ai-content-maker/.venv/Lib/site-packages/nltk/test/unit/lm/test_models.py

611 lines
19 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
# Natural Language Toolkit: Language Model Unit Tests
#
# Copyright (C) 2001-2023 NLTK Project
# Author: Ilia Kurenkov <ilia.kurenkov@gmail.com>
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT
import math
from operator import itemgetter
import pytest
from nltk.lm import (
MLE,
AbsoluteDiscountingInterpolated,
KneserNeyInterpolated,
Laplace,
Lidstone,
StupidBackoff,
Vocabulary,
WittenBellInterpolated,
)
from nltk.lm.preprocessing import padded_everygrams
@pytest.fixture(scope="session")
def vocabulary():
return Vocabulary(["a", "b", "c", "d", "z", "<s>", "</s>"], unk_cutoff=1)
@pytest.fixture(scope="session")
def training_data():
return [["a", "b", "c", "d"], ["e", "g", "a", "d", "b", "e"]]
@pytest.fixture(scope="session")
def bigram_training_data(training_data):
return [list(padded_everygrams(2, sent)) for sent in training_data]
@pytest.fixture(scope="session")
def trigram_training_data(training_data):
return [list(padded_everygrams(3, sent)) for sent in training_data]
@pytest.fixture
def mle_bigram_model(vocabulary, bigram_training_data):
model = MLE(2, vocabulary=vocabulary)
model.fit(bigram_training_data)
return model
@pytest.mark.parametrize(
"word, context, expected_score",
[
("d", ["c"], 1),
# Unseen ngrams should yield 0
("d", ["e"], 0),
# Unigrams should also be 0
("z", None, 0),
# N unigrams = 14
# count('a') = 2
("a", None, 2.0 / 14),
# count('y') = 3
("y", None, 3.0 / 14),
],
)
def test_mle_bigram_scores(mle_bigram_model, word, context, expected_score):
assert pytest.approx(mle_bigram_model.score(word, context), 1e-4) == expected_score
def test_mle_bigram_logscore_for_zero_score(mle_bigram_model):
assert math.isinf(mle_bigram_model.logscore("d", ["e"]))
def test_mle_bigram_entropy_perplexity_seen(mle_bigram_model):
# ngrams seen during training
trained = [
("<s>", "a"),
("a", "b"),
("b", "<UNK>"),
("<UNK>", "a"),
("a", "d"),
("d", "</s>"),
]
# Ngram = Log score
# <s>, a = -1
# a, b = -1
# b, UNK = -1
# UNK, a = -1.585
# a, d = -1
# d, </s> = -1
# TOTAL logscores = -6.585
# - AVG logscores = 1.0975
H = 1.0975
perplexity = 2.1398
assert pytest.approx(mle_bigram_model.entropy(trained), 1e-4) == H
assert pytest.approx(mle_bigram_model.perplexity(trained), 1e-4) == perplexity
def test_mle_bigram_entropy_perplexity_unseen(mle_bigram_model):
# In MLE, even one unseen ngram should make entropy and perplexity infinite
untrained = [("<s>", "a"), ("a", "c"), ("c", "d"), ("d", "</s>")]
assert math.isinf(mle_bigram_model.entropy(untrained))
assert math.isinf(mle_bigram_model.perplexity(untrained))
def test_mle_bigram_entropy_perplexity_unigrams(mle_bigram_model):
# word = score, log score
# <s> = 0.1429, -2.8074
# a = 0.1429, -2.8074
# c = 0.0714, -3.8073
# UNK = 0.2143, -2.2224
# d = 0.1429, -2.8074
# c = 0.0714, -3.8073
# </s> = 0.1429, -2.8074
# TOTAL logscores = -21.6243
# - AVG logscores = 3.0095
H = 3.0095
perplexity = 8.0529
text = [("<s>",), ("a",), ("c",), ("-",), ("d",), ("c",), ("</s>",)]
assert pytest.approx(mle_bigram_model.entropy(text), 1e-4) == H
assert pytest.approx(mle_bigram_model.perplexity(text), 1e-4) == perplexity
@pytest.fixture
def mle_trigram_model(trigram_training_data, vocabulary):
model = MLE(order=3, vocabulary=vocabulary)
model.fit(trigram_training_data)
return model
@pytest.mark.parametrize(
"word, context, expected_score",
[
# count(d | b, c) = 1
# count(b, c) = 1
("d", ("b", "c"), 1),
# count(d | c) = 1
# count(c) = 1
("d", ["c"], 1),
# total number of tokens is 18, of which "a" occurred 2 times
("a", None, 2.0 / 18),
# in vocabulary but unseen
("z", None, 0),
# out of vocabulary should use "UNK" score
("y", None, 3.0 / 18),
],
)
def test_mle_trigram_scores(mle_trigram_model, word, context, expected_score):
assert pytest.approx(mle_trigram_model.score(word, context), 1e-4) == expected_score
@pytest.fixture
def lidstone_bigram_model(bigram_training_data, vocabulary):
model = Lidstone(0.1, order=2, vocabulary=vocabulary)
model.fit(bigram_training_data)
return model
@pytest.mark.parametrize(
"word, context, expected_score",
[
# count(d | c) = 1
# *count(d | c) = 1.1
# Count(w | c for w in vocab) = 1
# *Count(w | c for w in vocab) = 1.8
("d", ["c"], 1.1 / 1.8),
# Total unigrams: 14
# Vocab size: 8
# Denominator: 14 + 0.8 = 14.8
# count("a") = 2
# *count("a") = 2.1
("a", None, 2.1 / 14.8),
# in vocabulary but unseen
# count("z") = 0
# *count("z") = 0.1
("z", None, 0.1 / 14.8),
# out of vocabulary should use "UNK" score
# count("<UNK>") = 3
# *count("<UNK>") = 3.1
("y", None, 3.1 / 14.8),
],
)
def test_lidstone_bigram_score(lidstone_bigram_model, word, context, expected_score):
assert (
pytest.approx(lidstone_bigram_model.score(word, context), 1e-4)
== expected_score
)
def test_lidstone_entropy_perplexity(lidstone_bigram_model):
text = [
("<s>", "a"),
("a", "c"),
("c", "<UNK>"),
("<UNK>", "d"),
("d", "c"),
("c", "</s>"),
]
# Unlike MLE this should be able to handle completely novel ngrams
# Ngram = score, log score
# <s>, a = 0.3929, -1.3479
# a, c = 0.0357, -4.8074
# c, UNK = 0.0(5), -4.1699
# UNK, d = 0.0263, -5.2479
# d, c = 0.0357, -4.8074
# c, </s> = 0.0(5), -4.1699
# TOTAL logscore: 24.5504
# - AVG logscore: 4.0917
H = 4.0917
perplexity = 17.0504
assert pytest.approx(lidstone_bigram_model.entropy(text), 1e-4) == H
assert pytest.approx(lidstone_bigram_model.perplexity(text), 1e-4) == perplexity
@pytest.fixture
def lidstone_trigram_model(trigram_training_data, vocabulary):
model = Lidstone(0.1, order=3, vocabulary=vocabulary)
model.fit(trigram_training_data)
return model
@pytest.mark.parametrize(
"word, context, expected_score",
[
# Logic behind this is the same as for bigram model
("d", ["c"], 1.1 / 1.8),
# if we choose a word that hasn't appeared after (b, c)
("e", ["c"], 0.1 / 1.8),
# Trigram score now
("d", ["b", "c"], 1.1 / 1.8),
("e", ["b", "c"], 0.1 / 1.8),
],
)
def test_lidstone_trigram_score(lidstone_trigram_model, word, context, expected_score):
assert (
pytest.approx(lidstone_trigram_model.score(word, context), 1e-4)
== expected_score
)
@pytest.fixture
def laplace_bigram_model(bigram_training_data, vocabulary):
model = Laplace(2, vocabulary=vocabulary)
model.fit(bigram_training_data)
return model
@pytest.mark.parametrize(
"word, context, expected_score",
[
# basic sanity-check:
# count(d | c) = 1
# *count(d | c) = 2
# Count(w | c for w in vocab) = 1
# *Count(w | c for w in vocab) = 9
("d", ["c"], 2.0 / 9),
# Total unigrams: 14
# Vocab size: 8
# Denominator: 14 + 8 = 22
# count("a") = 2
# *count("a") = 3
("a", None, 3.0 / 22),
# in vocabulary but unseen
# count("z") = 0
# *count("z") = 1
("z", None, 1.0 / 22),
# out of vocabulary should use "UNK" score
# count("<UNK>") = 3
# *count("<UNK>") = 4
("y", None, 4.0 / 22),
],
)
def test_laplace_bigram_score(laplace_bigram_model, word, context, expected_score):
assert (
pytest.approx(laplace_bigram_model.score(word, context), 1e-4) == expected_score
)
def test_laplace_bigram_entropy_perplexity(laplace_bigram_model):
text = [
("<s>", "a"),
("a", "c"),
("c", "<UNK>"),
("<UNK>", "d"),
("d", "c"),
("c", "</s>"),
]
# Unlike MLE this should be able to handle completely novel ngrams
# Ngram = score, log score
# <s>, a = 0.2, -2.3219
# a, c = 0.1, -3.3219
# c, UNK = 0.(1), -3.1699
# UNK, d = 0.(09), 3.4594
# d, c = 0.1 -3.3219
# c, </s> = 0.(1), -3.1699
# Total logscores: 18.7651
# - AVG logscores: 3.1275
H = 3.1275
perplexity = 8.7393
assert pytest.approx(laplace_bigram_model.entropy(text), 1e-4) == H
assert pytest.approx(laplace_bigram_model.perplexity(text), 1e-4) == perplexity
def test_laplace_gamma(laplace_bigram_model):
assert laplace_bigram_model.gamma == 1
@pytest.fixture
def wittenbell_trigram_model(trigram_training_data, vocabulary):
model = WittenBellInterpolated(3, vocabulary=vocabulary)
model.fit(trigram_training_data)
return model
@pytest.mark.parametrize(
"word, context, expected_score",
[
# For unigram scores by default revert to regular MLE
# Total unigrams: 18
# Vocab Size = 7
# count('c'): 1
("c", None, 1.0 / 18),
# in vocabulary but unseen
# count("z") = 0
("z", None, 0 / 18),
# out of vocabulary should use "UNK" score
# count("<UNK>") = 3
("y", None, 3.0 / 18),
# 2 words follow b and b occurred a total of 2 times
# gamma(['b']) = 2 / (2 + 2) = 0.5
# mle.score('c', ['b']) = 0.5
# mle('c') = 1 / 18 = 0.055
# (1 - gamma) * mle + gamma * mle('c') ~= 0.27 + 0.055
("c", ["b"], (1 - 0.5) * 0.5 + 0.5 * 1 / 18),
# building on that, let's try 'a b c' as the trigram
# 1 word follows 'a b' and 'a b' occurred 1 time
# gamma(['a', 'b']) = 1 / (1 + 1) = 0.5
# mle("c", ["a", "b"]) = 1
("c", ["a", "b"], (1 - 0.5) + 0.5 * ((1 - 0.5) * 0.5 + 0.5 * 1 / 18)),
# P(c|zb)
# The ngram 'zbc' was not seen, so we use P(c|b). See issue #2332.
("c", ["z", "b"], ((1 - 0.5) * 0.5 + 0.5 * 1 / 18)),
],
)
def test_wittenbell_trigram_score(
wittenbell_trigram_model, word, context, expected_score
):
assert (
pytest.approx(wittenbell_trigram_model.score(word, context), 1e-4)
== expected_score
)
###############################################################################
# Notation Explained #
###############################################################################
# For all subsequent calculations we use the following notation:
# 1. '*': Placeholder for any word/character. E.g. '*b' stands for
# all bigrams that end in 'b'. '*b*' stands for all trigrams that
# contain 'b' in the middle.
# 1. count(ngram): Count all instances (tokens) of an ngram.
# 1. unique(ngram): Count unique instances (types) of an ngram.
@pytest.fixture
def kneserney_trigram_model(trigram_training_data, vocabulary):
model = KneserNeyInterpolated(order=3, discount=0.75, vocabulary=vocabulary)
model.fit(trigram_training_data)
return model
@pytest.mark.parametrize(
"word, context, expected_score",
[
# P(c) = count('*c') / unique('**')
# = 1 / 14
("c", None, 1.0 / 14),
# P(z) = count('*z') / unique('**')
# = 0 / 14
# 'z' is in the vocabulary, but it was not seen during training.
("z", None, 0.0 / 14),
# P(y)
# Out of vocabulary should use "UNK" score.
# P(y) = P(UNK) = count('*UNK') / unique('**')
("y", None, 3 / 14),
# We start with P(c|b)
# P(c|b) = alpha('bc') + gamma('b') * P(c)
# alpha('bc') = max(unique('*bc') - discount, 0) / unique('*b*')
# = max(1 - 0.75, 0) / 2
# = 0.125
# gamma('b') = discount * unique('b*') / unique('*b*')
# = (0.75 * 2) / 2
# = 0.75
("c", ["b"], (0.125 + 0.75 * (1 / 14))),
# Building on that, let's try P(c|ab).
# P(c|ab) = alpha('abc') + gamma('ab') * P(c|b)
# alpha('abc') = max(count('abc') - discount, 0) / count('ab*')
# = max(1 - 0.75, 0) / 1
# = 0.25
# gamma('ab') = (discount * unique('ab*')) / count('ab*')
# = 0.75 * 1 / 1
("c", ["a", "b"], 0.25 + 0.75 * (0.125 + 0.75 * (1 / 14))),
# P(c|zb)
# The ngram 'zbc' was not seen, so we use P(c|b). See issue #2332.
("c", ["z", "b"], (0.125 + 0.75 * (1 / 14))),
],
)
def test_kneserney_trigram_score(
kneserney_trigram_model, word, context, expected_score
):
assert (
pytest.approx(kneserney_trigram_model.score(word, context), 1e-4)
== expected_score
)
@pytest.fixture
def absolute_discounting_trigram_model(trigram_training_data, vocabulary):
model = AbsoluteDiscountingInterpolated(order=3, vocabulary=vocabulary)
model.fit(trigram_training_data)
return model
@pytest.mark.parametrize(
"word, context, expected_score",
[
# For unigram scores revert to uniform
# P(c) = count('c') / count('**')
("c", None, 1.0 / 18),
# in vocabulary but unseen
# count('z') = 0
("z", None, 0.0 / 18),
# out of vocabulary should use "UNK" score
# count('<UNK>') = 3
("y", None, 3 / 18),
# P(c|b) = alpha('bc') + gamma('b') * P(c)
# alpha('bc') = max(count('bc') - discount, 0) / count('b*')
# = max(1 - 0.75, 0) / 2
# = 0.125
# gamma('b') = discount * unique('b*') / count('b*')
# = (0.75 * 2) / 2
# = 0.75
("c", ["b"], (0.125 + 0.75 * (2 / 2) * (1 / 18))),
# Building on that, let's try P(c|ab).
# P(c|ab) = alpha('abc') + gamma('ab') * P(c|b)
# alpha('abc') = max(count('abc') - discount, 0) / count('ab*')
# = max(1 - 0.75, 0) / 1
# = 0.25
# gamma('ab') = (discount * unique('ab*')) / count('ab*')
# = 0.75 * 1 / 1
("c", ["a", "b"], 0.25 + 0.75 * (0.125 + 0.75 * (2 / 2) * (1 / 18))),
# P(c|zb)
# The ngram 'zbc' was not seen, so we use P(c|b). See issue #2332.
("c", ["z", "b"], (0.125 + 0.75 * (2 / 2) * (1 / 18))),
],
)
def test_absolute_discounting_trigram_score(
absolute_discounting_trigram_model, word, context, expected_score
):
assert (
pytest.approx(absolute_discounting_trigram_model.score(word, context), 1e-4)
== expected_score
)
@pytest.fixture
def stupid_backoff_trigram_model(trigram_training_data, vocabulary):
model = StupidBackoff(order=3, vocabulary=vocabulary)
model.fit(trigram_training_data)
return model
@pytest.mark.parametrize(
"word, context, expected_score",
[
# For unigram scores revert to uniform
# total bigrams = 18
("c", None, 1.0 / 18),
# in vocabulary but unseen
# bigrams ending with z = 0
("z", None, 0.0 / 18),
# out of vocabulary should use "UNK" score
# count('<UNK>'): 3
("y", None, 3 / 18),
# c follows 1 time out of 2 after b
("c", ["b"], 1 / 2),
# c always follows ab
("c", ["a", "b"], 1 / 1),
# The ngram 'z b c' was not seen, so we backoff to
# the score of the ngram 'b c' * smoothing factor
("c", ["z", "b"], (0.4 * (1 / 2))),
],
)
def test_stupid_backoff_trigram_score(
stupid_backoff_trigram_model, word, context, expected_score
):
assert (
pytest.approx(stupid_backoff_trigram_model.score(word, context), 1e-4)
== expected_score
)
###############################################################################
# Probability Distributions Should Sum up to Unity #
###############################################################################
@pytest.fixture(scope="session")
def kneserney_bigram_model(bigram_training_data, vocabulary):
model = KneserNeyInterpolated(order=2, vocabulary=vocabulary)
model.fit(bigram_training_data)
return model
@pytest.mark.parametrize(
"model_fixture",
[
"mle_bigram_model",
"mle_trigram_model",
"lidstone_bigram_model",
"laplace_bigram_model",
"wittenbell_trigram_model",
"absolute_discounting_trigram_model",
"kneserney_bigram_model",
pytest.param(
"stupid_backoff_trigram_model",
marks=pytest.mark.xfail(
reason="Stupid Backoff is not a valid distribution"
),
),
],
)
@pytest.mark.parametrize(
"context",
[("a",), ("c",), ("<s>",), ("b",), ("<UNK>",), ("d",), ("e",), ("r",), ("w",)],
ids=itemgetter(0),
)
def test_sums_to_1(model_fixture, context, request):
model = request.getfixturevalue(model_fixture)
scores_for_context = sum(model.score(w, context) for w in model.vocab)
assert pytest.approx(scores_for_context, 1e-7) == 1.0
###############################################################################
# Generating Text #
###############################################################################
def test_generate_one_no_context(mle_trigram_model):
assert mle_trigram_model.generate(random_seed=3) == "<UNK>"
def test_generate_one_from_limiting_context(mle_trigram_model):
# We don't need random_seed for contexts with only one continuation
assert mle_trigram_model.generate(text_seed=["c"]) == "d"
assert mle_trigram_model.generate(text_seed=["b", "c"]) == "d"
assert mle_trigram_model.generate(text_seed=["a", "c"]) == "d"
def test_generate_one_from_varied_context(mle_trigram_model):
# When context doesn't limit our options enough, seed the random choice
assert mle_trigram_model.generate(text_seed=("a", "<s>"), random_seed=2) == "a"
def test_generate_cycle(mle_trigram_model):
# Add a cycle to the model: bd -> b, db -> d
more_training_text = [padded_everygrams(mle_trigram_model.order, list("bdbdbd"))]
mle_trigram_model.fit(more_training_text)
# Test that we can escape the cycle
assert mle_trigram_model.generate(7, text_seed=("b", "d"), random_seed=5) == [
"b",
"d",
"b",
"d",
"b",
"d",
"</s>",
]
def test_generate_with_text_seed(mle_trigram_model):
assert mle_trigram_model.generate(5, text_seed=("<s>", "e"), random_seed=3) == [
"<UNK>",
"a",
"d",
"b",
"<UNK>",
]
def test_generate_oov_text_seed(mle_trigram_model):
assert mle_trigram_model.generate(
text_seed=("aliens",), random_seed=3
) == mle_trigram_model.generate(text_seed=("<UNK>",), random_seed=3)
def test_generate_None_text_seed(mle_trigram_model):
# should crash with type error when we try to look it up in vocabulary
with pytest.raises(TypeError):
mle_trigram_model.generate(text_seed=(None,))
# This will work
assert mle_trigram_model.generate(
text_seed=None, random_seed=3
) == mle_trigram_model.generate(random_seed=3)