1111 lines
37 KiB
Python
1111 lines
37 KiB
Python
|
import decimal
|
||
|
import itertools
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
import unittest
|
||
|
from numba import jit, njit, typeof
|
||
|
from numba.core import utils, types, errors
|
||
|
from numba.tests.support import TestCase, tag
|
||
|
from numba.core.typing import arraydecl
|
||
|
from numba.core.types import intp, ellipsis, slice2_type, slice3_type
|
||
|
|
||
|
|
||
|
enable_pyobj_flags = {'forceobj': True}
|
||
|
|
||
|
Noflags = {'nopython': True}
|
||
|
|
||
|
|
||
|
def slicing_1d_usecase(a, start, stop, step):
|
||
|
return a[start:stop:step]
|
||
|
|
||
|
def slicing_1d_usecase2(a, start, stop, step):
|
||
|
b = a[start:stop:step]
|
||
|
total = 0
|
||
|
for i in range(b.shape[0]):
|
||
|
total += b[i] * (i + 1)
|
||
|
return total
|
||
|
|
||
|
def slicing_1d_usecase3(a, start, stop):
|
||
|
b = a[start:stop]
|
||
|
total = 0
|
||
|
for i in range(b.shape[0]):
|
||
|
total += b[i] * (i + 1)
|
||
|
return total
|
||
|
|
||
|
def slicing_1d_usecase4(a):
|
||
|
b = a[:]
|
||
|
total = 0
|
||
|
for i in range(b.shape[0]):
|
||
|
total += b[i] * (i + 1)
|
||
|
return total
|
||
|
|
||
|
def slicing_1d_usecase5(a, start):
|
||
|
b = a[start:]
|
||
|
total = 0
|
||
|
for i in range(b.shape[0]):
|
||
|
total += b[i] * (i + 1)
|
||
|
return total
|
||
|
|
||
|
def slicing_1d_usecase6(a, stop):
|
||
|
b = a[:stop]
|
||
|
total = 0
|
||
|
for i in range(b.shape[0]):
|
||
|
total += b[i] * (i + 1)
|
||
|
return total
|
||
|
|
||
|
def slicing_1d_usecase7(a, start):
|
||
|
# Omitted stop with negative step (issue #1690)
|
||
|
b = a[start::-2]
|
||
|
total = 0
|
||
|
for i in range(b.shape[0]):
|
||
|
total += b[i] * (i + 1)
|
||
|
return total
|
||
|
|
||
|
def slicing_1d_usecase8(a, start):
|
||
|
# Omitted start with negative step
|
||
|
b = a[::-2]
|
||
|
total = 0
|
||
|
for i in range(b.shape[0]):
|
||
|
total += b[i] * (i + 1)
|
||
|
return total
|
||
|
|
||
|
|
||
|
def slicing_2d_usecase(a, start1, stop1, step1, start2, stop2, step2):
|
||
|
# The index is a homogeneous tuple of slices
|
||
|
return a[start1:stop1:step1, start2:stop2:step2]
|
||
|
|
||
|
def slicing_2d_usecase3(a, start1, stop1, step1, index):
|
||
|
# The index is a heterogeneous tuple
|
||
|
return a[start1:stop1:step1, index]
|
||
|
|
||
|
def slicing_3d_usecase(a, index0, start1, index2):
|
||
|
b = a[index0, start1:, index2]
|
||
|
total = 0
|
||
|
for i in range(b.shape[0]):
|
||
|
total += b[i] * (i + 1)
|
||
|
return total
|
||
|
|
||
|
def slicing_3d_usecase2(a, index0, stop1, index2):
|
||
|
b = a[index0, :stop1, index2]
|
||
|
total = 0
|
||
|
for i in range(b.shape[0]):
|
||
|
total += b[i] * (i + 1)
|
||
|
return total
|
||
|
|
||
|
def partial_1d_usecase(a, index):
|
||
|
b = a[index]
|
||
|
total = 0
|
||
|
for i in range(b.shape[0]):
|
||
|
total += b[i] * (i + 1)
|
||
|
return total
|
||
|
|
||
|
def integer_indexing_1d_usecase(a, i):
|
||
|
return a[i]
|
||
|
|
||
|
def integer_indexing_2d_usecase(a, i1, i2):
|
||
|
return a[i1,i2]
|
||
|
|
||
|
def integer_indexing_2d_usecase2(a, i1, i2):
|
||
|
return a[i1][i2]
|
||
|
|
||
|
def ellipsis_usecase1(a, i, j):
|
||
|
return a[i:j, ...]
|
||
|
|
||
|
def ellipsis_usecase2(a, i, j):
|
||
|
return a[..., i:j]
|
||
|
|
||
|
def ellipsis_usecase3(a, i, j):
|
||
|
return a[i, ..., j]
|
||
|
|
||
|
def none_index_usecase(a):
|
||
|
return a[None]
|
||
|
|
||
|
def empty_tuple_usecase(a):
|
||
|
return a[()]
|
||
|
|
||
|
|
||
|
@njit
|
||
|
def setitem_usecase(a, index, value):
|
||
|
a[index] = value
|
||
|
|
||
|
|
||
|
@njit
|
||
|
def setitem_broadcast_usecase(a, value):
|
||
|
a[:] = value
|
||
|
|
||
|
|
||
|
def slicing_1d_usecase_set(a, b, start, stop, step):
|
||
|
a[start:stop:step] = b
|
||
|
return a
|
||
|
|
||
|
def slicing_1d_usecase_add(a, b, start, stop):
|
||
|
# NOTE: uses the ROT_FOUR opcode on Python 2, only on the [start:stop]
|
||
|
# with inplace operator form.
|
||
|
a[start:stop] += b
|
||
|
return a
|
||
|
|
||
|
def slicing_2d_usecase_set(a, b, start, stop, step, start2, stop2, step2):
|
||
|
a[start:stop:step,start2:stop2:step2] = b
|
||
|
return a
|
||
|
|
||
|
|
||
|
class TestGetItem(TestCase):
|
||
|
"""
|
||
|
Test basic indexed load from an array (returning a view or a scalar).
|
||
|
Note fancy indexing is tested in test_fancy_indexing.
|
||
|
"""
|
||
|
|
||
|
def test_1d_slicing(self, flags=enable_pyobj_flags):
|
||
|
pyfunc = slicing_1d_usecase
|
||
|
arraytype = types.Array(types.int32, 1, 'C')
|
||
|
argtys = (arraytype, types.int32, types.int32, types.int32)
|
||
|
cfunc = jit(argtys, **flags)(pyfunc)
|
||
|
|
||
|
a = np.arange(10, dtype='i4')
|
||
|
for indices in [(0, 10, 1),
|
||
|
(2, 3, 1),
|
||
|
(10, 0, 1),
|
||
|
(0, 10, -1),
|
||
|
(0, 10, 2),
|
||
|
(9, 0, -1),
|
||
|
(-5, -2, 1),
|
||
|
(0, -1, 1),
|
||
|
]:
|
||
|
expected = pyfunc(a, *indices)
|
||
|
self.assertPreciseEqual(cfunc(a, *indices), expected)
|
||
|
|
||
|
def test_1d_slicing_npm(self):
|
||
|
self.test_1d_slicing(flags=Noflags)
|
||
|
|
||
|
def test_1d_slicing2(self, flags=enable_pyobj_flags):
|
||
|
pyfunc = slicing_1d_usecase2
|
||
|
arraytype = types.Array(types.int32, 1, 'C')
|
||
|
argtys = (arraytype, types.int32, types.int32, types.int32)
|
||
|
cfunc = jit(argtys, **flags)(pyfunc)
|
||
|
|
||
|
a = np.arange(10, dtype='i4')
|
||
|
|
||
|
args = [(0, 10, 1),
|
||
|
(2, 3, 1),
|
||
|
(10, 0, 1),
|
||
|
(0, 10, -1),
|
||
|
(0, 10, 2)]
|
||
|
|
||
|
for arg in args:
|
||
|
self.assertEqual(pyfunc(a, *arg), cfunc(a, *arg))
|
||
|
|
||
|
|
||
|
# Any
|
||
|
arraytype = types.Array(types.int32, 1, 'A')
|
||
|
argtys = (arraytype, types.int32, types.int32, types.int32)
|
||
|
cfunc = jit(argtys, **flags)(pyfunc)
|
||
|
|
||
|
a = np.arange(20, dtype='i4')[::2]
|
||
|
self.assertFalse(a.flags['C_CONTIGUOUS'])
|
||
|
self.assertFalse(a.flags['F_CONTIGUOUS'])
|
||
|
|
||
|
args = [(0, 10, 1),
|
||
|
(2, 3, 1),
|
||
|
(10, 0, 1),
|
||
|
(0, 10, -1),
|
||
|
(0, 10, 2)]
|
||
|
|
||
|
for arg in args:
|
||
|
self.assertEqual(pyfunc(a, *arg), cfunc(a, *arg))
|
||
|
|
||
|
def test_1d_slicing2_npm(self):
|
||
|
self.test_1d_slicing2(flags=Noflags)
|
||
|
|
||
|
def test_1d_slicing3(self, flags=enable_pyobj_flags):
|
||
|
pyfunc = slicing_1d_usecase3
|
||
|
arraytype = types.Array(types.int32, 1, 'C')
|
||
|
argtys = (arraytype, types.int32, types.int32)
|
||
|
cfunc = jit(argtys, **flags)(pyfunc)
|
||
|
|
||
|
a = np.arange(10, dtype='i4')
|
||
|
|
||
|
args = [(3, 10),
|
||
|
(2, 3),
|
||
|
(10, 0),
|
||
|
(0, 10),
|
||
|
(5, 10)]
|
||
|
|
||
|
for arg in args:
|
||
|
self.assertEqual(pyfunc(a, *arg), cfunc(a, *arg))
|
||
|
|
||
|
|
||
|
# Any
|
||
|
arraytype = types.Array(types.int32, 1, 'A')
|
||
|
argtys = (arraytype, types.int32, types.int32)
|
||
|
cfunc = jit(argtys, **flags)(pyfunc)
|
||
|
|
||
|
a = np.arange(20, dtype='i4')[::2]
|
||
|
self.assertFalse(a.flags['C_CONTIGUOUS'])
|
||
|
self.assertFalse(a.flags['F_CONTIGUOUS'])
|
||
|
|
||
|
for arg in args:
|
||
|
self.assertEqual(pyfunc(a, *arg), cfunc(a, *arg))
|
||
|
|
||
|
def test_1d_slicing3_npm(self):
|
||
|
self.test_1d_slicing3(flags=Noflags)
|
||
|
|
||
|
def test_1d_slicing4(self, flags=enable_pyobj_flags):
|
||
|
pyfunc = slicing_1d_usecase4
|
||
|
arraytype = types.Array(types.int32, 1, 'C')
|
||
|
argtys = (arraytype,)
|
||
|
cfunc = jit(argtys, **flags)(pyfunc)
|
||
|
|
||
|
a = np.arange(10, dtype='i4')
|
||
|
self.assertEqual(pyfunc(a), cfunc(a))
|
||
|
|
||
|
# Any
|
||
|
arraytype = types.Array(types.int32, 1, 'A')
|
||
|
argtys = (arraytype,)
|
||
|
cfunc = jit(argtys, **flags)(pyfunc)
|
||
|
|
||
|
a = np.arange(20, dtype='i4')[::2]
|
||
|
self.assertFalse(a.flags['C_CONTIGUOUS'])
|
||
|
self.assertFalse(a.flags['F_CONTIGUOUS'])
|
||
|
self.assertEqual(pyfunc(a), cfunc(a))
|
||
|
|
||
|
def test_1d_slicing4_npm(self):
|
||
|
self.test_1d_slicing4(flags=Noflags)
|
||
|
|
||
|
def check_1d_slicing_with_arg(self, pyfunc, flags):
|
||
|
args = list(range(-9, 10))
|
||
|
|
||
|
arraytype = types.Array(types.int32, 1, 'C')
|
||
|
argtys = (arraytype, types.int32)
|
||
|
cfunc = jit(argtys, **flags)(pyfunc)
|
||
|
|
||
|
a = np.arange(10, dtype='i4')
|
||
|
for arg in args:
|
||
|
self.assertEqual(pyfunc(a, arg), cfunc(a, arg))
|
||
|
|
||
|
# Any
|
||
|
arraytype = types.Array(types.int32, 1, 'A')
|
||
|
argtys = (arraytype, types.int32)
|
||
|
cfunc = jit(argtys, **flags)(pyfunc)
|
||
|
|
||
|
a = np.arange(20, dtype='i4')[::2]
|
||
|
self.assertFalse(a.flags['C_CONTIGUOUS'])
|
||
|
self.assertFalse(a.flags['F_CONTIGUOUS'])
|
||
|
for arg in args:
|
||
|
self.assertEqual(pyfunc(a, arg), cfunc(a, arg))
|
||
|
|
||
|
def test_1d_slicing5(self, flags=enable_pyobj_flags):
|
||
|
pyfunc = slicing_1d_usecase5
|
||
|
self.check_1d_slicing_with_arg(pyfunc, flags)
|
||
|
|
||
|
def test_1d_slicing5_npm(self):
|
||
|
self.test_1d_slicing5(flags=Noflags)
|
||
|
|
||
|
def test_1d_slicing6(self, flags=enable_pyobj_flags):
|
||
|
pyfunc = slicing_1d_usecase6
|
||
|
self.check_1d_slicing_with_arg(pyfunc, flags)
|
||
|
|
||
|
def test_1d_slicing6_npm(self):
|
||
|
self.test_1d_slicing6(flags=Noflags)
|
||
|
|
||
|
def test_1d_slicing7(self, flags=enable_pyobj_flags):
|
||
|
pyfunc = slicing_1d_usecase7
|
||
|
self.check_1d_slicing_with_arg(pyfunc, flags)
|
||
|
|
||
|
def test_1d_slicing7_npm(self):
|
||
|
self.test_1d_slicing7(flags=Noflags)
|
||
|
|
||
|
def test_1d_slicing8(self, flags=enable_pyobj_flags):
|
||
|
pyfunc = slicing_1d_usecase8
|
||
|
self.check_1d_slicing_with_arg(pyfunc, flags)
|
||
|
|
||
|
def test_1d_slicing8_npm(self):
|
||
|
self.test_1d_slicing8(flags=Noflags)
|
||
|
|
||
|
def test_2d_slicing(self, flags=enable_pyobj_flags):
|
||
|
"""
|
||
|
arr_2d[a:b:c]
|
||
|
"""
|
||
|
pyfunc = slicing_1d_usecase
|
||
|
arraytype = types.Array(types.int32, 2, 'C')
|
||
|
argtys = (arraytype, types.int32, types.int32, types.int32)
|
||
|
cfunc = jit(argtys, **flags)(pyfunc)
|
||
|
|
||
|
a = np.arange(100, dtype='i4').reshape(10, 10)
|
||
|
for args in [(0, 10, 1), (2, 3, 1), (10, 0, 1),
|
||
|
(0, 10, -1), (0, 10, 2)]:
|
||
|
self.assertPreciseEqual(pyfunc(a, *args), cfunc(a, *args),
|
||
|
msg="for args %s" % (args,))
|
||
|
|
||
|
def test_2d_slicing_npm(self):
|
||
|
self.test_2d_slicing(flags=Noflags)
|
||
|
|
||
|
def test_2d_slicing2(self, flags=enable_pyobj_flags):
|
||
|
"""
|
||
|
arr_2d[a:b:c, d:e:f]
|
||
|
"""
|
||
|
# C layout
|
||
|
pyfunc = slicing_2d_usecase
|
||
|
arraytype = types.Array(types.int32, 2, 'C')
|
||
|
argtys = (arraytype, types.int32, types.int32, types.int32,
|
||
|
types.int32, types.int32, types.int32)
|
||
|
cfunc = jit(argtys, **flags)(pyfunc)
|
||
|
|
||
|
a = np.arange(100, dtype='i4').reshape(10, 10)
|
||
|
|
||
|
indices = [(0, 10, 1),
|
||
|
(2, 3, 1),
|
||
|
(10, 0, 1),
|
||
|
(0, 10, -1),
|
||
|
(0, 10, 2),
|
||
|
(10, 0, -1),
|
||
|
(9, 0, -2),
|
||
|
(-5, -2, 1),
|
||
|
(0, -1, 1),
|
||
|
]
|
||
|
args = [tup1 + tup2
|
||
|
for (tup1, tup2) in itertools.product(indices, indices)]
|
||
|
for arg in args:
|
||
|
expected = pyfunc(a, *arg)
|
||
|
self.assertPreciseEqual(cfunc(a, *arg), expected)
|
||
|
|
||
|
# Any layout
|
||
|
arraytype = types.Array(types.int32, 2, 'A')
|
||
|
argtys = (arraytype, types.int32, types.int32, types.int32,
|
||
|
types.int32, types.int32, types.int32)
|
||
|
cfunc = jit(argtys, **flags)(pyfunc)
|
||
|
|
||
|
a = np.arange(400, dtype='i4').reshape(20, 20)[::2, ::2]
|
||
|
|
||
|
for arg in args:
|
||
|
expected = pyfunc(a, *arg)
|
||
|
self.assertPreciseEqual(cfunc(a, *arg), expected)
|
||
|
|
||
|
def test_2d_slicing2_npm(self):
|
||
|
self.test_2d_slicing2(flags=Noflags)
|
||
|
|
||
|
def test_2d_slicing3(self, flags=enable_pyobj_flags):
|
||
|
"""
|
||
|
arr_2d[a:b:c, d]
|
||
|
"""
|
||
|
# C layout
|
||
|
pyfunc = slicing_2d_usecase3
|
||
|
arraytype = types.Array(types.int32, 2, 'C')
|
||
|
argtys = (arraytype, types.int32, types.int32, types.int32,
|
||
|
types.int32)
|
||
|
cfunc = jit(argtys, **flags)(pyfunc)
|
||
|
|
||
|
a = np.arange(100, dtype='i4').reshape(10, 10)
|
||
|
|
||
|
args = [
|
||
|
(0, 10, 1, 0),
|
||
|
(2, 3, 1, 1),
|
||
|
(10, 0, -1, 8),
|
||
|
(9, 0, -2, 4),
|
||
|
(0, 10, 2, 3),
|
||
|
(0, -1, 3, 1),
|
||
|
]
|
||
|
for arg in args:
|
||
|
expected = pyfunc(a, *arg)
|
||
|
self.assertPreciseEqual(cfunc(a, *arg), expected)
|
||
|
|
||
|
# Any layout
|
||
|
arraytype = types.Array(types.int32, 2, 'A')
|
||
|
argtys = (arraytype, types.int32, types.int32, types.int32,
|
||
|
types.int32)
|
||
|
cfunc = jit(argtys, **flags)(pyfunc)
|
||
|
|
||
|
a = np.arange(400, dtype='i4').reshape(20, 20)[::2, ::2]
|
||
|
|
||
|
for arg in args:
|
||
|
expected = pyfunc(a, *arg)
|
||
|
self.assertPreciseEqual(cfunc(a, *arg), expected)
|
||
|
|
||
|
def test_2d_slicing3_npm(self):
|
||
|
self.test_2d_slicing3(flags=Noflags)
|
||
|
|
||
|
def test_3d_slicing(self, flags=enable_pyobj_flags):
|
||
|
# C layout
|
||
|
pyfunc = slicing_3d_usecase
|
||
|
arraytype = types.Array(types.int32, 3, 'C')
|
||
|
argtys = (arraytype, types.int32, types.int32, types.int32)
|
||
|
cfunc = jit(argtys, **flags)(pyfunc)
|
||
|
|
||
|
a = np.arange(1000, dtype='i4').reshape(10, 10, 10)
|
||
|
|
||
|
args = [
|
||
|
(0, 9, 1),
|
||
|
(2, 3, 1),
|
||
|
(9, 0, 1),
|
||
|
(0, 9, -1),
|
||
|
(0, 9, 2),
|
||
|
]
|
||
|
for arg in args:
|
||
|
self.assertEqual(pyfunc(a, *arg), cfunc(a, *arg))
|
||
|
|
||
|
# Any layout
|
||
|
arraytype = types.Array(types.int32, 3, 'A')
|
||
|
argtys = (arraytype, types.int32, types.int32, types.int32)
|
||
|
cfunc = jit(argtys, **flags)(pyfunc)
|
||
|
|
||
|
a = np.arange(2000, dtype='i4')[::2].reshape(10, 10, 10)
|
||
|
|
||
|
for arg in args:
|
||
|
self.assertEqual(pyfunc(a, *arg), cfunc(a, *arg))
|
||
|
|
||
|
def test_3d_slicing_npm(self):
|
||
|
self.test_3d_slicing(flags=Noflags)
|
||
|
|
||
|
def test_3d_slicing2(self, flags=enable_pyobj_flags):
|
||
|
# C layout
|
||
|
pyfunc = slicing_3d_usecase2
|
||
|
arraytype = types.Array(types.int32, 3, 'C')
|
||
|
argtys = (arraytype, types.int32, types.int32, types.int32)
|
||
|
cfunc = jit(argtys, **flags)(pyfunc)
|
||
|
|
||
|
a = np.arange(1000, dtype='i4').reshape(10, 10, 10)
|
||
|
|
||
|
args = [
|
||
|
(0, 9, 1),
|
||
|
(2, 3, 1),
|
||
|
(9, 0, 1),
|
||
|
(0, 9, -1),
|
||
|
(0, 9, 2),
|
||
|
]
|
||
|
for arg in args:
|
||
|
self.assertEqual(pyfunc(a, *arg), cfunc(a, *arg))
|
||
|
|
||
|
# Any layout
|
||
|
arraytype = types.Array(types.int32, 3, 'A')
|
||
|
argtys = (arraytype, types.int32, types.int32, types.int32)
|
||
|
cfunc = jit(argtys, **flags)(pyfunc)
|
||
|
|
||
|
a = np.arange(2000, dtype='i4')[::2].reshape(10, 10, 10)
|
||
|
|
||
|
for arg in args:
|
||
|
self.assertEqual(pyfunc(a, *arg), cfunc(a, *arg))
|
||
|
|
||
|
def test_3d_slicing2_npm(self):
|
||
|
self.test_3d_slicing2(flags=Noflags)
|
||
|
|
||
|
def test_1d_integer_indexing(self, flags=enable_pyobj_flags):
|
||
|
# C layout
|
||
|
pyfunc = integer_indexing_1d_usecase
|
||
|
arraytype = types.Array(types.int32, 1, 'C')
|
||
|
argtys = (arraytype, types.int32)
|
||
|
cfunc = jit(argtys, **flags)(pyfunc)
|
||
|
|
||
|
a = np.arange(10, dtype='i4')
|
||
|
self.assertEqual(pyfunc(a, 0), cfunc(a, 0))
|
||
|
self.assertEqual(pyfunc(a, 9), cfunc(a, 9))
|
||
|
self.assertEqual(pyfunc(a, -1), cfunc(a, -1))
|
||
|
|
||
|
# Any layout
|
||
|
arraytype = types.Array(types.int32, 1, 'A')
|
||
|
argtys = (arraytype, types.int32)
|
||
|
cfunc = jit(argtys, **flags)(pyfunc)
|
||
|
|
||
|
a = np.arange(10, dtype='i4')[::2]
|
||
|
self.assertFalse(a.flags['C_CONTIGUOUS'])
|
||
|
self.assertFalse(a.flags['F_CONTIGUOUS'])
|
||
|
self.assertEqual(pyfunc(a, 0), cfunc(a, 0))
|
||
|
self.assertEqual(pyfunc(a, 2), cfunc(a, 2))
|
||
|
self.assertEqual(pyfunc(a, -1), cfunc(a, -1))
|
||
|
|
||
|
# Using a 0-d array as integer index
|
||
|
arraytype = types.Array(types.int32, 1, 'C')
|
||
|
indextype = types.Array(types.int16, 0, 'C')
|
||
|
argtys = (arraytype, indextype)
|
||
|
cfunc = jit(argtys, **flags)(pyfunc)
|
||
|
|
||
|
a = np.arange(3, 13, dtype=np.int32)
|
||
|
for i in (0, 9, -2):
|
||
|
idx = np.array(i).astype(np.int16)
|
||
|
assert idx.ndim == 0
|
||
|
self.assertEqual(pyfunc(a, idx), cfunc(a, idx))
|
||
|
|
||
|
def test_1d_integer_indexing_npm(self):
|
||
|
self.test_1d_integer_indexing(flags=Noflags)
|
||
|
|
||
|
def test_integer_indexing_1d_for_2d(self, flags=enable_pyobj_flags):
|
||
|
# Test partial (1d) indexing of a 2d array
|
||
|
pyfunc = integer_indexing_1d_usecase
|
||
|
arraytype = types.Array(types.int32, 2, 'C')
|
||
|
argtys = (arraytype, types.int32)
|
||
|
cfunc = jit(argtys, **flags)(pyfunc)
|
||
|
|
||
|
a = np.arange(100, dtype='i4').reshape(10, 10)
|
||
|
self.assertPreciseEqual(pyfunc(a, 0), cfunc(a, 0))
|
||
|
self.assertPreciseEqual(pyfunc(a, 9), cfunc(a, 9))
|
||
|
self.assertPreciseEqual(pyfunc(a, -1), cfunc(a, -1))
|
||
|
|
||
|
arraytype = types.Array(types.int32, 2, 'A')
|
||
|
argtys = (arraytype, types.int32)
|
||
|
cfunc = jit(argtys, **flags)(pyfunc)
|
||
|
|
||
|
a = np.arange(20, dtype='i4').reshape(5, 4)[::2]
|
||
|
self.assertPreciseEqual(pyfunc(a, 0), cfunc(a, 0))
|
||
|
|
||
|
def test_integer_indexing_1d_for_2d_npm(self):
|
||
|
self.test_integer_indexing_1d_for_2d(flags=Noflags)
|
||
|
|
||
|
def test_2d_integer_indexing(self, flags=enable_pyobj_flags,
|
||
|
pyfunc=integer_indexing_2d_usecase):
|
||
|
# C layout
|
||
|
a = np.arange(100, dtype='i4').reshape(10, 10)
|
||
|
arraytype = types.Array(types.int32, 2, 'C')
|
||
|
argtys = (arraytype, types.int32, types.int32)
|
||
|
cfunc = jit(argtys, **flags)(pyfunc)
|
||
|
|
||
|
self.assertEqual(pyfunc(a, 0, 3), cfunc(a, 0, 3))
|
||
|
self.assertEqual(pyfunc(a, 9, 9), cfunc(a, 9, 9))
|
||
|
self.assertEqual(pyfunc(a, -2, -1), cfunc(a, -2, -1))
|
||
|
|
||
|
# Any layout
|
||
|
a = np.arange(100, dtype='i4').reshape(10, 10)[::2, ::2]
|
||
|
self.assertFalse(a.flags['C_CONTIGUOUS'])
|
||
|
self.assertFalse(a.flags['F_CONTIGUOUS'])
|
||
|
|
||
|
arraytype = types.Array(types.int32, 2, 'A')
|
||
|
argtys = (arraytype, types.int32, types.int32)
|
||
|
cfunc = jit(argtys, **flags)(pyfunc)
|
||
|
|
||
|
self.assertEqual(pyfunc(a, 0, 1), cfunc(a, 0, 1))
|
||
|
self.assertEqual(pyfunc(a, 2, 2), cfunc(a, 2, 2))
|
||
|
self.assertEqual(pyfunc(a, -2, -1), cfunc(a, -2, -1))
|
||
|
|
||
|
# With 0-d arrays as integer indices
|
||
|
a = np.arange(100, dtype='i4').reshape(10, 10)
|
||
|
arraytype = types.Array(types.int32, 2, 'C')
|
||
|
indextype = types.Array(types.int32, 0, 'C')
|
||
|
argtys = (arraytype, indextype, indextype)
|
||
|
cfunc = jit(argtys, **flags)(pyfunc)
|
||
|
|
||
|
for i, j in [(0, 3), (8, 9), (-2, -1)]:
|
||
|
i = np.array(i).astype(np.int32)
|
||
|
j = np.array(j).astype(np.int32)
|
||
|
self.assertEqual(pyfunc(a, i, j), cfunc(a, i, j))
|
||
|
|
||
|
def test_2d_integer_indexing_npm(self):
|
||
|
self.test_2d_integer_indexing(flags=Noflags)
|
||
|
|
||
|
def test_2d_integer_indexing2(self):
|
||
|
self.test_2d_integer_indexing(pyfunc=integer_indexing_2d_usecase2)
|
||
|
self.test_2d_integer_indexing(flags=Noflags,
|
||
|
pyfunc=integer_indexing_2d_usecase2)
|
||
|
|
||
|
def test_2d_integer_indexing_via_call(self):
|
||
|
@njit
|
||
|
def index1(X, i0):
|
||
|
return X[i0]
|
||
|
@njit
|
||
|
def index2(X, i0, i1):
|
||
|
return index1(X[i0], i1)
|
||
|
a = np.arange(10).reshape(2, 5)
|
||
|
self.assertEqual(index2(a, 0, 0), a[0][0])
|
||
|
self.assertEqual(index2(a, 1, 1), a[1][1])
|
||
|
self.assertEqual(index2(a, -1, -1), a[-1][-1])
|
||
|
|
||
|
def test_2d_float_indexing(self, flags=enable_pyobj_flags):
|
||
|
a = np.arange(100, dtype='i4').reshape(10, 10)
|
||
|
pyfunc = integer_indexing_2d_usecase
|
||
|
arraytype = types.Array(types.int32, 2, 'C')
|
||
|
argtys = (arraytype, types.float32, types.int32)
|
||
|
cfunc = jit(argtys, **flags)(pyfunc)
|
||
|
|
||
|
self.assertEqual(pyfunc(a, 0, 0), cfunc(a, 0, 0))
|
||
|
self.assertEqual(pyfunc(a, 9, 9), cfunc(a, 9, 9))
|
||
|
self.assertEqual(pyfunc(a, -1, -1), cfunc(a, -1, -1))
|
||
|
|
||
|
def test_partial_1d_indexing(self, flags=enable_pyobj_flags):
|
||
|
pyfunc = partial_1d_usecase
|
||
|
|
||
|
def check(arr, arraytype):
|
||
|
argtys = (arraytype, types.int32)
|
||
|
cfunc = jit(argtys, **flags)(pyfunc)
|
||
|
self.assertEqual(pyfunc(arr, 0), cfunc(arr, 0))
|
||
|
n = arr.shape[0] - 1
|
||
|
self.assertEqual(pyfunc(arr, n), cfunc(arr, n))
|
||
|
self.assertEqual(pyfunc(arr, -1), cfunc(arr, -1))
|
||
|
|
||
|
a = np.arange(12, dtype='i4').reshape((4, 3))
|
||
|
arraytype = types.Array(types.int32, 2, 'C')
|
||
|
check(a, arraytype)
|
||
|
|
||
|
a = np.arange(12, dtype='i4').reshape((3, 4)).T
|
||
|
arraytype = types.Array(types.int32, 2, 'F')
|
||
|
check(a, arraytype)
|
||
|
|
||
|
a = np.arange(12, dtype='i4').reshape((3, 4))[::2]
|
||
|
arraytype = types.Array(types.int32, 2, 'A')
|
||
|
check(a, arraytype)
|
||
|
|
||
|
def check_ellipsis(self, pyfunc, flags):
|
||
|
def compile_func(arr):
|
||
|
argtys = (typeof(arr), types.intp, types.intp)
|
||
|
return jit(argtys, **flags)(pyfunc)
|
||
|
|
||
|
def run(a):
|
||
|
bounds = (0, 1, 2, -1, -2)
|
||
|
cfunc = compile_func(a)
|
||
|
for i, j in itertools.product(bounds, bounds):
|
||
|
x = cfunc(a, i, j)
|
||
|
np.testing.assert_equal(pyfunc(a, i, j), cfunc(a, i, j))
|
||
|
|
||
|
run(np.arange(16, dtype='i4').reshape(4, 4))
|
||
|
run(np.arange(27, dtype='i4').reshape(3, 3, 3))
|
||
|
|
||
|
def test_ellipsis1(self, flags=enable_pyobj_flags):
|
||
|
self.check_ellipsis(ellipsis_usecase1, flags)
|
||
|
|
||
|
def test_ellipsis1_npm(self):
|
||
|
self.test_ellipsis1(flags=Noflags)
|
||
|
|
||
|
def test_ellipsis2(self, flags=enable_pyobj_flags):
|
||
|
self.check_ellipsis(ellipsis_usecase2, flags)
|
||
|
|
||
|
def test_ellipsis2_npm(self):
|
||
|
self.test_ellipsis2(flags=Noflags)
|
||
|
|
||
|
def test_ellipsis3(self, flags=enable_pyobj_flags):
|
||
|
self.check_ellipsis(ellipsis_usecase3, flags)
|
||
|
|
||
|
def test_ellipsis3_npm(self):
|
||
|
self.test_ellipsis3(flags=Noflags)
|
||
|
|
||
|
def test_ellipsis_issue1498(self):
|
||
|
# This is an issue due to incorrect layout inferred for when
|
||
|
# ellpsis is used and ndenumerate is specializing on the layout.
|
||
|
@njit
|
||
|
def udt(arr):
|
||
|
out = np.zeros_like(arr)
|
||
|
i = 0
|
||
|
for index, val in np.ndenumerate(arr[..., i]):
|
||
|
out[index][i] = val
|
||
|
|
||
|
return out
|
||
|
|
||
|
py_func = udt.py_func
|
||
|
|
||
|
outersize = 4
|
||
|
innersize = 4
|
||
|
arr = np.arange(outersize * innersize).reshape(outersize, innersize)
|
||
|
got = udt(arr)
|
||
|
expected = py_func(arr)
|
||
|
np.testing.assert_equal(got, expected)
|
||
|
|
||
|
def test_ellipsis_issue1499(self):
|
||
|
# This tests an issue when ndarray.__getitem__ recv a tuple of
|
||
|
# constants. The lowering is mishandling the constant value creation.
|
||
|
@njit
|
||
|
def udt(arr):
|
||
|
return arr[..., 0]
|
||
|
|
||
|
arr = np.arange(3)
|
||
|
got = udt(arr)
|
||
|
expected = udt.py_func(arr)
|
||
|
np.testing.assert_equal(got, expected)
|
||
|
|
||
|
def test_none_index(self, flags=enable_pyobj_flags):
|
||
|
pyfunc = none_index_usecase
|
||
|
arraytype = types.Array(types.int32, 2, 'C')
|
||
|
# TODO should be enable to handle this in NoPython mode
|
||
|
argtys = (arraytype,)
|
||
|
cfunc = jit(argtys, **flags)(pyfunc)
|
||
|
|
||
|
a = np.arange(100, dtype='i4').reshape(10, 10)
|
||
|
self.assertPreciseEqual(pyfunc(a), cfunc(a))
|
||
|
|
||
|
def test_none_index_npm(self):
|
||
|
with self.assertTypingError():
|
||
|
self.test_none_index(flags=Noflags)
|
||
|
|
||
|
def test_empty_tuple_indexing(self, flags=enable_pyobj_flags):
|
||
|
pyfunc = empty_tuple_usecase
|
||
|
arraytype = types.Array(types.int32, 0, 'C')
|
||
|
argtys = (arraytype,)
|
||
|
cfunc = jit(argtys, **flags)(pyfunc)
|
||
|
|
||
|
a = np.arange(1, dtype='i4').reshape(())
|
||
|
self.assertPreciseEqual(pyfunc(a), cfunc(a))
|
||
|
|
||
|
def test_empty_tuple_indexing_npm(self):
|
||
|
self.test_empty_tuple_indexing(flags=Noflags)
|
||
|
|
||
|
|
||
|
class TestSetItem(TestCase):
|
||
|
"""
|
||
|
Test basic indexed store into an array.
|
||
|
Note fancy indexing is tested in test_fancy_indexing.
|
||
|
"""
|
||
|
|
||
|
def test_conversion_setitem(self, flags=enable_pyobj_flags):
|
||
|
""" this used to work, and was used in one of the tutorials """
|
||
|
from numba import jit
|
||
|
|
||
|
def pyfunc(array):
|
||
|
for index in range(len(array)):
|
||
|
array[index] = index % decimal.Decimal(100)
|
||
|
|
||
|
cfunc = jit("void(i8[:])", **flags)(pyfunc)
|
||
|
|
||
|
udt = np.arange(100, dtype='i1')
|
||
|
control = udt.copy()
|
||
|
pyfunc(control)
|
||
|
cfunc(udt)
|
||
|
self.assertPreciseEqual(udt, control)
|
||
|
|
||
|
def test_1d_slicing_set(self, flags=enable_pyobj_flags):
|
||
|
"""
|
||
|
1d to 1d slice assignment
|
||
|
"""
|
||
|
pyfunc = slicing_1d_usecase_set
|
||
|
# Note heterogeneous types for the source and destination arrays
|
||
|
# (int16[:] -> int32[:])
|
||
|
dest_type = types.Array(types.int32, 1, 'C')
|
||
|
src_type = types.Array(types.int16, 1, 'A')
|
||
|
argtys = (dest_type, src_type, types.int32, types.int32, types.int32)
|
||
|
cfunc = jit(argtys, **flags)(pyfunc)
|
||
|
|
||
|
N = 10
|
||
|
arg = np.arange(N, dtype='i2') + 40
|
||
|
bounds = [0, 2, N - 2, N, N + 1, N + 3,
|
||
|
-2, -N + 2, -N, -N - 1, -N - 3]
|
||
|
def make_dest():
|
||
|
return np.zeros_like(arg, dtype='i4')
|
||
|
for start, stop in itertools.product(bounds, bounds):
|
||
|
for step in (1, 2, -1, -2):
|
||
|
args = start, stop, step
|
||
|
index = slice(*args)
|
||
|
pyleft = pyfunc(make_dest(), arg[index], *args)
|
||
|
cleft = cfunc(make_dest(), arg[index], *args)
|
||
|
self.assertPreciseEqual(pyleft, cleft)
|
||
|
|
||
|
# Mismatching input size and slice length
|
||
|
with self.assertRaises(ValueError):
|
||
|
cfunc(np.zeros_like(arg, dtype=np.int32), arg, 0, 0, 1)
|
||
|
|
||
|
def check_1d_slicing_set_sequence(self, flags, seqty, seq):
|
||
|
"""
|
||
|
Generic sequence to 1d slice assignment
|
||
|
"""
|
||
|
pyfunc = slicing_1d_usecase_set
|
||
|
dest_type = types.Array(types.int32, 1, 'C')
|
||
|
argtys = (dest_type, seqty, types.int32, types.int32, types.int32)
|
||
|
# This emulates the use of `compile_result`. The args that are passed
|
||
|
# into this checking function are not as advertised in argtys and
|
||
|
# implicit casting is required.
|
||
|
cfunc = jit(argtys, **flags)(pyfunc).overloads[argtys].entry_point
|
||
|
|
||
|
N = 10
|
||
|
k = len(seq)
|
||
|
arg = np.arange(N, dtype=np.int32)
|
||
|
args = (seq, 1, -N + k + 1, 1)
|
||
|
expected = pyfunc(arg.copy(), *args)
|
||
|
got = cfunc(arg.copy(), *args)
|
||
|
self.assertPreciseEqual(expected, got)
|
||
|
|
||
|
args = (seq, 1, -N + k, 1)
|
||
|
with self.assertRaises(ValueError) as raises:
|
||
|
cfunc(arg.copy(), *args)
|
||
|
|
||
|
def test_1d_slicing_set_tuple(self, flags=enable_pyobj_flags):
|
||
|
"""
|
||
|
Tuple to 1d slice assignment
|
||
|
"""
|
||
|
self.check_1d_slicing_set_sequence(
|
||
|
flags, types.UniTuple(types.int16, 2), (8, -42))
|
||
|
|
||
|
def test_1d_slicing_set_list(self, flags=enable_pyobj_flags):
|
||
|
"""
|
||
|
List to 1d slice assignment
|
||
|
"""
|
||
|
self.check_1d_slicing_set_sequence(
|
||
|
flags, types.List(types.int16), [8, -42])
|
||
|
|
||
|
def test_1d_slicing_broadcast(self, flags=enable_pyobj_flags):
|
||
|
"""
|
||
|
scalar to 1d slice assignment
|
||
|
"""
|
||
|
pyfunc = slicing_1d_usecase_set
|
||
|
arraytype = types.Array(types.int32, 1, 'C')
|
||
|
# Note heterogeneous types for the source scalar and the destination
|
||
|
# array (int16 -> int32[:])
|
||
|
argtys = (arraytype, types.int16, types.int32, types.int32, types.int32)
|
||
|
cfunc = jit(argtys, **flags)(pyfunc)
|
||
|
|
||
|
N = 10
|
||
|
arg = np.arange(N, dtype='i4')
|
||
|
val = 42
|
||
|
bounds = [0, 2, N - 2, N, N + 1, N + 3,
|
||
|
-2, -N + 2, -N, -N - 1, -N - 3]
|
||
|
for start, stop in itertools.product(bounds, bounds):
|
||
|
for step in (1, 2, -1, -2):
|
||
|
args = val, start, stop, step
|
||
|
pyleft = pyfunc(arg.copy(), *args)
|
||
|
cleft = cfunc(arg.copy(), *args)
|
||
|
self.assertPreciseEqual(pyleft, cleft)
|
||
|
|
||
|
def test_1d_slicing_add(self, flags=enable_pyobj_flags):
|
||
|
pyfunc = slicing_1d_usecase_add
|
||
|
arraytype = types.Array(types.int32, 1, 'C')
|
||
|
argtys = (arraytype, arraytype, types.int32, types.int32)
|
||
|
cfunc = jit(argtys, **flags)(pyfunc)
|
||
|
|
||
|
arg = np.arange(10, dtype='i4')
|
||
|
for test in ((0, 10), (2, 5)):
|
||
|
pyleft = pyfunc(np.zeros_like(arg), arg[slice(*test)], *test)
|
||
|
cleft = cfunc(np.zeros_like(arg), arg[slice(*test)], *test)
|
||
|
self.assertPreciseEqual(pyleft, cleft)
|
||
|
|
||
|
def test_1d_slicing_set_npm(self):
|
||
|
self.test_1d_slicing_set(flags=Noflags)
|
||
|
|
||
|
def test_1d_slicing_set_list_npm(self):
|
||
|
self.test_1d_slicing_set_list(flags=Noflags)
|
||
|
|
||
|
def test_1d_slicing_set_tuple_npm(self):
|
||
|
self.test_1d_slicing_set_tuple(flags=Noflags)
|
||
|
|
||
|
def test_1d_slicing_broadcast_npm(self):
|
||
|
self.test_1d_slicing_broadcast(flags=Noflags)
|
||
|
|
||
|
def test_1d_slicing_add_npm(self):
|
||
|
self.test_1d_slicing_add(flags=Noflags)
|
||
|
|
||
|
def test_2d_slicing_set(self, flags=enable_pyobj_flags):
|
||
|
"""
|
||
|
2d to 2d slice assignment
|
||
|
"""
|
||
|
pyfunc = slicing_2d_usecase_set
|
||
|
arraytype = types.Array(types.int32, 2, 'A')
|
||
|
argtys = (arraytype, arraytype, types.int32, types.int32, types.int32,
|
||
|
types.int32, types.int32, types.int32)
|
||
|
cfunc = jit(argtys, **flags)(pyfunc)
|
||
|
|
||
|
arg = np.arange(10*10, dtype='i4').reshape(10,10)
|
||
|
tests = [
|
||
|
(0, 10, 1, 0, 10, 1),
|
||
|
(2, 3, 1, 2, 3, 1),
|
||
|
(10, 0, 1, 10, 0, 1),
|
||
|
(0, 10, -1, 0, 10, -1),
|
||
|
(0, 10, 2, 0, 10, 2),
|
||
|
]
|
||
|
for test in tests:
|
||
|
pyleft = pyfunc(np.zeros_like(arg), arg[slice(*test[0:3]), slice(*test[3:6])], *test)
|
||
|
cleft = cfunc(np.zeros_like(arg), arg[slice(*test[0:3]), slice(*test[3:6])], *test)
|
||
|
self.assertPreciseEqual(cleft, pyleft)
|
||
|
|
||
|
def test_2d_slicing_broadcast(self, flags=enable_pyobj_flags):
|
||
|
"""
|
||
|
scalar to 2d slice assignment
|
||
|
"""
|
||
|
pyfunc = slicing_2d_usecase_set
|
||
|
arraytype = types.Array(types.int32, 2, 'C')
|
||
|
# Note heterogeneous types for the source scalar and the destination
|
||
|
# array (int16 -> int32[:])
|
||
|
argtys = (arraytype, types.int16, types.int32, types.int32, types.int32,
|
||
|
types.int32, types.int32, types.int32)
|
||
|
cfunc = jit(argtys, **flags)(pyfunc)
|
||
|
|
||
|
arg = np.arange(10*10, dtype='i4').reshape(10,10)
|
||
|
val = 42
|
||
|
tests = [
|
||
|
(0, 10, 1, 0, 10, 1),
|
||
|
(2, 3, 1, 2, 3, 1),
|
||
|
(10, 0, 1, 10, 0, 1),
|
||
|
(0, 10, -1, 0, 10, -1),
|
||
|
(0, 10, 2, 0, 10, 2),
|
||
|
]
|
||
|
for test in tests:
|
||
|
pyleft = pyfunc(arg.copy(), val, *test)
|
||
|
cleft = cfunc(arg.copy(), val, *test)
|
||
|
self.assertPreciseEqual(cleft, pyleft)
|
||
|
|
||
|
def test_2d_slicing_set_npm(self):
|
||
|
self.test_2d_slicing_set(flags=Noflags)
|
||
|
|
||
|
def test_2d_slicing_broadcast_npm(self):
|
||
|
self.test_2d_slicing_broadcast(flags=Noflags)
|
||
|
|
||
|
def test_setitem(self):
|
||
|
"""
|
||
|
scalar indexed assignment
|
||
|
"""
|
||
|
arr = np.arange(5)
|
||
|
setitem_usecase(arr, 1, 42)
|
||
|
self.assertEqual(arr.tolist(), [0, 42, 2, 3, 4])
|
||
|
# Using a 0-d array as scalar index
|
||
|
setitem_usecase(arr, np.array(3).astype(np.uint16), 8)
|
||
|
self.assertEqual(arr.tolist(), [0, 42, 2, 8, 4])
|
||
|
# Scalar Broadcasting
|
||
|
arr = np.arange(9).reshape(3, 3)
|
||
|
setitem_usecase(arr, 1, 42)
|
||
|
self.assertEqual(arr.tolist(), [[0, 1, 2], [42, 42, 42], [6, 7, 8]])
|
||
|
|
||
|
def test_setitem_broadcast(self):
|
||
|
"""
|
||
|
broadcasted array assignment
|
||
|
"""
|
||
|
# Scalar Broadcasting
|
||
|
dst = np.arange(5)
|
||
|
setitem_broadcast_usecase(dst, 42)
|
||
|
self.assertEqual(dst.tolist(), [42] * 5)
|
||
|
# 1D -> 2D Array Broadcasting
|
||
|
dst = np.arange(6).reshape(2, 3)
|
||
|
setitem_broadcast_usecase(dst, np.arange(1, 4))
|
||
|
self.assertEqual(dst.tolist(), [[1, 2, 3], [1, 2, 3]])
|
||
|
# 2D -> 2D Array Broadcasting
|
||
|
dst = np.arange(6).reshape(2, 3)
|
||
|
setitem_broadcast_usecase(dst, np.arange(1, 4).reshape(1, 3))
|
||
|
self.assertEqual(dst.tolist(), [[1, 2, 3], [1, 2, 3]])
|
||
|
# 2D -> 4D Array Broadcasting
|
||
|
dst = np.arange(12).reshape(2, 1, 2, 3)
|
||
|
setitem_broadcast_usecase(dst, np.arange(1, 4).reshape(1, 3))
|
||
|
inner2 = [[1, 2, 3], [1, 2, 3]]
|
||
|
self.assertEqual(dst.tolist(), [[inner2]] * 2)
|
||
|
# 2D -> 1D Array Broadcasting
|
||
|
dst = np.arange(5)
|
||
|
setitem_broadcast_usecase(dst, np.arange(1, 6).reshape(1, 5))
|
||
|
self.assertEqual(dst.tolist(), [1, 2, 3, 4, 5])
|
||
|
# 4D -> 2D Array Broadcasting
|
||
|
dst = np.arange(6).reshape(2, 3)
|
||
|
setitem_broadcast_usecase(dst, np.arange(1, 1 + dst.size).reshape(1, 1, 2, 3))
|
||
|
self.assertEqual(dst.tolist(), [[1, 2, 3], [4, 5, 6]])
|
||
|
|
||
|
def test_setitem_broadcast_error(self):
|
||
|
# higher dim assigned into lower dim
|
||
|
# 2D -> 1D
|
||
|
dst = np.arange(5)
|
||
|
src = np.arange(10).reshape(2, 5)
|
||
|
with self.assertRaises(ValueError) as raises:
|
||
|
setitem_broadcast_usecase(dst, src)
|
||
|
errmsg = str(raises.exception)
|
||
|
self.assertEqual('cannot broadcast source array for assignment',
|
||
|
errmsg)
|
||
|
# 3D -> 2D
|
||
|
dst = np.arange(5).reshape(1, 5)
|
||
|
src = np.arange(10).reshape(1, 2, 5)
|
||
|
with self.assertRaises(ValueError) as raises:
|
||
|
setitem_broadcast_usecase(dst, src)
|
||
|
errmsg = str(raises.exception)
|
||
|
self.assertEqual('cannot assign slice from input of different size',
|
||
|
errmsg)
|
||
|
# lower to higher
|
||
|
# 1D -> 2D
|
||
|
dst = np.arange(10).reshape(2, 5)
|
||
|
src = np.arange(4)
|
||
|
with self.assertRaises(ValueError) as raises:
|
||
|
setitem_broadcast_usecase(dst, src)
|
||
|
errmsg = str(raises.exception)
|
||
|
self.assertEqual('cannot assign slice from input of different size',
|
||
|
errmsg)
|
||
|
|
||
|
def test_slicing_1d_broadcast(self):
|
||
|
# 1D -> 2D sliced (1)
|
||
|
dst = np.arange(6).reshape(3, 2)
|
||
|
src = np.arange(1, 3)
|
||
|
slicing_1d_usecase_set(dst, src, 0, 2, 1)
|
||
|
self.assertEqual(dst.tolist(), [[1, 2], [1, 2], [4, 5]])
|
||
|
# 1D -> 2D sliced (2)
|
||
|
dst = np.arange(6).reshape(3, 2)
|
||
|
src = np.arange(1, 3)
|
||
|
slicing_1d_usecase_set(dst, src, 0, None, 2)
|
||
|
self.assertEqual(dst.tolist(), [[1, 2], [2, 3], [1, 2]])
|
||
|
# 2D -> 2D sliced (3)
|
||
|
dst = np.arange(6).reshape(3, 2)
|
||
|
src = np.arange(1, 5).reshape(2, 2)
|
||
|
slicing_1d_usecase_set(dst, src, None, 2, 1)
|
||
|
self.assertEqual(dst.tolist(), [[1, 2], [3, 4], [4, 5]])
|
||
|
|
||
|
def test_setitem_readonly(self):
|
||
|
arr = np.arange(5)
|
||
|
arr.flags.writeable = False
|
||
|
with self.assertRaises((TypeError, errors.TypingError)) as raises:
|
||
|
setitem_usecase(arr, 1, 42)
|
||
|
self.assertIn("Cannot modify readonly array of type:",
|
||
|
str(raises.exception))
|
||
|
|
||
|
|
||
|
class TestTyping(TestCase):
|
||
|
"""
|
||
|
Check typing of basic indexing operations
|
||
|
"""
|
||
|
|
||
|
def test_layout(self):
|
||
|
"""
|
||
|
Check an appropriate layout is inferred for the result of array
|
||
|
indexing.
|
||
|
"""
|
||
|
|
||
|
func = arraydecl.get_array_index_type
|
||
|
|
||
|
cty = types.Array(types.float64, 3, 'C')
|
||
|
fty = types.Array(types.float64, 3, 'F')
|
||
|
aty = types.Array(types.float64, 3, 'A')
|
||
|
|
||
|
indices = [
|
||
|
# Tuples of (indexing arguments, keeps "C" layout, keeps "F" layout)
|
||
|
((), True, True),
|
||
|
((ellipsis,), True, True),
|
||
|
|
||
|
# Indexing from the left => can sometimes keep "C" layout
|
||
|
((intp,), True, False),
|
||
|
((slice2_type,), True, False),
|
||
|
((intp, slice2_type), True, False),
|
||
|
((slice2_type, intp), False, False),
|
||
|
((slice2_type, slice2_type), False, False),
|
||
|
# Strided slices = > "A" layout
|
||
|
((intp, slice3_type), False, False),
|
||
|
((slice3_type,), False, False),
|
||
|
|
||
|
# Indexing from the right => can sometimes keep "F" layout
|
||
|
((ellipsis, intp,), False, True),
|
||
|
((ellipsis, slice2_type,), False, True),
|
||
|
((ellipsis, intp, slice2_type,), False, False),
|
||
|
((ellipsis, slice2_type, intp,), False, True),
|
||
|
((ellipsis, slice2_type, slice2_type,), False, False),
|
||
|
# Strided slices = > "A" layout
|
||
|
((ellipsis, slice3_type,), False, False),
|
||
|
((ellipsis, slice3_type, intp,), False, False),
|
||
|
|
||
|
# Indexing from both sides => only if all dimensions are indexed
|
||
|
((intp, ellipsis, intp,), False, False),
|
||
|
((slice2_type, ellipsis, slice2_type,), False, False),
|
||
|
((intp, intp, slice2_type,), True, False),
|
||
|
((intp, ellipsis, intp, slice2_type,), True, False),
|
||
|
((slice2_type, intp, intp,), False, True),
|
||
|
((slice2_type, intp, ellipsis, intp,), False, True),
|
||
|
((intp, slice2_type, intp,), False, False),
|
||
|
# Strided slices = > "A" layout
|
||
|
((slice3_type, intp, intp,), False, False),
|
||
|
((intp, intp, slice3_type,), False, False),
|
||
|
]
|
||
|
|
||
|
for index_tuple, keep_c, _ in indices:
|
||
|
index = types.Tuple(index_tuple)
|
||
|
r = func(cty, index)
|
||
|
self.assertEqual(tuple(r.index), index_tuple)
|
||
|
self.assertEqual(r.result.layout, 'C' if keep_c else 'A',
|
||
|
index_tuple)
|
||
|
self.assertFalse(r.advanced)
|
||
|
|
||
|
for index_tuple, _, keep_f in indices:
|
||
|
index = types.Tuple(index_tuple)
|
||
|
r = func(fty, index)
|
||
|
self.assertEqual(tuple(r.index), index_tuple)
|
||
|
self.assertEqual(r.result.layout, 'F' if keep_f else 'A',
|
||
|
index_tuple)
|
||
|
self.assertFalse(r.advanced)
|
||
|
|
||
|
for index_tuple, _, _ in indices:
|
||
|
index = types.Tuple(index_tuple)
|
||
|
r = func(aty, index)
|
||
|
self.assertEqual(tuple(r.index), index_tuple)
|
||
|
self.assertEqual(r.result.layout, 'A')
|
||
|
self.assertFalse(r.advanced)
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
unittest.main()
|