ai-content-maker/.venv/Lib/site-packages/pandas/tests/indexing/multiindex/test_getitem.py

395 lines
12 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
import numpy as np
import pytest
from pandas import (
DataFrame,
Index,
MultiIndex,
Series,
)
import pandas._testing as tm
from pandas.core.indexing import IndexingError
# ----------------------------------------------------------------------------
# test indexing of Series with multi-level Index
# ----------------------------------------------------------------------------
@pytest.mark.parametrize(
"access_method",
[lambda s, x: s[:, x], lambda s, x: s.loc[:, x], lambda s, x: s.xs(x, level=1)],
)
@pytest.mark.parametrize(
"level1_value, expected",
[(0, Series([1], index=[0])), (1, Series([2, 3], index=[1, 2]))],
)
def test_series_getitem_multiindex(access_method, level1_value, expected):
# GH 6018
# series regression getitem with a multi-index
mi = MultiIndex.from_tuples([(0, 0), (1, 1), (2, 1)], names=["A", "B"])
ser = Series([1, 2, 3], index=mi)
expected.index.name = "A"
result = access_method(ser, level1_value)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("level0_value", ["D", "A"])
def test_series_getitem_duplicates_multiindex(level0_value):
# GH 5725 the 'A' happens to be a valid Timestamp so the doesn't raise
# the appropriate error, only in PY3 of course!
index = MultiIndex(
levels=[[level0_value, "B", "C"], [0, 26, 27, 37, 57, 67, 75, 82]],
codes=[[0, 0, 0, 1, 2, 2, 2, 2, 2, 2], [1, 3, 4, 6, 0, 2, 2, 3, 5, 7]],
names=["tag", "day"],
)
arr = np.random.randn(len(index), 1)
df = DataFrame(arr, index=index, columns=["val"])
# confirm indexing on missing value raises KeyError
if level0_value != "A":
with pytest.raises(KeyError, match=r"^'A'$"):
df.val["A"]
with pytest.raises(KeyError, match=r"^'X'$"):
df.val["X"]
result = df.val[level0_value]
expected = Series(
arr.ravel()[0:3], name="val", index=Index([26, 37, 57], name="day")
)
tm.assert_series_equal(result, expected)
def test_series_getitem(multiindex_year_month_day_dataframe_random_data, indexer_sl):
s = multiindex_year_month_day_dataframe_random_data["A"]
expected = s.reindex(s.index[42:65])
expected.index = expected.index.droplevel(0).droplevel(0)
result = indexer_sl(s)[2000, 3]
tm.assert_series_equal(result, expected)
def test_series_getitem_returns_scalar(
multiindex_year_month_day_dataframe_random_data, indexer_sl
):
s = multiindex_year_month_day_dataframe_random_data["A"]
expected = s.iloc[49]
result = indexer_sl(s)[2000, 3, 10]
assert result == expected
@pytest.mark.parametrize(
"indexer,expected_error,expected_error_msg",
[
(lambda s: s.__getitem__((2000, 3, 4)), KeyError, r"^\(2000, 3, 4\)$"),
(lambda s: s[(2000, 3, 4)], KeyError, r"^\(2000, 3, 4\)$"),
(lambda s: s.loc[(2000, 3, 4)], KeyError, r"^\(2000, 3, 4\)$"),
(lambda s: s.loc[(2000, 3, 4, 5)], IndexingError, "Too many indexers"),
(lambda s: s.__getitem__(len(s)), KeyError, ""), # match should include len(s)
(lambda s: s[len(s)], KeyError, ""), # match should include len(s)
(
lambda s: s.iloc[len(s)],
IndexError,
"single positional indexer is out-of-bounds",
),
],
)
def test_series_getitem_indexing_errors(
multiindex_year_month_day_dataframe_random_data,
indexer,
expected_error,
expected_error_msg,
):
s = multiindex_year_month_day_dataframe_random_data["A"]
with pytest.raises(expected_error, match=expected_error_msg):
indexer(s)
def test_series_getitem_corner_generator(
multiindex_year_month_day_dataframe_random_data,
):
s = multiindex_year_month_day_dataframe_random_data["A"]
result = s[(x > 0 for x in s)]
expected = s[s > 0]
tm.assert_series_equal(result, expected)
# ----------------------------------------------------------------------------
# test indexing of DataFrame with multi-level Index
# ----------------------------------------------------------------------------
def test_getitem_simple(multiindex_dataframe_random_data):
df = multiindex_dataframe_random_data.T
expected = df.values[:, 0]
result = df["foo", "one"].values
tm.assert_almost_equal(result, expected)
@pytest.mark.parametrize(
"indexer,expected_error_msg",
[
(lambda df: df[("foo", "four")], r"^\('foo', 'four'\)$"),
(lambda df: df["foobar"], r"^'foobar'$"),
],
)
def test_frame_getitem_simple_key_error(
multiindex_dataframe_random_data, indexer, expected_error_msg
):
df = multiindex_dataframe_random_data.T
with pytest.raises(KeyError, match=expected_error_msg):
indexer(df)
def test_frame_getitem_multicolumn_empty_level():
df = DataFrame({"a": ["1", "2", "3"], "b": ["2", "3", "4"]})
df.columns = [
["level1 item1", "level1 item2"],
["", "level2 item2"],
["level3 item1", "level3 item2"],
]
result = df["level1 item1"]
expected = DataFrame(
[["1"], ["2"], ["3"]], index=df.index, columns=["level3 item1"]
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"indexer,expected_slice",
[
(lambda df: df["foo"], slice(3)),
(lambda df: df["bar"], slice(3, 5)),
(lambda df: df.loc[:, "bar"], slice(3, 5)),
],
)
def test_frame_getitem_toplevel(
multiindex_dataframe_random_data, indexer, expected_slice
):
df = multiindex_dataframe_random_data.T
expected = df.reindex(columns=df.columns[expected_slice])
expected.columns = expected.columns.droplevel(0)
result = indexer(df)
tm.assert_frame_equal(result, expected)
def test_frame_mixed_depth_get():
arrays = [
["a", "top", "top", "routine1", "routine1", "routine2"],
["", "OD", "OD", "result1", "result2", "result1"],
["", "wx", "wy", "", "", ""],
]
tuples = sorted(zip(*arrays))
index = MultiIndex.from_tuples(tuples)
df = DataFrame(np.random.randn(4, 6), columns=index)
result = df["a"]
expected = df["a", "", ""].rename("a")
tm.assert_series_equal(result, expected)
result = df["routine1", "result1"]
expected = df["routine1", "result1", ""]
expected = expected.rename(("routine1", "result1"))
tm.assert_series_equal(result, expected)
def test_frame_getitem_nan_multiindex(nulls_fixture):
# GH#29751
# loc on a multiindex containing nan values
n = nulls_fixture # for code readability
cols = ["a", "b", "c"]
df = DataFrame(
[[11, n, 13], [21, n, 23], [31, n, 33], [41, n, 43]],
columns=cols,
).set_index(["a", "b"])
df["c"] = df["c"].astype("int64")
idx = (21, n)
result = df.loc[:idx]
expected = DataFrame([[11, n, 13], [21, n, 23]], columns=cols).set_index(["a", "b"])
expected["c"] = expected["c"].astype("int64")
tm.assert_frame_equal(result, expected)
result = df.loc[idx:]
expected = DataFrame(
[[21, n, 23], [31, n, 33], [41, n, 43]], columns=cols
).set_index(["a", "b"])
expected["c"] = expected["c"].astype("int64")
tm.assert_frame_equal(result, expected)
idx1, idx2 = (21, n), (31, n)
result = df.loc[idx1:idx2]
expected = DataFrame([[21, n, 23], [31, n, 33]], columns=cols).set_index(["a", "b"])
expected["c"] = expected["c"].astype("int64")
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"indexer,expected",
[
(
(["b"], ["bar", np.nan]),
(
DataFrame(
[[2, 3], [5, 6]],
columns=MultiIndex.from_tuples([("b", "bar"), ("b", np.nan)]),
dtype="int64",
)
),
),
(
(["a", "b"]),
(
DataFrame(
[[1, 2, 3], [4, 5, 6]],
columns=MultiIndex.from_tuples(
[("a", "foo"), ("b", "bar"), ("b", np.nan)]
),
dtype="int64",
)
),
),
(
(["b"]),
(
DataFrame(
[[2, 3], [5, 6]],
columns=MultiIndex.from_tuples([("b", "bar"), ("b", np.nan)]),
dtype="int64",
)
),
),
(
(["b"], ["bar"]),
(
DataFrame(
[[2], [5]],
columns=MultiIndex.from_tuples([("b", "bar")]),
dtype="int64",
)
),
),
(
(["b"], [np.nan]),
(
DataFrame(
[[3], [6]],
columns=MultiIndex(
codes=[[1], [-1]], levels=[["a", "b"], ["bar", "foo"]]
),
dtype="int64",
)
),
),
(("b", np.nan), Series([3, 6], dtype="int64", name=("b", np.nan))),
],
)
def test_frame_getitem_nan_cols_multiindex(
indexer,
expected,
nulls_fixture,
):
# Slicing MultiIndex including levels with nan values, for more information
# see GH#25154
df = DataFrame(
[[1, 2, 3], [4, 5, 6]],
columns=MultiIndex.from_tuples(
[("a", "foo"), ("b", "bar"), ("b", nulls_fixture)]
),
dtype="int64",
)
result = df.loc[:, indexer]
tm.assert_equal(result, expected)
# ----------------------------------------------------------------------------
# test indexing of DataFrame with multi-level Index with duplicates
# ----------------------------------------------------------------------------
@pytest.fixture
def dataframe_with_duplicate_index():
"""Fixture for DataFrame used in tests for gh-4145 and gh-4146"""
data = [["a", "d", "e", "c", "f", "b"], [1, 4, 5, 3, 6, 2], [1, 4, 5, 3, 6, 2]]
index = ["h1", "h3", "h5"]
columns = MultiIndex(
levels=[["A", "B"], ["A1", "A2", "B1", "B2"]],
codes=[[0, 0, 0, 1, 1, 1], [0, 3, 3, 0, 1, 2]],
names=["main", "sub"],
)
return DataFrame(data, index=index, columns=columns)
@pytest.mark.parametrize(
"indexer", [lambda df: df[("A", "A1")], lambda df: df.loc[:, ("A", "A1")]]
)
def test_frame_mi_access(dataframe_with_duplicate_index, indexer):
# GH 4145
df = dataframe_with_duplicate_index
index = Index(["h1", "h3", "h5"])
columns = MultiIndex.from_tuples([("A", "A1")], names=["main", "sub"])
expected = DataFrame([["a", 1, 1]], index=columns, columns=index).T
result = indexer(df)
tm.assert_frame_equal(result, expected)
def test_frame_mi_access_returns_series(dataframe_with_duplicate_index):
# GH 4146, not returning a block manager when selecting a unique index
# from a duplicate index
# as of 4879, this returns a Series (which is similar to what happens
# with a non-unique)
df = dataframe_with_duplicate_index
expected = Series(["a", 1, 1], index=["h1", "h3", "h5"], name="A1")
result = df["A"]["A1"]
tm.assert_series_equal(result, expected)
def test_frame_mi_access_returns_frame(dataframe_with_duplicate_index):
# selecting a non_unique from the 2nd level
df = dataframe_with_duplicate_index
expected = DataFrame(
[["d", 4, 4], ["e", 5, 5]],
index=Index(["B2", "B2"], name="sub"),
columns=["h1", "h3", "h5"],
).T
result = df["A"]["B2"]
tm.assert_frame_equal(result, expected)
def test_frame_mi_empty_slice():
# GH 15454
df = DataFrame(0, index=range(2), columns=MultiIndex.from_product([[1], [2]]))
result = df[[]]
expected = DataFrame(
index=[0, 1], columns=MultiIndex(levels=[[1], [2]], codes=[[], []])
)
tm.assert_frame_equal(result, expected)
def test_loc_empty_multiindex():
# GH#36936
arrays = [["a", "a", "b", "a"], ["a", "a", "b", "b"]]
index = MultiIndex.from_arrays(arrays, names=("idx1", "idx2"))
df = DataFrame([1, 2, 3, 4], index=index, columns=["value"])
# loc on empty multiindex == loc with False mask
empty_multiindex = df.loc[df.loc[:, "value"] == 0, :].index
result = df.loc[empty_multiindex, :]
expected = df.loc[[False] * len(df.index), :]
tm.assert_frame_equal(result, expected)
# replacing value with loc on empty multiindex
df.loc[df.loc[df.loc[:, "value"] == 0].index, "value"] = 5
result = df
expected = DataFrame([1, 2, 3, 4], index=index, columns=["value"])
tm.assert_frame_equal(result, expected)