ai-content-maker/.venv/Lib/site-packages/nltk/tokenize/treebank.py

403 lines
16 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
# Natural Language Toolkit: Tokenizers
#
# Copyright (C) 2001-2023 NLTK Project
# Author: Edward Loper <edloper@gmail.com>
# Michael Heilman <mheilman@cmu.edu> (re-port from http://www.cis.upenn.edu/~treebank/tokenizer.sed)
# Tom Aarsen <> (modifications)
#
# URL: <https://www.nltk.org>
# For license information, see LICENSE.TXT
r"""
Penn Treebank Tokenizer
The Treebank tokenizer uses regular expressions to tokenize text as in Penn Treebank.
This implementation is a port of the tokenizer sed script written by Robert McIntyre
and available at http://www.cis.upenn.edu/~treebank/tokenizer.sed.
"""
import re
import warnings
from typing import Iterator, List, Tuple
from nltk.tokenize.api import TokenizerI
from nltk.tokenize.destructive import MacIntyreContractions
from nltk.tokenize.util import align_tokens
class TreebankWordTokenizer(TokenizerI):
r"""
The Treebank tokenizer uses regular expressions to tokenize text as in Penn Treebank.
This tokenizer performs the following steps:
- split standard contractions, e.g. ``don't`` -> ``do n't`` and ``they'll`` -> ``they 'll``
- treat most punctuation characters as separate tokens
- split off commas and single quotes, when followed by whitespace
- separate periods that appear at the end of line
>>> from nltk.tokenize import TreebankWordTokenizer
>>> s = '''Good muffins cost $3.88\nin New York. Please buy me\ntwo of them.\nThanks.'''
>>> TreebankWordTokenizer().tokenize(s)
['Good', 'muffins', 'cost', '$', '3.88', 'in', 'New', 'York.', 'Please', 'buy', 'me', 'two', 'of', 'them.', 'Thanks', '.']
>>> s = "They'll save and invest more."
>>> TreebankWordTokenizer().tokenize(s)
['They', "'ll", 'save', 'and', 'invest', 'more', '.']
>>> s = "hi, my name can't hello,"
>>> TreebankWordTokenizer().tokenize(s)
['hi', ',', 'my', 'name', 'ca', "n't", 'hello', ',']
"""
# starting quotes
STARTING_QUOTES = [
(re.compile(r"^\""), r"``"),
(re.compile(r"(``)"), r" \1 "),
(re.compile(r"([ \(\[{<])(\"|\'{2})"), r"\1 `` "),
]
# punctuation
PUNCTUATION = [
(re.compile(r"([:,])([^\d])"), r" \1 \2"),
(re.compile(r"([:,])$"), r" \1 "),
(re.compile(r"\.\.\."), r" ... "),
(re.compile(r"[;@#$%&]"), r" \g<0> "),
(
re.compile(r'([^\.])(\.)([\]\)}>"\']*)\s*$'),
r"\1 \2\3 ",
), # Handles the final period.
(re.compile(r"[?!]"), r" \g<0> "),
(re.compile(r"([^'])' "), r"\1 ' "),
]
# Pads parentheses
PARENS_BRACKETS = (re.compile(r"[\]\[\(\)\{\}\<\>]"), r" \g<0> ")
# Optionally: Convert parentheses, brackets and converts them to PTB symbols.
CONVERT_PARENTHESES = [
(re.compile(r"\("), "-LRB-"),
(re.compile(r"\)"), "-RRB-"),
(re.compile(r"\["), "-LSB-"),
(re.compile(r"\]"), "-RSB-"),
(re.compile(r"\{"), "-LCB-"),
(re.compile(r"\}"), "-RCB-"),
]
DOUBLE_DASHES = (re.compile(r"--"), r" -- ")
# ending quotes
ENDING_QUOTES = [
(re.compile(r"''"), " '' "),
(re.compile(r'"'), " '' "),
(re.compile(r"([^' ])('[sS]|'[mM]|'[dD]|') "), r"\1 \2 "),
(re.compile(r"([^' ])('ll|'LL|'re|'RE|'ve|'VE|n't|N'T) "), r"\1 \2 "),
]
# List of contractions adapted from Robert MacIntyre's tokenizer.
_contractions = MacIntyreContractions()
CONTRACTIONS2 = list(map(re.compile, _contractions.CONTRACTIONS2))
CONTRACTIONS3 = list(map(re.compile, _contractions.CONTRACTIONS3))
def tokenize(
self, text: str, convert_parentheses: bool = False, return_str: bool = False
) -> List[str]:
r"""Return a tokenized copy of `text`.
>>> from nltk.tokenize import TreebankWordTokenizer
>>> s = '''Good muffins cost $3.88 (roughly 3,36 euros)\nin New York. Please buy me\ntwo of them.\nThanks.'''
>>> TreebankWordTokenizer().tokenize(s) # doctest: +NORMALIZE_WHITESPACE
['Good', 'muffins', 'cost', '$', '3.88', '(', 'roughly', '3,36',
'euros', ')', 'in', 'New', 'York.', 'Please', 'buy', 'me', 'two',
'of', 'them.', 'Thanks', '.']
>>> TreebankWordTokenizer().tokenize(s, convert_parentheses=True) # doctest: +NORMALIZE_WHITESPACE
['Good', 'muffins', 'cost', '$', '3.88', '-LRB-', 'roughly', '3,36',
'euros', '-RRB-', 'in', 'New', 'York.', 'Please', 'buy', 'me', 'two',
'of', 'them.', 'Thanks', '.']
:param text: A string with a sentence or sentences.
:type text: str
:param convert_parentheses: if True, replace parentheses to PTB symbols,
e.g. `(` to `-LRB-`. Defaults to False.
:type convert_parentheses: bool, optional
:param return_str: If True, return tokens as space-separated string,
defaults to False.
:type return_str: bool, optional
:return: List of tokens from `text`.
:rtype: List[str]
"""
if return_str is not False:
warnings.warn(
"Parameter 'return_str' has been deprecated and should no "
"longer be used.",
category=DeprecationWarning,
stacklevel=2,
)
for regexp, substitution in self.STARTING_QUOTES:
text = regexp.sub(substitution, text)
for regexp, substitution in self.PUNCTUATION:
text = regexp.sub(substitution, text)
# Handles parentheses.
regexp, substitution = self.PARENS_BRACKETS
text = regexp.sub(substitution, text)
# Optionally convert parentheses
if convert_parentheses:
for regexp, substitution in self.CONVERT_PARENTHESES:
text = regexp.sub(substitution, text)
# Handles double dash.
regexp, substitution = self.DOUBLE_DASHES
text = regexp.sub(substitution, text)
# add extra space to make things easier
text = " " + text + " "
for regexp, substitution in self.ENDING_QUOTES:
text = regexp.sub(substitution, text)
for regexp in self.CONTRACTIONS2:
text = regexp.sub(r" \1 \2 ", text)
for regexp in self.CONTRACTIONS3:
text = regexp.sub(r" \1 \2 ", text)
# We are not using CONTRACTIONS4 since
# they are also commented out in the SED scripts
# for regexp in self._contractions.CONTRACTIONS4:
# text = regexp.sub(r' \1 \2 \3 ', text)
return text.split()
def span_tokenize(self, text: str) -> Iterator[Tuple[int, int]]:
r"""
Returns the spans of the tokens in ``text``.
Uses the post-hoc nltk.tokens.align_tokens to return the offset spans.
>>> from nltk.tokenize import TreebankWordTokenizer
>>> s = '''Good muffins cost $3.88\nin New (York). Please (buy) me\ntwo of them.\n(Thanks).'''
>>> expected = [(0, 4), (5, 12), (13, 17), (18, 19), (19, 23),
... (24, 26), (27, 30), (31, 32), (32, 36), (36, 37), (37, 38),
... (40, 46), (47, 48), (48, 51), (51, 52), (53, 55), (56, 59),
... (60, 62), (63, 68), (69, 70), (70, 76), (76, 77), (77, 78)]
>>> list(TreebankWordTokenizer().span_tokenize(s)) == expected
True
>>> expected = ['Good', 'muffins', 'cost', '$', '3.88', 'in',
... 'New', '(', 'York', ')', '.', 'Please', '(', 'buy', ')',
... 'me', 'two', 'of', 'them.', '(', 'Thanks', ')', '.']
>>> [s[start:end] for start, end in TreebankWordTokenizer().span_tokenize(s)] == expected
True
:param text: A string with a sentence or sentences.
:type text: str
:yield: Tuple[int, int]
"""
raw_tokens = self.tokenize(text)
# Convert converted quotes back to original double quotes
# Do this only if original text contains double quote(s) or double
# single-quotes (because '' might be transformed to `` if it is
# treated as starting quotes).
if ('"' in text) or ("''" in text):
# Find double quotes and converted quotes
matched = [m.group() for m in re.finditer(r"``|'{2}|\"", text)]
# Replace converted quotes back to double quotes
tokens = [
matched.pop(0) if tok in ['"', "``", "''"] else tok
for tok in raw_tokens
]
else:
tokens = raw_tokens
yield from align_tokens(tokens, text)
class TreebankWordDetokenizer(TokenizerI):
r"""
The Treebank detokenizer uses the reverse regex operations corresponding to
the Treebank tokenizer's regexes.
Note:
- There're additional assumption mades when undoing the padding of ``[;@#$%&]``
punctuation symbols that isn't presupposed in the TreebankTokenizer.
- There're additional regexes added in reversing the parentheses tokenization,
such as the ``r'([\]\)\}\>])\s([:;,.])'``, which removes the additional right
padding added to the closing parentheses precedding ``[:;,.]``.
- It's not possible to return the original whitespaces as they were because
there wasn't explicit records of where `'\n'`, `'\t'` or `'\s'` were removed at
the text.split() operation.
>>> from nltk.tokenize.treebank import TreebankWordTokenizer, TreebankWordDetokenizer
>>> s = '''Good muffins cost $3.88\nin New York. Please buy me\ntwo of them.\nThanks.'''
>>> d = TreebankWordDetokenizer()
>>> t = TreebankWordTokenizer()
>>> toks = t.tokenize(s)
>>> d.detokenize(toks)
'Good muffins cost $3.88 in New York. Please buy me two of them. Thanks.'
The MXPOST parentheses substitution can be undone using the ``convert_parentheses``
parameter:
>>> s = '''Good muffins cost $3.88\nin New (York). Please (buy) me\ntwo of them.\n(Thanks).'''
>>> expected_tokens = ['Good', 'muffins', 'cost', '$', '3.88', 'in',
... 'New', '-LRB-', 'York', '-RRB-', '.', 'Please', '-LRB-', 'buy',
... '-RRB-', 'me', 'two', 'of', 'them.', '-LRB-', 'Thanks', '-RRB-', '.']
>>> expected_tokens == t.tokenize(s, convert_parentheses=True)
True
>>> expected_detoken = 'Good muffins cost $3.88 in New (York). Please (buy) me two of them. (Thanks).'
>>> expected_detoken == d.detokenize(t.tokenize(s, convert_parentheses=True), convert_parentheses=True)
True
During tokenization it's safe to add more spaces but during detokenization,
simply undoing the padding doesn't really help.
- During tokenization, left and right pad is added to ``[!?]``, when
detokenizing, only left shift the ``[!?]`` is needed.
Thus ``(re.compile(r'\s([?!])'), r'\g<1>')``.
- During tokenization ``[:,]`` are left and right padded but when detokenizing,
only left shift is necessary and we keep right pad after comma/colon
if the string after is a non-digit.
Thus ``(re.compile(r'\s([:,])\s([^\d])'), r'\1 \2')``.
>>> from nltk.tokenize.treebank import TreebankWordDetokenizer
>>> toks = ['hello', ',', 'i', 'ca', "n't", 'feel', 'my', 'feet', '!', 'Help', '!', '!']
>>> twd = TreebankWordDetokenizer()
>>> twd.detokenize(toks)
"hello, i can't feel my feet! Help!!"
>>> toks = ['hello', ',', 'i', "can't", 'feel', ';', 'my', 'feet', '!',
... 'Help', '!', '!', 'He', 'said', ':', 'Help', ',', 'help', '?', '!']
>>> twd.detokenize(toks)
"hello, i can't feel; my feet! Help!! He said: Help, help?!"
"""
_contractions = MacIntyreContractions()
CONTRACTIONS2 = [
re.compile(pattern.replace("(?#X)", r"\s"))
for pattern in _contractions.CONTRACTIONS2
]
CONTRACTIONS3 = [
re.compile(pattern.replace("(?#X)", r"\s"))
for pattern in _contractions.CONTRACTIONS3
]
# ending quotes
ENDING_QUOTES = [
(re.compile(r"([^' ])\s('ll|'LL|'re|'RE|'ve|'VE|n't|N'T) "), r"\1\2 "),
(re.compile(r"([^' ])\s('[sS]|'[mM]|'[dD]|') "), r"\1\2 "),
(re.compile(r"(\S)\s(\'\')"), r"\1\2"),
(
re.compile(r"(\'\')\s([.,:)\]>};%])"),
r"\1\2",
), # Quotes followed by no-left-padded punctuations.
(re.compile(r"''"), '"'),
]
# Handles double dashes
DOUBLE_DASHES = (re.compile(r" -- "), r"--")
# Optionally: Convert parentheses, brackets and converts them from PTB symbols.
CONVERT_PARENTHESES = [
(re.compile("-LRB-"), "("),
(re.compile("-RRB-"), ")"),
(re.compile("-LSB-"), "["),
(re.compile("-RSB-"), "]"),
(re.compile("-LCB-"), "{"),
(re.compile("-RCB-"), "}"),
]
# Undo padding on parentheses.
PARENS_BRACKETS = [
(re.compile(r"([\[\(\{\<])\s"), r"\g<1>"),
(re.compile(r"\s([\]\)\}\>])"), r"\g<1>"),
(re.compile(r"([\]\)\}\>])\s([:;,.])"), r"\1\2"),
]
# punctuation
PUNCTUATION = [
(re.compile(r"([^'])\s'\s"), r"\1' "),
(re.compile(r"\s([?!])"), r"\g<1>"), # Strip left pad for [?!]
# (re.compile(r'\s([?!])\s'), r'\g<1>'),
(re.compile(r'([^\.])\s(\.)([\]\)}>"\']*)\s*$'), r"\1\2\3"),
# When tokenizing, [;@#$%&] are padded with whitespace regardless of
# whether there are spaces before or after them.
# But during detokenization, we need to distinguish between left/right
# pad, so we split this up.
(re.compile(r"([#$])\s"), r"\g<1>"), # Left pad.
(re.compile(r"\s([;%])"), r"\g<1>"), # Right pad.
# (re.compile(r"\s([&*])\s"), r" \g<1> "), # Unknown pad.
(re.compile(r"\s\.\.\.\s"), r"..."),
# (re.compile(r"\s([:,])\s$"), r"\1"), # .strip() takes care of it.
(
re.compile(r"\s([:,])"),
r"\1",
), # Just remove left padding. Punctuation in numbers won't be padded.
]
# starting quotes
STARTING_QUOTES = [
(re.compile(r"([ (\[{<])\s``"), r"\1``"),
(re.compile(r"(``)\s"), r"\1"),
(re.compile(r"``"), r'"'),
]
def tokenize(self, tokens: List[str], convert_parentheses: bool = False) -> str:
"""
Treebank detokenizer, created by undoing the regexes from
the TreebankWordTokenizer.tokenize.
:param tokens: A list of strings, i.e. tokenized text.
:type tokens: List[str]
:param convert_parentheses: if True, replace PTB symbols with parentheses,
e.g. `-LRB-` to `(`. Defaults to False.
:type convert_parentheses: bool, optional
:return: str
"""
text = " ".join(tokens)
# Add extra space to make things easier
text = " " + text + " "
# Reverse the contractions regexes.
# Note: CONTRACTIONS4 are not used in tokenization.
for regexp in self.CONTRACTIONS3:
text = regexp.sub(r"\1\2", text)
for regexp in self.CONTRACTIONS2:
text = regexp.sub(r"\1\2", text)
# Reverse the regexes applied for ending quotes.
for regexp, substitution in self.ENDING_QUOTES:
text = regexp.sub(substitution, text)
# Undo the space padding.
text = text.strip()
# Reverse the padding on double dashes.
regexp, substitution = self.DOUBLE_DASHES
text = regexp.sub(substitution, text)
if convert_parentheses:
for regexp, substitution in self.CONVERT_PARENTHESES:
text = regexp.sub(substitution, text)
# Reverse the padding regexes applied for parenthesis/brackets.
for regexp, substitution in self.PARENS_BRACKETS:
text = regexp.sub(substitution, text)
# Reverse the regexes applied for punctuations.
for regexp, substitution in self.PUNCTUATION:
text = regexp.sub(substitution, text)
# Reverse the regexes applied for starting quotes.
for regexp, substitution in self.STARTING_QUOTES:
text = regexp.sub(substitution, text)
return text.strip()
def detokenize(self, tokens: List[str], convert_parentheses: bool = False) -> str:
"""Duck-typing the abstract *tokenize()*."""
return self.tokenize(tokens, convert_parentheses)