ai-content-maker/.venv/Lib/site-packages/pandas/tests/io/test_fsspec.py

320 lines
9.4 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
import io
import numpy as np
import pytest
from pandas import (
DataFrame,
date_range,
read_csv,
read_excel,
read_feather,
read_json,
read_parquet,
read_pickle,
read_stata,
read_table,
)
import pandas._testing as tm
from pandas.util import _test_decorators as td
@pytest.fixture
def df1():
return DataFrame(
{
"int": [1, 3],
"float": [2.0, np.nan],
"str": ["t", "s"],
"dt": date_range("2018-06-18", periods=2),
}
)
@pytest.fixture
def cleared_fs():
fsspec = pytest.importorskip("fsspec")
memfs = fsspec.filesystem("memory")
yield memfs
memfs.store.clear()
def test_read_csv(cleared_fs, df1):
text = str(df1.to_csv(index=False)).encode()
with cleared_fs.open("test/test.csv", "wb") as w:
w.write(text)
df2 = read_csv("memory://test/test.csv", parse_dates=["dt"])
tm.assert_frame_equal(df1, df2)
def test_reasonable_error(monkeypatch, cleared_fs):
from fsspec import registry
from fsspec.registry import known_implementations
registry.target.clear()
with pytest.raises(ValueError, match="nosuchprotocol"):
read_csv("nosuchprotocol://test/test.csv")
err_msg = "test error message"
monkeypatch.setitem(
known_implementations,
"couldexist",
{"class": "unimportable.CouldExist", "err": err_msg},
)
with pytest.raises(ImportError, match=err_msg):
read_csv("couldexist://test/test.csv")
def test_to_csv(cleared_fs, df1):
df1.to_csv("memory://test/test.csv", index=True)
df2 = read_csv("memory://test/test.csv", parse_dates=["dt"], index_col=0)
tm.assert_frame_equal(df1, df2)
@pytest.mark.parametrize("ext", ["xls", "xlsx"])
def test_to_excel(cleared_fs, ext, df1):
if ext == "xls":
pytest.importorskip("xlwt")
else:
pytest.importorskip("openpyxl")
path = f"memory://test/test.{ext}"
df1.to_excel(path, index=True)
df2 = read_excel(path, parse_dates=["dt"], index_col=0)
tm.assert_frame_equal(df1, df2)
@pytest.mark.parametrize("binary_mode", [False, True])
def test_to_csv_fsspec_object(cleared_fs, binary_mode, df1):
fsspec = pytest.importorskip("fsspec")
path = "memory://test/test.csv"
mode = "wb" if binary_mode else "w"
fsspec_object = fsspec.open(path, mode=mode).open()
df1.to_csv(fsspec_object, index=True)
assert not fsspec_object.closed
fsspec_object.close()
mode = mode.replace("w", "r")
fsspec_object = fsspec.open(path, mode=mode).open()
df2 = read_csv(
fsspec_object,
parse_dates=["dt"],
index_col=0,
)
assert not fsspec_object.closed
fsspec_object.close()
tm.assert_frame_equal(df1, df2)
def test_csv_options(fsspectest):
df = DataFrame({"a": [0]})
df.to_csv(
"testmem://test/test.csv", storage_options={"test": "csv_write"}, index=False
)
assert fsspectest.test[0] == "csv_write"
read_csv("testmem://test/test.csv", storage_options={"test": "csv_read"})
assert fsspectest.test[0] == "csv_read"
def test_read_table_options(fsspectest):
# GH #39167
df = DataFrame({"a": [0]})
df.to_csv(
"testmem://test/test.csv", storage_options={"test": "csv_write"}, index=False
)
assert fsspectest.test[0] == "csv_write"
read_table("testmem://test/test.csv", storage_options={"test": "csv_read"})
assert fsspectest.test[0] == "csv_read"
@pytest.mark.parametrize("extension", ["xlsx", "xls"])
def test_excel_options(fsspectest, extension):
if extension == "xls":
pytest.importorskip("xlwt")
else:
pytest.importorskip("openpyxl")
df = DataFrame({"a": [0]})
path = f"testmem://test/test.{extension}"
df.to_excel(path, storage_options={"test": "write"}, index=False)
assert fsspectest.test[0] == "write"
read_excel(path, storage_options={"test": "read"})
assert fsspectest.test[0] == "read"
@td.skip_if_no("fastparquet")
def test_to_parquet_new_file(cleared_fs, df1):
"""Regression test for writing to a not-yet-existent GCS Parquet file."""
df1.to_parquet(
"memory://test/test.csv", index=True, engine="fastparquet", compression=None
)
@td.skip_if_no("pyarrow", min_version="2")
def test_arrowparquet_options(fsspectest):
"""Regression test for writing to a not-yet-existent GCS Parquet file."""
df = DataFrame({"a": [0]})
df.to_parquet(
"testmem://test/test.csv",
engine="pyarrow",
compression=None,
storage_options={"test": "parquet_write"},
)
assert fsspectest.test[0] == "parquet_write"
read_parquet(
"testmem://test/test.csv",
engine="pyarrow",
storage_options={"test": "parquet_read"},
)
assert fsspectest.test[0] == "parquet_read"
@td.skip_array_manager_not_yet_implemented # TODO(ArrayManager) fastparquet
@td.skip_if_no("fastparquet")
def test_fastparquet_options(fsspectest):
"""Regression test for writing to a not-yet-existent GCS Parquet file."""
df = DataFrame({"a": [0]})
df.to_parquet(
"testmem://test/test.csv",
engine="fastparquet",
compression=None,
storage_options={"test": "parquet_write"},
)
assert fsspectest.test[0] == "parquet_write"
read_parquet(
"testmem://test/test.csv",
engine="fastparquet",
storage_options={"test": "parquet_read"},
)
assert fsspectest.test[0] == "parquet_read"
@pytest.mark.single_cpu
@td.skip_if_no("s3fs")
def test_from_s3_csv(s3_resource, tips_file, s3so):
tm.assert_equal(
read_csv("s3://pandas-test/tips.csv", storage_options=s3so), read_csv(tips_file)
)
# the following are decompressed by pandas, not fsspec
tm.assert_equal(
read_csv("s3://pandas-test/tips.csv.gz", storage_options=s3so),
read_csv(tips_file),
)
tm.assert_equal(
read_csv("s3://pandas-test/tips.csv.bz2", storage_options=s3so),
read_csv(tips_file),
)
@pytest.mark.single_cpu
@pytest.mark.parametrize("protocol", ["s3", "s3a", "s3n"])
@td.skip_if_no("s3fs")
def test_s3_protocols(s3_resource, tips_file, protocol, s3so):
tm.assert_equal(
read_csv("%s://pandas-test/tips.csv" % protocol, storage_options=s3so),
read_csv(tips_file),
)
@pytest.mark.single_cpu
@td.skip_array_manager_not_yet_implemented # TODO(ArrayManager) fastparquet
@td.skip_if_no("s3fs")
@td.skip_if_no("fastparquet")
def test_s3_parquet(s3_resource, s3so, df1):
fn = "s3://pandas-test/test.parquet"
df1.to_parquet(
fn, index=False, engine="fastparquet", compression=None, storage_options=s3so
)
df2 = read_parquet(fn, engine="fastparquet", storage_options=s3so)
tm.assert_equal(df1, df2)
@td.skip_if_installed("fsspec")
def test_not_present_exception():
msg = "Missing optional dependency 'fsspec'|fsspec library is required"
with pytest.raises(ImportError, match=msg):
read_csv("memory://test/test.csv")
@td.skip_if_no("pyarrow")
def test_feather_options(fsspectest):
df = DataFrame({"a": [0]})
df.to_feather("testmem://afile", storage_options={"test": "feather_write"})
assert fsspectest.test[0] == "feather_write"
out = read_feather("testmem://afile", storage_options={"test": "feather_read"})
assert fsspectest.test[0] == "feather_read"
tm.assert_frame_equal(df, out)
def test_pickle_options(fsspectest):
df = DataFrame({"a": [0]})
df.to_pickle("testmem://afile", storage_options={"test": "pickle_write"})
assert fsspectest.test[0] == "pickle_write"
out = read_pickle("testmem://afile", storage_options={"test": "pickle_read"})
assert fsspectest.test[0] == "pickle_read"
tm.assert_frame_equal(df, out)
def test_json_options(fsspectest, compression):
df = DataFrame({"a": [0]})
df.to_json(
"testmem://afile",
compression=compression,
storage_options={"test": "json_write"},
)
assert fsspectest.test[0] == "json_write"
out = read_json(
"testmem://afile",
compression=compression,
storage_options={"test": "json_read"},
)
assert fsspectest.test[0] == "json_read"
tm.assert_frame_equal(df, out)
def test_stata_options(fsspectest):
df = DataFrame({"a": [0]})
df.to_stata(
"testmem://afile", storage_options={"test": "stata_write"}, write_index=False
)
assert fsspectest.test[0] == "stata_write"
out = read_stata("testmem://afile", storage_options={"test": "stata_read"})
assert fsspectest.test[0] == "stata_read"
tm.assert_frame_equal(df, out.astype("int64"))
@td.skip_if_no("tabulate")
def test_markdown_options(fsspectest):
df = DataFrame({"a": [0]})
df.to_markdown("testmem://afile", storage_options={"test": "md_write"})
assert fsspectest.test[0] == "md_write"
assert fsspectest.cat("testmem://afile")
@td.skip_if_no("pyarrow")
def test_non_fsspec_options():
with pytest.raises(ValueError, match="storage_options"):
read_csv("localfile", storage_options={"a": True})
with pytest.raises(ValueError, match="storage_options"):
# separate test for parquet, which has a different code path
read_parquet("localfile", storage_options={"a": True})
by = io.BytesIO()
with pytest.raises(ValueError, match="storage_options"):
read_csv(by, storage_options={"a": True})
df = DataFrame({"a": [0]})
with pytest.raises(ValueError, match="storage_options"):
df.to_parquet("nonfsspecpath", storage_options={"a": True})