ai-content-maker/.venv/Lib/site-packages/pandas/tests/io/pytables/test_put.py

368 lines
11 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
import datetime
import re
from warnings import (
catch_warnings,
simplefilter,
)
import numpy as np
import pytest
from pandas._libs.tslibs import Timestamp
import pandas as pd
from pandas import (
DataFrame,
HDFStore,
Index,
MultiIndex,
RangeIndex,
Series,
_testing as tm,
concat,
)
from pandas.core.api import Int64Index
from pandas.tests.io.pytables.common import (
_maybe_remove,
ensure_clean_path,
ensure_clean_store,
)
from pandas.util import _test_decorators as td
pytestmark = pytest.mark.single_cpu
def test_format_type(setup_path):
df = DataFrame({"A": [1, 2]})
with ensure_clean_path(setup_path) as path:
with HDFStore(path) as store:
store.put("a", df, format="fixed")
store.put("b", df, format="table")
assert store.get_storer("a").format_type == "fixed"
assert store.get_storer("b").format_type == "table"
def test_format_kwarg_in_constructor(setup_path):
# GH 13291
msg = "format is not a defined argument for HDFStore"
with tm.ensure_clean(setup_path) as path:
with pytest.raises(ValueError, match=msg):
HDFStore(path, format="table")
def test_api_default_format(setup_path):
# default_format option
with ensure_clean_store(setup_path) as store:
df = tm.makeDataFrame()
with pd.option_context("io.hdf.default_format", "fixed"):
_maybe_remove(store, "df")
store.put("df", df)
assert not store.get_storer("df").is_table
msg = "Can only append to Tables"
with pytest.raises(ValueError, match=msg):
store.append("df2", df)
with pd.option_context("io.hdf.default_format", "table"):
_maybe_remove(store, "df")
store.put("df", df)
assert store.get_storer("df").is_table
_maybe_remove(store, "df2")
store.append("df2", df)
assert store.get_storer("df").is_table
with ensure_clean_path(setup_path) as path:
df = tm.makeDataFrame()
with pd.option_context("io.hdf.default_format", "fixed"):
df.to_hdf(path, "df")
with HDFStore(path) as store:
assert not store.get_storer("df").is_table
with pytest.raises(ValueError, match=msg):
df.to_hdf(path, "df2", append=True)
with pd.option_context("io.hdf.default_format", "table"):
df.to_hdf(path, "df3")
with HDFStore(path) as store:
assert store.get_storer("df3").is_table
df.to_hdf(path, "df4", append=True)
with HDFStore(path) as store:
assert store.get_storer("df4").is_table
def test_put(setup_path):
with ensure_clean_store(setup_path) as store:
ts = tm.makeTimeSeries()
df = tm.makeTimeDataFrame()
store["a"] = ts
store["b"] = df[:10]
store["foo/bar/bah"] = df[:10]
store["foo"] = df[:10]
store["/foo"] = df[:10]
store.put("c", df[:10], format="table")
# not OK, not a table
msg = "Can only append to Tables"
with pytest.raises(ValueError, match=msg):
store.put("b", df[10:], append=True)
# node does not currently exist, test _is_table_type returns False
# in this case
_maybe_remove(store, "f")
with pytest.raises(ValueError, match=msg):
store.put("f", df[10:], append=True)
# can't put to a table (use append instead)
with pytest.raises(ValueError, match=msg):
store.put("c", df[10:], append=True)
# overwrite table
store.put("c", df[:10], format="table", append=False)
tm.assert_frame_equal(df[:10], store["c"])
def test_put_string_index(setup_path):
with ensure_clean_store(setup_path) as store:
index = Index([f"I am a very long string index: {i}" for i in range(20)])
s = Series(np.arange(20), index=index)
df = DataFrame({"A": s, "B": s})
store["a"] = s
tm.assert_series_equal(store["a"], s)
store["b"] = df
tm.assert_frame_equal(store["b"], df)
# mixed length
index = Index(
["abcdefghijklmnopqrstuvwxyz1234567890"]
+ [f"I am a very long string index: {i}" for i in range(20)]
)
s = Series(np.arange(21), index=index)
df = DataFrame({"A": s, "B": s})
store["a"] = s
tm.assert_series_equal(store["a"], s)
store["b"] = df
tm.assert_frame_equal(store["b"], df)
def test_put_compression(setup_path):
with ensure_clean_store(setup_path) as store:
df = tm.makeTimeDataFrame()
store.put("c", df, format="table", complib="zlib")
tm.assert_frame_equal(store["c"], df)
# can't compress if format='fixed'
msg = "Compression not supported on Fixed format stores"
with pytest.raises(ValueError, match=msg):
store.put("b", df, format="fixed", complib="zlib")
@td.skip_if_windows
def test_put_compression_blosc(setup_path):
df = tm.makeTimeDataFrame()
with ensure_clean_store(setup_path) as store:
# can't compress if format='fixed'
msg = "Compression not supported on Fixed format stores"
with pytest.raises(ValueError, match=msg):
store.put("b", df, format="fixed", complib="blosc")
store.put("c", df, format="table", complib="blosc")
tm.assert_frame_equal(store["c"], df)
def test_put_mixed_type(setup_path):
df = tm.makeTimeDataFrame()
df["obj1"] = "foo"
df["obj2"] = "bar"
df["bool1"] = df["A"] > 0
df["bool2"] = df["B"] > 0
df["bool3"] = True
df["int1"] = 1
df["int2"] = 2
df["timestamp1"] = Timestamp("20010102")
df["timestamp2"] = Timestamp("20010103")
df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0)
df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0)
df.loc[df.index[3:6], ["obj1"]] = np.nan
df = df._consolidate()._convert(datetime=True)
with ensure_clean_store(setup_path) as store:
_maybe_remove(store, "df")
# PerformanceWarning
with catch_warnings(record=True):
simplefilter("ignore", pd.errors.PerformanceWarning)
store.put("df", df)
expected = store.get("df")
tm.assert_frame_equal(expected, df)
@pytest.mark.parametrize(
"format, index",
[
["table", tm.makeFloatIndex],
["table", tm.makeStringIndex],
["table", tm.makeIntIndex],
["table", tm.makeDateIndex],
["fixed", tm.makeFloatIndex],
["fixed", tm.makeStringIndex],
["fixed", tm.makeIntIndex],
["fixed", tm.makeDateIndex],
["table", tm.makePeriodIndex], # GH#7796
["fixed", tm.makePeriodIndex],
],
)
def test_store_index_types(setup_path, format, index):
# GH5386
# test storing various index types
with ensure_clean_store(setup_path) as store:
df = DataFrame(np.random.randn(10, 2), columns=list("AB"))
df.index = index(len(df))
_maybe_remove(store, "df")
store.put("df", df, format=format)
tm.assert_frame_equal(df, store["df"])
def test_column_multiindex(setup_path):
# GH 4710
# recreate multi-indexes properly
index = MultiIndex.from_tuples(
[("A", "a"), ("A", "b"), ("B", "a"), ("B", "b")], names=["first", "second"]
)
df = DataFrame(np.arange(12).reshape(3, 4), columns=index)
expected = df.copy()
if isinstance(expected.index, RangeIndex):
expected.index = Int64Index(expected.index)
with ensure_clean_store(setup_path) as store:
store.put("df", df)
tm.assert_frame_equal(
store["df"], expected, check_index_type=True, check_column_type=True
)
store.put("df1", df, format="table")
tm.assert_frame_equal(
store["df1"], expected, check_index_type=True, check_column_type=True
)
msg = re.escape("cannot use a multi-index on axis [1] with data_columns ['A']")
with pytest.raises(ValueError, match=msg):
store.put("df2", df, format="table", data_columns=["A"])
msg = re.escape("cannot use a multi-index on axis [1] with data_columns True")
with pytest.raises(ValueError, match=msg):
store.put("df3", df, format="table", data_columns=True)
# appending multi-column on existing table (see GH 6167)
with ensure_clean_store(setup_path) as store:
store.append("df2", df)
store.append("df2", df)
tm.assert_frame_equal(store["df2"], concat((df, df)))
# non_index_axes name
df = DataFrame(np.arange(12).reshape(3, 4), columns=Index(list("ABCD"), name="foo"))
expected = df.copy()
if isinstance(expected.index, RangeIndex):
expected.index = Int64Index(expected.index)
with ensure_clean_store(setup_path) as store:
store.put("df1", df, format="table")
tm.assert_frame_equal(
store["df1"], expected, check_index_type=True, check_column_type=True
)
def test_store_multiindex(setup_path):
# validate multi-index names
# GH 5527
with ensure_clean_store(setup_path) as store:
def make_index(names=None):
return MultiIndex.from_tuples(
[
(datetime.datetime(2013, 12, d), s, t)
for d in range(1, 3)
for s in range(2)
for t in range(3)
],
names=names,
)
# no names
_maybe_remove(store, "df")
df = DataFrame(np.zeros((12, 2)), columns=["a", "b"], index=make_index())
store.append("df", df)
tm.assert_frame_equal(store.select("df"), df)
# partial names
_maybe_remove(store, "df")
df = DataFrame(
np.zeros((12, 2)),
columns=["a", "b"],
index=make_index(["date", None, None]),
)
store.append("df", df)
tm.assert_frame_equal(store.select("df"), df)
# series
_maybe_remove(store, "s")
s = Series(np.zeros(12), index=make_index(["date", None, None]))
store.append("s", s)
xp = Series(np.zeros(12), index=make_index(["date", "level_1", "level_2"]))
tm.assert_series_equal(store.select("s"), xp)
# dup with column
_maybe_remove(store, "df")
df = DataFrame(
np.zeros((12, 2)),
columns=["a", "b"],
index=make_index(["date", "a", "t"]),
)
msg = "duplicate names/columns in the multi-index when storing as a table"
with pytest.raises(ValueError, match=msg):
store.append("df", df)
# dup within level
_maybe_remove(store, "df")
df = DataFrame(
np.zeros((12, 2)),
columns=["a", "b"],
index=make_index(["date", "date", "date"]),
)
with pytest.raises(ValueError, match=msg):
store.append("df", df)
# fully names
_maybe_remove(store, "df")
df = DataFrame(
np.zeros((12, 2)),
columns=["a", "b"],
index=make_index(["date", "s", "t"]),
)
store.append("df", df)
tm.assert_frame_equal(store.select("df"), df)