ai-content-maker/.venv/Lib/site-packages/pandas/_libs/hashtable_func_helper.pxi.in

469 lines
13 KiB
Cython
Raw Normal View History

2024-05-03 04:18:51 +03:00
"""
Template for each `dtype` helper function for hashtable
WARNING: DO NOT edit .pxi FILE directly, .pxi is generated from .pxi.in
"""
{{py:
# name, dtype, ttype, c_type, to_c_type
dtypes = [('Complex128', 'complex128', 'complex128',
'khcomplex128_t', 'to_khcomplex128_t'),
('Complex64', 'complex64', 'complex64',
'khcomplex64_t', 'to_khcomplex64_t'),
('Float64', 'float64', 'float64', 'float64_t', ''),
('Float32', 'float32', 'float32', 'float32_t', ''),
('UInt64', 'uint64', 'uint64', 'uint64_t', ''),
('UInt32', 'uint32', 'uint32', 'uint32_t', ''),
('UInt16', 'uint16', 'uint16', 'uint16_t', ''),
('UInt8', 'uint8', 'uint8', 'uint8_t', ''),
('Object', 'object', 'pymap', 'object', '<PyObject*>'),
('Int64', 'int64', 'int64', 'int64_t', ''),
('Int32', 'int32', 'int32', 'int32_t', ''),
('Int16', 'int16', 'int16', 'int16_t', ''),
('Int8', 'int8', 'int8', 'int8_t', '')]
}}
{{for name, dtype, ttype, c_type, to_c_type in dtypes}}
@cython.wraparound(False)
@cython.boundscheck(False)
{{if dtype == 'object'}}
cdef value_count_{{dtype}}(ndarray[{{dtype}}] values, bint dropna, const uint8_t[:] mask=None):
{{else}}
cdef value_count_{{dtype}}(const {{dtype}}_t[:] values, bint dropna, const uint8_t[:] mask=None):
{{endif}}
cdef:
Py_ssize_t i = 0
Py_ssize_t n = len(values)
kh_{{ttype}}_t *table
# Don't use Py_ssize_t, since table.n_buckets is unsigned
khiter_t k
{{c_type}} val
int ret = 0
bint uses_mask = mask is not None
bint isna_entry = False
if uses_mask and not dropna:
raise NotImplementedError("uses_mask not implemented with dropna=False")
# we track the order in which keys are first seen (GH39009),
# khash-map isn't insertion-ordered, thus:
# table maps keys to counts
# result_keys remembers the original order of keys
result_keys = {{name}}Vector()
table = kh_init_{{ttype}}()
{{if dtype == 'object'}}
if uses_mask:
raise NotImplementedError("uses_mask not implemented with object dtype")
kh_resize_{{ttype}}(table, n // 10)
for i in range(n):
val = values[i]
if not dropna or not checknull(val):
k = kh_get_{{ttype}}(table, {{to_c_type}}val)
if k != table.n_buckets:
table.vals[k] += 1
else:
k = kh_put_{{ttype}}(table, {{to_c_type}}val, &ret)
table.vals[k] = 1
result_keys.append(val)
{{else}}
kh_resize_{{ttype}}(table, n)
for i in range(n):
val = {{to_c_type}}(values[i])
if dropna:
if uses_mask:
isna_entry = mask[i]
else:
isna_entry = is_nan_{{c_type}}(val)
if not dropna or not isna_entry:
k = kh_get_{{ttype}}(table, val)
if k != table.n_buckets:
table.vals[k] += 1
else:
k = kh_put_{{ttype}}(table, val, &ret)
table.vals[k] = 1
result_keys.append(val)
{{endif}}
# collect counts in the order corresponding to result_keys:
cdef:
int64_t[::1] result_counts = np.empty(table.size, dtype=np.int64)
for i in range(table.size):
{{if dtype == 'object'}}
k = kh_get_{{ttype}}(table, result_keys.data[i])
{{else}}
k = kh_get_{{ttype}}(table, result_keys.data.data[i])
{{endif}}
result_counts[i] = table.vals[k]
kh_destroy_{{ttype}}(table)
return result_keys.to_array(), result_counts.base
@cython.wraparound(False)
@cython.boundscheck(False)
{{if dtype == 'object'}}
cdef duplicated_{{dtype}}(ndarray[{{dtype}}] values, object keep='first'):
{{else}}
cdef duplicated_{{dtype}}(const {{dtype}}_t[:] values, object keep='first'):
{{endif}}
cdef:
int ret = 0
{{if dtype != 'object'}}
{{c_type}} value
{{else}}
PyObject* value
{{endif}}
Py_ssize_t i, n = len(values)
khiter_t k
kh_{{ttype}}_t *table = kh_init_{{ttype}}()
ndarray[uint8_t, ndim=1, cast=True] out = np.empty(n, dtype='bool')
kh_resize_{{ttype}}(table, min(kh_needed_n_buckets(n), SIZE_HINT_LIMIT))
if keep not in ('last', 'first', False):
raise ValueError('keep must be either "first", "last" or False')
if keep == 'last':
{{if dtype == 'object'}}
if True:
{{else}}
with nogil:
{{endif}}
for i in range(n - 1, -1, -1):
# equivalent: range(n)[::-1], which cython doesn't like in nogil
value = {{to_c_type}}(values[i])
kh_put_{{ttype}}(table, value, &ret)
out[i] = ret == 0
elif keep == 'first':
{{if dtype == 'object'}}
if True:
{{else}}
with nogil:
{{endif}}
for i in range(n):
value = {{to_c_type}}(values[i])
kh_put_{{ttype}}(table, value, &ret)
out[i] = ret == 0
else:
{{if dtype == 'object'}}
if True:
{{else}}
with nogil:
{{endif}}
for i in range(n):
value = {{to_c_type}}(values[i])
k = kh_get_{{ttype}}(table, value)
if k != table.n_buckets:
out[table.vals[k]] = 1
out[i] = 1
else:
k = kh_put_{{ttype}}(table, value, &ret)
table.vals[k] = i
out[i] = 0
kh_destroy_{{ttype}}(table)
return out
# ----------------------------------------------------------------------
# Membership
# ----------------------------------------------------------------------
@cython.wraparound(False)
@cython.boundscheck(False)
{{if dtype == 'object'}}
cdef ismember_{{dtype}}(ndarray[{{c_type}}] arr, ndarray[{{c_type}}] values):
{{else}}
cdef ismember_{{dtype}}(const {{dtype}}_t[:] arr, const {{dtype}}_t[:] values):
{{endif}}
"""
Return boolean of values in arr on an
element by-element basis
Parameters
----------
arr : {{dtype}} ndarray
values : {{dtype}} ndarray
Returns
-------
boolean ndarray len of (arr)
"""
cdef:
Py_ssize_t i, n
khiter_t k
int ret = 0
ndarray[uint8_t] result
{{if dtype == "object"}}
PyObject* val
{{else}}
{{c_type}} val
{{endif}}
kh_{{ttype}}_t *table = kh_init_{{ttype}}()
# construct the table
n = len(values)
kh_resize_{{ttype}}(table, n)
{{if dtype == 'object'}}
if True:
{{else}}
with nogil:
{{endif}}
for i in range(n):
val = {{to_c_type}}(values[i])
kh_put_{{ttype}}(table, val, &ret)
# test membership
n = len(arr)
result = np.empty(n, dtype=np.uint8)
{{if dtype == 'object'}}
if True:
{{else}}
with nogil:
{{endif}}
for i in range(n):
val = {{to_c_type}}(arr[i])
k = kh_get_{{ttype}}(table, val)
result[i] = (k != table.n_buckets)
kh_destroy_{{ttype}}(table)
return result.view(np.bool_)
# ----------------------------------------------------------------------
# Mode Computations
# ----------------------------------------------------------------------
{{endfor}}
ctypedef fused htfunc_t:
numeric_object_t
complex128_t
complex64_t
cpdef value_count(ndarray[htfunc_t] values, bint dropna, const uint8_t[:] mask=None):
if htfunc_t is object:
return value_count_object(values, dropna, mask=mask)
elif htfunc_t is int8_t:
return value_count_int8(values, dropna, mask=mask)
elif htfunc_t is int16_t:
return value_count_int16(values, dropna, mask=mask)
elif htfunc_t is int32_t:
return value_count_int32(values, dropna, mask=mask)
elif htfunc_t is int64_t:
return value_count_int64(values, dropna, mask=mask)
elif htfunc_t is uint8_t:
return value_count_uint8(values, dropna, mask=mask)
elif htfunc_t is uint16_t:
return value_count_uint16(values, dropna, mask=mask)
elif htfunc_t is uint32_t:
return value_count_uint32(values, dropna, mask=mask)
elif htfunc_t is uint64_t:
return value_count_uint64(values, dropna, mask=mask)
elif htfunc_t is float64_t:
return value_count_float64(values, dropna, mask=mask)
elif htfunc_t is float32_t:
return value_count_float32(values, dropna, mask=mask)
elif htfunc_t is complex128_t:
return value_count_complex128(values, dropna, mask=mask)
elif htfunc_t is complex64_t:
return value_count_complex64(values, dropna, mask=mask)
else:
raise TypeError(values.dtype)
cpdef duplicated(ndarray[htfunc_t] values, object keep="first"):
if htfunc_t is object:
return duplicated_object(values, keep)
elif htfunc_t is int8_t:
return duplicated_int8(values, keep)
elif htfunc_t is int16_t:
return duplicated_int16(values, keep)
elif htfunc_t is int32_t:
return duplicated_int32(values, keep)
elif htfunc_t is int64_t:
return duplicated_int64(values, keep)
elif htfunc_t is uint8_t:
return duplicated_uint8(values, keep)
elif htfunc_t is uint16_t:
return duplicated_uint16(values, keep)
elif htfunc_t is uint32_t:
return duplicated_uint32(values, keep)
elif htfunc_t is uint64_t:
return duplicated_uint64(values, keep)
elif htfunc_t is float64_t:
return duplicated_float64(values, keep)
elif htfunc_t is float32_t:
return duplicated_float32(values, keep)
elif htfunc_t is complex128_t:
return duplicated_complex128(values, keep)
elif htfunc_t is complex64_t:
return duplicated_complex64(values, keep)
else:
raise TypeError(values.dtype)
cpdef ismember(ndarray[htfunc_t] arr, ndarray[htfunc_t] values):
if htfunc_t is object:
return ismember_object(arr, values)
elif htfunc_t is int8_t:
return ismember_int8(arr, values)
elif htfunc_t is int16_t:
return ismember_int16(arr, values)
elif htfunc_t is int32_t:
return ismember_int32(arr, values)
elif htfunc_t is int64_t:
return ismember_int64(arr, values)
elif htfunc_t is uint8_t:
return ismember_uint8(arr, values)
elif htfunc_t is uint16_t:
return ismember_uint16(arr, values)
elif htfunc_t is uint32_t:
return ismember_uint32(arr, values)
elif htfunc_t is uint64_t:
return ismember_uint64(arr, values)
elif htfunc_t is float64_t:
return ismember_float64(arr, values)
elif htfunc_t is float32_t:
return ismember_float32(arr, values)
elif htfunc_t is complex128_t:
return ismember_complex128(arr, values)
elif htfunc_t is complex64_t:
return ismember_complex64(arr, values)
else:
raise TypeError(values.dtype)
@cython.wraparound(False)
@cython.boundscheck(False)
def mode(ndarray[htfunc_t] values, bint dropna, const uint8_t[:] mask=None):
# TODO(cython3): use const htfunct_t[:]
cdef:
ndarray[htfunc_t] keys
ndarray[htfunc_t] modes
int64_t[::1] counts
int64_t count, max_count = -1
Py_ssize_t nkeys, k, j = 0
keys, counts = value_count(values, dropna, mask=mask)
nkeys = len(keys)
modes = np.empty(nkeys, dtype=values.dtype)
if htfunc_t is not object:
with nogil:
for k in range(nkeys):
count = counts[k]
if count == max_count:
j += 1
elif count > max_count:
max_count = count
j = 0
else:
continue
modes[j] = keys[k]
else:
for k in range(nkeys):
count = counts[k]
if count == max_count:
j += 1
elif count > max_count:
max_count = count
j = 0
else:
continue
modes[j] = keys[k]
return modes[:j + 1]
{{py:
# name, dtype, ttype, c_type
dtypes = [('Int64', 'int64', 'int64', 'int64_t'),
('Int32', 'int32', 'int32', 'int32_t'), ]
}}
{{for name, dtype, ttype, c_type in dtypes}}
@cython.wraparound(False)
@cython.boundscheck(False)
def _unique_label_indices_{{dtype}}(const {{c_type}}[:] labels) -> ndarray:
"""
Indices of the first occurrences of the unique labels
*excluding* -1. equivalent to:
np.unique(labels, return_index=True)[1]
"""
cdef:
int ret = 0
Py_ssize_t i, n = len(labels)
kh_{{ttype}}_t *table = kh_init_{{ttype}}()
{{name}}Vector idx = {{name}}Vector()
ndarray[{{c_type}}, ndim=1] arr
{{name}}VectorData *ud = idx.data
kh_resize_{{ttype}}(table, min(kh_needed_n_buckets(n), SIZE_HINT_LIMIT))
with nogil:
for i in range(n):
kh_put_{{ttype}}(table, labels[i], &ret)
if ret != 0:
if needs_resize(ud):
with gil:
idx.resize()
append_data_{{ttype}}(ud, i)
kh_destroy_{{ttype}}(table)
arr = idx.to_array()
arr = arr[np.asarray(labels)[arr].argsort()]
return arr[1:] if arr.size != 0 and labels[arr[0]] == -1 else arr
{{endfor}}