from nltk.sentiment import SentimentAnalyzer
|
||
|
|
||
|
if n_instances is not None:
|
||
|
n_instances = int(n_instances / 2)
|
||
|
|
||
|
pos_docs = [
|
||
|
(list(movie_reviews.words(pos_id)), "pos")
|
||
|
for pos_id in movie_reviews.fileids("pos")[:n_instances]
|
||
|
]
|
||
|
neg_docs = [
|
||
|
(list(movie_reviews.words(neg_id)), "neg")
|
||
|
for neg_id in movie_reviews.fileids("neg")[:n_instances]
|
||
|
]
|
||
|
# We separately split positive and negative instances to keep a balanced
|
||
|
# uniform class distribution in both train and test sets.
|
||
|
train_pos_docs, test_pos_docs = split_train_test(pos_docs)
|
||
|
train_neg_docs, test_neg_docs = split_train_test(neg_docs)
|
||
|
|
||
|
training_docs = train_pos_docs + train_neg_docs
|
||
|
testing_docs = test_pos_docs + test_neg_docs
|
||
|
|
||
|
sentim_analyzer = SentimentAnalyzer()
|
||
|
all_words = sentim_analyzer.all_words(training_docs)
|
||
|
|
||
|
# Add simple unigram word features
|
||
|
unigram_feats = sentim_analyzer.unigram_word_feats(all_words, min_freq=4)
|
||
|
sentim_analyzer.add_feat_extractor(extract_unigram_feats, unigrams=unigram_feats)
|
||
|
# Apply features to obtain a feature-value representation of our datasets
|
||
|
training_set = sentim_analyzer.apply_features(training_docs)
|
||
|
test_set = sentim_analyzer.apply_features(testing_docs)
|
||
|
|
||
|
classifier = sentim_analyzer.train(trainer, training_set)
|
||
|
try:
|
||
|
classifier.show_most_informative_features()
|
||
|
except AttributeError:
|
||
|
print(
|
||
|
"Your classifier does not provide a show_most_informative_features() method."
|
||
|
)
|
||
|
results = sentim_analyzer.evaluate(test_set)
|
||
|
|
||
|
if output:
|
||
|
extr = [f.__name__ for f in sentim_analyzer.feat_extractors]
|
||
|
output_markdown(
|
||
|
output,
|
||
|
Dataset="Movie_reviews",
|
||
|
Classifier=type(classifier).__name__,
|
||
|
Tokenizer="WordPunctTokenizer",
|
||
|
Feats=extr,
|
||
|
Results=results,
|
||
|
Instances=n_instances,
|
||
|
)
|
||
|
|
||
|
|
||
|
def demo_subjectivity(trainer, save_analyzer=False, n_instances=None, output=None):
|
||
|
"""
|
||
|
Train and test a classifier on instances of the Subjective Dataset by Pang and
|
||
|
Lee. The dataset is made of 5000 subjective and 5000 objective sentences.
|
||
|
All tokens (words and punctuation marks) are separated by a whitespace, so
|
||
|
we use the basic WhitespaceTokenizer to parse the data.
|
||
|
|
||
|
:param trainer: `train` method of a classifier.
|
||
|
:param save_analyzer: if `True`, store the SentimentAnalyzer in a pickle file.
|
||
|
:param n_instances: the number of total sentences that have to be used for
|
||
|
training and testing. Sentences will be equally split between positive
|
||
|
and negative.
|
||
|
:param output: the output file where results have to be reported.
|
||
|
"""
|
||
|
from nltk.corpus import subjectivity
|
||
|
from nltk.sentiment import SentimentAnalyzer
|
||
|
|
||
|
if n_instances is not None:
|
||
|
n_instances = int(n_instances / 2)
|
||
|
|
||
|
subj_docs = [
|
||
|
(sent, "subj") for sent in subjectivity.sents(categories="subj")[:n_instances]
|
||
|
]
|
||
|
obj_docs = [
|
||
|
(sent, "obj") for sent in subjectivity.sents(categories="obj")[:n_instances]
|
||
|
]
|
||
|
|
||
|
# We separately split subjective and objective instances to keep a balanced
|
||
|
# uniform class distribution in both train and test sets.
|
||
|
train_subj_docs, test_subj_docs = split_train_test(subj_docs)
|
||
|
train_obj_docs, test_obj_docs = split_train_test(obj_docs)
|
||
|
|
||
|
training_docs = train_subj_docs + train_obj_docs
|
||
|
testing_docs = test_subj_docs + test_obj_docs
|
||
|
|
||
|
sentim_analyzer = SentimentAnalyzer()
|
||
|
all_words_neg = sentim_analyzer.all_words(
|
||
|
[mark_negation(doc) for doc in training_docs]
|
||
|
)
|
||
|
|
||
|
# Add simple unigram word features handling negation
|
||
|
unigram_feats = sentim_analyzer.unigram_word_feats(all_words_neg, min_freq=4)
|
||
|
sentim_analyzer.add_feat_extractor(extract_unigram_feats, unigrams=unigram_feats)
|
||
|
|
||
|
# Apply features to obtain a feature-value representation of our datasets
|
||
|
training_set = sentim_analyzer.apply_features(training_docs)
|
||
|
test_set = sentim_analyzer.apply_features(testing_docs)
|
||
|
|
||
|
classifier = sentim_analyzer.train(trainer, training_set)
|
||
|
try:
|
||
|
classifier.show_most_informative_features()
|
||
|
except AttributeError:
|
||
|
print(
|
||
|
"Your classifier does not provide a show_most_informative_features() method."
|
||
|
)
|
||
|
results = sentim_analyzer.evaluate(test_set)
|
||
|
|
||
|
if save_analyzer == True:
|
||
|
sentim_analyzer.save_file(sentim_analyzer, "sa_subjectivity.pickle")
|
||
|
|
||
|
if output:
|
||
|
extr = [f.__name__ for f in sentim_analyzer.feat_extractors]
|
||
|
output_markdown(
|
||
|
output,
|
||
|
Dataset="subjectivity",
|
||
|
Classifier=type(classifier).__name__,
|
||
|
Tokenizer="WhitespaceTokenizer",
|
||
|
Feats=extr,
|
||
|
Instances=n_instances,
|
||
|
Results=results,
|
||
|
)
|
||
|
|
||
|
return sentim_analyzer
|
||
|
|
||
|
|
||
|
def demo_sent_subjectivity(text):
|
||
|
"""
|
||
|
Classify a single sentence as subjective or objective using a stored
|
||
|
SentimentAnalyzer.
|
||
|
|
||
|
:param text: a sentence whose subjectivity has to be classified.
|
||
|
"""
|
||
|
from nltk.classify import NaiveBayesClassifier
|
||
|
from nltk.tokenize import regexp
|
||
|
|
||
|
word_tokenizer = regexp.WhitespaceTokenizer()
|
||
|
try:
|
||
|
sentim_analyzer = load("sa_subjectivity.pickle")
|
||
|
except LookupError:
|
||
|
print("Cannot find the sentiment analyzer you want to load.")
|
||
|
print("Training a new one using NaiveBayesClassifier.")
|
||
|
sentim_analyzer = demo_subjectivity(NaiveBayesClassifier.train, True)
|
||
|
|
||
|
# Tokenize and convert to lower case
|
||
|
tokenized_text = [word.lower() for word in word_tokenizer.tokenize(text)]
|
||
|
print(sentim_analyzer.classify(tokenized_text))
|
||
|
|
||
|
|
||
|
def demo_liu_hu_lexicon(sentence, plot=False):
|
||
|
"""
|
||
|
Basic example of sentiment classification using Liu and Hu opinion lexicon.
|
||
|
This function simply counts the number of positive, negative and neutral words
|
||
|
in the sentence and classifies it depending on which polarity is more represented.
|
||
|
Words that do not appear in the lexicon are considered as neutral.
|
||
|
|
||
|
:param sentence: a sentence whose polarity has to be classified.
|
||
|
:param plot: if True, plot a visual representation of the sentence polarity.
|
||
|
"""
|
||
|
from nltk.corpus import opinion_lexicon
|
||
|
from nltk.tokenize import treebank
|
||
|
|
||
|
tokenizer = treebank.TreebankWordTokenizer()
|
||
|
pos_words = 0
|
||
|
neg_words = 0
|
||
|
tokenized_sent = [word.lower() for word in tokenizer.tokenize(sentence)]
|
||
|
|
||
|
x = list(range(len(tokenized_sent))) # x axis for the plot
|
||
|
y = []
|
||
|
|
||
|
for word in tokenized_sent:
|
||
|
if word in opinion_lexicon.positive():
|
||
|
pos_words += 1
|
||
|
y.append(1) # positive
|
||
|
elif word in opinion_lexicon.negative():
|
||
|
neg_words += 1
|
||
|
y.append(-1) # negative
|
||
|
else:
|
||
|
y.append(0) # neutral
|
||
|
|
||
|
if pos_words > neg_words:
|
||
|
print("Positive")
|
||
|
elif pos_words < neg_words:
|
||
|
print("Negative")
|
||
|
elif pos_words == neg_words:
|
||
|
print("Neutral")
|
||
|
|
||
|
if plot == True:
|
||
|
_show_plot(
|
||
|
x, y, x_labels=tokenized_sent, y_labels=["Negative", "Neutral", "Positive"]
|
||
|
)
|
||
|
|
||
|
|
||
|
def demo_vader_instance(text):
|
||
|
"""
|
||
|
Output polarity scores for a text using Vader approach.
|
||
|
|
||
|
:param text: a text whose polarity has to be evaluated.
|
||
|
"""
|
||
|
from nltk.sentiment import SentimentIntensityAnalyzer
|
||
|
|
||
|
vader_analyzer = SentimentIntensityAnalyzer()
|
||
|
print(vader_analyzer.polarity_scores(text))
|
||
|
|
||
|
|
||
|
def demo_vader_tweets(n_instances=None, output=None):
|
||
|
"""
|
||
|
Classify 10000 positive and negative tweets using Vader approach.
|
||
|
|
||
|
:param n_instances: the number of total tweets that have to be classified.
|
||
|
:param output: the output file where results have to be reported.
|
||
|
"""
|
||
|
from collections import defaultdict
|
||
|
|
||
|
from nltk.corpus import twitter_samples
|
||
|
from nltk.metrics import accuracy as eval_accuracy
|
||
|
from nltk.metrics import f_measure as eval_f_measure
|
||
|
from nltk.metrics import precision as eval_precision
|
||
|
from nltk.metrics import recall as eval_recall
|
||
|
from nltk.sentiment import SentimentIntensityAnalyzer
|
||
|
|
||
|
if n_instances is not None:
|
||
|
n_instances = int(n_instances / 2)
|
||
|
|
||
|
fields = ["id", "text"]
|
||
|
positive_json = twitter_samples.abspath("positive_tweets.json")
|
||
|
positive_csv = "positive_tweets.csv"
|
||
|
json2csv_preprocess(
|
||
|
positive_json,
|
||
|
positive_csv,
|
||
|
fields,
|
||
|
strip_off_emoticons=False,
|
||
|
limit=n_instances,
|
||
|
)
|
||
|
|
||
|
negative_json = twitter_samples.abspath("negative_tweets.json")
|
||
|
negative_csv = "negative_tweets.csv"
|
||
|
json2csv_preprocess(
|
||
|
negative_json,
|
||
|
negative_csv,
|
||
|
fields,
|
||
|
strip_off_emoticons=False,
|
||
|
limit=n_instances,
|
||
|
)
|
||
|
|
||
|
pos_docs = parse_tweets_set(positive_csv, label="pos")
|
||
|
neg_docs = parse_tweets_set(negative_csv, label="neg")
|
||
|
|
||
|
# We separately split subjective and objective instances to keep a balanced
|
||
|
# uniform class distribution in both train and test sets.
|
||
|
train_pos_docs, test_pos_docs = split_train_test(pos_docs)
|
||
|
train_neg_docs, test_neg_docs = split_train_test(neg_docs)
|
||
|
|
||
|
training_tweets = train_pos_docs + train_neg_docs
|
||
|
testing_tweets = test_pos_docs + test_neg_docs
|
||
|
|
||
|
vader_analyzer = SentimentIntensityAnalyzer()
|
||
|
|
||
|
gold_results = defaultdict(set)
|
||
|
test_results = defaultdict(set)
|
||
|
acc_gold_results = []
|
||
|
acc_test_results = []
|
||
|
labels = set()
|
||
|
num = 0
|
||
|
for i, (text, label) in enumerate(testing_tweets):
|
||
|
labels.add(label)
|
||
|
gold_results[label].add(i)
|
||
|
acc_gold_results.append(label)
|
||
|
score = vader_analyzer.polarity_scores(text)["compound"]
|
||
|
if score > 0:
|
||
|
observed = "pos"
|
||
|
else:
|
||
|
observed = "neg"
|
||
|
num += 1
|
||
|
acc_test_results.append(observed)
|
||
|
test_results[observed].add(i)
|
||
|
metrics_results = {}
|
||
|
for label in labels:
|
||
|
accuracy_score = eval_accuracy(acc_gold_results, acc_test_results)
|
||
|
metrics_results["Accuracy"] = accuracy_score
|
||
|
precision_score = eval_precision(gold_results[label], test_results[label])
|
||
|
metrics_results[f"Precision [{label}]"] = precision_score
|
||
|
recall_score = eval_recall(gold_results[label], test_results[label])
|
||
|
metrics_results[f"Recall [{label}]"] = recall_score
|
||
|
f_measure_score = eval_f_measure(gold_results[label], test_results[label])
|
||
|
metrics_results[f"F-measure [{label}]"] = f_measure_score
|
||
|
|
||
|
for result in sorted(metrics_results):
|
||
|
print(f"{result}: {metrics_results[result]}")
|
||
|
|
||
|
if output:
|
||
|
output_markdown(
|
||
|
output,
|
||
|
Approach="Vader",
|
||
|
Dataset="labeled_tweets",
|
||
|
Instances=n_instances,
|
||
|
Results=metrics_results,
|
||
|
)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
from sklearn.svm import LinearSVC
|
||
|
|
||
|
from nltk.classify import MaxentClassifier, NaiveBayesClassifier
|
||
|
from nltk.classify.scikitlearn import SklearnClassifier
|
||
|
from nltk.twitter.common import _outf_writer, extract_fields
|
||
|
|
||
|
naive_bayes = NaiveBayesClassifier.train
|
||
|
svm = SklearnClassifier(LinearSVC()).train
|
||
|
maxent = MaxentClassifier.train
|
||
|
|
||
|
demo_tweets(naive_bayes)
|
||
|
# demo_movie_reviews(svm)
|
||
|
# demo_subjectivity(svm)
|
||
|
# demo_sent_subjectivity("she's an artist , but hasn't picked up a brush in a year . ")
|
||
|
# demo_liu_hu_lexicon("This movie was actually neither that funny, nor super witty.", plot=True)
|
||
|
# demo_vader_instance("This movie was actually neither that funny, nor super witty.")
|
||
|
# demo_vader_tweets()
|