ai-content-maker/.venv/Lib/site-packages/pandas/tests/extension/base/ops.py

218 lines
7.6 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
from __future__ import annotations
import numpy as np
import pytest
import pandas as pd
import pandas._testing as tm
from pandas.core import ops
from pandas.tests.extension.base.base import BaseExtensionTests
class BaseOpsUtil(BaseExtensionTests):
def get_op_from_name(self, op_name: str):
return tm.get_op_from_name(op_name)
def check_opname(self, ser: pd.Series, op_name: str, other, exc=Exception):
op = self.get_op_from_name(op_name)
self._check_op(ser, op, other, op_name, exc)
def _combine(self, obj, other, op):
if isinstance(obj, pd.DataFrame):
if len(obj.columns) != 1:
raise NotImplementedError
expected = obj.iloc[:, 0].combine(other, op).to_frame()
else:
expected = obj.combine(other, op)
return expected
def _check_op(
self, ser: pd.Series, op, other, op_name: str, exc=NotImplementedError
):
if exc is None:
result = op(ser, other)
expected = self._combine(ser, other, op)
assert isinstance(result, type(ser))
self.assert_equal(result, expected)
else:
with pytest.raises(exc):
op(ser, other)
def _check_divmod_op(self, ser: pd.Series, op, other, exc=Exception):
# divmod has multiple return values, so check separately
if exc is None:
result_div, result_mod = op(ser, other)
if op is divmod:
expected_div, expected_mod = ser // other, ser % other
else:
expected_div, expected_mod = other // ser, other % ser
self.assert_series_equal(result_div, expected_div)
self.assert_series_equal(result_mod, expected_mod)
else:
with pytest.raises(exc):
divmod(ser, other)
class BaseArithmeticOpsTests(BaseOpsUtil):
"""
Various Series and DataFrame arithmetic ops methods.
Subclasses supporting various ops should set the class variables
to indicate that they support ops of that kind
* series_scalar_exc = TypeError
* frame_scalar_exc = TypeError
* series_array_exc = TypeError
* divmod_exc = TypeError
"""
series_scalar_exc: type[Exception] | None = TypeError
frame_scalar_exc: type[Exception] | None = TypeError
series_array_exc: type[Exception] | None = TypeError
divmod_exc: type[Exception] | None = TypeError
def test_arith_series_with_scalar(self, data, all_arithmetic_operators):
# series & scalar
op_name = all_arithmetic_operators
ser = pd.Series(data)
self.check_opname(ser, op_name, ser.iloc[0], exc=self.series_scalar_exc)
def test_arith_frame_with_scalar(self, data, all_arithmetic_operators):
# frame & scalar
op_name = all_arithmetic_operators
df = pd.DataFrame({"A": data})
self.check_opname(df, op_name, data[0], exc=self.frame_scalar_exc)
def test_arith_series_with_array(self, data, all_arithmetic_operators):
# ndarray & other series
op_name = all_arithmetic_operators
ser = pd.Series(data)
self.check_opname(
ser, op_name, pd.Series([ser.iloc[0]] * len(ser)), exc=self.series_array_exc
)
def test_divmod(self, data):
ser = pd.Series(data)
self._check_divmod_op(ser, divmod, 1, exc=self.divmod_exc)
self._check_divmod_op(1, ops.rdivmod, ser, exc=self.divmod_exc)
def test_divmod_series_array(self, data, data_for_twos):
ser = pd.Series(data)
self._check_divmod_op(ser, divmod, data)
other = data_for_twos
self._check_divmod_op(other, ops.rdivmod, ser)
other = pd.Series(other)
self._check_divmod_op(other, ops.rdivmod, ser)
def test_add_series_with_extension_array(self, data):
ser = pd.Series(data)
result = ser + data
expected = pd.Series(data + data)
self.assert_series_equal(result, expected)
@pytest.mark.parametrize("box", [pd.Series, pd.DataFrame])
def test_direct_arith_with_ndframe_returns_not_implemented(
self, request, data, box
):
# EAs should return NotImplemented for ops with Series/DataFrame
# Pandas takes care of unboxing the series and calling the EA's op.
other = pd.Series(data)
if box is pd.DataFrame:
other = other.to_frame()
if not hasattr(data, "__add__"):
request.node.add_marker(
pytest.mark.xfail(
reason=f"{type(data).__name__} does not implement add"
)
)
result = data.__add__(other)
assert result is NotImplemented
class BaseComparisonOpsTests(BaseOpsUtil):
"""Various Series and DataFrame comparison ops methods."""
def _compare_other(self, ser: pd.Series, data, op, other):
if op.__name__ in ["eq", "ne"]:
# comparison should match point-wise comparisons
result = op(ser, other)
expected = ser.combine(other, op)
self.assert_series_equal(result, expected)
else:
exc = None
try:
result = op(ser, other)
except Exception as err:
exc = err
if exc is None:
# Didn't error, then should match pointwise behavior
expected = ser.combine(other, op)
self.assert_series_equal(result, expected)
else:
with pytest.raises(type(exc)):
ser.combine(other, op)
def test_compare_scalar(self, data, comparison_op):
ser = pd.Series(data)
self._compare_other(ser, data, comparison_op, 0)
def test_compare_array(self, data, comparison_op):
ser = pd.Series(data)
other = pd.Series([data[0]] * len(data))
self._compare_other(ser, data, comparison_op, other)
@pytest.mark.parametrize("box", [pd.Series, pd.DataFrame])
def test_direct_arith_with_ndframe_returns_not_implemented(self, data, box):
# EAs should return NotImplemented for ops with Series/DataFrame
# Pandas takes care of unboxing the series and calling the EA's op.
other = pd.Series(data)
if box is pd.DataFrame:
other = other.to_frame()
if hasattr(data, "__eq__"):
result = data.__eq__(other)
assert result is NotImplemented
else:
raise pytest.skip(f"{type(data).__name__} does not implement __eq__")
if hasattr(data, "__ne__"):
result = data.__ne__(other)
assert result is NotImplemented
else:
raise pytest.skip(f"{type(data).__name__} does not implement __ne__")
class BaseUnaryOpsTests(BaseOpsUtil):
def test_invert(self, data):
ser = pd.Series(data, name="name")
result = ~ser
expected = pd.Series(~data, name="name")
self.assert_series_equal(result, expected)
@pytest.mark.parametrize("ufunc", [np.positive, np.negative, np.abs])
def test_unary_ufunc_dunder_equivalence(self, data, ufunc):
# the dunder __pos__ works if and only if np.positive works,
# same for __neg__/np.negative and __abs__/np.abs
attr = {np.positive: "__pos__", np.negative: "__neg__", np.abs: "__abs__"}[
ufunc
]
exc = None
try:
result = getattr(data, attr)()
except Exception as err:
exc = err
# if __pos__ raised, then so should the ufunc
with pytest.raises((type(exc), TypeError)):
ufunc(data)
else:
alt = ufunc(data)
self.assert_extension_array_equal(result, alt)