ai-content-maker/.venv/Lib/site-packages/numba/cuda/tests/cudapy/test_sync.py

272 lines
7.7 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
import numpy as np
from numba import cuda, int32, float32
from numba.cuda.testing import skip_on_cudasim, unittest, CUDATestCase
from numba.core.config import ENABLE_CUDASIM
def useless_syncthreads(ary):
i = cuda.grid(1)
cuda.syncthreads()
ary[i] = i
def useless_syncwarp(ary):
i = cuda.grid(1)
cuda.syncwarp()
ary[i] = i
def useless_syncwarp_with_mask(ary):
i = cuda.grid(1)
cuda.syncwarp(0xFFFF)
ary[i] = i
def coop_syncwarp(res):
sm = cuda.shared.array(32, int32)
i = cuda.grid(1)
sm[i] = i
cuda.syncwarp()
if i < 16:
sm[i] = sm[i] + sm[i + 16]
cuda.syncwarp(0xFFFF)
if i < 8:
sm[i] = sm[i] + sm[i + 8]
cuda.syncwarp(0xFF)
if i < 4:
sm[i] = sm[i] + sm[i + 4]
cuda.syncwarp(0xF)
if i < 2:
sm[i] = sm[i] + sm[i + 2]
cuda.syncwarp(0x3)
if i == 0:
res[0] = sm[0] + sm[1]
def simple_smem(ary):
N = 100
sm = cuda.shared.array(N, int32)
i = cuda.grid(1)
if i == 0:
for j in range(N):
sm[j] = j
cuda.syncthreads()
ary[i] = sm[i]
def coop_smem2d(ary):
i, j = cuda.grid(2)
sm = cuda.shared.array((10, 20), float32)
sm[i, j] = (i + 1) / (j + 1)
cuda.syncthreads()
ary[i, j] = sm[i, j]
def dyn_shared_memory(ary):
i = cuda.grid(1)
sm = cuda.shared.array(0, float32)
sm[i] = i * 2
cuda.syncthreads()
ary[i] = sm[i]
def use_threadfence(ary):
ary[0] += 123
cuda.threadfence()
ary[0] += 321
def use_threadfence_block(ary):
ary[0] += 123
cuda.threadfence_block()
ary[0] += 321
def use_threadfence_system(ary):
ary[0] += 123
cuda.threadfence_system()
ary[0] += 321
def use_syncthreads_count(ary_in, ary_out):
i = cuda.grid(1)
ary_out[i] = cuda.syncthreads_count(ary_in[i])
def use_syncthreads_and(ary_in, ary_out):
i = cuda.grid(1)
ary_out[i] = cuda.syncthreads_and(ary_in[i])
def use_syncthreads_or(ary_in, ary_out):
i = cuda.grid(1)
ary_out[i] = cuda.syncthreads_or(ary_in[i])
def _safe_cc_check(cc):
if ENABLE_CUDASIM:
return True
else:
return cuda.get_current_device().compute_capability >= cc
class TestCudaSync(CUDATestCase):
def _test_useless(self, kernel):
compiled = cuda.jit("void(int32[::1])")(kernel)
nelem = 10
ary = np.empty(nelem, dtype=np.int32)
exp = np.arange(nelem, dtype=np.int32)
compiled[1, nelem](ary)
np.testing.assert_equal(ary, exp)
def test_useless_syncthreads(self):
self._test_useless(useless_syncthreads)
@skip_on_cudasim("syncwarp not implemented on cudasim")
def test_useless_syncwarp(self):
self._test_useless(useless_syncwarp)
@skip_on_cudasim("syncwarp not implemented on cudasim")
@unittest.skipUnless(_safe_cc_check((7, 0)),
"Partial masks require CC 7.0 or greater")
def test_useless_syncwarp_with_mask(self):
self._test_useless(useless_syncwarp_with_mask)
@skip_on_cudasim("syncwarp not implemented on cudasim")
@unittest.skipUnless(_safe_cc_check((7, 0)),
"Partial masks require CC 7.0 or greater")
def test_coop_syncwarp(self):
# coop_syncwarp computes the sum of all integers from 0 to 31 (496)
# using a single warp
expected = 496
nthreads = 32
nblocks = 1
compiled = cuda.jit("void(int32[::1])")(coop_syncwarp)
res = np.zeros(1, dtype=np.int32)
compiled[nblocks, nthreads](res)
np.testing.assert_equal(expected, res[0])
def test_simple_smem(self):
compiled = cuda.jit("void(int32[::1])")(simple_smem)
nelem = 100
ary = np.empty(nelem, dtype=np.int32)
compiled[1, nelem](ary)
self.assertTrue(np.all(ary == np.arange(nelem, dtype=np.int32)))
def test_coop_smem2d(self):
compiled = cuda.jit("void(float32[:,::1])")(coop_smem2d)
shape = 10, 20
ary = np.empty(shape, dtype=np.float32)
compiled[1, shape](ary)
exp = np.empty_like(ary)
for i in range(ary.shape[0]):
for j in range(ary.shape[1]):
exp[i, j] = (i + 1) / (j + 1)
self.assertTrue(np.allclose(ary, exp))
def test_dyn_shared_memory(self):
compiled = cuda.jit("void(float32[::1])")(dyn_shared_memory)
shape = 50
ary = np.empty(shape, dtype=np.float32)
compiled[1, shape, 0, ary.size * 4](ary)
self.assertTrue(np.all(ary == 2 * np.arange(ary.size, dtype=np.int32)))
def test_threadfence_codegen(self):
# Does not test runtime behavior, just the code generation.
sig = (int32[:],)
compiled = cuda.jit(sig)(use_threadfence)
ary = np.zeros(10, dtype=np.int32)
compiled[1, 1](ary)
self.assertEqual(123 + 321, ary[0])
if not ENABLE_CUDASIM:
self.assertIn("membar.gl;", compiled.inspect_asm(sig))
def test_threadfence_block_codegen(self):
# Does not test runtime behavior, just the code generation.
sig = (int32[:],)
compiled = cuda.jit(sig)(use_threadfence_block)
ary = np.zeros(10, dtype=np.int32)
compiled[1, 1](ary)
self.assertEqual(123 + 321, ary[0])
if not ENABLE_CUDASIM:
self.assertIn("membar.cta;", compiled.inspect_asm(sig))
def test_threadfence_system_codegen(self):
# Does not test runtime behavior, just the code generation.
sig = (int32[:],)
compiled = cuda.jit(sig)(use_threadfence_system)
ary = np.zeros(10, dtype=np.int32)
compiled[1, 1](ary)
self.assertEqual(123 + 321, ary[0])
if not ENABLE_CUDASIM:
self.assertIn("membar.sys;", compiled.inspect_asm(sig))
def _test_syncthreads_count(self, in_dtype):
compiled = cuda.jit(use_syncthreads_count)
ary_in = np.ones(72, dtype=in_dtype)
ary_out = np.zeros(72, dtype=np.int32)
ary_in[31] = 0
ary_in[42] = 0
compiled[1, 72](ary_in, ary_out)
self.assertTrue(np.all(ary_out == 70))
def test_syncthreads_count(self):
self._test_syncthreads_count(np.int32)
def test_syncthreads_count_upcast(self):
self._test_syncthreads_count(np.int16)
def test_syncthreads_count_downcast(self):
self._test_syncthreads_count(np.int64)
def _test_syncthreads_and(self, in_dtype):
compiled = cuda.jit(use_syncthreads_and)
nelem = 100
ary_in = np.ones(nelem, dtype=in_dtype)
ary_out = np.zeros(nelem, dtype=np.int32)
compiled[1, nelem](ary_in, ary_out)
self.assertTrue(np.all(ary_out == 1))
ary_in[31] = 0
compiled[1, nelem](ary_in, ary_out)
self.assertTrue(np.all(ary_out == 0))
def test_syncthreads_and(self):
self._test_syncthreads_and(np.int32)
def test_syncthreads_and_upcast(self):
self._test_syncthreads_and(np.int16)
def test_syncthreads_and_downcast(self):
self._test_syncthreads_and(np.int64)
def _test_syncthreads_or(self, in_dtype):
compiled = cuda.jit(use_syncthreads_or)
nelem = 100
ary_in = np.zeros(nelem, dtype=in_dtype)
ary_out = np.zeros(nelem, dtype=np.int32)
compiled[1, nelem](ary_in, ary_out)
self.assertTrue(np.all(ary_out == 0))
ary_in[31] = 1
compiled[1, nelem](ary_in, ary_out)
self.assertTrue(np.all(ary_out == 1))
def test_syncthreads_or(self):
self._test_syncthreads_or(np.int32)
def test_syncthreads_or_upcast(self):
self._test_syncthreads_or(np.int16)
def test_syncthreads_or_downcast(self):
self._test_syncthreads_or(np.int64)
if __name__ == '__main__':
unittest.main()