ai-content-maker/.venv/Lib/site-packages/numba/misc/dummyarray.py

454 lines
14 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
from collections import namedtuple
import itertools
import functools
import operator
import ctypes
import numpy as np
from numba import _helperlib
from numba.core import config
Extent = namedtuple("Extent", ["begin", "end"])
attempt_nocopy_reshape = ctypes.CFUNCTYPE(
ctypes.c_int,
ctypes.c_long, # nd
np.ctypeslib.ndpointer(np.ctypeslib.c_intp, ndim=1), # dims
np.ctypeslib.ndpointer(np.ctypeslib.c_intp, ndim=1), # strides
ctypes.c_long, # newnd
np.ctypeslib.ndpointer(np.ctypeslib.c_intp, ndim=1), # newdims
np.ctypeslib.ndpointer(np.ctypeslib.c_intp, ndim=1), # newstrides
ctypes.c_long, # itemsize
ctypes.c_int, # is_f_order
)(_helperlib.c_helpers['attempt_nocopy_reshape'])
class Dim(object):
"""A single dimension of the array
Attributes
----------
start:
start offset
stop:
stop offset
size:
number of items
stride:
item stride
"""
__slots__ = 'start', 'stop', 'size', 'stride', 'single'
def __init__(self, start, stop, size, stride, single):
self.start = start
self.stop = stop
self.size = size
self.stride = stride
self.single = single
assert not single or size == 1
def __getitem__(self, item):
if isinstance(item, slice):
start, stop, step = item.indices(self.size)
stride = step * self.stride
start = self.start + start * abs(self.stride)
stop = self.start + stop * abs(self.stride)
if stride == 0:
size = 1
else:
size = _compute_size(start, stop, stride)
ret = Dim(
start=start,
stop=stop,
size=size,
stride=stride,
single=False
)
return ret
else:
sliced = self[item:item + 1] if item != -1 else self[-1:]
if sliced.size != 1:
raise IndexError
return Dim(
start=sliced.start,
stop=sliced.stop,
size=sliced.size,
stride=sliced.stride,
single=True,
)
def get_offset(self, idx):
return self.start + idx * self.stride
def __repr__(self):
strfmt = "Dim(start=%s, stop=%s, size=%s, stride=%s)"
return strfmt % (self.start, self.stop, self.size, self.stride)
def normalize(self, base):
return Dim(start=self.start - base, stop=self.stop - base,
size=self.size, stride=self.stride, single=self.single)
def copy(self, start=None, stop=None, size=None, stride=None, single=None):
if start is None:
start = self.start
if stop is None:
stop = self.stop
if size is None:
size = self.size
if stride is None:
stride = self.stride
if single is None:
single = self.single
return Dim(start, stop, size, stride, single)
def is_contiguous(self, itemsize):
return self.stride == itemsize
def compute_index(indices, dims):
return sum(d.get_offset(i) for i, d in zip(indices, dims))
class Element(object):
is_array = False
def __init__(self, extent):
self.extent = extent
def iter_contiguous_extent(self):
yield self.extent
class Array(object):
"""A dummy numpy array-like object. Consider it an array without the
actual data, but offset from the base data pointer.
Attributes
----------
dims: tuple of Dim
describing each dimension of the array
ndim: int
number of dimension
shape: tuple of int
size of each dimension
strides: tuple of int
stride of each dimension
itemsize: int
itemsize
extent: (start, end)
start and end offset containing the memory region
"""
is_array = True
@classmethod
def from_desc(cls, offset, shape, strides, itemsize):
dims = []
for ashape, astride in zip(shape, strides):
dim = Dim(offset, offset + ashape * astride, ashape, astride,
single=False)
dims.append(dim)
offset = 0 # offset only applies to first dimension
return cls(dims, itemsize)
def __init__(self, dims, itemsize):
self.dims = tuple(dims)
self.ndim = len(self.dims)
self.shape = tuple(dim.size for dim in self.dims)
self.strides = tuple(dim.stride for dim in self.dims)
self.itemsize = itemsize
self.size = functools.reduce(operator.mul, self.shape, 1)
self.extent = self._compute_extent()
self.flags = self._compute_layout()
def _compute_layout(self):
# The logic here is based on that in _UpdateContiguousFlags from
# numpy/core/src/multiarray/flagsobject.c in NumPy v1.19.1 (commit
# 13661ac70).
# https://github.com/numpy/numpy/blob/maintenance/1.19.x/numpy/core/src/multiarray/flagsobject.c#L123-L191
# Records have no dims, and we can treat them as contiguous
if not self.dims:
return {'C_CONTIGUOUS': True, 'F_CONTIGUOUS': True}
# If this is a broadcast array then it is not contiguous
if any([dim.stride == 0 for dim in self.dims]):
return {'C_CONTIGUOUS': False, 'F_CONTIGUOUS': False}
flags = {'C_CONTIGUOUS': True, 'F_CONTIGUOUS': True}
# Check C contiguity
sd = self.itemsize
for dim in reversed(self.dims):
if dim.size == 0:
# Contiguous by definition
return {'C_CONTIGUOUS': True, 'F_CONTIGUOUS': True}
if dim.size != 1:
if dim.stride != sd:
flags['C_CONTIGUOUS'] = False
sd *= dim.size
# Check F contiguity
sd = self.itemsize
for dim in self.dims:
if dim.size != 1:
if dim.stride != sd:
flags['F_CONTIGUOUS'] = False
return flags
sd *= dim.size
return flags
def _compute_extent(self):
firstidx = [0] * self.ndim
lastidx = [s - 1 for s in self.shape]
start = compute_index(firstidx, self.dims)
stop = compute_index(lastidx, self.dims) + self.itemsize
stop = max(stop, start) # ensure positive extent
return Extent(start, stop)
def __repr__(self):
return '<Array dims=%s itemsize=%s>' % (self.dims, self.itemsize)
def __getitem__(self, item):
if not isinstance(item, tuple):
item = [item]
else:
item = list(item)
nitem = len(item)
ndim = len(self.dims)
if nitem > ndim:
raise IndexError("%d extra indices given" % (nitem - ndim,))
# Add empty slices for missing indices
while len(item) < ndim:
item.append(slice(None, None))
dims = [dim.__getitem__(it) for dim, it in zip(self.dims, item)]
newshape = [d.size for d in dims if not d.single]
arr = Array(dims, self.itemsize)
if newshape:
return arr.reshape(*newshape)[0]
else:
return Element(arr.extent)
@property
def is_c_contig(self):
return self.flags['C_CONTIGUOUS']
@property
def is_f_contig(self):
return self.flags['F_CONTIGUOUS']
def iter_contiguous_extent(self):
""" Generates extents
"""
if self.is_c_contig or self.is_f_contig:
yield self.extent
else:
if self.dims[0].stride < self.dims[-1].stride:
innerdim = self.dims[0]
outerdims = self.dims[1:]
outershape = self.shape[1:]
else:
innerdim = self.dims[-1]
outerdims = self.dims[:-1]
outershape = self.shape[:-1]
if innerdim.is_contiguous(self.itemsize):
oslen = [range(s) for s in outershape]
for indices in itertools.product(*oslen):
base = compute_index(indices, outerdims)
yield base + innerdim.start, base + innerdim.stop
else:
oslen = [range(s) for s in self.shape]
for indices in itertools.product(*oslen):
offset = compute_index(indices, self.dims)
yield offset, offset + self.itemsize
def reshape(self, *newdims, **kws):
oldnd = self.ndim
newnd = len(newdims)
if newdims == self.shape:
return self, None
order = kws.pop('order', 'C')
if kws:
raise TypeError('unknown keyword arguments %s' % kws.keys())
if order not in 'CFA':
raise ValueError('order not C|F|A')
# check for exactly one instance of -1 in newdims
# https://github.com/numpy/numpy/blob/623bc1fae1d47df24e7f1e29321d0c0ba2771ce0/numpy/core/src/multiarray/shape.c#L470-L515 # noqa: E501
unknownidx = -1
knownsize = 1
for i, dim in enumerate(newdims):
if dim < 0:
if unknownidx == -1:
unknownidx = i
else:
raise ValueError("can only specify one unknown dimension")
else:
knownsize *= dim
# compute the missing dimension
if unknownidx >= 0:
if knownsize == 0 or self.size % knownsize != 0:
raise ValueError("cannot infer valid shape for unknown dimension")
else:
newdims = newdims[0:unknownidx] \
+ (self.size // knownsize,) \
+ newdims[unknownidx + 1:]
newsize = functools.reduce(operator.mul, newdims, 1)
if order == 'A':
order = 'F' if self.is_f_contig else 'C'
if newsize != self.size:
raise ValueError("reshape changes the size of the array")
if self.is_c_contig or self.is_f_contig:
if order == 'C':
newstrides = list(iter_strides_c_contig(self, newdims))
elif order == 'F':
newstrides = list(iter_strides_f_contig(self, newdims))
else:
raise AssertionError("unreachable")
else:
newstrides = np.empty(newnd, np.ctypeslib.c_intp)
# need to keep these around in variables, not temporaries, so they
# don't get GC'ed before we call into the C code
olddims = np.array(self.shape, dtype=np.ctypeslib.c_intp)
oldstrides = np.array(self.strides, dtype=np.ctypeslib.c_intp)
newdims = np.array(newdims, dtype=np.ctypeslib.c_intp)
if not attempt_nocopy_reshape(
oldnd,
olddims,
oldstrides,
newnd,
newdims,
newstrides,
self.itemsize,
order == 'F',
):
raise NotImplementedError('reshape would require copy')
ret = self.from_desc(self.extent.begin, shape=newdims,
strides=newstrides, itemsize=self.itemsize)
return ret, list(self.iter_contiguous_extent())
def squeeze(self, axis=None):
newshape, newstrides = [], []
if axis is None:
for length, stride in zip(self.shape, self.strides):
if length != 1:
newshape.append(length)
newstrides.append(stride)
else:
if not isinstance(axis, tuple):
axis = (axis,)
for ax in axis:
if self.shape[ax] != 1:
raise ValueError(
"cannot select an axis to squeeze out which has size not equal "
"to one"
)
for i, (length, stride) in enumerate(zip(self.shape, self.strides)):
if i not in axis:
newshape.append(length)
newstrides.append(stride)
newarr = self.from_desc(
self.extent.begin,
shape=newshape,
strides=newstrides,
itemsize=self.itemsize,
)
return newarr, list(self.iter_contiguous_extent())
def ravel(self, order='C'):
if order not in 'CFA':
raise ValueError('order not C|F|A')
if (order in 'CA' and self.is_c_contig
or order in 'FA' and self.is_f_contig):
newshape = (self.size,)
newstrides = (self.itemsize,)
arr = self.from_desc(self.extent.begin, newshape, newstrides,
self.itemsize)
return arr, list(self.iter_contiguous_extent())
else:
raise NotImplementedError("ravel on non-contiguous array")
def iter_strides_f_contig(arr, shape=None):
"""yields the f-contiguous strides
"""
shape = arr.shape if shape is None else shape
itemsize = arr.itemsize
yield itemsize
sum = 1
for s in shape[:-1]:
sum *= s
yield sum * itemsize
def iter_strides_c_contig(arr, shape=None):
"""yields the c-contiguous strides
"""
shape = arr.shape if shape is None else shape
itemsize = arr.itemsize
def gen():
yield itemsize
sum = 1
for s in reversed(shape[1:]):
sum *= s
yield sum * itemsize
for i in reversed(list(gen())):
yield i
def is_element_indexing(item, ndim):
if isinstance(item, slice):
return False
elif isinstance(item, tuple):
if len(item) == ndim:
if not any(isinstance(it, slice) for it in item):
return True
else:
return True
return False
def _compute_size(start, stop, step):
"""Algorithm adapted from cpython rangeobject.c
"""
if step > 0:
lo = start
hi = stop
else:
lo = stop
hi = start
step = -step
if lo >= hi:
return 0
return (hi - lo - 1) // step + 1