ai-content-maker/.venv/Lib/site-packages/numba/tests/test_array_analysis.py

1141 lines
42 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
import itertools
import numpy as np
import sys
from collections import namedtuple
from io import StringIO
from numba import njit, typeof, prange
from numba.core import (
types,
typing,
ir,
bytecode,
postproc,
cpu,
registry,
utils,
)
from numba.tests.support import (TestCase, tag, skip_parfors_unsupported,
skip_unless_scipy)
from numba.parfors.array_analysis import EquivSet, ArrayAnalysis
from numba.core.compiler import Compiler, Flags, PassManager
from numba.core.ir_utils import remove_dead
from numba.core.untyped_passes import (ExtractByteCode, TranslateByteCode, FixupArgs,
IRProcessing, DeadBranchPrune,
RewriteSemanticConstants, GenericRewrites,
WithLifting, PreserveIR, InlineClosureLikes)
from numba.core.typed_passes import (NopythonTypeInference, AnnotateTypes,
NopythonRewrites, IRLegalization)
from numba.core.compiler_machinery import FunctionPass, PassManager, register_pass
from numba.experimental import jitclass
import unittest
skip_unsupported = skip_parfors_unsupported
# test class for #3700
@jitclass([('L', types.int32), ('T', types.int32)])
class ExampleClass3700(object):
def __init__(self, n):
self.L = n
self.T = n + 1
# test value for test_global_tuple
GVAL = (1.2,)
GVAL2 = (3, 4)
class TestEquivSet(TestCase):
"""
Test array_analysis.EquivSet.
"""
def test_insert_equiv(self):
s1 = EquivSet()
s1.insert_equiv('a', 'b')
self.assertTrue(s1.is_equiv('a', 'b'))
self.assertTrue(s1.is_equiv('b', 'a'))
s1.insert_equiv('c', 'd')
self.assertTrue(s1.is_equiv('c', 'd'))
self.assertFalse(s1.is_equiv('c', 'a'))
s1.insert_equiv('a', 'c')
self.assertTrue(s1.is_equiv('a', 'b', 'c', 'd'))
self.assertFalse(s1.is_equiv('a', 'e'))
def test_intersect(self):
s1 = EquivSet()
s2 = EquivSet()
r = s1.intersect(s2)
self.assertTrue(r.is_empty())
s1.insert_equiv('a', 'b')
r = s1.intersect(s2)
self.assertTrue(r.is_empty())
s2.insert_equiv('b', 'c')
r = s1.intersect(s2)
self.assertTrue(r.is_empty())
s2.insert_equiv('d', 'a')
r = s1.intersect(s2)
self.assertTrue(r.is_empty())
s1.insert_equiv('a', 'e')
s2.insert_equiv('c', 'd')
r = s1.intersect(s2)
self.assertTrue(r.is_equiv('a', 'b'))
self.assertFalse(r.is_equiv('a', 'e'))
self.assertFalse(r.is_equiv('c', 'd'))
@register_pass(analysis_only=False, mutates_CFG=True)
class ArrayAnalysisPass(FunctionPass):
_name = "array_analysis_pass"
def __init__(self):
FunctionPass.__init__(self)
def run_pass(self, state):
state.array_analysis = ArrayAnalysis(state.typingctx, state.func_ir,
state.typemap, state.calltypes)
state.array_analysis.run(state.func_ir.blocks)
post_proc = postproc.PostProcessor(state.func_ir)
post_proc.run()
state.func_ir_copies.append(state.func_ir.copy())
if state.test_idempotence and len(state.func_ir_copies) > 1:
state.test_idempotence(state.func_ir_copies)
return False
class ArrayAnalysisTester(Compiler):
@classmethod
def mk_pipeline(cls, args, return_type=None, flags=None, locals={},
library=None, typing_context=None, target_context=None):
if not flags:
flags = Flags()
flags.nrt = True
if typing_context is None:
typing_context = registry.cpu_target.typing_context
if target_context is None:
target_context = registry.cpu_target.target_context
return cls(typing_context, target_context, library, args, return_type,
flags, locals)
def compile_to_ir(self, func, test_idempotence=None):
"""
Populate and run compiler pipeline
"""
self.state.func_id = bytecode.FunctionIdentity.from_function(func)
ExtractByteCode().run_pass(self.state)
self.state.lifted = ()
self.state.lifted_from = None
state = self.state
state.func_ir_copies = []
state.test_idempotence = test_idempotence
name = 'array_analysis_testing'
pm = PassManager(name)
pm.add_pass(TranslateByteCode, "analyzing bytecode")
pm.add_pass(FixupArgs, "fix up args")
pm.add_pass(IRProcessing, "processing IR")
# pre typing
if not state.flags.no_rewrites:
pm.add_pass(GenericRewrites, "nopython rewrites")
pm.add_pass(RewriteSemanticConstants, "rewrite semantic constants")
pm.add_pass(DeadBranchPrune, "dead branch pruning")
pm.add_pass(InlineClosureLikes,
"inline calls to locally defined closures")
# typing
pm.add_pass(NopythonTypeInference, "nopython frontend")
if not state.flags.no_rewrites:
pm.add_pass(NopythonRewrites, "nopython rewrites")
# Array Analysis pass
pm.add_pass(ArrayAnalysisPass, "array analysis")
if test_idempotence:
# Do another pass of array analysis to test idempotence
pm.add_pass(ArrayAnalysisPass, "idempotence array analysis")
# legalise
pm.add_pass(IRLegalization, "ensure IR is legal prior to lowering")
pm.add_pass(AnnotateTypes, "annotate types")
# partial compile
pm.finalize()
pm.run(state)
return state.array_analysis
class TestArrayAnalysis(TestCase):
def compare_ir(self, ir_list):
outputs = []
for func_ir in ir_list:
remove_dead(func_ir.blocks, func_ir.arg_names, func_ir)
output = StringIO()
func_ir.dump(file=output)
outputs.append(output.getvalue())
self.assertTrue(len(set(outputs)) == 1) # assert all outputs are equal
def _compile_and_test(self, fn, arg_tys, asserts=[], equivs=[], idempotent=True):
"""
Compile the given function and get its IR.
"""
test_pipeline = ArrayAnalysisTester.mk_pipeline(arg_tys)
test_idempotence = self.compare_ir if idempotent else lambda x:()
analysis = test_pipeline.compile_to_ir(fn, test_idempotence)
if equivs:
for func in equivs:
# only test the equiv_set of the first block
func(analysis.equiv_sets[0])
if asserts is None:
self.assertTrue(self._has_no_assertcall(analysis.func_ir))
else:
for func in asserts:
func(analysis.func_ir, analysis.typemap)
def _has_assertcall(self, func_ir, typemap, args):
msg = "Sizes of {} do not match".format(', '.join(args))
for label, block in func_ir.blocks.items():
for expr in block.find_exprs(op='call'):
fn = func_ir.get_definition(expr.func.name)
if isinstance(fn, ir.Global) and fn.name == 'assert_equiv':
typ = typemap[expr.args[0].name]
if typ.literal_value.startswith(msg):
return True
return False
def _has_shapecall(self, func_ir, x):
for label, block in func_ir.blocks.items():
for expr in block.find_exprs(op='getattr'):
if expr.attr == 'shape':
y = func_ir.get_definition(expr.value, lhs_only=True)
z = func_ir.get_definition(x, lhs_only=True)
y = y.name if isinstance(y, ir.Var) else y
z = z.name if isinstance(z, ir.Var) else z
if y == z:
return True
return False
def _has_no_assertcall(self, func_ir):
for label, block in func_ir.blocks.items():
for expr in block.find_exprs(op='call'):
fn = func_ir.get_definition(expr.func.name)
if isinstance(fn, ir.Global) and fn.name == 'assert_equiv':
return False
return True
def with_assert(self, *args):
return lambda func_ir, typemap: self.assertTrue(
self._has_assertcall(func_ir, typemap, args))
def without_assert(self, *args):
return lambda func_ir, typemap: self.assertFalse(
self._has_assertcall(func_ir, typemap, args))
def with_equiv(self, *args):
def check(equiv_set):
n = len(args)
for i in range(n - 1):
if not equiv_set.is_equiv(args[i], args[n - 1]):
return False
return True
return lambda equiv_set: self.assertTrue(check(equiv_set))
def without_equiv(self, *args):
def check(equiv_set):
n = len(args)
for i in range(n - 1):
if equiv_set.is_equiv(args[i], args[n - 1]):
return False
return True
return lambda equiv_set: self.assertTrue(check(equiv_set))
def with_shapecall(self, x):
return lambda func_ir, s: self.assertTrue(self._has_shapecall(func_ir, x))
def without_shapecall(self, x):
return lambda func_ir, s: self.assertFalse(self._has_shapecall(func_ir, x))
def test_base_cases(self):
def test_0():
a = np.zeros(0)
b = np.zeros(1)
m = 0
n = 1
c = np.zeros((m, n))
return
self._compile_and_test(test_0, (),
equivs=[self.with_equiv('a', (0,)),
self.with_equiv('b', (1,)),
self.with_equiv('c', (0, 1))])
def test_1(n):
a = np.zeros(n)
b = np.zeros(n)
return a + b
self._compile_and_test(test_1, (types.intp,), asserts=None)
def test_2(m, n):
a = np.zeros(n)
b = np.zeros(m)
return a + b
self._compile_and_test(test_2, (types.intp, types.intp),
asserts=[self.with_assert('a', 'b')])
def test_3(n):
a = np.zeros(n)
return a + n
self._compile_and_test(test_3, (types.intp,), asserts=None)
def test_4(n):
a = np.zeros(n)
b = a + 1
c = a + 2
return a + c
self._compile_and_test(test_4, (types.intp,), asserts=None)
def test_5(n):
a = np.zeros((n, n))
m = n
b = np.zeros((m, n))
return a + b
self._compile_and_test(test_5, (types.intp,), asserts=None)
def test_6(m, n):
a = np.zeros(n)
b = np.zeros(m)
d = a + b
e = a - b
return d + e
self._compile_and_test(test_6, (types.intp, types.intp),
asserts=[self.with_assert('a', 'b'),
self.without_assert('d', 'e')])
def test_7(m, n):
a = np.zeros(n)
b = np.zeros(m)
if m == 10:
d = a + b
else:
d = a - b
return d + a
self._compile_and_test(test_7, (types.intp, types.intp),
asserts=[self.with_assert('a', 'b'),
self.without_assert('d', 'a')])
def test_8(m, n):
a = np.zeros(n)
b = np.zeros(m)
if m == 10:
d = b + a
else:
d = a + a
return b + d
self._compile_and_test(test_8, (types.intp, types.intp),
asserts=[self.with_assert('b', 'a'),
self.with_assert('b', 'd')])
def test_9(m):
A = np.ones(m)
s = 0
while m < 2:
m += 1
B = np.ones(m)
s += np.sum(A + B)
return s
self._compile_and_test(test_9, (types.intp,),
asserts=[self.with_assert('A', 'B')])
def test_10(m, n):
p = m - 1
q = n + 1
r = q + 1
A = np.zeros(p)
B = np.zeros(q)
C = np.zeros(r)
D = np.zeros(m)
s = np.sum(A + B)
t = np.sum(C + D)
return s + t
self._compile_and_test(test_10, (types.intp,types.intp,),
asserts=[self.with_assert('A', 'B'),
self.without_assert('C', 'D')])
def test_11():
a = np.ones(5)
b = np.ones(5)
c = a[1:]
d = b[:-1]
e = len(c)
f = len(d)
return e == f
self._compile_and_test(test_11, (),
equivs=[self.with_equiv('e', 'f')])
def test_12():
a = np.ones(25).reshape((5,5))
b = np.ones(25).reshape((5,5))
c = a[1:,:]
d = b[:-1,:]
e = c.shape[0]
f = d.shape[0]
g = len(d)
return e == f
self._compile_and_test(test_12, (),
equivs=[self.with_equiv('e', 'f', 'g')])
def test_tup_arg(T):
T2 = T
return T2[0]
int_arr_typ = types.Array(types.intp, 1, 'C')
self._compile_and_test(test_tup_arg,
(types.Tuple((int_arr_typ, int_arr_typ)),), asserts=None)
def test_arr_in_tup(m):
A = np.ones(m)
S = (A,)
B = np.ones(len(S[0]))
return B
self._compile_and_test(test_arr_in_tup, (types.intp,),
equivs=[self.with_equiv("A", "B")])
T = namedtuple("T", ['a','b'])
def test_namedtuple(n):
r = T(n, n)
return r[0]
self._compile_and_test(test_namedtuple, (types.intp,),
equivs=[self.with_equiv('r', ('n', 'n'))],)
# np.where is tricky since it returns tuple of arrays
def test_np_where_tup_return(A):
c = np.where(A)
return len(c[0])
self._compile_and_test(test_np_where_tup_return,
(types.Array(types.intp, 1, 'C'),), asserts=None)
def test_shape(A):
(m, n) = A.shape
B = np.ones((m, n))
return A + B
self._compile_and_test(test_shape, (types.Array(types.intp, 2, 'C'),),
asserts=None)
def test_cond(l, m, n):
A = np.ones(l)
B = np.ones(m)
C = np.ones(n)
if l == m:
r = np.sum(A + B)
else:
r = 0
if m != n:
s = 0
else:
s = np.sum(B + C)
t = 0
if l == m:
if m == n:
t = np.sum(A + B + C)
return r + s + t
self._compile_and_test(test_cond, (types.intp, types.intp, types.intp),
asserts=None)
def test_assert_1(m, n):
assert(m == n)
A = np.ones(m)
B = np.ones(n)
return np.sum(A + B)
self._compile_and_test(test_assert_1, (types.intp, types.intp),
asserts=None)
def test_assert_2(A, B):
assert(A.shape == B.shape)
return np.sum(A + B)
self._compile_and_test(test_assert_2, (types.Array(types.intp, 1, 'C'),
types.Array(types.intp, 1, 'C'),),
asserts=None)
self._compile_and_test(test_assert_2, (types.Array(types.intp, 2, 'C'),
types.Array(types.intp, 2, 'C'),),
asserts=None)
# expected failure
with self.assertRaises(AssertionError) as raises:
self._compile_and_test(test_assert_2, (types.Array(types.intp, 1, 'C'),
types.Array(types.intp, 2, 'C'),),
asserts=None)
msg = "Dimension mismatch"
self.assertIn(msg, str(raises.exception))
def test_stencilcall(self):
from numba.stencils.stencil import stencil
@stencil
def kernel_1(a):
return 0.25 * (a[0,1] + a[1,0] + a[0,-1] + a[-1,0])
def test_1(n):
a = np.ones((n,n))
b = kernel_1(a)
return a + b
self._compile_and_test(test_1, (types.intp,),
equivs=[self.with_equiv('a', 'b')],
asserts=[self.without_assert('a', 'b')])
def test_2(n):
a = np.ones((n,n))
b = np.ones((n+1,n+1))
kernel_1(a, out=b)
return a
self._compile_and_test(test_2, (types.intp,),
equivs=[self.without_equiv('a', 'b')])
@stencil(standard_indexing=('c',))
def kernel_2(a, b, c):
return a[0,1,0] + b[0,-1,0] + c[0]
def test_3(n):
a = np.arange(64).reshape(4,8,2)
b = np.arange(64).reshape(n,8,2)
u = np.zeros(1)
v = kernel_2(a, b, u)
return v
# standard indexed arrays are not considered in size equivalence
self._compile_and_test(test_3, (types.intp,),
equivs=[self.with_equiv('a', 'b', 'v'),
self.without_equiv('a', 'u')],
asserts=[self.with_assert('a', 'b')])
def test_slice(self):
def test_1(m, n):
A = np.zeros(m)
B = np.zeros(n)
s = np.sum(A + B)
C = A[1:m-1]
D = B[1:n-1]
t = np.sum(C + D)
return s + t
self._compile_and_test(test_1, (types.intp,types.intp,),
asserts=[self.with_assert('A', 'B'),
self.without_assert('C', 'D')],
idempotent=False)
def test_2(m):
A = np.zeros(m)
B = A[0:m-3]
C = A[1:m-2]
D = A[2:m-1]
E = B + C
return D + E
self._compile_and_test(test_2, (types.intp,),
asserts=[self.without_assert('B', 'C'),
self.without_assert('D', 'E')],
idempotent=False)
def test_3(m):
A = np.zeros((m,m))
B = A[0:m-2,0:m-2]
C = A[1:m-1,1:m-1]
E = B + C
return E
self._compile_and_test(test_3, (types.intp,),
asserts=[self.without_assert('B', 'C')],
idempotent=False)
def test_4(m):
A = np.zeros((m,m))
B = A[0:m-2,:]
C = A[1:m-1,:]
E = B + C
return E
self._compile_and_test(test_4, (types.intp,),
asserts=[self.without_assert('B', 'C')],
idempotent=False)
def test_5(m,n):
A = np.zeros(m)
B = np.zeros(m)
B[0:m-2] = A[1:m-1]
C = np.zeros(n)
D = A[1:m-1]
C[0:n-2] = D
# B and C are not necessarily of the same size because we can't
# derive m == n from (m-2) % m == (n-2) % n
return B + C
self._compile_and_test(test_5, (types.intp,types.intp),
asserts=[self.without_assert('B', 'A'),
self.with_assert('C', 'D'),
self.with_assert('B', 'C')],
idempotent=False)
def test_6(m):
A = np.zeros((m,m))
B = A[0:m-2,:-1]
C = A[1:m-1,:-1]
E = B + C
return E
self._compile_and_test(test_6, (types.intp,),
asserts=[self.without_assert('B', 'C')],
idempotent=False)
def test_7(m):
A = np.zeros((m,m))
B = A[0:m-2,-3:-1]
C = A[1:m-1,-4:-2]
E = B + C
return E
self._compile_and_test(test_7, (types.intp,),
asserts=[self.with_assert('B', 'C')],
idempotent=False)
def test_8(m):
A = np.zeros((m,m))
B = A[:m-2,0:]
C = A[1:-1,:]
E = B + C
return E
self._compile_and_test(test_8, (types.intp,),
asserts=[self.without_assert('B', 'C')],
idempotent=False)
def test_9(m):
# issues #3461 and #3554, checks equivalence on empty slices
# and across binop
A = np.zeros((m))
B = A[:0] # B = array([], dtype=int64)
C = A[1:]
D = A[:-1:-1] # D = array([], dtype=int64)
E = B + D
F = E
F += 1 # F = array([], dtype=int64)
return A, C, F
self._compile_and_test(test_9, (types.intp,),
equivs=[self.without_equiv('B', 'C'),
self.with_equiv('A', 'm'),
self.with_equiv('B', 'D'),
self.with_equiv('F', 'D'),],
idempotent=False)
@skip_unless_scipy
def test_numpy_calls(self):
def test_zeros(n):
a = np.zeros(n)
b = np.zeros((n, n))
c = np.zeros(shape=(n, n))
self._compile_and_test(test_zeros, (types.intp,),
equivs=[self.with_equiv('a', 'n'),
self.with_equiv('b', ('n', 'n')),
self.with_equiv('b', 'c')])
def test_0d_array(n):
a = np.array(1)
b = np.ones(2)
return a + b
self._compile_and_test(test_0d_array, (types.intp,),
equivs=[self.without_equiv('a', 'b')],
asserts=[self.without_shapecall('a')])
def test_ones(n):
a = np.ones(n)
b = np.ones((n, n))
c = np.ones(shape=(n, n))
self._compile_and_test(test_ones, (types.intp,),
equivs=[self.with_equiv('a', 'n'),
self.with_equiv('b', ('n', 'n')),
self.with_equiv('b', 'c')])
def test_empty(n):
a = np.empty(n)
b = np.empty((n, n))
c = np.empty(shape=(n, n))
self._compile_and_test(test_empty, (types.intp,),
equivs=[self.with_equiv('a', 'n'),
self.with_equiv('b', ('n', 'n')),
self.with_equiv('b', 'c')])
def test_eye(n):
a = np.eye(n)
b = np.eye(N=n)
c = np.eye(N=n, M=n)
d = np.eye(N=n, M=n + 1)
self._compile_and_test(test_eye, (types.intp,),
equivs=[self.with_equiv('a', ('n', 'n')),
self.with_equiv('b', ('n', 'n')),
self.with_equiv('b', 'c'),
self.without_equiv('b', 'd')])
def test_identity(n):
a = np.identity(n)
self._compile_and_test(test_identity, (types.intp,),
equivs=[self.with_equiv('a', ('n', 'n'))])
def test_diag(n):
a = np.identity(n)
b = np.diag(a)
c = np.diag(b)
d = np.diag(a, k=1)
self._compile_and_test(test_diag, (types.intp,),
equivs=[self.with_equiv('b', ('n',)),
self.with_equiv('c', ('n', 'n'))],
asserts=[self.with_shapecall('d'),
self.without_shapecall('c')])
def test_array_like(a):
b = np.empty_like(a)
c = np.zeros_like(a)
d = np.ones_like(a)
e = np.full_like(a, 1)
f = np.asfortranarray(a)
self._compile_and_test(test_array_like, (types.Array(types.intp, 2, 'C'),),
equivs=[
self.with_equiv('a', 'b', 'd', 'e', 'f')],
asserts=[self.with_shapecall('a'),
self.without_shapecall('b')])
def test_reshape(n):
a = np.ones(n * n)
b = a.reshape((n, n))
return a.sum() + b.sum()
self._compile_and_test(test_reshape, (types.intp,),
equivs=[self.with_equiv('b', ('n', 'n'))],
asserts=[self.without_shapecall('b')])
def test_transpose(m, n):
a = np.ones((m, n))
b = a.T
c = a.transpose()
# Numba njit cannot compile explicit transpose call!
# c = np.transpose(b)
self._compile_and_test(test_transpose, (types.intp, types.intp),
equivs=[self.with_equiv('a', ('m', 'n')),
self.with_equiv('b', ('n', 'm')),
self.with_equiv('c', ('n', 'm'))])
def test_transpose_3d(m, n, k):
a = np.ones((m, n, k))
b = a.T
c = a.transpose()
d = a.transpose(2,0,1)
dt = a.transpose((2,0,1))
e = a.transpose(0,2,1)
et = a.transpose((0,2,1))
# Numba njit cannot compile explicit transpose call!
# c = np.transpose(b)
self._compile_and_test(test_transpose_3d, (types.intp, types.intp, types.intp),
equivs=[self.with_equiv('a', ('m', 'n', 'k')),
self.with_equiv('b', ('k', 'n', 'm')),
self.with_equiv('c', ('k', 'n', 'm')),
self.with_equiv('d', ('k', 'm', 'n')),
self.with_equiv('dt', ('k', 'm', 'n')),
self.with_equiv('e', ('m', 'k', 'n')),
self.with_equiv('et', ('m', 'k', 'n'))])
def test_real_imag_attr(m, n):
a = np.ones((m, n))
b = a.real
c = a.imag
self._compile_and_test(test_real_imag_attr, (types.intp, types.intp),
equivs=[self.with_equiv('a', ('m', 'n')),
self.with_equiv('b', ('m', 'n')),
self.with_equiv('c', ('m', 'n')),
])
def test_random(n):
a0 = np.random.rand(n)
a1 = np.random.rand(n, n)
b0 = np.random.randn(n)
b1 = np.random.randn(n, n)
c0 = np.random.ranf(n)
c1 = np.random.ranf((n, n))
c2 = np.random.ranf(size=(n, n))
d0 = np.random.random_sample(n)
d1 = np.random.random_sample((n, n))
d2 = np.random.random_sample(size=(n, n))
e0 = np.random.sample(n)
e1 = np.random.sample((n, n))
e2 = np.random.sample(size=(n, n))
f0 = np.random.random(n)
f1 = np.random.random((n, n))
f2 = np.random.random(size=(n, n))
g0 = np.random.standard_normal(n)
g1 = np.random.standard_normal((n, n))
g2 = np.random.standard_normal(size=(n, n))
h0 = np.random.chisquare(10, n)
h1 = np.random.chisquare(10, (n, n))
h2 = np.random.chisquare(10, size=(n, n))
i0 = np.random.weibull(10, n)
i1 = np.random.weibull(10, (n, n))
i2 = np.random.weibull(10, size=(n, n))
j0 = np.random.power(10, n)
j1 = np.random.power(10, (n, n))
j2 = np.random.power(10, size=(n, n))
k0 = np.random.geometric(0.1, n)
k1 = np.random.geometric(0.1, (n, n))
k2 = np.random.geometric(0.1, size=(n, n))
l0 = np.random.exponential(10, n)
l1 = np.random.exponential(10, (n, n))
l2 = np.random.exponential(10, size=(n, n))
m0 = np.random.poisson(10, n)
m1 = np.random.poisson(10, (n, n))
m2 = np.random.poisson(10, size=(n, n))
n0 = np.random.rayleigh(10, n)
n1 = np.random.rayleigh(10, (n, n))
n2 = np.random.rayleigh(10, size=(n, n))
o0 = np.random.normal(0, 1, n)
o1 = np.random.normal(0, 1, (n, n))
o2 = np.random.normal(0, 1, size=(n, n))
p0 = np.random.uniform(0, 1, n)
p1 = np.random.uniform(0, 1, (n, n))
p2 = np.random.uniform(0, 1, size=(n, n))
q0 = np.random.beta(0.1, 1, n)
q1 = np.random.beta(0.1, 1, (n, n))
q2 = np.random.beta(0.1, 1, size=(n, n))
r0 = np.random.binomial(0, 1, n)
r1 = np.random.binomial(0, 1, (n, n))
r2 = np.random.binomial(0, 1, size=(n, n))
s0 = np.random.f(0.1, 1, n)
s1 = np.random.f(0.1, 1, (n, n))
s2 = np.random.f(0.1, 1, size=(n, n))
t0 = np.random.gamma(0.1, 1, n)
t1 = np.random.gamma(0.1, 1, (n, n))
t2 = np.random.gamma(0.1, 1, size=(n, n))
u0 = np.random.lognormal(0, 1, n)
u1 = np.random.lognormal(0, 1, (n, n))
u2 = np.random.lognormal(0, 1, size=(n, n))
v0 = np.random.laplace(0, 1, n)
v1 = np.random.laplace(0, 1, (n, n))
v2 = np.random.laplace(0, 1, size=(n, n))
w0 = np.random.randint(0, 10, n)
w1 = np.random.randint(0, 10, (n, n))
w2 = np.random.randint(0, 10, size=(n, n))
x0 = np.random.triangular(-3, 0, 10, n)
x1 = np.random.triangular(-3, 0, 10, (n, n))
x2 = np.random.triangular(-3, 0, 10, size=(n, n))
last = ord('x') + 1
vars1d = [('n',)] + [chr(x) + '0' for x in range(ord('a'), last)]
vars2d = [('n', 'n')] + [chr(x) + '1' for x in range(ord('a'), last)]
vars2d += [chr(x) + '1' for x in range(ord('c'), last)]
self._compile_and_test(test_random, (types.intp,),
equivs=[self.with_equiv(*vars1d),
self.with_equiv(*vars2d)])
def test_concatenate(m, n):
a = np.ones(m)
b = np.ones(n)
c = np.concatenate((a, b))
d = np.ones((2, n))
e = np.ones((3, n))
f = np.concatenate((d, e))
# Numba njit cannot compile concatenate with single array!
# g = np.ones((3,4,5))
# h = np.concatenate(g)
i = np.ones((m, 2))
j = np.ones((m, 3))
k = np.concatenate((i, j), axis=1)
l = np.ones((m, n))
o = np.ones((m, n))
p = np.concatenate((l, o))
# Numba njit cannot support list argument!
# q = np.concatenate([d, e])
self._compile_and_test(test_concatenate, (types.intp, types.intp),
equivs=[self.with_equiv('f', (5, 'n')),
#self.with_equiv('h', (3 + 4 + 5, )),
self.with_equiv('k', ('m', 5))],
asserts=[self.with_shapecall('c'),
self.without_shapecall('f'),
self.without_shapecall('k'),
self.with_shapecall('p')])
def test_vsd_stack():
k = np.ones((2,))
l = np.ones((2, 3))
o = np.ones((2, 3, 4))
p = np.vstack((k, k))
q = np.vstack((l, l))
r = np.hstack((k, k))
s = np.hstack((l, l))
t = np.dstack((k, k))
u = np.dstack((l, l))
v = np.dstack((o, o))
self._compile_and_test(test_vsd_stack, (),
equivs=[self.with_equiv('p', (2, 2)),
self.with_equiv('q', (4, 3)),
self.with_equiv('r', (4,)),
self.with_equiv('s', (2, 6)),
self.with_equiv('t', (1, 2, 2)),
self.with_equiv('u', (2, 3, 2)),
self.with_equiv('v', (2, 3, 8)),
])
def test_stack(m, n):
a = np.ones(m)
b = np.ones(n)
c = np.stack((a, b))
d = np.ones((m, n))
e = np.ones((m, n))
f = np.stack((d, e))
g = np.stack((d, e), axis=0)
h = np.stack((d, e), axis=1)
i = np.stack((d, e), axis=2)
j = np.stack((d, e), axis=-1)
self._compile_and_test(test_stack, (types.intp, types.intp),
equivs=[self.with_equiv('m', 'n'),
self.with_equiv('c', (2, 'm')),
self.with_equiv(
'f', 'g', (2, 'm', 'n')),
self.with_equiv(
'h', ('m', 2, 'n')),
self.with_equiv(
'i', 'j', ('m', 'n', 2)),
])
def test_linspace(m, n):
a = np.linspace(m, n)
b = np.linspace(m, n, 10)
# Numba njit does not support num keyword to linspace call!
# c = np.linspace(m,n,num=10)
self._compile_and_test(test_linspace, (types.float64, types.float64),
equivs=[self.with_equiv('a', (50,)),
self.with_equiv('b', (10,))])
def test_dot(l, m, n):
a = np.dot(np.ones(1), np.ones(1))
b = np.dot(np.ones(2), np.ones((2, 3)))
# Numba njit does not support higher dimensional inputs
#c = np.dot(np.ones(2),np.ones((3,2,4)))
#d = np.dot(np.ones(2),np.ones((3,5,2,4)))
e = np.dot(np.ones((1, 2)), np.ones(2,))
#f = np.dot(np.ones((1,2,3)),np.ones(3,))
#g = np.dot(np.ones((1,2,3,4)),np.ones(4,))
h = np.dot(np.ones((2, 3)), np.ones((3, 4)))
i = np.dot(np.ones((m, n)), np.ones((n, m)))
j = np.dot(np.ones((m, m)), np.ones((l, l)))
self._compile_and_test(test_dot, (types.intp, types.intp, types.intp),
equivs=[self.without_equiv('a', (1,)), # not array
self.with_equiv('b', (3,)),
self.with_equiv('e', (1,)),
self.with_equiv('h', (2, 4)),
self.with_equiv('i', ('m', 'm')),
self.with_equiv('j', ('m', 'm')),
],
asserts=[self.with_assert('m', 'l')])
def test_broadcast(m, n):
a = np.ones((m, n))
b = np.ones(n)
c = a + b
d = np.ones((1, n))
e = a + c - d
self._compile_and_test(test_broadcast, (types.intp, types.intp),
equivs=[self.with_equiv('a', 'c', 'e')],
asserts=None)
# make sure shape of a global tuple of ints is handled properly
def test_global_tuple():
a = np.ones(GVAL2)
b = np.ones(GVAL2)
self._compile_and_test(test_global_tuple, (),
equivs=[self.with_equiv('a', 'b')],
asserts=None)
class TestArrayAnalysisParallelRequired(TestCase):
"""This is to just split out tests that need the parallel backend and
therefore serialised execution.
"""
_numba_parallel_test_ = False
@skip_unsupported
def test_misc(self):
@njit
def swap(x, y):
return(y, x)
def test_bug2537(m):
a = np.ones(m)
b = np.ones(m)
for i in range(m):
a[i], b[i] = swap(a[i], b[i])
try:
njit(test_bug2537, parallel=True)(10)
except IndexError:
self.fail("test_bug2537 raised IndexError!")
@skip_unsupported
def test_global_namedtuple(self):
Row = namedtuple('Row', ['A'])
row = Row(3)
def test_impl():
rr = row
res = rr.A
if res == 2:
res = 3
return res
self.assertEqual(njit(test_impl, parallel=True)(), test_impl())
@skip_unsupported
def test_array_T_issue_3700(self):
def test_impl(t_obj, X):
for i in prange(t_obj.T):
X[i] = i
return X.sum()
n = 5
t_obj = ExampleClass3700(n)
X1 = np.zeros(t_obj.T)
X2 = np.zeros(t_obj.T)
self.assertEqual(
njit(test_impl, parallel=True)(t_obj, X1), test_impl(t_obj, X2))
@skip_unsupported
def test_slice_shape_issue_3380(self):
# these tests shouldn't throw error in array analysis
def test_impl1():
a = slice(None, None)
return True
self.assertEqual(njit(test_impl1, parallel=True)(), test_impl1())
def test_impl2(A, a):
b = a
return A[b]
A = np.arange(10)
a = slice(None)
np.testing.assert_array_equal(
njit(test_impl2, parallel=True)(A, a), test_impl2(A, a))
@skip_unsupported
def test_slice_dtype_issue_5056(self):
# see issue 5056
@njit(parallel=True)
def test_impl(data):
N = data.shape[0]
sums = np.zeros(N)
for i in prange(N):
sums[i] = np.sum(data[np.int32(0):np.int32(1)])
return sums
data = np.arange(10.)
np.testing.assert_array_equal(test_impl(data), test_impl.py_func(data))
@skip_unsupported
def test_global_tuple(self):
"""make sure a global tuple with non-integer values does not cause errors
(test for #6726).
"""
def test_impl():
d = GVAL[0]
return d
self.assertEqual(njit(test_impl, parallel=True)(), test_impl())
class TestArrayAnalysisInterface(TestCase):
def test_analyze_op_call_interface(self):
# gather _analyze_op_call_*
aoc = {}
for fname in dir(ArrayAnalysis):
if fname.startswith('_analyze_op_call_'):
aoc[fname] = getattr(ArrayAnalysis, fname)
# check interface
def iface_stub(self, scope, equiv_set, loc, args, kws):
pass
expected = utils.pysignature(iface_stub)
for k, v in aoc.items():
got = utils.pysignature(v)
with self.subTest(fname=k, sig=got):
self.assertEqual(got, expected)
@skip_unsupported
def test_array_analysis_extensions(self):
# Test that the `array_analysis` object in `array_analysis_extensions`
# can perform analysis on the scope using `equiv_sets`.
from numba.parfors.parfor import Parfor
from numba.parfors import array_analysis
orig_parfor = array_analysis.array_analysis_extensions[Parfor]
shared = {'counter': 0}
def testcode(array_analysis):
# Find call node corresponding to the ``A = empty(n)``
func_ir = array_analysis.func_ir
for call in func_ir.blocks[0].find_exprs('call'):
callee = func_ir.get_definition(call.func)
if getattr(callee, "value", None) is empty:
if getattr(call.args[0], 'name', None) == 'n':
break
else:
return
variable_A = func_ir.get_assignee(call)
# n must be equiv to
es = array_analysis.equiv_sets[0]
self.assertTrue(es.is_equiv('n', variable_A.name))
shared['counter'] += 1
def new_parfor(parfor, equiv_set, typemap, array_analysis):
"""Recursive array analysis for parfor nodes.
"""
testcode(array_analysis)
# Call original
return orig_parfor(
parfor, equiv_set, typemap, array_analysis,
)
try:
# Replace the array-analysis extension for Parfor node
array_analysis.array_analysis_extensions[Parfor] = new_parfor
empty = np.empty # avoid scanning a getattr in the IR
def f(n):
A = empty(n)
for i in prange(n):
S = np.arange(i)
A[i] = S.sum()
return A + 1
got = njit(parallel=True)(f)(10)
executed_count = shared['counter']
self.assertGreater(executed_count, 0)
finally:
# Re-install the original handler
array_analysis.array_analysis_extensions[Parfor] = orig_parfor
# Check normal execution
expected = njit(parallel=True)(f)(10)
self.assertPreciseEqual(got, expected)
# Make sure we have uninstalled the handler
self.assertEqual(executed_count, shared['counter'])
if __name__ == '__main__':
unittest.main()