ai-content-maker/.venv/Lib/site-packages/numba/cuda/tests/cudapy/test_localmem.py

165 lines
5.3 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
import numpy as np
from numba import cuda, int32, complex128, void
from numba.core import types
from numba.core.errors import TypingError
from numba.cuda.testing import unittest, CUDATestCase, skip_on_cudasim
from .extensions_usecases import test_struct_model_type, TestStruct
def culocal(A, B):
C = cuda.local.array(1000, dtype=int32)
for i in range(C.shape[0]):
C[i] = A[i]
for i in range(C.shape[0]):
B[i] = C[i]
def culocalcomplex(A, B):
C = cuda.local.array(100, dtype=complex128)
for i in range(C.shape[0]):
C[i] = A[i]
for i in range(C.shape[0]):
B[i] = C[i]
def culocal1tuple(A, B):
C = cuda.local.array((5,), dtype=int32)
for i in range(C.shape[0]):
C[i] = A[i]
for i in range(C.shape[0]):
B[i] = C[i]
@skip_on_cudasim('PTX inspection not available in cudasim')
class TestCudaLocalMem(CUDATestCase):
def test_local_array(self):
sig = (int32[:], int32[:])
jculocal = cuda.jit(sig)(culocal)
self.assertTrue('.local' in jculocal.inspect_asm(sig))
A = np.arange(1000, dtype='int32')
B = np.zeros_like(A)
jculocal[1, 1](A, B)
self.assertTrue(np.all(A == B))
def test_local_array_1_tuple(self):
"""Ensure that local arrays can be constructed with 1-tuple shape
"""
jculocal = cuda.jit('void(int32[:], int32[:])')(culocal1tuple)
# Don't check if .local is in the ptx because the optimizer
# may reduce it to registers.
A = np.arange(5, dtype='int32')
B = np.zeros_like(A)
jculocal[1, 1](A, B)
self.assertTrue(np.all(A == B))
def test_local_array_complex(self):
sig = 'void(complex128[:], complex128[:])'
jculocalcomplex = cuda.jit(sig)(culocalcomplex)
A = (np.arange(100, dtype='complex128') - 1) / 2j
B = np.zeros_like(A)
jculocalcomplex[1, 1](A, B)
self.assertTrue(np.all(A == B))
def check_dtype(self, f, dtype):
# Find the typing of the dtype argument to cuda.local.array
annotation = next(iter(f.overloads.values()))._type_annotation
l_dtype = annotation.typemap['l'].dtype
# Ensure that the typing is correct
self.assertEqual(l_dtype, dtype)
@skip_on_cudasim("Can't check typing in simulator")
def test_numba_dtype(self):
# Check that Numba types can be used as the dtype of a local array
@cuda.jit(void(int32[::1]))
def f(x):
l = cuda.local.array(10, dtype=int32)
l[0] = x[0]
x[0] = l[0]
self.check_dtype(f, int32)
@skip_on_cudasim("Can't check typing in simulator")
def test_numpy_dtype(self):
# Check that NumPy types can be used as the dtype of a local array
@cuda.jit(void(int32[::1]))
def f(x):
l = cuda.local.array(10, dtype=np.int32)
l[0] = x[0]
x[0] = l[0]
self.check_dtype(f, int32)
@skip_on_cudasim("Can't check typing in simulator")
def test_string_dtype(self):
# Check that strings can be used to specify the dtype of a local array
@cuda.jit(void(int32[::1]))
def f(x):
l = cuda.local.array(10, dtype='int32')
l[0] = x[0]
x[0] = l[0]
self.check_dtype(f, int32)
@skip_on_cudasim("Can't check typing in simulator")
def test_invalid_string_dtype(self):
# Check that strings of invalid dtypes cause a typing error
re = ".*Invalid NumPy dtype specified: 'int33'.*"
with self.assertRaisesRegex(TypingError, re):
@cuda.jit(void(int32[::1]))
def f(x):
l = cuda.local.array(10, dtype='int33')
l[0] = x[0]
x[0] = l[0]
def test_type_with_struct_data_model(self):
@cuda.jit(void(test_struct_model_type[::1]))
def f(x):
l = cuda.local.array(10, dtype=test_struct_model_type)
l[0] = x[0]
x[0] = l[0]
self.check_dtype(f, test_struct_model_type)
def test_struct_model_type_arr(self):
@cuda.jit(void(int32[::1], int32[::1]))
def f(outx, outy):
# Test creation
arr = cuda.local.array(10, dtype=test_struct_model_type)
# Test set to arr
for i in range(len(arr)):
obj = TestStruct(int32(i), int32(i * 2))
arr[i] = obj
# Test get from arr
for i in range(len(arr)):
outx[i] = arr[i].x
outy[i] = arr[i].y
arrx = np.array((10,), dtype="int32")
arry = np.array((10,), dtype="int32")
f[1, 1](arrx, arry)
for i, x in enumerate(arrx):
self.assertEqual(x, i)
for i, y in enumerate(arry):
self.assertEqual(y, i * 2)
def _check_local_array_size_fp16(self, shape, expected, ty):
@cuda.jit
def s(a):
arr = cuda.local.array(shape, dtype=ty)
a[0] = arr.size
result = np.zeros(1, dtype=np.float16)
s[1, 1](result)
self.assertEqual(result[0], expected)
def test_issue_fp16_support(self):
self._check_local_array_size_fp16(2, 2, types.float16)
self._check_local_array_size_fp16(2, 2, np.float16)
if __name__ == '__main__':
unittest.main()