ai-content-maker/.venv/Lib/site-packages/pandas/tests/indexes/datetimes/test_unique.py

78 lines
2.0 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
from datetime import (
datetime,
timedelta,
)
from pandas import (
DatetimeIndex,
NaT,
Timestamp,
)
import pandas._testing as tm
def test_unique(tz_naive_fixture):
idx = DatetimeIndex(["2017"] * 2, tz=tz_naive_fixture)
expected = idx[:1]
result = idx.unique()
tm.assert_index_equal(result, expected)
# GH#21737
# Ensure the underlying data is consistent
assert result[0] == expected[0]
def test_index_unique(rand_series_with_duplicate_datetimeindex):
dups = rand_series_with_duplicate_datetimeindex
index = dups.index
uniques = index.unique()
expected = DatetimeIndex(
[
datetime(2000, 1, 2),
datetime(2000, 1, 3),
datetime(2000, 1, 4),
datetime(2000, 1, 5),
]
)
assert uniques.dtype == "M8[ns]" # sanity
tm.assert_index_equal(uniques, expected)
assert index.nunique() == 4
# GH#2563
assert isinstance(uniques, DatetimeIndex)
dups_local = index.tz_localize("US/Eastern")
dups_local.name = "foo"
result = dups_local.unique()
expected = DatetimeIndex(expected, name="foo")
expected = expected.tz_localize("US/Eastern")
assert result.tz is not None
assert result.name == "foo"
tm.assert_index_equal(result, expected)
def test_index_unique2():
# NaT, note this is excluded
arr = [1370745748 + t for t in range(20)] + [NaT.value]
idx = DatetimeIndex(arr * 3)
tm.assert_index_equal(idx.unique(), DatetimeIndex(arr))
assert idx.nunique() == 20
assert idx.nunique(dropna=False) == 21
def test_index_unique3():
arr = [
Timestamp("2013-06-09 02:42:28") + timedelta(seconds=t) for t in range(20)
] + [NaT]
idx = DatetimeIndex(arr * 3)
tm.assert_index_equal(idx.unique(), DatetimeIndex(arr))
assert idx.nunique() == 20
assert idx.nunique(dropna=False) == 21
def test_is_unique_monotonic(rand_series_with_duplicate_datetimeindex):
index = rand_series_with_duplicate_datetimeindex.index
assert not index.is_unique