ai-content-maker/.venv/Lib/site-packages/pandas/tests/arrays/masked/test_arithmetic.py

249 lines
8.0 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
from __future__ import annotations
from typing import Any
import numpy as np
import pytest
import pandas as pd
import pandas._testing as tm
# integer dtypes
arrays = [pd.array([1, 2, 3, None], dtype=dtype) for dtype in tm.ALL_INT_EA_DTYPES]
scalars: list[Any] = [2] * len(arrays)
# floating dtypes
arrays += [pd.array([0.1, 0.2, 0.3, None], dtype=dtype) for dtype in tm.FLOAT_EA_DTYPES]
scalars += [0.2, 0.2]
# boolean
arrays += [pd.array([True, False, True, None], dtype="boolean")]
scalars += [False]
@pytest.fixture(params=zip(arrays, scalars), ids=[a.dtype.name for a in arrays])
def data(request):
"""Fixture returning parametrized (array, scalar) tuple.
Used to test equivalence of scalars, numpy arrays with array ops, and the
equivalence of DataFrame and Series ops.
"""
return request.param
def check_skip(data, op_name):
if isinstance(data.dtype, pd.BooleanDtype) and "sub" in op_name:
pytest.skip("subtract not implemented for boolean")
def is_bool_not_implemented(data, op_name):
# match non-masked behavior
return data.dtype.kind == "b" and op_name.strip("_").lstrip("r") in [
"pow",
"truediv",
"floordiv",
]
# Test equivalence of scalars, numpy arrays with array ops
# -----------------------------------------------------------------------------
def test_array_scalar_like_equivalence(data, all_arithmetic_operators):
data, scalar = data
op = tm.get_op_from_name(all_arithmetic_operators)
check_skip(data, all_arithmetic_operators)
scalar_array = pd.array([scalar] * len(data), dtype=data.dtype)
# TODO also add len-1 array (np.array([scalar], dtype=data.dtype.numpy_dtype))
for scalar in [scalar, data.dtype.type(scalar)]:
if is_bool_not_implemented(data, all_arithmetic_operators):
msg = "operator '.*' not implemented for bool dtypes"
with pytest.raises(NotImplementedError, match=msg):
op(data, scalar)
with pytest.raises(NotImplementedError, match=msg):
op(data, scalar_array)
else:
result = op(data, scalar)
expected = op(data, scalar_array)
tm.assert_extension_array_equal(result, expected)
def test_array_NA(data, all_arithmetic_operators):
data, _ = data
op = tm.get_op_from_name(all_arithmetic_operators)
check_skip(data, all_arithmetic_operators)
scalar = pd.NA
scalar_array = pd.array([pd.NA] * len(data), dtype=data.dtype)
mask = data._mask.copy()
if is_bool_not_implemented(data, all_arithmetic_operators):
msg = "operator '.*' not implemented for bool dtypes"
with pytest.raises(NotImplementedError, match=msg):
op(data, scalar)
# GH#45421 check op doesn't alter data._mask inplace
tm.assert_numpy_array_equal(mask, data._mask)
return
result = op(data, scalar)
# GH#45421 check op doesn't alter data._mask inplace
tm.assert_numpy_array_equal(mask, data._mask)
expected = op(data, scalar_array)
tm.assert_numpy_array_equal(mask, data._mask)
tm.assert_extension_array_equal(result, expected)
def test_numpy_array_equivalence(data, all_arithmetic_operators):
data, scalar = data
op = tm.get_op_from_name(all_arithmetic_operators)
check_skip(data, all_arithmetic_operators)
numpy_array = np.array([scalar] * len(data), dtype=data.dtype.numpy_dtype)
pd_array = pd.array(numpy_array, dtype=data.dtype)
if is_bool_not_implemented(data, all_arithmetic_operators):
msg = "operator '.*' not implemented for bool dtypes"
with pytest.raises(NotImplementedError, match=msg):
op(data, numpy_array)
with pytest.raises(NotImplementedError, match=msg):
op(data, pd_array)
return
result = op(data, numpy_array)
expected = op(data, pd_array)
tm.assert_extension_array_equal(result, expected)
# Test equivalence with Series and DataFrame ops
# -----------------------------------------------------------------------------
def test_frame(data, all_arithmetic_operators):
data, scalar = data
op = tm.get_op_from_name(all_arithmetic_operators)
check_skip(data, all_arithmetic_operators)
# DataFrame with scalar
df = pd.DataFrame({"A": data})
if is_bool_not_implemented(data, all_arithmetic_operators):
msg = "operator '.*' not implemented for bool dtypes"
with pytest.raises(NotImplementedError, match=msg):
op(df, scalar)
with pytest.raises(NotImplementedError, match=msg):
op(data, scalar)
return
result = op(df, scalar)
expected = pd.DataFrame({"A": op(data, scalar)})
tm.assert_frame_equal(result, expected)
def test_series(data, all_arithmetic_operators):
data, scalar = data
op = tm.get_op_from_name(all_arithmetic_operators)
check_skip(data, all_arithmetic_operators)
ser = pd.Series(data)
others = [
scalar,
np.array([scalar] * len(data), dtype=data.dtype.numpy_dtype),
pd.array([scalar] * len(data), dtype=data.dtype),
pd.Series([scalar] * len(data), dtype=data.dtype),
]
for other in others:
if is_bool_not_implemented(data, all_arithmetic_operators):
msg = "operator '.*' not implemented for bool dtypes"
with pytest.raises(NotImplementedError, match=msg):
op(ser, other)
else:
result = op(ser, other)
expected = pd.Series(op(data, other))
tm.assert_series_equal(result, expected)
# Test generic characteristics / errors
# -----------------------------------------------------------------------------
def test_error_invalid_object(data, all_arithmetic_operators):
data, _ = data
op = all_arithmetic_operators
opa = getattr(data, op)
# 2d -> return NotImplemented
result = opa(pd.DataFrame({"A": data}))
assert result is NotImplemented
msg = r"can only perform ops with 1-d structures"
with pytest.raises(NotImplementedError, match=msg):
opa(np.arange(len(data)).reshape(-1, len(data)))
def test_error_len_mismatch(data, all_arithmetic_operators):
# operating with a list-like with non-matching length raises
data, scalar = data
op = tm.get_op_from_name(all_arithmetic_operators)
other = [scalar] * (len(data) - 1)
err = ValueError
msg = "|".join(
[
r"operands could not be broadcast together with shapes \(3,\) \(4,\)",
r"operands could not be broadcast together with shapes \(4,\) \(3,\)",
]
)
if data.dtype.kind == "b" and all_arithmetic_operators.strip("_") in [
"sub",
"rsub",
]:
err = TypeError
msg = (
r"numpy boolean subtract, the `\-` operator, is not supported, use "
r"the bitwise_xor, the `\^` operator, or the logical_xor function instead"
)
elif is_bool_not_implemented(data, all_arithmetic_operators):
msg = "operator '.*' not implemented for bool dtypes"
err = NotImplementedError
for other in [other, np.array(other)]:
with pytest.raises(err, match=msg):
op(data, other)
s = pd.Series(data)
with pytest.raises(err, match=msg):
op(s, other)
@pytest.mark.parametrize("op", ["__neg__", "__abs__", "__invert__"])
def test_unary_op_does_not_propagate_mask(data, op):
# https://github.com/pandas-dev/pandas/issues/39943
data, _ = data
ser = pd.Series(data)
if op == "__invert__" and data.dtype.kind == "f":
# we follow numpy in raising
msg = "ufunc 'invert' not supported for the input types"
with pytest.raises(TypeError, match=msg):
getattr(ser, op)()
with pytest.raises(TypeError, match=msg):
getattr(data, op)()
with pytest.raises(TypeError, match=msg):
# Check that this is still the numpy behavior
getattr(data._data, op)()
return
result = getattr(ser, op)()
expected = result.copy(deep=True)
ser[0] = None
tm.assert_series_equal(result, expected)