126 lines
3.5 KiB
Python
126 lines
3.5 KiB
Python
|
import math
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
import unittest
|
||
|
from numba import njit
|
||
|
from numba.extending import register_jitable
|
||
|
from numba.tests.support import TestCase
|
||
|
|
||
|
|
||
|
RISKFREE = 0.02
|
||
|
VOLATILITY = 0.30
|
||
|
|
||
|
|
||
|
A1 = 0.31938153
|
||
|
A2 = -0.356563782
|
||
|
A3 = 1.781477937
|
||
|
A4 = -1.821255978
|
||
|
A5 = 1.330274429
|
||
|
RSQRT2PI = 0.39894228040143267793994605993438
|
||
|
|
||
|
|
||
|
@register_jitable
|
||
|
def cnd_array(d):
|
||
|
K = 1.0 / (1.0 + 0.2316419 * np.abs(d))
|
||
|
ret_val = (RSQRT2PI * np.exp(-0.5 * d * d) *
|
||
|
(K * (A1 + K * (A2 + K * (A3 + K * (A4 + K * A5))))))
|
||
|
return np.where(d > 0, 1.0 - ret_val, ret_val)
|
||
|
|
||
|
|
||
|
@register_jitable
|
||
|
def cnd(d):
|
||
|
K = 1.0 / (1.0 + 0.2316419 * math.fabs(d))
|
||
|
ret_val = (RSQRT2PI * math.exp(-0.5 * d * d) *
|
||
|
(K * (A1 + K * (A2 + K * (A3 + K * (A4 + K * A5))))))
|
||
|
if d > 0:
|
||
|
ret_val = 1.0 - ret_val
|
||
|
return ret_val
|
||
|
|
||
|
|
||
|
@njit
|
||
|
def blackscholes_arrayexpr(stockPrice, optionStrike, optionYears, Riskfree,
|
||
|
Volatility):
|
||
|
S = stockPrice
|
||
|
X = optionStrike
|
||
|
T = optionYears
|
||
|
R = Riskfree
|
||
|
V = Volatility
|
||
|
sqrtT = np.sqrt(T)
|
||
|
d1 = (np.log(S / X) + (R + 0.5 * V * V) * T) / (V * sqrtT)
|
||
|
d2 = d1 - V * sqrtT
|
||
|
cndd1 = cnd_array(d1)
|
||
|
cndd2 = cnd_array(d2)
|
||
|
|
||
|
expRT = np.exp(- R * T)
|
||
|
|
||
|
callResult = (S * cndd1 - X * expRT * cndd2)
|
||
|
putResult = (X * expRT * (1.0 - cndd2) - S * (1.0 - cndd1))
|
||
|
return callResult, putResult
|
||
|
|
||
|
|
||
|
@njit
|
||
|
def blackscholes_scalar(callResult, putResult, stockPrice, optionStrike,
|
||
|
optionYears, Riskfree, Volatility):
|
||
|
S = stockPrice
|
||
|
X = optionStrike
|
||
|
T = optionYears
|
||
|
R = Riskfree
|
||
|
V = Volatility
|
||
|
for i in range(len(S)):
|
||
|
sqrtT = math.sqrt(T[i])
|
||
|
d1 = (math.log(S[i] / X[i]) + (R + 0.5 * V * V) * T[i]) / (V * sqrtT)
|
||
|
d2 = d1 - V * sqrtT
|
||
|
cndd1 = cnd(d1)
|
||
|
cndd2 = cnd(d2)
|
||
|
|
||
|
expRT = math.exp((-1. * R) * T[i])
|
||
|
callResult[i] = (S[i] * cndd1 - X[i] * expRT * cndd2)
|
||
|
putResult[i] = (X[i] * expRT * (1.0 - cndd2) - S[i] * (1.0 - cndd1))
|
||
|
|
||
|
|
||
|
def randfloat(rand_var, low, high):
|
||
|
return (1.0 - rand_var) * low + rand_var * high
|
||
|
|
||
|
|
||
|
class TestBlackScholes(TestCase):
|
||
|
def test_array_expr(self):
|
||
|
OPT_N = 400
|
||
|
|
||
|
stockPrice = randfloat(self.random.random_sample(OPT_N), 5.0, 30.0)
|
||
|
optionStrike = randfloat(self.random.random_sample(OPT_N), 1.0, 100.0)
|
||
|
optionYears = randfloat(self.random.random_sample(OPT_N), 0.25, 10.0)
|
||
|
|
||
|
args = stockPrice, optionStrike, optionYears, RISKFREE, VOLATILITY
|
||
|
|
||
|
callResultGold, putResultGold = blackscholes_arrayexpr.py_func(*args)
|
||
|
callResultNumba, putResultNumba = blackscholes_arrayexpr(*args)
|
||
|
|
||
|
delta = np.abs(callResultGold - callResultNumba)
|
||
|
self.assertAlmostEqual(delta.max(), 0)
|
||
|
|
||
|
def test_scalar(self):
|
||
|
OPT_N = 400
|
||
|
|
||
|
callResultGold = np.zeros(OPT_N)
|
||
|
putResultGold = np.zeros(OPT_N)
|
||
|
|
||
|
callResultNumba = np.zeros(OPT_N)
|
||
|
putResultNumba = np.zeros(OPT_N)
|
||
|
|
||
|
stockPrice = randfloat(self.random.random_sample(OPT_N), 5.0, 30.0)
|
||
|
optionStrike = randfloat(self.random.random_sample(OPT_N), 1.0, 100.0)
|
||
|
optionYears = randfloat(self.random.random_sample(OPT_N), 0.25, 10.0)
|
||
|
|
||
|
args = stockPrice, optionStrike, optionYears, RISKFREE, VOLATILITY
|
||
|
|
||
|
blackscholes_scalar.py_func(callResultGold, putResultGold, *args)
|
||
|
blackscholes_scalar(callResultNumba, putResultNumba, *args)
|
||
|
|
||
|
delta = np.abs(callResultGold - callResultNumba)
|
||
|
self.assertAlmostEqual(delta.max(), 0)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
unittest.main()
|