1444 lines
51 KiB
Python
1444 lines
51 KiB
Python
|
"""
|
||
|
Implementation of optimized einsum.
|
||
|
|
||
|
"""
|
||
|
import itertools
|
||
|
import operator
|
||
|
|
||
|
from numpy.core.multiarray import c_einsum
|
||
|
from numpy.core.numeric import asanyarray, tensordot
|
||
|
from numpy.core.overrides import array_function_dispatch
|
||
|
|
||
|
__all__ = ['einsum', 'einsum_path']
|
||
|
|
||
|
einsum_symbols = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'
|
||
|
einsum_symbols_set = set(einsum_symbols)
|
||
|
|
||
|
|
||
|
def _flop_count(idx_contraction, inner, num_terms, size_dictionary):
|
||
|
"""
|
||
|
Computes the number of FLOPS in the contraction.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
idx_contraction : iterable
|
||
|
The indices involved in the contraction
|
||
|
inner : bool
|
||
|
Does this contraction require an inner product?
|
||
|
num_terms : int
|
||
|
The number of terms in a contraction
|
||
|
size_dictionary : dict
|
||
|
The size of each of the indices in idx_contraction
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
flop_count : int
|
||
|
The total number of FLOPS required for the contraction.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
|
||
|
>>> _flop_count('abc', False, 1, {'a': 2, 'b':3, 'c':5})
|
||
|
30
|
||
|
|
||
|
>>> _flop_count('abc', True, 2, {'a': 2, 'b':3, 'c':5})
|
||
|
60
|
||
|
|
||
|
"""
|
||
|
|
||
|
overall_size = _compute_size_by_dict(idx_contraction, size_dictionary)
|
||
|
op_factor = max(1, num_terms - 1)
|
||
|
if inner:
|
||
|
op_factor += 1
|
||
|
|
||
|
return overall_size * op_factor
|
||
|
|
||
|
def _compute_size_by_dict(indices, idx_dict):
|
||
|
"""
|
||
|
Computes the product of the elements in indices based on the dictionary
|
||
|
idx_dict.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
indices : iterable
|
||
|
Indices to base the product on.
|
||
|
idx_dict : dictionary
|
||
|
Dictionary of index sizes
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ret : int
|
||
|
The resulting product.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> _compute_size_by_dict('abbc', {'a': 2, 'b':3, 'c':5})
|
||
|
90
|
||
|
|
||
|
"""
|
||
|
ret = 1
|
||
|
for i in indices:
|
||
|
ret *= idx_dict[i]
|
||
|
return ret
|
||
|
|
||
|
|
||
|
def _find_contraction(positions, input_sets, output_set):
|
||
|
"""
|
||
|
Finds the contraction for a given set of input and output sets.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
positions : iterable
|
||
|
Integer positions of terms used in the contraction.
|
||
|
input_sets : list
|
||
|
List of sets that represent the lhs side of the einsum subscript
|
||
|
output_set : set
|
||
|
Set that represents the rhs side of the overall einsum subscript
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
new_result : set
|
||
|
The indices of the resulting contraction
|
||
|
remaining : list
|
||
|
List of sets that have not been contracted, the new set is appended to
|
||
|
the end of this list
|
||
|
idx_removed : set
|
||
|
Indices removed from the entire contraction
|
||
|
idx_contraction : set
|
||
|
The indices used in the current contraction
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
|
||
|
# A simple dot product test case
|
||
|
>>> pos = (0, 1)
|
||
|
>>> isets = [set('ab'), set('bc')]
|
||
|
>>> oset = set('ac')
|
||
|
>>> _find_contraction(pos, isets, oset)
|
||
|
({'a', 'c'}, [{'a', 'c'}], {'b'}, {'a', 'b', 'c'})
|
||
|
|
||
|
# A more complex case with additional terms in the contraction
|
||
|
>>> pos = (0, 2)
|
||
|
>>> isets = [set('abd'), set('ac'), set('bdc')]
|
||
|
>>> oset = set('ac')
|
||
|
>>> _find_contraction(pos, isets, oset)
|
||
|
({'a', 'c'}, [{'a', 'c'}, {'a', 'c'}], {'b', 'd'}, {'a', 'b', 'c', 'd'})
|
||
|
"""
|
||
|
|
||
|
idx_contract = set()
|
||
|
idx_remain = output_set.copy()
|
||
|
remaining = []
|
||
|
for ind, value in enumerate(input_sets):
|
||
|
if ind in positions:
|
||
|
idx_contract |= value
|
||
|
else:
|
||
|
remaining.append(value)
|
||
|
idx_remain |= value
|
||
|
|
||
|
new_result = idx_remain & idx_contract
|
||
|
idx_removed = (idx_contract - new_result)
|
||
|
remaining.append(new_result)
|
||
|
|
||
|
return (new_result, remaining, idx_removed, idx_contract)
|
||
|
|
||
|
|
||
|
def _optimal_path(input_sets, output_set, idx_dict, memory_limit):
|
||
|
"""
|
||
|
Computes all possible pair contractions, sieves the results based
|
||
|
on ``memory_limit`` and returns the lowest cost path. This algorithm
|
||
|
scales factorial with respect to the elements in the list ``input_sets``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
input_sets : list
|
||
|
List of sets that represent the lhs side of the einsum subscript
|
||
|
output_set : set
|
||
|
Set that represents the rhs side of the overall einsum subscript
|
||
|
idx_dict : dictionary
|
||
|
Dictionary of index sizes
|
||
|
memory_limit : int
|
||
|
The maximum number of elements in a temporary array
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
path : list
|
||
|
The optimal contraction order within the memory limit constraint.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> isets = [set('abd'), set('ac'), set('bdc')]
|
||
|
>>> oset = set()
|
||
|
>>> idx_sizes = {'a': 1, 'b':2, 'c':3, 'd':4}
|
||
|
>>> _optimal_path(isets, oset, idx_sizes, 5000)
|
||
|
[(0, 2), (0, 1)]
|
||
|
"""
|
||
|
|
||
|
full_results = [(0, [], input_sets)]
|
||
|
for iteration in range(len(input_sets) - 1):
|
||
|
iter_results = []
|
||
|
|
||
|
# Compute all unique pairs
|
||
|
for curr in full_results:
|
||
|
cost, positions, remaining = curr
|
||
|
for con in itertools.combinations(range(len(input_sets) - iteration), 2):
|
||
|
|
||
|
# Find the contraction
|
||
|
cont = _find_contraction(con, remaining, output_set)
|
||
|
new_result, new_input_sets, idx_removed, idx_contract = cont
|
||
|
|
||
|
# Sieve the results based on memory_limit
|
||
|
new_size = _compute_size_by_dict(new_result, idx_dict)
|
||
|
if new_size > memory_limit:
|
||
|
continue
|
||
|
|
||
|
# Build (total_cost, positions, indices_remaining)
|
||
|
total_cost = cost + _flop_count(idx_contract, idx_removed, len(con), idx_dict)
|
||
|
new_pos = positions + [con]
|
||
|
iter_results.append((total_cost, new_pos, new_input_sets))
|
||
|
|
||
|
# Update combinatorial list, if we did not find anything return best
|
||
|
# path + remaining contractions
|
||
|
if iter_results:
|
||
|
full_results = iter_results
|
||
|
else:
|
||
|
path = min(full_results, key=lambda x: x[0])[1]
|
||
|
path += [tuple(range(len(input_sets) - iteration))]
|
||
|
return path
|
||
|
|
||
|
# If we have not found anything return single einsum contraction
|
||
|
if len(full_results) == 0:
|
||
|
return [tuple(range(len(input_sets)))]
|
||
|
|
||
|
path = min(full_results, key=lambda x: x[0])[1]
|
||
|
return path
|
||
|
|
||
|
def _parse_possible_contraction(positions, input_sets, output_set, idx_dict, memory_limit, path_cost, naive_cost):
|
||
|
"""Compute the cost (removed size + flops) and resultant indices for
|
||
|
performing the contraction specified by ``positions``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
positions : tuple of int
|
||
|
The locations of the proposed tensors to contract.
|
||
|
input_sets : list of sets
|
||
|
The indices found on each tensors.
|
||
|
output_set : set
|
||
|
The output indices of the expression.
|
||
|
idx_dict : dict
|
||
|
Mapping of each index to its size.
|
||
|
memory_limit : int
|
||
|
The total allowed size for an intermediary tensor.
|
||
|
path_cost : int
|
||
|
The contraction cost so far.
|
||
|
naive_cost : int
|
||
|
The cost of the unoptimized expression.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
cost : (int, int)
|
||
|
A tuple containing the size of any indices removed, and the flop cost.
|
||
|
positions : tuple of int
|
||
|
The locations of the proposed tensors to contract.
|
||
|
new_input_sets : list of sets
|
||
|
The resulting new list of indices if this proposed contraction is performed.
|
||
|
|
||
|
"""
|
||
|
|
||
|
# Find the contraction
|
||
|
contract = _find_contraction(positions, input_sets, output_set)
|
||
|
idx_result, new_input_sets, idx_removed, idx_contract = contract
|
||
|
|
||
|
# Sieve the results based on memory_limit
|
||
|
new_size = _compute_size_by_dict(idx_result, idx_dict)
|
||
|
if new_size > memory_limit:
|
||
|
return None
|
||
|
|
||
|
# Build sort tuple
|
||
|
old_sizes = (_compute_size_by_dict(input_sets[p], idx_dict) for p in positions)
|
||
|
removed_size = sum(old_sizes) - new_size
|
||
|
|
||
|
# NB: removed_size used to be just the size of any removed indices i.e.:
|
||
|
# helpers.compute_size_by_dict(idx_removed, idx_dict)
|
||
|
cost = _flop_count(idx_contract, idx_removed, len(positions), idx_dict)
|
||
|
sort = (-removed_size, cost)
|
||
|
|
||
|
# Sieve based on total cost as well
|
||
|
if (path_cost + cost) > naive_cost:
|
||
|
return None
|
||
|
|
||
|
# Add contraction to possible choices
|
||
|
return [sort, positions, new_input_sets]
|
||
|
|
||
|
|
||
|
def _update_other_results(results, best):
|
||
|
"""Update the positions and provisional input_sets of ``results`` based on
|
||
|
performing the contraction result ``best``. Remove any involving the tensors
|
||
|
contracted.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
results : list
|
||
|
List of contraction results produced by ``_parse_possible_contraction``.
|
||
|
best : list
|
||
|
The best contraction of ``results`` i.e. the one that will be performed.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
mod_results : list
|
||
|
The list of modified results, updated with outcome of ``best`` contraction.
|
||
|
"""
|
||
|
|
||
|
best_con = best[1]
|
||
|
bx, by = best_con
|
||
|
mod_results = []
|
||
|
|
||
|
for cost, (x, y), con_sets in results:
|
||
|
|
||
|
# Ignore results involving tensors just contracted
|
||
|
if x in best_con or y in best_con:
|
||
|
continue
|
||
|
|
||
|
# Update the input_sets
|
||
|
del con_sets[by - int(by > x) - int(by > y)]
|
||
|
del con_sets[bx - int(bx > x) - int(bx > y)]
|
||
|
con_sets.insert(-1, best[2][-1])
|
||
|
|
||
|
# Update the position indices
|
||
|
mod_con = x - int(x > bx) - int(x > by), y - int(y > bx) - int(y > by)
|
||
|
mod_results.append((cost, mod_con, con_sets))
|
||
|
|
||
|
return mod_results
|
||
|
|
||
|
def _greedy_path(input_sets, output_set, idx_dict, memory_limit):
|
||
|
"""
|
||
|
Finds the path by contracting the best pair until the input list is
|
||
|
exhausted. The best pair is found by minimizing the tuple
|
||
|
``(-prod(indices_removed), cost)``. What this amounts to is prioritizing
|
||
|
matrix multiplication or inner product operations, then Hadamard like
|
||
|
operations, and finally outer operations. Outer products are limited by
|
||
|
``memory_limit``. This algorithm scales cubically with respect to the
|
||
|
number of elements in the list ``input_sets``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
input_sets : list
|
||
|
List of sets that represent the lhs side of the einsum subscript
|
||
|
output_set : set
|
||
|
Set that represents the rhs side of the overall einsum subscript
|
||
|
idx_dict : dictionary
|
||
|
Dictionary of index sizes
|
||
|
memory_limit : int
|
||
|
The maximum number of elements in a temporary array
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
path : list
|
||
|
The greedy contraction order within the memory limit constraint.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> isets = [set('abd'), set('ac'), set('bdc')]
|
||
|
>>> oset = set()
|
||
|
>>> idx_sizes = {'a': 1, 'b':2, 'c':3, 'd':4}
|
||
|
>>> _greedy_path(isets, oset, idx_sizes, 5000)
|
||
|
[(0, 2), (0, 1)]
|
||
|
"""
|
||
|
|
||
|
# Handle trivial cases that leaked through
|
||
|
if len(input_sets) == 1:
|
||
|
return [(0,)]
|
||
|
elif len(input_sets) == 2:
|
||
|
return [(0, 1)]
|
||
|
|
||
|
# Build up a naive cost
|
||
|
contract = _find_contraction(range(len(input_sets)), input_sets, output_set)
|
||
|
idx_result, new_input_sets, idx_removed, idx_contract = contract
|
||
|
naive_cost = _flop_count(idx_contract, idx_removed, len(input_sets), idx_dict)
|
||
|
|
||
|
# Initially iterate over all pairs
|
||
|
comb_iter = itertools.combinations(range(len(input_sets)), 2)
|
||
|
known_contractions = []
|
||
|
|
||
|
path_cost = 0
|
||
|
path = []
|
||
|
|
||
|
for iteration in range(len(input_sets) - 1):
|
||
|
|
||
|
# Iterate over all pairs on first step, only previously found pairs on subsequent steps
|
||
|
for positions in comb_iter:
|
||
|
|
||
|
# Always initially ignore outer products
|
||
|
if input_sets[positions[0]].isdisjoint(input_sets[positions[1]]):
|
||
|
continue
|
||
|
|
||
|
result = _parse_possible_contraction(positions, input_sets, output_set, idx_dict, memory_limit, path_cost,
|
||
|
naive_cost)
|
||
|
if result is not None:
|
||
|
known_contractions.append(result)
|
||
|
|
||
|
# If we do not have a inner contraction, rescan pairs including outer products
|
||
|
if len(known_contractions) == 0:
|
||
|
|
||
|
# Then check the outer products
|
||
|
for positions in itertools.combinations(range(len(input_sets)), 2):
|
||
|
result = _parse_possible_contraction(positions, input_sets, output_set, idx_dict, memory_limit,
|
||
|
path_cost, naive_cost)
|
||
|
if result is not None:
|
||
|
known_contractions.append(result)
|
||
|
|
||
|
# If we still did not find any remaining contractions, default back to einsum like behavior
|
||
|
if len(known_contractions) == 0:
|
||
|
path.append(tuple(range(len(input_sets))))
|
||
|
break
|
||
|
|
||
|
# Sort based on first index
|
||
|
best = min(known_contractions, key=lambda x: x[0])
|
||
|
|
||
|
# Now propagate as many unused contractions as possible to next iteration
|
||
|
known_contractions = _update_other_results(known_contractions, best)
|
||
|
|
||
|
# Next iteration only compute contractions with the new tensor
|
||
|
# All other contractions have been accounted for
|
||
|
input_sets = best[2]
|
||
|
new_tensor_pos = len(input_sets) - 1
|
||
|
comb_iter = ((i, new_tensor_pos) for i in range(new_tensor_pos))
|
||
|
|
||
|
# Update path and total cost
|
||
|
path.append(best[1])
|
||
|
path_cost += best[0][1]
|
||
|
|
||
|
return path
|
||
|
|
||
|
|
||
|
def _can_dot(inputs, result, idx_removed):
|
||
|
"""
|
||
|
Checks if we can use BLAS (np.tensordot) call and its beneficial to do so.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
inputs : list of str
|
||
|
Specifies the subscripts for summation.
|
||
|
result : str
|
||
|
Resulting summation.
|
||
|
idx_removed : set
|
||
|
Indices that are removed in the summation
|
||
|
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
type : bool
|
||
|
Returns true if BLAS should and can be used, else False
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
If the operations is BLAS level 1 or 2 and is not already aligned
|
||
|
we default back to einsum as the memory movement to copy is more
|
||
|
costly than the operation itself.
|
||
|
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
|
||
|
# Standard GEMM operation
|
||
|
>>> _can_dot(['ij', 'jk'], 'ik', set('j'))
|
||
|
True
|
||
|
|
||
|
# Can use the standard BLAS, but requires odd data movement
|
||
|
>>> _can_dot(['ijj', 'jk'], 'ik', set('j'))
|
||
|
False
|
||
|
|
||
|
# DDOT where the memory is not aligned
|
||
|
>>> _can_dot(['ijk', 'ikj'], '', set('ijk'))
|
||
|
False
|
||
|
|
||
|
"""
|
||
|
|
||
|
# All `dot` calls remove indices
|
||
|
if len(idx_removed) == 0:
|
||
|
return False
|
||
|
|
||
|
# BLAS can only handle two operands
|
||
|
if len(inputs) != 2:
|
||
|
return False
|
||
|
|
||
|
input_left, input_right = inputs
|
||
|
|
||
|
for c in set(input_left + input_right):
|
||
|
# can't deal with repeated indices on same input or more than 2 total
|
||
|
nl, nr = input_left.count(c), input_right.count(c)
|
||
|
if (nl > 1) or (nr > 1) or (nl + nr > 2):
|
||
|
return False
|
||
|
|
||
|
# can't do implicit summation or dimension collapse e.g.
|
||
|
# "ab,bc->c" (implicitly sum over 'a')
|
||
|
# "ab,ca->ca" (take diagonal of 'a')
|
||
|
if nl + nr - 1 == int(c in result):
|
||
|
return False
|
||
|
|
||
|
# Build a few temporaries
|
||
|
set_left = set(input_left)
|
||
|
set_right = set(input_right)
|
||
|
keep_left = set_left - idx_removed
|
||
|
keep_right = set_right - idx_removed
|
||
|
rs = len(idx_removed)
|
||
|
|
||
|
# At this point we are a DOT, GEMV, or GEMM operation
|
||
|
|
||
|
# Handle inner products
|
||
|
|
||
|
# DDOT with aligned data
|
||
|
if input_left == input_right:
|
||
|
return True
|
||
|
|
||
|
# DDOT without aligned data (better to use einsum)
|
||
|
if set_left == set_right:
|
||
|
return False
|
||
|
|
||
|
# Handle the 4 possible (aligned) GEMV or GEMM cases
|
||
|
|
||
|
# GEMM or GEMV no transpose
|
||
|
if input_left[-rs:] == input_right[:rs]:
|
||
|
return True
|
||
|
|
||
|
# GEMM or GEMV transpose both
|
||
|
if input_left[:rs] == input_right[-rs:]:
|
||
|
return True
|
||
|
|
||
|
# GEMM or GEMV transpose right
|
||
|
if input_left[-rs:] == input_right[-rs:]:
|
||
|
return True
|
||
|
|
||
|
# GEMM or GEMV transpose left
|
||
|
if input_left[:rs] == input_right[:rs]:
|
||
|
return True
|
||
|
|
||
|
# Einsum is faster than GEMV if we have to copy data
|
||
|
if not keep_left or not keep_right:
|
||
|
return False
|
||
|
|
||
|
# We are a matrix-matrix product, but we need to copy data
|
||
|
return True
|
||
|
|
||
|
|
||
|
def _parse_einsum_input(operands):
|
||
|
"""
|
||
|
A reproduction of einsum c side einsum parsing in python.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
input_strings : str
|
||
|
Parsed input strings
|
||
|
output_string : str
|
||
|
Parsed output string
|
||
|
operands : list of array_like
|
||
|
The operands to use in the numpy contraction
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
The operand list is simplified to reduce printing:
|
||
|
|
||
|
>>> np.random.seed(123)
|
||
|
>>> a = np.random.rand(4, 4)
|
||
|
>>> b = np.random.rand(4, 4, 4)
|
||
|
>>> _parse_einsum_input(('...a,...a->...', a, b))
|
||
|
('za,xza', 'xz', [a, b]) # may vary
|
||
|
|
||
|
>>> _parse_einsum_input((a, [Ellipsis, 0], b, [Ellipsis, 0]))
|
||
|
('za,xza', 'xz', [a, b]) # may vary
|
||
|
"""
|
||
|
|
||
|
if len(operands) == 0:
|
||
|
raise ValueError("No input operands")
|
||
|
|
||
|
if isinstance(operands[0], str):
|
||
|
subscripts = operands[0].replace(" ", "")
|
||
|
operands = [asanyarray(v) for v in operands[1:]]
|
||
|
|
||
|
# Ensure all characters are valid
|
||
|
for s in subscripts:
|
||
|
if s in '.,->':
|
||
|
continue
|
||
|
if s not in einsum_symbols:
|
||
|
raise ValueError("Character %s is not a valid symbol." % s)
|
||
|
|
||
|
else:
|
||
|
tmp_operands = list(operands)
|
||
|
operand_list = []
|
||
|
subscript_list = []
|
||
|
for p in range(len(operands) // 2):
|
||
|
operand_list.append(tmp_operands.pop(0))
|
||
|
subscript_list.append(tmp_operands.pop(0))
|
||
|
|
||
|
output_list = tmp_operands[-1] if len(tmp_operands) else None
|
||
|
operands = [asanyarray(v) for v in operand_list]
|
||
|
subscripts = ""
|
||
|
last = len(subscript_list) - 1
|
||
|
for num, sub in enumerate(subscript_list):
|
||
|
for s in sub:
|
||
|
if s is Ellipsis:
|
||
|
subscripts += "..."
|
||
|
else:
|
||
|
try:
|
||
|
s = operator.index(s)
|
||
|
except TypeError as e:
|
||
|
raise TypeError("For this input type lists must contain "
|
||
|
"either int or Ellipsis") from e
|
||
|
subscripts += einsum_symbols[s]
|
||
|
if num != last:
|
||
|
subscripts += ","
|
||
|
|
||
|
if output_list is not None:
|
||
|
subscripts += "->"
|
||
|
for s in output_list:
|
||
|
if s is Ellipsis:
|
||
|
subscripts += "..."
|
||
|
else:
|
||
|
try:
|
||
|
s = operator.index(s)
|
||
|
except TypeError as e:
|
||
|
raise TypeError("For this input type lists must contain "
|
||
|
"either int or Ellipsis") from e
|
||
|
subscripts += einsum_symbols[s]
|
||
|
# Check for proper "->"
|
||
|
if ("-" in subscripts) or (">" in subscripts):
|
||
|
invalid = (subscripts.count("-") > 1) or (subscripts.count(">") > 1)
|
||
|
if invalid or (subscripts.count("->") != 1):
|
||
|
raise ValueError("Subscripts can only contain one '->'.")
|
||
|
|
||
|
# Parse ellipses
|
||
|
if "." in subscripts:
|
||
|
used = subscripts.replace(".", "").replace(",", "").replace("->", "")
|
||
|
unused = list(einsum_symbols_set - set(used))
|
||
|
ellipse_inds = "".join(unused)
|
||
|
longest = 0
|
||
|
|
||
|
if "->" in subscripts:
|
||
|
input_tmp, output_sub = subscripts.split("->")
|
||
|
split_subscripts = input_tmp.split(",")
|
||
|
out_sub = True
|
||
|
else:
|
||
|
split_subscripts = subscripts.split(',')
|
||
|
out_sub = False
|
||
|
|
||
|
for num, sub in enumerate(split_subscripts):
|
||
|
if "." in sub:
|
||
|
if (sub.count(".") != 3) or (sub.count("...") != 1):
|
||
|
raise ValueError("Invalid Ellipses.")
|
||
|
|
||
|
# Take into account numerical values
|
||
|
if operands[num].shape == ():
|
||
|
ellipse_count = 0
|
||
|
else:
|
||
|
ellipse_count = max(operands[num].ndim, 1)
|
||
|
ellipse_count -= (len(sub) - 3)
|
||
|
|
||
|
if ellipse_count > longest:
|
||
|
longest = ellipse_count
|
||
|
|
||
|
if ellipse_count < 0:
|
||
|
raise ValueError("Ellipses lengths do not match.")
|
||
|
elif ellipse_count == 0:
|
||
|
split_subscripts[num] = sub.replace('...', '')
|
||
|
else:
|
||
|
rep_inds = ellipse_inds[-ellipse_count:]
|
||
|
split_subscripts[num] = sub.replace('...', rep_inds)
|
||
|
|
||
|
subscripts = ",".join(split_subscripts)
|
||
|
if longest == 0:
|
||
|
out_ellipse = ""
|
||
|
else:
|
||
|
out_ellipse = ellipse_inds[-longest:]
|
||
|
|
||
|
if out_sub:
|
||
|
subscripts += "->" + output_sub.replace("...", out_ellipse)
|
||
|
else:
|
||
|
# Special care for outputless ellipses
|
||
|
output_subscript = ""
|
||
|
tmp_subscripts = subscripts.replace(",", "")
|
||
|
for s in sorted(set(tmp_subscripts)):
|
||
|
if s not in (einsum_symbols):
|
||
|
raise ValueError("Character %s is not a valid symbol." % s)
|
||
|
if tmp_subscripts.count(s) == 1:
|
||
|
output_subscript += s
|
||
|
normal_inds = ''.join(sorted(set(output_subscript) -
|
||
|
set(out_ellipse)))
|
||
|
|
||
|
subscripts += "->" + out_ellipse + normal_inds
|
||
|
|
||
|
# Build output string if does not exist
|
||
|
if "->" in subscripts:
|
||
|
input_subscripts, output_subscript = subscripts.split("->")
|
||
|
else:
|
||
|
input_subscripts = subscripts
|
||
|
# Build output subscripts
|
||
|
tmp_subscripts = subscripts.replace(",", "")
|
||
|
output_subscript = ""
|
||
|
for s in sorted(set(tmp_subscripts)):
|
||
|
if s not in einsum_symbols:
|
||
|
raise ValueError("Character %s is not a valid symbol." % s)
|
||
|
if tmp_subscripts.count(s) == 1:
|
||
|
output_subscript += s
|
||
|
|
||
|
# Make sure output subscripts are in the input
|
||
|
for char in output_subscript:
|
||
|
if char not in input_subscripts:
|
||
|
raise ValueError("Output character %s did not appear in the input"
|
||
|
% char)
|
||
|
|
||
|
# Make sure number operands is equivalent to the number of terms
|
||
|
if len(input_subscripts.split(',')) != len(operands):
|
||
|
raise ValueError("Number of einsum subscripts must be equal to the "
|
||
|
"number of operands.")
|
||
|
|
||
|
return (input_subscripts, output_subscript, operands)
|
||
|
|
||
|
|
||
|
def _einsum_path_dispatcher(*operands, optimize=None, einsum_call=None):
|
||
|
# NOTE: technically, we should only dispatch on array-like arguments, not
|
||
|
# subscripts (given as strings). But separating operands into
|
||
|
# arrays/subscripts is a little tricky/slow (given einsum's two supported
|
||
|
# signatures), so as a practical shortcut we dispatch on everything.
|
||
|
# Strings will be ignored for dispatching since they don't define
|
||
|
# __array_function__.
|
||
|
return operands
|
||
|
|
||
|
|
||
|
@array_function_dispatch(_einsum_path_dispatcher, module='numpy')
|
||
|
def einsum_path(*operands, optimize='greedy', einsum_call=False):
|
||
|
"""
|
||
|
einsum_path(subscripts, *operands, optimize='greedy')
|
||
|
|
||
|
Evaluates the lowest cost contraction order for an einsum expression by
|
||
|
considering the creation of intermediate arrays.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
subscripts : str
|
||
|
Specifies the subscripts for summation.
|
||
|
*operands : list of array_like
|
||
|
These are the arrays for the operation.
|
||
|
optimize : {bool, list, tuple, 'greedy', 'optimal'}
|
||
|
Choose the type of path. If a tuple is provided, the second argument is
|
||
|
assumed to be the maximum intermediate size created. If only a single
|
||
|
argument is provided the largest input or output array size is used
|
||
|
as a maximum intermediate size.
|
||
|
|
||
|
* if a list is given that starts with ``einsum_path``, uses this as the
|
||
|
contraction path
|
||
|
* if False no optimization is taken
|
||
|
* if True defaults to the 'greedy' algorithm
|
||
|
* 'optimal' An algorithm that combinatorially explores all possible
|
||
|
ways of contracting the listed tensors and chooses the least costly
|
||
|
path. Scales exponentially with the number of terms in the
|
||
|
contraction.
|
||
|
* 'greedy' An algorithm that chooses the best pair contraction
|
||
|
at each step. Effectively, this algorithm searches the largest inner,
|
||
|
Hadamard, and then outer products at each step. Scales cubically with
|
||
|
the number of terms in the contraction. Equivalent to the 'optimal'
|
||
|
path for most contractions.
|
||
|
|
||
|
Default is 'greedy'.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
path : list of tuples
|
||
|
A list representation of the einsum path.
|
||
|
string_repr : str
|
||
|
A printable representation of the einsum path.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The resulting path indicates which terms of the input contraction should be
|
||
|
contracted first, the result of this contraction is then appended to the
|
||
|
end of the contraction list. This list can then be iterated over until all
|
||
|
intermediate contractions are complete.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
einsum, linalg.multi_dot
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
|
||
|
We can begin with a chain dot example. In this case, it is optimal to
|
||
|
contract the ``b`` and ``c`` tensors first as represented by the first
|
||
|
element of the path ``(1, 2)``. The resulting tensor is added to the end
|
||
|
of the contraction and the remaining contraction ``(0, 1)`` is then
|
||
|
completed.
|
||
|
|
||
|
>>> np.random.seed(123)
|
||
|
>>> a = np.random.rand(2, 2)
|
||
|
>>> b = np.random.rand(2, 5)
|
||
|
>>> c = np.random.rand(5, 2)
|
||
|
>>> path_info = np.einsum_path('ij,jk,kl->il', a, b, c, optimize='greedy')
|
||
|
>>> print(path_info[0])
|
||
|
['einsum_path', (1, 2), (0, 1)]
|
||
|
>>> print(path_info[1])
|
||
|
Complete contraction: ij,jk,kl->il # may vary
|
||
|
Naive scaling: 4
|
||
|
Optimized scaling: 3
|
||
|
Naive FLOP count: 1.600e+02
|
||
|
Optimized FLOP count: 5.600e+01
|
||
|
Theoretical speedup: 2.857
|
||
|
Largest intermediate: 4.000e+00 elements
|
||
|
-------------------------------------------------------------------------
|
||
|
scaling current remaining
|
||
|
-------------------------------------------------------------------------
|
||
|
3 kl,jk->jl ij,jl->il
|
||
|
3 jl,ij->il il->il
|
||
|
|
||
|
|
||
|
A more complex index transformation example.
|
||
|
|
||
|
>>> I = np.random.rand(10, 10, 10, 10)
|
||
|
>>> C = np.random.rand(10, 10)
|
||
|
>>> path_info = np.einsum_path('ea,fb,abcd,gc,hd->efgh', C, C, I, C, C,
|
||
|
... optimize='greedy')
|
||
|
|
||
|
>>> print(path_info[0])
|
||
|
['einsum_path', (0, 2), (0, 3), (0, 2), (0, 1)]
|
||
|
>>> print(path_info[1])
|
||
|
Complete contraction: ea,fb,abcd,gc,hd->efgh # may vary
|
||
|
Naive scaling: 8
|
||
|
Optimized scaling: 5
|
||
|
Naive FLOP count: 8.000e+08
|
||
|
Optimized FLOP count: 8.000e+05
|
||
|
Theoretical speedup: 1000.000
|
||
|
Largest intermediate: 1.000e+04 elements
|
||
|
--------------------------------------------------------------------------
|
||
|
scaling current remaining
|
||
|
--------------------------------------------------------------------------
|
||
|
5 abcd,ea->bcde fb,gc,hd,bcde->efgh
|
||
|
5 bcde,fb->cdef gc,hd,cdef->efgh
|
||
|
5 cdef,gc->defg hd,defg->efgh
|
||
|
5 defg,hd->efgh efgh->efgh
|
||
|
"""
|
||
|
|
||
|
# Figure out what the path really is
|
||
|
path_type = optimize
|
||
|
if path_type is True:
|
||
|
path_type = 'greedy'
|
||
|
if path_type is None:
|
||
|
path_type = False
|
||
|
|
||
|
explicit_einsum_path = False
|
||
|
memory_limit = None
|
||
|
|
||
|
# No optimization or a named path algorithm
|
||
|
if (path_type is False) or isinstance(path_type, str):
|
||
|
pass
|
||
|
|
||
|
# Given an explicit path
|
||
|
elif len(path_type) and (path_type[0] == 'einsum_path'):
|
||
|
explicit_einsum_path = True
|
||
|
|
||
|
# Path tuple with memory limit
|
||
|
elif ((len(path_type) == 2) and isinstance(path_type[0], str) and
|
||
|
isinstance(path_type[1], (int, float))):
|
||
|
memory_limit = int(path_type[1])
|
||
|
path_type = path_type[0]
|
||
|
|
||
|
else:
|
||
|
raise TypeError("Did not understand the path: %s" % str(path_type))
|
||
|
|
||
|
# Hidden option, only einsum should call this
|
||
|
einsum_call_arg = einsum_call
|
||
|
|
||
|
# Python side parsing
|
||
|
input_subscripts, output_subscript, operands = _parse_einsum_input(operands)
|
||
|
|
||
|
# Build a few useful list and sets
|
||
|
input_list = input_subscripts.split(',')
|
||
|
input_sets = [set(x) for x in input_list]
|
||
|
output_set = set(output_subscript)
|
||
|
indices = set(input_subscripts.replace(',', ''))
|
||
|
|
||
|
# Get length of each unique dimension and ensure all dimensions are correct
|
||
|
dimension_dict = {}
|
||
|
broadcast_indices = [[] for x in range(len(input_list))]
|
||
|
for tnum, term in enumerate(input_list):
|
||
|
sh = operands[tnum].shape
|
||
|
if len(sh) != len(term):
|
||
|
raise ValueError("Einstein sum subscript %s does not contain the "
|
||
|
"correct number of indices for operand %d."
|
||
|
% (input_subscripts[tnum], tnum))
|
||
|
for cnum, char in enumerate(term):
|
||
|
dim = sh[cnum]
|
||
|
|
||
|
# Build out broadcast indices
|
||
|
if dim == 1:
|
||
|
broadcast_indices[tnum].append(char)
|
||
|
|
||
|
if char in dimension_dict.keys():
|
||
|
# For broadcasting cases we always want the largest dim size
|
||
|
if dimension_dict[char] == 1:
|
||
|
dimension_dict[char] = dim
|
||
|
elif dim not in (1, dimension_dict[char]):
|
||
|
raise ValueError("Size of label '%s' for operand %d (%d) "
|
||
|
"does not match previous terms (%d)."
|
||
|
% (char, tnum, dimension_dict[char], dim))
|
||
|
else:
|
||
|
dimension_dict[char] = dim
|
||
|
|
||
|
# Convert broadcast inds to sets
|
||
|
broadcast_indices = [set(x) for x in broadcast_indices]
|
||
|
|
||
|
# Compute size of each input array plus the output array
|
||
|
size_list = [_compute_size_by_dict(term, dimension_dict)
|
||
|
for term in input_list + [output_subscript]]
|
||
|
max_size = max(size_list)
|
||
|
|
||
|
if memory_limit is None:
|
||
|
memory_arg = max_size
|
||
|
else:
|
||
|
memory_arg = memory_limit
|
||
|
|
||
|
# Compute naive cost
|
||
|
# This isn't quite right, need to look into exactly how einsum does this
|
||
|
inner_product = (sum(len(x) for x in input_sets) - len(indices)) > 0
|
||
|
naive_cost = _flop_count(indices, inner_product, len(input_list), dimension_dict)
|
||
|
|
||
|
# Compute the path
|
||
|
if explicit_einsum_path:
|
||
|
path = path_type[1:]
|
||
|
elif (
|
||
|
(path_type is False)
|
||
|
or (len(input_list) in [1, 2])
|
||
|
or (indices == output_set)
|
||
|
):
|
||
|
# Nothing to be optimized, leave it to einsum
|
||
|
path = [tuple(range(len(input_list)))]
|
||
|
elif path_type == "greedy":
|
||
|
path = _greedy_path(input_sets, output_set, dimension_dict, memory_arg)
|
||
|
elif path_type == "optimal":
|
||
|
path = _optimal_path(input_sets, output_set, dimension_dict, memory_arg)
|
||
|
else:
|
||
|
raise KeyError("Path name %s not found", path_type)
|
||
|
|
||
|
cost_list, scale_list, size_list, contraction_list = [], [], [], []
|
||
|
|
||
|
# Build contraction tuple (positions, gemm, einsum_str, remaining)
|
||
|
for cnum, contract_inds in enumerate(path):
|
||
|
# Make sure we remove inds from right to left
|
||
|
contract_inds = tuple(sorted(list(contract_inds), reverse=True))
|
||
|
|
||
|
contract = _find_contraction(contract_inds, input_sets, output_set)
|
||
|
out_inds, input_sets, idx_removed, idx_contract = contract
|
||
|
|
||
|
cost = _flop_count(idx_contract, idx_removed, len(contract_inds), dimension_dict)
|
||
|
cost_list.append(cost)
|
||
|
scale_list.append(len(idx_contract))
|
||
|
size_list.append(_compute_size_by_dict(out_inds, dimension_dict))
|
||
|
|
||
|
bcast = set()
|
||
|
tmp_inputs = []
|
||
|
for x in contract_inds:
|
||
|
tmp_inputs.append(input_list.pop(x))
|
||
|
bcast |= broadcast_indices.pop(x)
|
||
|
|
||
|
new_bcast_inds = bcast - idx_removed
|
||
|
|
||
|
# If we're broadcasting, nix blas
|
||
|
if not len(idx_removed & bcast):
|
||
|
do_blas = _can_dot(tmp_inputs, out_inds, idx_removed)
|
||
|
else:
|
||
|
do_blas = False
|
||
|
|
||
|
# Last contraction
|
||
|
if (cnum - len(path)) == -1:
|
||
|
idx_result = output_subscript
|
||
|
else:
|
||
|
sort_result = [(dimension_dict[ind], ind) for ind in out_inds]
|
||
|
idx_result = "".join([x[1] for x in sorted(sort_result)])
|
||
|
|
||
|
input_list.append(idx_result)
|
||
|
broadcast_indices.append(new_bcast_inds)
|
||
|
einsum_str = ",".join(tmp_inputs) + "->" + idx_result
|
||
|
|
||
|
contraction = (contract_inds, idx_removed, einsum_str, input_list[:], do_blas)
|
||
|
contraction_list.append(contraction)
|
||
|
|
||
|
opt_cost = sum(cost_list) + 1
|
||
|
|
||
|
if len(input_list) != 1:
|
||
|
# Explicit "einsum_path" is usually trusted, but we detect this kind of
|
||
|
# mistake in order to prevent from returning an intermediate value.
|
||
|
raise RuntimeError(
|
||
|
"Invalid einsum_path is specified: {} more operands has to be "
|
||
|
"contracted.".format(len(input_list) - 1))
|
||
|
|
||
|
if einsum_call_arg:
|
||
|
return (operands, contraction_list)
|
||
|
|
||
|
# Return the path along with a nice string representation
|
||
|
overall_contraction = input_subscripts + "->" + output_subscript
|
||
|
header = ("scaling", "current", "remaining")
|
||
|
|
||
|
speedup = naive_cost / opt_cost
|
||
|
max_i = max(size_list)
|
||
|
|
||
|
path_print = " Complete contraction: %s\n" % overall_contraction
|
||
|
path_print += " Naive scaling: %d\n" % len(indices)
|
||
|
path_print += " Optimized scaling: %d\n" % max(scale_list)
|
||
|
path_print += " Naive FLOP count: %.3e\n" % naive_cost
|
||
|
path_print += " Optimized FLOP count: %.3e\n" % opt_cost
|
||
|
path_print += " Theoretical speedup: %3.3f\n" % speedup
|
||
|
path_print += " Largest intermediate: %.3e elements\n" % max_i
|
||
|
path_print += "-" * 74 + "\n"
|
||
|
path_print += "%6s %24s %40s\n" % header
|
||
|
path_print += "-" * 74
|
||
|
|
||
|
for n, contraction in enumerate(contraction_list):
|
||
|
inds, idx_rm, einsum_str, remaining, blas = contraction
|
||
|
remaining_str = ",".join(remaining) + "->" + output_subscript
|
||
|
path_run = (scale_list[n], einsum_str, remaining_str)
|
||
|
path_print += "\n%4d %24s %40s" % path_run
|
||
|
|
||
|
path = ['einsum_path'] + path
|
||
|
return (path, path_print)
|
||
|
|
||
|
|
||
|
def _einsum_dispatcher(*operands, out=None, optimize=None, **kwargs):
|
||
|
# Arguably we dispatch on more arguments than we really should; see note in
|
||
|
# _einsum_path_dispatcher for why.
|
||
|
yield from operands
|
||
|
yield out
|
||
|
|
||
|
|
||
|
# Rewrite einsum to handle different cases
|
||
|
@array_function_dispatch(_einsum_dispatcher, module='numpy')
|
||
|
def einsum(*operands, out=None, optimize=False, **kwargs):
|
||
|
"""
|
||
|
einsum(subscripts, *operands, out=None, dtype=None, order='K',
|
||
|
casting='safe', optimize=False)
|
||
|
|
||
|
Evaluates the Einstein summation convention on the operands.
|
||
|
|
||
|
Using the Einstein summation convention, many common multi-dimensional,
|
||
|
linear algebraic array operations can be represented in a simple fashion.
|
||
|
In *implicit* mode `einsum` computes these values.
|
||
|
|
||
|
In *explicit* mode, `einsum` provides further flexibility to compute
|
||
|
other array operations that might not be considered classical Einstein
|
||
|
summation operations, by disabling, or forcing summation over specified
|
||
|
subscript labels.
|
||
|
|
||
|
See the notes and examples for clarification.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
subscripts : str
|
||
|
Specifies the subscripts for summation as comma separated list of
|
||
|
subscript labels. An implicit (classical Einstein summation)
|
||
|
calculation is performed unless the explicit indicator '->' is
|
||
|
included as well as subscript labels of the precise output form.
|
||
|
operands : list of array_like
|
||
|
These are the arrays for the operation.
|
||
|
out : ndarray, optional
|
||
|
If provided, the calculation is done into this array.
|
||
|
dtype : {data-type, None}, optional
|
||
|
If provided, forces the calculation to use the data type specified.
|
||
|
Note that you may have to also give a more liberal `casting`
|
||
|
parameter to allow the conversions. Default is None.
|
||
|
order : {'C', 'F', 'A', 'K'}, optional
|
||
|
Controls the memory layout of the output. 'C' means it should
|
||
|
be C contiguous. 'F' means it should be Fortran contiguous,
|
||
|
'A' means it should be 'F' if the inputs are all 'F', 'C' otherwise.
|
||
|
'K' means it should be as close to the layout as the inputs as
|
||
|
is possible, including arbitrarily permuted axes.
|
||
|
Default is 'K'.
|
||
|
casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
|
||
|
Controls what kind of data casting may occur. Setting this to
|
||
|
'unsafe' is not recommended, as it can adversely affect accumulations.
|
||
|
|
||
|
* 'no' means the data types should not be cast at all.
|
||
|
* 'equiv' means only byte-order changes are allowed.
|
||
|
* 'safe' means only casts which can preserve values are allowed.
|
||
|
* 'same_kind' means only safe casts or casts within a kind,
|
||
|
like float64 to float32, are allowed.
|
||
|
* 'unsafe' means any data conversions may be done.
|
||
|
|
||
|
Default is 'safe'.
|
||
|
optimize : {False, True, 'greedy', 'optimal'}, optional
|
||
|
Controls if intermediate optimization should occur. No optimization
|
||
|
will occur if False and True will default to the 'greedy' algorithm.
|
||
|
Also accepts an explicit contraction list from the ``np.einsum_path``
|
||
|
function. See ``np.einsum_path`` for more details. Defaults to False.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
output : ndarray
|
||
|
The calculation based on the Einstein summation convention.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
einsum_path, dot, inner, outer, tensordot, linalg.multi_dot
|
||
|
einops :
|
||
|
similar verbose interface is provided by
|
||
|
`einops <https://github.com/arogozhnikov/einops>`_ package to cover
|
||
|
additional operations: transpose, reshape/flatten, repeat/tile,
|
||
|
squeeze/unsqueeze and reductions.
|
||
|
opt_einsum :
|
||
|
`opt_einsum <https://optimized-einsum.readthedocs.io/en/stable/>`_
|
||
|
optimizes contraction order for einsum-like expressions
|
||
|
in backend-agnostic manner.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
.. versionadded:: 1.6.0
|
||
|
|
||
|
The Einstein summation convention can be used to compute
|
||
|
many multi-dimensional, linear algebraic array operations. `einsum`
|
||
|
provides a succinct way of representing these.
|
||
|
|
||
|
A non-exhaustive list of these operations,
|
||
|
which can be computed by `einsum`, is shown below along with examples:
|
||
|
|
||
|
* Trace of an array, :py:func:`numpy.trace`.
|
||
|
* Return a diagonal, :py:func:`numpy.diag`.
|
||
|
* Array axis summations, :py:func:`numpy.sum`.
|
||
|
* Transpositions and permutations, :py:func:`numpy.transpose`.
|
||
|
* Matrix multiplication and dot product, :py:func:`numpy.matmul` :py:func:`numpy.dot`.
|
||
|
* Vector inner and outer products, :py:func:`numpy.inner` :py:func:`numpy.outer`.
|
||
|
* Broadcasting, element-wise and scalar multiplication, :py:func:`numpy.multiply`.
|
||
|
* Tensor contractions, :py:func:`numpy.tensordot`.
|
||
|
* Chained array operations, in efficient calculation order, :py:func:`numpy.einsum_path`.
|
||
|
|
||
|
The subscripts string is a comma-separated list of subscript labels,
|
||
|
where each label refers to a dimension of the corresponding operand.
|
||
|
Whenever a label is repeated it is summed, so ``np.einsum('i,i', a, b)``
|
||
|
is equivalent to :py:func:`np.inner(a,b) <numpy.inner>`. If a label
|
||
|
appears only once, it is not summed, so ``np.einsum('i', a)`` produces a
|
||
|
view of ``a`` with no changes. A further example ``np.einsum('ij,jk', a, b)``
|
||
|
describes traditional matrix multiplication and is equivalent to
|
||
|
:py:func:`np.matmul(a,b) <numpy.matmul>`. Repeated subscript labels in one
|
||
|
operand take the diagonal. For example, ``np.einsum('ii', a)`` is equivalent
|
||
|
to :py:func:`np.trace(a) <numpy.trace>`.
|
||
|
|
||
|
In *implicit mode*, the chosen subscripts are important
|
||
|
since the axes of the output are reordered alphabetically. This
|
||
|
means that ``np.einsum('ij', a)`` doesn't affect a 2D array, while
|
||
|
``np.einsum('ji', a)`` takes its transpose. Additionally,
|
||
|
``np.einsum('ij,jk', a, b)`` returns a matrix multiplication, while,
|
||
|
``np.einsum('ij,jh', a, b)`` returns the transpose of the
|
||
|
multiplication since subscript 'h' precedes subscript 'i'.
|
||
|
|
||
|
In *explicit mode* the output can be directly controlled by
|
||
|
specifying output subscript labels. This requires the
|
||
|
identifier '->' as well as the list of output subscript labels.
|
||
|
This feature increases the flexibility of the function since
|
||
|
summing can be disabled or forced when required. The call
|
||
|
``np.einsum('i->', a)`` is like :py:func:`np.sum(a, axis=-1) <numpy.sum>`,
|
||
|
and ``np.einsum('ii->i', a)`` is like :py:func:`np.diag(a) <numpy.diag>`.
|
||
|
The difference is that `einsum` does not allow broadcasting by default.
|
||
|
Additionally ``np.einsum('ij,jh->ih', a, b)`` directly specifies the
|
||
|
order of the output subscript labels and therefore returns matrix
|
||
|
multiplication, unlike the example above in implicit mode.
|
||
|
|
||
|
To enable and control broadcasting, use an ellipsis. Default
|
||
|
NumPy-style broadcasting is done by adding an ellipsis
|
||
|
to the left of each term, like ``np.einsum('...ii->...i', a)``.
|
||
|
To take the trace along the first and last axes,
|
||
|
you can do ``np.einsum('i...i', a)``, or to do a matrix-matrix
|
||
|
product with the left-most indices instead of rightmost, one can do
|
||
|
``np.einsum('ij...,jk...->ik...', a, b)``.
|
||
|
|
||
|
When there is only one operand, no axes are summed, and no output
|
||
|
parameter is provided, a view into the operand is returned instead
|
||
|
of a new array. Thus, taking the diagonal as ``np.einsum('ii->i', a)``
|
||
|
produces a view (changed in version 1.10.0).
|
||
|
|
||
|
`einsum` also provides an alternative way to provide the subscripts
|
||
|
and operands as ``einsum(op0, sublist0, op1, sublist1, ..., [sublistout])``.
|
||
|
If the output shape is not provided in this format `einsum` will be
|
||
|
calculated in implicit mode, otherwise it will be performed explicitly.
|
||
|
The examples below have corresponding `einsum` calls with the two
|
||
|
parameter methods.
|
||
|
|
||
|
.. versionadded:: 1.10.0
|
||
|
|
||
|
Views returned from einsum are now writeable whenever the input array
|
||
|
is writeable. For example, ``np.einsum('ijk...->kji...', a)`` will now
|
||
|
have the same effect as :py:func:`np.swapaxes(a, 0, 2) <numpy.swapaxes>`
|
||
|
and ``np.einsum('ii->i', a)`` will return a writeable view of the diagonal
|
||
|
of a 2D array.
|
||
|
|
||
|
.. versionadded:: 1.12.0
|
||
|
|
||
|
Added the ``optimize`` argument which will optimize the contraction order
|
||
|
of an einsum expression. For a contraction with three or more operands this
|
||
|
can greatly increase the computational efficiency at the cost of a larger
|
||
|
memory footprint during computation.
|
||
|
|
||
|
Typically a 'greedy' algorithm is applied which empirical tests have shown
|
||
|
returns the optimal path in the majority of cases. In some cases 'optimal'
|
||
|
will return the superlative path through a more expensive, exhaustive search.
|
||
|
For iterative calculations it may be advisable to calculate the optimal path
|
||
|
once and reuse that path by supplying it as an argument. An example is given
|
||
|
below.
|
||
|
|
||
|
See :py:func:`numpy.einsum_path` for more details.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> a = np.arange(25).reshape(5,5)
|
||
|
>>> b = np.arange(5)
|
||
|
>>> c = np.arange(6).reshape(2,3)
|
||
|
|
||
|
Trace of a matrix:
|
||
|
|
||
|
>>> np.einsum('ii', a)
|
||
|
60
|
||
|
>>> np.einsum(a, [0,0])
|
||
|
60
|
||
|
>>> np.trace(a)
|
||
|
60
|
||
|
|
||
|
Extract the diagonal (requires explicit form):
|
||
|
|
||
|
>>> np.einsum('ii->i', a)
|
||
|
array([ 0, 6, 12, 18, 24])
|
||
|
>>> np.einsum(a, [0,0], [0])
|
||
|
array([ 0, 6, 12, 18, 24])
|
||
|
>>> np.diag(a)
|
||
|
array([ 0, 6, 12, 18, 24])
|
||
|
|
||
|
Sum over an axis (requires explicit form):
|
||
|
|
||
|
>>> np.einsum('ij->i', a)
|
||
|
array([ 10, 35, 60, 85, 110])
|
||
|
>>> np.einsum(a, [0,1], [0])
|
||
|
array([ 10, 35, 60, 85, 110])
|
||
|
>>> np.sum(a, axis=1)
|
||
|
array([ 10, 35, 60, 85, 110])
|
||
|
|
||
|
For higher dimensional arrays summing a single axis can be done with ellipsis:
|
||
|
|
||
|
>>> np.einsum('...j->...', a)
|
||
|
array([ 10, 35, 60, 85, 110])
|
||
|
>>> np.einsum(a, [Ellipsis,1], [Ellipsis])
|
||
|
array([ 10, 35, 60, 85, 110])
|
||
|
|
||
|
Compute a matrix transpose, or reorder any number of axes:
|
||
|
|
||
|
>>> np.einsum('ji', c)
|
||
|
array([[0, 3],
|
||
|
[1, 4],
|
||
|
[2, 5]])
|
||
|
>>> np.einsum('ij->ji', c)
|
||
|
array([[0, 3],
|
||
|
[1, 4],
|
||
|
[2, 5]])
|
||
|
>>> np.einsum(c, [1,0])
|
||
|
array([[0, 3],
|
||
|
[1, 4],
|
||
|
[2, 5]])
|
||
|
>>> np.transpose(c)
|
||
|
array([[0, 3],
|
||
|
[1, 4],
|
||
|
[2, 5]])
|
||
|
|
||
|
Vector inner products:
|
||
|
|
||
|
>>> np.einsum('i,i', b, b)
|
||
|
30
|
||
|
>>> np.einsum(b, [0], b, [0])
|
||
|
30
|
||
|
>>> np.inner(b,b)
|
||
|
30
|
||
|
|
||
|
Matrix vector multiplication:
|
||
|
|
||
|
>>> np.einsum('ij,j', a, b)
|
||
|
array([ 30, 80, 130, 180, 230])
|
||
|
>>> np.einsum(a, [0,1], b, [1])
|
||
|
array([ 30, 80, 130, 180, 230])
|
||
|
>>> np.dot(a, b)
|
||
|
array([ 30, 80, 130, 180, 230])
|
||
|
>>> np.einsum('...j,j', a, b)
|
||
|
array([ 30, 80, 130, 180, 230])
|
||
|
|
||
|
Broadcasting and scalar multiplication:
|
||
|
|
||
|
>>> np.einsum('..., ...', 3, c)
|
||
|
array([[ 0, 3, 6],
|
||
|
[ 9, 12, 15]])
|
||
|
>>> np.einsum(',ij', 3, c)
|
||
|
array([[ 0, 3, 6],
|
||
|
[ 9, 12, 15]])
|
||
|
>>> np.einsum(3, [Ellipsis], c, [Ellipsis])
|
||
|
array([[ 0, 3, 6],
|
||
|
[ 9, 12, 15]])
|
||
|
>>> np.multiply(3, c)
|
||
|
array([[ 0, 3, 6],
|
||
|
[ 9, 12, 15]])
|
||
|
|
||
|
Vector outer product:
|
||
|
|
||
|
>>> np.einsum('i,j', np.arange(2)+1, b)
|
||
|
array([[0, 1, 2, 3, 4],
|
||
|
[0, 2, 4, 6, 8]])
|
||
|
>>> np.einsum(np.arange(2)+1, [0], b, [1])
|
||
|
array([[0, 1, 2, 3, 4],
|
||
|
[0, 2, 4, 6, 8]])
|
||
|
>>> np.outer(np.arange(2)+1, b)
|
||
|
array([[0, 1, 2, 3, 4],
|
||
|
[0, 2, 4, 6, 8]])
|
||
|
|
||
|
Tensor contraction:
|
||
|
|
||
|
>>> a = np.arange(60.).reshape(3,4,5)
|
||
|
>>> b = np.arange(24.).reshape(4,3,2)
|
||
|
>>> np.einsum('ijk,jil->kl', a, b)
|
||
|
array([[4400., 4730.],
|
||
|
[4532., 4874.],
|
||
|
[4664., 5018.],
|
||
|
[4796., 5162.],
|
||
|
[4928., 5306.]])
|
||
|
>>> np.einsum(a, [0,1,2], b, [1,0,3], [2,3])
|
||
|
array([[4400., 4730.],
|
||
|
[4532., 4874.],
|
||
|
[4664., 5018.],
|
||
|
[4796., 5162.],
|
||
|
[4928., 5306.]])
|
||
|
>>> np.tensordot(a,b, axes=([1,0],[0,1]))
|
||
|
array([[4400., 4730.],
|
||
|
[4532., 4874.],
|
||
|
[4664., 5018.],
|
||
|
[4796., 5162.],
|
||
|
[4928., 5306.]])
|
||
|
|
||
|
Writeable returned arrays (since version 1.10.0):
|
||
|
|
||
|
>>> a = np.zeros((3, 3))
|
||
|
>>> np.einsum('ii->i', a)[:] = 1
|
||
|
>>> a
|
||
|
array([[1., 0., 0.],
|
||
|
[0., 1., 0.],
|
||
|
[0., 0., 1.]])
|
||
|
|
||
|
Example of ellipsis use:
|
||
|
|
||
|
>>> a = np.arange(6).reshape((3,2))
|
||
|
>>> b = np.arange(12).reshape((4,3))
|
||
|
>>> np.einsum('ki,jk->ij', a, b)
|
||
|
array([[10, 28, 46, 64],
|
||
|
[13, 40, 67, 94]])
|
||
|
>>> np.einsum('ki,...k->i...', a, b)
|
||
|
array([[10, 28, 46, 64],
|
||
|
[13, 40, 67, 94]])
|
||
|
>>> np.einsum('k...,jk', a, b)
|
||
|
array([[10, 28, 46, 64],
|
||
|
[13, 40, 67, 94]])
|
||
|
|
||
|
Chained array operations. For more complicated contractions, speed ups
|
||
|
might be achieved by repeatedly computing a 'greedy' path or pre-computing the
|
||
|
'optimal' path and repeatedly applying it, using an
|
||
|
`einsum_path` insertion (since version 1.12.0). Performance improvements can be
|
||
|
particularly significant with larger arrays:
|
||
|
|
||
|
>>> a = np.ones(64).reshape(2,4,8)
|
||
|
|
||
|
Basic `einsum`: ~1520ms (benchmarked on 3.1GHz Intel i5.)
|
||
|
|
||
|
>>> for iteration in range(500):
|
||
|
... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a)
|
||
|
|
||
|
Sub-optimal `einsum` (due to repeated path calculation time): ~330ms
|
||
|
|
||
|
>>> for iteration in range(500):
|
||
|
... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize='optimal')
|
||
|
|
||
|
Greedy `einsum` (faster optimal path approximation): ~160ms
|
||
|
|
||
|
>>> for iteration in range(500):
|
||
|
... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize='greedy')
|
||
|
|
||
|
Optimal `einsum` (best usage pattern in some use cases): ~110ms
|
||
|
|
||
|
>>> path = np.einsum_path('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize='optimal')[0]
|
||
|
>>> for iteration in range(500):
|
||
|
... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize=path)
|
||
|
|
||
|
"""
|
||
|
# Special handling if out is specified
|
||
|
specified_out = out is not None
|
||
|
|
||
|
# If no optimization, run pure einsum
|
||
|
if optimize is False:
|
||
|
if specified_out:
|
||
|
kwargs['out'] = out
|
||
|
return c_einsum(*operands, **kwargs)
|
||
|
|
||
|
# Check the kwargs to avoid a more cryptic error later, without having to
|
||
|
# repeat default values here
|
||
|
valid_einsum_kwargs = ['dtype', 'order', 'casting']
|
||
|
unknown_kwargs = [k for (k, v) in kwargs.items() if
|
||
|
k not in valid_einsum_kwargs]
|
||
|
if len(unknown_kwargs):
|
||
|
raise TypeError("Did not understand the following kwargs: %s"
|
||
|
% unknown_kwargs)
|
||
|
|
||
|
# Build the contraction list and operand
|
||
|
operands, contraction_list = einsum_path(*operands, optimize=optimize,
|
||
|
einsum_call=True)
|
||
|
|
||
|
# Handle order kwarg for output array, c_einsum allows mixed case
|
||
|
output_order = kwargs.pop('order', 'K')
|
||
|
if output_order.upper() == 'A':
|
||
|
if all(arr.flags.f_contiguous for arr in operands):
|
||
|
output_order = 'F'
|
||
|
else:
|
||
|
output_order = 'C'
|
||
|
|
||
|
# Start contraction loop
|
||
|
for num, contraction in enumerate(contraction_list):
|
||
|
inds, idx_rm, einsum_str, remaining, blas = contraction
|
||
|
tmp_operands = [operands.pop(x) for x in inds]
|
||
|
|
||
|
# Do we need to deal with the output?
|
||
|
handle_out = specified_out and ((num + 1) == len(contraction_list))
|
||
|
|
||
|
# Call tensordot if still possible
|
||
|
if blas:
|
||
|
# Checks have already been handled
|
||
|
input_str, results_index = einsum_str.split('->')
|
||
|
input_left, input_right = input_str.split(',')
|
||
|
|
||
|
tensor_result = input_left + input_right
|
||
|
for s in idx_rm:
|
||
|
tensor_result = tensor_result.replace(s, "")
|
||
|
|
||
|
# Find indices to contract over
|
||
|
left_pos, right_pos = [], []
|
||
|
for s in sorted(idx_rm):
|
||
|
left_pos.append(input_left.find(s))
|
||
|
right_pos.append(input_right.find(s))
|
||
|
|
||
|
# Contract!
|
||
|
new_view = tensordot(*tmp_operands, axes=(tuple(left_pos), tuple(right_pos)))
|
||
|
|
||
|
# Build a new view if needed
|
||
|
if (tensor_result != results_index) or handle_out:
|
||
|
if handle_out:
|
||
|
kwargs["out"] = out
|
||
|
new_view = c_einsum(tensor_result + '->' + results_index, new_view, **kwargs)
|
||
|
|
||
|
# Call einsum
|
||
|
else:
|
||
|
# If out was specified
|
||
|
if handle_out:
|
||
|
kwargs["out"] = out
|
||
|
|
||
|
# Do the contraction
|
||
|
new_view = c_einsum(einsum_str, *tmp_operands, **kwargs)
|
||
|
|
||
|
# Append new items and dereference what we can
|
||
|
operands.append(new_view)
|
||
|
del tmp_operands, new_view
|
||
|
|
||
|
if specified_out:
|
||
|
return out
|
||
|
else:
|
||
|
return asanyarray(operands[0], order=output_order)
|