ai-content-maker/.venv/Lib/site-packages/pandas/tests/frame/methods/test_asfreq.py

199 lines
6.8 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
from datetime import datetime
import numpy as np
import pytest
from pandas import (
DataFrame,
DatetimeIndex,
Series,
date_range,
period_range,
to_datetime,
)
import pandas._testing as tm
from pandas.tseries import offsets
class TestAsFreq:
def test_asfreq2(self, frame_or_series):
ts = frame_or_series(
[0.0, 1.0, 2.0],
index=DatetimeIndex(
[
datetime(2009, 10, 30),
datetime(2009, 11, 30),
datetime(2009, 12, 31),
],
freq="BM",
),
)
daily_ts = ts.asfreq("B")
monthly_ts = daily_ts.asfreq("BM")
tm.assert_equal(monthly_ts, ts)
daily_ts = ts.asfreq("B", method="pad")
monthly_ts = daily_ts.asfreq("BM")
tm.assert_equal(monthly_ts, ts)
daily_ts = ts.asfreq(offsets.BDay())
monthly_ts = daily_ts.asfreq(offsets.BMonthEnd())
tm.assert_equal(monthly_ts, ts)
result = ts[:0].asfreq("M")
assert len(result) == 0
assert result is not ts
if frame_or_series is Series:
daily_ts = ts.asfreq("D", fill_value=-1)
result = daily_ts.value_counts().sort_index()
expected = Series([60, 1, 1, 1], index=[-1.0, 2.0, 1.0, 0.0]).sort_index()
tm.assert_series_equal(result, expected)
def test_asfreq_datetimeindex_empty(self, frame_or_series):
# GH#14320
index = DatetimeIndex(["2016-09-29 11:00"])
expected = frame_or_series(index=index, dtype=object).asfreq("H")
result = frame_or_series([3], index=index.copy()).asfreq("H")
tm.assert_index_equal(expected.index, result.index)
@pytest.mark.parametrize("tz", ["US/Eastern", "dateutil/US/Eastern"])
def test_tz_aware_asfreq_smoke(self, tz, frame_or_series):
dr = date_range("2011-12-01", "2012-07-20", freq="D", tz=tz)
obj = frame_or_series(np.random.randn(len(dr)), index=dr)
# it works!
obj.asfreq("T")
def test_asfreq_normalize(self, frame_or_series):
rng = date_range("1/1/2000 09:30", periods=20)
norm = date_range("1/1/2000", periods=20)
vals = np.random.randn(20, 3)
obj = DataFrame(vals, index=rng)
expected = DataFrame(vals, index=norm)
if frame_or_series is Series:
obj = obj[0]
expected = expected[0]
result = obj.asfreq("D", normalize=True)
tm.assert_equal(result, expected)
def test_asfreq_keep_index_name(self, frame_or_series):
# GH#9854
index_name = "bar"
index = date_range("20130101", periods=20, name=index_name)
obj = DataFrame(list(range(20)), columns=["foo"], index=index)
obj = tm.get_obj(obj, frame_or_series)
assert index_name == obj.index.name
assert index_name == obj.asfreq("10D").index.name
def test_asfreq_ts(self, frame_or_series):
index = period_range(freq="A", start="1/1/2001", end="12/31/2010")
obj = DataFrame(np.random.randn(len(index), 3), index=index)
obj = tm.get_obj(obj, frame_or_series)
result = obj.asfreq("D", how="end")
exp_index = index.asfreq("D", how="end")
assert len(result) == len(obj)
tm.assert_index_equal(result.index, exp_index)
result = obj.asfreq("D", how="start")
exp_index = index.asfreq("D", how="start")
assert len(result) == len(obj)
tm.assert_index_equal(result.index, exp_index)
def test_asfreq_resample_set_correct_freq(self, frame_or_series):
# GH#5613
# we test if .asfreq() and .resample() set the correct value for .freq
dti = to_datetime(["2012-01-01", "2012-01-02", "2012-01-03"])
obj = DataFrame({"col": [1, 2, 3]}, index=dti)
obj = tm.get_obj(obj, frame_or_series)
# testing the settings before calling .asfreq() and .resample()
assert obj.index.freq is None
assert obj.index.inferred_freq == "D"
# does .asfreq() set .freq correctly?
assert obj.asfreq("D").index.freq == "D"
# does .resample() set .freq correctly?
assert obj.resample("D").asfreq().index.freq == "D"
def test_asfreq_empty(self, datetime_frame):
# test does not blow up on length-0 DataFrame
zero_length = datetime_frame.reindex([])
result = zero_length.asfreq("BM")
assert result is not zero_length
def test_asfreq(self, datetime_frame):
offset_monthly = datetime_frame.asfreq(offsets.BMonthEnd())
rule_monthly = datetime_frame.asfreq("BM")
tm.assert_frame_equal(offset_monthly, rule_monthly)
filled = rule_monthly.asfreq("B", method="pad") # noqa
# TODO: actually check that this worked.
# don't forget!
filled_dep = rule_monthly.asfreq("B", method="pad") # noqa
def test_asfreq_datetimeindex(self):
df = DataFrame(
{"A": [1, 2, 3]},
index=[datetime(2011, 11, 1), datetime(2011, 11, 2), datetime(2011, 11, 3)],
)
df = df.asfreq("B")
assert isinstance(df.index, DatetimeIndex)
ts = df["A"].asfreq("B")
assert isinstance(ts.index, DatetimeIndex)
def test_asfreq_fillvalue(self):
# test for fill value during upsampling, related to issue 3715
# setup
rng = date_range("1/1/2016", periods=10, freq="2S")
ts = Series(np.arange(len(rng)), index=rng)
df = DataFrame({"one": ts})
# insert pre-existing missing value
df.loc["2016-01-01 00:00:08", "one"] = None
actual_df = df.asfreq(freq="1S", fill_value=9.0)
expected_df = df.asfreq(freq="1S").fillna(9.0)
expected_df.loc["2016-01-01 00:00:08", "one"] = None
tm.assert_frame_equal(expected_df, actual_df)
expected_series = ts.asfreq(freq="1S").fillna(9.0)
actual_series = ts.asfreq(freq="1S", fill_value=9.0)
tm.assert_series_equal(expected_series, actual_series)
def test_asfreq_with_date_object_index(self, frame_or_series):
rng = date_range("1/1/2000", periods=20)
ts = frame_or_series(np.random.randn(20), index=rng)
ts2 = ts.copy()
ts2.index = [x.date() for x in ts2.index]
result = ts2.asfreq("4H", method="ffill")
expected = ts.asfreq("4H", method="ffill")
tm.assert_equal(result, expected)
def test_asfreq_with_unsorted_index(self, frame_or_series):
# GH#39805
# Test that rows are not dropped when the datetime index is out of order
index = to_datetime(["2021-01-04", "2021-01-02", "2021-01-03", "2021-01-01"])
result = frame_or_series(range(4), index=index)
expected = result.reindex(sorted(index))
expected.index = expected.index._with_freq("infer")
result = result.asfreq("D")
tm.assert_equal(result, expected)