ai-content-maker/.venv/Lib/site-packages/pandas/tests/series/indexing/test_setitem.py

1665 lines
51 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
from datetime import (
date,
datetime,
)
import numpy as np
import pytest
from pandas.errors import IndexingError
from pandas.core.dtypes.common import is_list_like
from pandas import (
NA,
Categorical,
DataFrame,
DatetimeIndex,
Index,
Interval,
IntervalIndex,
MultiIndex,
NaT,
Period,
Series,
Timedelta,
Timestamp,
array,
concat,
date_range,
interval_range,
period_range,
timedelta_range,
)
import pandas._testing as tm
from pandas.tseries.offsets import BDay
class TestSetitemDT64Values:
def test_setitem_none_nan(self):
series = Series(date_range("1/1/2000", periods=10))
series[3] = None
assert series[3] is NaT
series[3:5] = None
assert series[4] is NaT
series[5] = np.nan
assert series[5] is NaT
series[5:7] = np.nan
assert series[6] is NaT
def test_setitem_multiindex_empty_slice(self):
# https://github.com/pandas-dev/pandas/issues/35878
idx = MultiIndex.from_tuples([("a", 1), ("b", 2)])
result = Series([1, 2], index=idx)
expected = result.copy()
result.loc[[]] = 0
tm.assert_series_equal(result, expected)
def test_setitem_with_string_index(self):
# GH#23451
ser = Series([1, 2, 3], index=["Date", "b", "other"])
ser["Date"] = date.today()
assert ser.Date == date.today()
assert ser["Date"] == date.today()
def test_setitem_tuple_with_datetimetz_values(self):
# GH#20441
arr = date_range("2017", periods=4, tz="US/Eastern")
index = [(0, 1), (0, 2), (0, 3), (0, 4)]
result = Series(arr, index=index)
expected = result.copy()
result[(0, 1)] = np.nan
expected.iloc[0] = np.nan
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("tz", ["US/Eastern", "UTC", "Asia/Tokyo"])
def test_setitem_with_tz(self, tz, indexer_sli):
orig = Series(date_range("2016-01-01", freq="H", periods=3, tz=tz))
assert orig.dtype == f"datetime64[ns, {tz}]"
exp = Series(
[
Timestamp("2016-01-01 00:00", tz=tz),
Timestamp("2011-01-01 00:00", tz=tz),
Timestamp("2016-01-01 02:00", tz=tz),
]
)
# scalar
ser = orig.copy()
indexer_sli(ser)[1] = Timestamp("2011-01-01", tz=tz)
tm.assert_series_equal(ser, exp)
# vector
vals = Series(
[Timestamp("2011-01-01", tz=tz), Timestamp("2012-01-01", tz=tz)],
index=[1, 2],
)
assert vals.dtype == f"datetime64[ns, {tz}]"
exp = Series(
[
Timestamp("2016-01-01 00:00", tz=tz),
Timestamp("2011-01-01 00:00", tz=tz),
Timestamp("2012-01-01 00:00", tz=tz),
]
)
ser = orig.copy()
indexer_sli(ser)[[1, 2]] = vals
tm.assert_series_equal(ser, exp)
def test_setitem_with_tz_dst(self, indexer_sli):
# GH#14146 trouble setting values near DST boundary
tz = "US/Eastern"
orig = Series(date_range("2016-11-06", freq="H", periods=3, tz=tz))
assert orig.dtype == f"datetime64[ns, {tz}]"
exp = Series(
[
Timestamp("2016-11-06 00:00-04:00", tz=tz),
Timestamp("2011-01-01 00:00-05:00", tz=tz),
Timestamp("2016-11-06 01:00-05:00", tz=tz),
]
)
# scalar
ser = orig.copy()
indexer_sli(ser)[1] = Timestamp("2011-01-01", tz=tz)
tm.assert_series_equal(ser, exp)
# vector
vals = Series(
[Timestamp("2011-01-01", tz=tz), Timestamp("2012-01-01", tz=tz)],
index=[1, 2],
)
assert vals.dtype == f"datetime64[ns, {tz}]"
exp = Series(
[
Timestamp("2016-11-06 00:00", tz=tz),
Timestamp("2011-01-01 00:00", tz=tz),
Timestamp("2012-01-01 00:00", tz=tz),
]
)
ser = orig.copy()
indexer_sli(ser)[[1, 2]] = vals
tm.assert_series_equal(ser, exp)
def test_object_series_setitem_dt64array_exact_match(self):
# make sure the dt64 isn't cast by numpy to integers
# https://github.com/numpy/numpy/issues/12550
ser = Series({"X": np.nan}, dtype=object)
indexer = [True]
# "exact_match" -> size of array being set matches size of ser
value = np.array([4], dtype="M8[ns]")
ser.iloc[indexer] = value
expected = Series([value[0]], index=["X"], dtype=object)
assert all(isinstance(x, np.datetime64) for x in expected.values)
tm.assert_series_equal(ser, expected)
class TestSetitemScalarIndexer:
def test_setitem_negative_out_of_bounds(self):
ser = Series(tm.rands_array(5, 10), index=tm.rands_array(10, 10))
msg = "index -11 is out of bounds for axis 0 with size 10"
with pytest.raises(IndexError, match=msg):
ser[-11] = "foo"
@pytest.mark.parametrize("indexer", [tm.loc, tm.at])
@pytest.mark.parametrize("ser_index", [0, 1])
def test_setitem_series_object_dtype(self, indexer, ser_index):
# GH#38303
ser = Series([0, 0], dtype="object")
idxr = indexer(ser)
idxr[0] = Series([42], index=[ser_index])
expected = Series([Series([42], index=[ser_index]), 0], dtype="object")
tm.assert_series_equal(ser, expected)
@pytest.mark.parametrize("index, exp_value", [(0, 42), (1, np.nan)])
def test_setitem_series(self, index, exp_value):
# GH#38303
ser = Series([0, 0])
ser.loc[0] = Series([42], index=[index])
expected = Series([exp_value, 0])
tm.assert_series_equal(ser, expected)
class TestSetitemSlices:
def test_setitem_slice_float_raises(self, datetime_series):
msg = (
"cannot do slice indexing on DatetimeIndex with these indexers "
r"\[{key}\] of type float"
)
with pytest.raises(TypeError, match=msg.format(key=r"4\.0")):
datetime_series[4.0:10.0] = 0
with pytest.raises(TypeError, match=msg.format(key=r"4\.5")):
datetime_series[4.5:10.0] = 0
def test_setitem_slice(self):
ser = Series(range(10), index=list(range(10)))
ser[-12:] = 0
assert (ser == 0).all()
ser[:-12] = 5
assert (ser == 0).all()
def test_setitem_slice_integers(self):
ser = Series(np.random.randn(8), index=[2, 4, 6, 8, 10, 12, 14, 16])
ser[:4] = 0
assert (ser[:4] == 0).all()
assert not (ser[4:] == 0).any()
def test_setitem_slicestep(self):
# caught this bug when writing tests
series = Series(tm.makeIntIndex(20).astype(float), index=tm.makeIntIndex(20))
series[::2] = 0
assert (series[::2] == 0).all()
def test_setitem_multiindex_slice(self, indexer_sli):
# GH 8856
mi = MultiIndex.from_product(([0, 1], list("abcde")))
result = Series(np.arange(10, dtype=np.int64), mi)
indexer_sli(result)[::4] = 100
expected = Series([100, 1, 2, 3, 100, 5, 6, 7, 100, 9], mi)
tm.assert_series_equal(result, expected)
class TestSetitemBooleanMask:
def test_setitem_mask_cast(self):
# GH#2746
# need to upcast
ser = Series([1, 2], index=[1, 2], dtype="int64")
ser[[True, False]] = Series([0], index=[1], dtype="int64")
expected = Series([0, 2], index=[1, 2], dtype="int64")
tm.assert_series_equal(ser, expected)
def test_setitem_mask_align_and_promote(self):
# GH#8387: test that changing types does not break alignment
ts = Series(np.random.randn(100), index=np.arange(100, 0, -1)).round(5)
mask = ts > 0
left = ts.copy()
right = ts[mask].copy().map(str)
left[mask] = right
expected = ts.map(lambda t: str(t) if t > 0 else t)
tm.assert_series_equal(left, expected)
def test_setitem_mask_promote_strs(self):
ser = Series([0, 1, 2, 0])
mask = ser > 0
ser2 = ser[mask].map(str)
ser[mask] = ser2
expected = Series([0, "1", "2", 0])
tm.assert_series_equal(ser, expected)
def test_setitem_mask_promote(self):
ser = Series([0, "foo", "bar", 0])
mask = Series([False, True, True, False])
ser2 = ser[mask]
ser[mask] = ser2
expected = Series([0, "foo", "bar", 0])
tm.assert_series_equal(ser, expected)
def test_setitem_boolean(self, string_series):
mask = string_series > string_series.median()
# similar indexed series
result = string_series.copy()
result[mask] = string_series * 2
expected = string_series * 2
tm.assert_series_equal(result[mask], expected[mask])
# needs alignment
result = string_series.copy()
result[mask] = (string_series * 2)[0:5]
expected = (string_series * 2)[0:5].reindex_like(string_series)
expected[-mask] = string_series[mask]
tm.assert_series_equal(result[mask], expected[mask])
def test_setitem_boolean_corner(self, datetime_series):
ts = datetime_series
mask_shifted = ts.shift(1, freq=BDay()) > ts.median()
msg = (
r"Unalignable boolean Series provided as indexer \(index of "
r"the boolean Series and of the indexed object do not match"
)
with pytest.raises(IndexingError, match=msg):
ts[mask_shifted] = 1
with pytest.raises(IndexingError, match=msg):
ts.loc[mask_shifted] = 1
def test_setitem_boolean_different_order(self, string_series):
ordered = string_series.sort_values()
copy = string_series.copy()
copy[ordered > 0] = 0
expected = string_series.copy()
expected[expected > 0] = 0
tm.assert_series_equal(copy, expected)
@pytest.mark.parametrize("func", [list, np.array, Series])
def test_setitem_boolean_python_list(self, func):
# GH19406
ser = Series([None, "b", None])
mask = func([True, False, True])
ser[mask] = ["a", "c"]
expected = Series(["a", "b", "c"])
tm.assert_series_equal(ser, expected)
def test_setitem_boolean_nullable_int_types(self, any_numeric_ea_dtype):
# GH: 26468
ser = Series([5, 6, 7, 8], dtype=any_numeric_ea_dtype)
ser[ser > 6] = Series(range(4), dtype=any_numeric_ea_dtype)
expected = Series([5, 6, 2, 3], dtype=any_numeric_ea_dtype)
tm.assert_series_equal(ser, expected)
ser = Series([5, 6, 7, 8], dtype=any_numeric_ea_dtype)
ser.loc[ser > 6] = Series(range(4), dtype=any_numeric_ea_dtype)
tm.assert_series_equal(ser, expected)
ser = Series([5, 6, 7, 8], dtype=any_numeric_ea_dtype)
loc_ser = Series(range(4), dtype=any_numeric_ea_dtype)
ser.loc[ser > 6] = loc_ser.loc[loc_ser > 1]
tm.assert_series_equal(ser, expected)
def test_setitem_with_bool_mask_and_values_matching_n_trues_in_length(self):
# GH#30567
ser = Series([None] * 10)
mask = [False] * 3 + [True] * 5 + [False] * 2
ser[mask] = range(5)
result = ser
expected = Series([None] * 3 + list(range(5)) + [None] * 2).astype("object")
tm.assert_series_equal(result, expected)
def test_setitem_nan_with_bool(self):
# GH 13034
result = Series([True, False, True])
result[0] = np.nan
expected = Series([np.nan, False, True], dtype=object)
tm.assert_series_equal(result, expected)
def test_setitem_mask_smallint_upcast(self):
orig = Series([1, 2, 3], dtype="int8")
alt = np.array([999, 1000, 1001], dtype=np.int64)
mask = np.array([True, False, True])
ser = orig.copy()
ser[mask] = Series(alt)
expected = Series([999, 2, 1001])
tm.assert_series_equal(ser, expected)
ser2 = orig.copy()
ser2.mask(mask, alt, inplace=True)
tm.assert_series_equal(ser2, expected)
ser3 = orig.copy()
res = ser3.where(~mask, Series(alt))
tm.assert_series_equal(res, expected)
def test_setitem_mask_smallint_no_upcast(self):
# like test_setitem_mask_smallint_upcast, but while we can't hold 'alt',
# we *can* hold alt[mask] without casting
orig = Series([1, 2, 3], dtype="uint8")
alt = Series([245, 1000, 246], dtype=np.int64)
mask = np.array([True, False, True])
ser = orig.copy()
ser[mask] = alt
expected = Series([245, 2, 246], dtype="uint8")
tm.assert_series_equal(ser, expected)
ser2 = orig.copy()
ser2.mask(mask, alt, inplace=True)
tm.assert_series_equal(ser2, expected)
# FIXME: don't leave commented-out
# FIXME: ser.where(~mask, alt) unnecessarily upcasts to int64
# ser3 = orig.copy()
# res = ser3.where(~mask, alt)
# tm.assert_series_equal(res, expected)
class TestSetitemViewCopySemantics:
def test_setitem_invalidates_datetime_index_freq(self):
# GH#24096 altering a datetime64tz Series inplace invalidates the
# `freq` attribute on the underlying DatetimeIndex
dti = date_range("20130101", periods=3, tz="US/Eastern")
ts = dti[1]
ser = Series(dti)
assert ser._values is not dti
assert ser._values._data.base is not dti._data._data.base
assert dti.freq == "D"
ser.iloc[1] = NaT
assert ser._values.freq is None
# check that the DatetimeIndex was not altered in place
assert ser._values is not dti
assert ser._values._data.base is not dti._data._data.base
assert dti[1] == ts
assert dti.freq == "D"
def test_dt64tz_setitem_does_not_mutate_dti(self):
# GH#21907, GH#24096
dti = date_range("2016-01-01", periods=10, tz="US/Pacific")
ts = dti[0]
ser = Series(dti)
assert ser._values is not dti
assert ser._values._data.base is not dti._data._data.base
assert ser._mgr.arrays[0] is not dti
assert ser._mgr.arrays[0]._data.base is not dti._data._data.base
ser[::3] = NaT
assert ser[0] is NaT
assert dti[0] == ts
class TestSetitemCallable:
def test_setitem_callable_key(self):
# GH#12533
ser = Series([1, 2, 3, 4], index=list("ABCD"))
ser[lambda x: "A"] = -1
expected = Series([-1, 2, 3, 4], index=list("ABCD"))
tm.assert_series_equal(ser, expected)
def test_setitem_callable_other(self):
# GH#13299
inc = lambda x: x + 1
ser = Series([1, 2, -1, 4])
ser[ser < 0] = inc
expected = Series([1, 2, inc, 4])
tm.assert_series_equal(ser, expected)
class TestSetitemWithExpansion:
def test_setitem_empty_series(self):
# GH#10193
key = Timestamp("2012-01-01")
series = Series(dtype=object)
series[key] = 47
expected = Series(47, [key])
tm.assert_series_equal(series, expected)
def test_setitem_empty_series_datetimeindex_preserves_freq(self):
# GH#33573 our index should retain its freq
series = Series([], DatetimeIndex([], freq="D"), dtype=object)
key = Timestamp("2012-01-01")
series[key] = 47
expected = Series(47, DatetimeIndex([key], freq="D"))
tm.assert_series_equal(series, expected)
assert series.index.freq == expected.index.freq
def test_setitem_empty_series_timestamp_preserves_dtype(self):
# GH 21881
timestamp = Timestamp(1412526600000000000)
series = Series([timestamp], index=["timestamp"], dtype=object)
expected = series["timestamp"]
series = Series([], dtype=object)
series["anything"] = 300.0
series["timestamp"] = timestamp
result = series["timestamp"]
assert result == expected
@pytest.mark.parametrize(
"td",
[
Timedelta("9 days"),
Timedelta("9 days").to_timedelta64(),
Timedelta("9 days").to_pytimedelta(),
],
)
def test_append_timedelta_does_not_cast(self, td):
# GH#22717 inserting a Timedelta should _not_ cast to int64
expected = Series(["x", td], index=[0, "td"], dtype=object)
ser = Series(["x"])
ser["td"] = td
tm.assert_series_equal(ser, expected)
assert isinstance(ser["td"], Timedelta)
ser = Series(["x"])
ser.loc["td"] = Timedelta("9 days")
tm.assert_series_equal(ser, expected)
assert isinstance(ser["td"], Timedelta)
def test_setitem_with_expansion_type_promotion(self):
# GH#12599
ser = Series(dtype=object)
ser["a"] = Timestamp("2016-01-01")
ser["b"] = 3.0
ser["c"] = "foo"
expected = Series([Timestamp("2016-01-01"), 3.0, "foo"], index=["a", "b", "c"])
tm.assert_series_equal(ser, expected)
def test_setitem_not_contained(self, string_series):
# set item that's not contained
ser = string_series.copy()
assert "foobar" not in ser.index
ser["foobar"] = 1
app = Series([1], index=["foobar"], name="series")
expected = concat([string_series, app])
tm.assert_series_equal(ser, expected)
def test_setitem_keep_precision(self, any_numeric_ea_dtype):
# GH#32346
ser = Series([1, 2], dtype=any_numeric_ea_dtype)
ser[2] = 10
expected = Series([1, 2, 10], dtype=any_numeric_ea_dtype)
tm.assert_series_equal(ser, expected)
@pytest.mark.parametrize("indexer", [1, 2])
@pytest.mark.parametrize(
"na, target_na, dtype, target_dtype",
[
(NA, NA, "Int64", "Int64"),
(NA, np.nan, "int64", "float64"),
(NaT, NaT, "int64", "object"),
(np.nan, NA, "Int64", "Int64"),
(np.nan, NA, "Float64", "Float64"),
(np.nan, np.nan, "int64", "float64"),
],
)
def test_setitem_enlarge_with_na(self, na, target_na, dtype, target_dtype, indexer):
# GH#32346
ser = Series([1, 2], dtype=dtype)
ser[indexer] = na
expected_values = [1, target_na] if indexer == 1 else [1, 2, target_na]
expected = Series(expected_values, dtype=target_dtype)
tm.assert_series_equal(ser, expected)
def test_setitem_enlargement_object_none(self, nulls_fixture):
# GH#48665
ser = Series(["a", "b"])
ser[3] = nulls_fixture
expected = Series(["a", "b", nulls_fixture], index=[0, 1, 3])
tm.assert_series_equal(ser, expected)
assert ser[3] is nulls_fixture
def test_setitem_scalar_into_readonly_backing_data():
# GH#14359: test that you cannot mutate a read only buffer
array = np.zeros(5)
array.flags.writeable = False # make the array immutable
series = Series(array)
for n in range(len(series)):
msg = "assignment destination is read-only"
with pytest.raises(ValueError, match=msg):
series[n] = 1
assert array[n] == 0
def test_setitem_slice_into_readonly_backing_data():
# GH#14359: test that you cannot mutate a read only buffer
array = np.zeros(5)
array.flags.writeable = False # make the array immutable
series = Series(array)
msg = "assignment destination is read-only"
with pytest.raises(ValueError, match=msg):
series[1:3] = 1
assert not array.any()
def test_setitem_categorical_assigning_ops():
orig = Series(Categorical(["b", "b"], categories=["a", "b"]))
ser = orig.copy()
ser[:] = "a"
exp = Series(Categorical(["a", "a"], categories=["a", "b"]))
tm.assert_series_equal(ser, exp)
ser = orig.copy()
ser[1] = "a"
exp = Series(Categorical(["b", "a"], categories=["a", "b"]))
tm.assert_series_equal(ser, exp)
ser = orig.copy()
ser[ser.index > 0] = "a"
exp = Series(Categorical(["b", "a"], categories=["a", "b"]))
tm.assert_series_equal(ser, exp)
ser = orig.copy()
ser[[False, True]] = "a"
exp = Series(Categorical(["b", "a"], categories=["a", "b"]))
tm.assert_series_equal(ser, exp)
ser = orig.copy()
ser.index = ["x", "y"]
ser["y"] = "a"
exp = Series(Categorical(["b", "a"], categories=["a", "b"]), index=["x", "y"])
tm.assert_series_equal(ser, exp)
def test_setitem_nan_into_categorical():
# ensure that one can set something to np.nan
ser = Series(Categorical([1, 2, 3]))
exp = Series(Categorical([1, np.nan, 3], categories=[1, 2, 3]))
ser[1] = np.nan
tm.assert_series_equal(ser, exp)
class TestSetitemCasting:
@pytest.mark.parametrize("unique", [True, False])
@pytest.mark.parametrize("val", [3, 3.0, "3"], ids=type)
def test_setitem_non_bool_into_bool(self, val, indexer_sli, unique):
# dont cast these 3-like values to bool
ser = Series([True, False])
if not unique:
ser.index = [1, 1]
indexer_sli(ser)[1] = val
assert type(ser.iloc[1]) == type(val)
expected = Series([True, val], dtype=object, index=ser.index)
if not unique and indexer_sli is not tm.iloc:
expected = Series([val, val], dtype=object, index=[1, 1])
tm.assert_series_equal(ser, expected)
def test_setitem_boolean_array_into_npbool(self):
# GH#45462
ser = Series([True, False, True])
values = ser._values
arr = array([True, False, None])
ser[:2] = arr[:2] # no NAs -> can set inplace
assert ser._values is values
ser[1:] = arr[1:] # has an NA -> cast to boolean dtype
expected = Series(arr)
tm.assert_series_equal(ser, expected)
class SetitemCastingEquivalents:
"""
Check each of several methods that _should_ be equivalent to `obj[key] = val`
We assume that
- obj.index is the default Index(range(len(obj)))
- the setitem does not expand the obj
"""
@pytest.fixture
def is_inplace(self, obj, expected):
"""
Whether we expect the setting to be in-place or not.
"""
try:
return expected.dtype == obj.dtype
except TypeError:
# older numpys
return False
def check_indexer(self, obj, key, expected, val, indexer, is_inplace):
orig = obj
obj = obj.copy()
arr = obj._values
indexer(obj)[key] = val
tm.assert_series_equal(obj, expected)
self._check_inplace(is_inplace, orig, arr, obj)
def _check_inplace(self, is_inplace, orig, arr, obj):
if is_inplace is None:
# We are not (yet) checking whether setting is inplace or not
pass
elif is_inplace:
if arr.dtype.kind in ["m", "M"]:
# We may not have the same DTA/TDA, but will have the same
# underlying data
assert arr._ndarray is obj._values._ndarray
else:
assert obj._values is arr
else:
# otherwise original array should be unchanged
tm.assert_equal(arr, orig._values)
def test_int_key(self, obj, key, expected, val, indexer_sli, is_inplace):
if not isinstance(key, int):
return
self.check_indexer(obj, key, expected, val, indexer_sli, is_inplace)
if indexer_sli is tm.loc:
self.check_indexer(obj, key, expected, val, tm.at, is_inplace)
elif indexer_sli is tm.iloc:
self.check_indexer(obj, key, expected, val, tm.iat, is_inplace)
rng = range(key, key + 1)
self.check_indexer(obj, rng, expected, val, indexer_sli, is_inplace)
if indexer_sli is not tm.loc:
# Note: no .loc because that handles slice edges differently
slc = slice(key, key + 1)
self.check_indexer(obj, slc, expected, val, indexer_sli, is_inplace)
ilkey = [key]
self.check_indexer(obj, ilkey, expected, val, indexer_sli, is_inplace)
indkey = np.array(ilkey)
self.check_indexer(obj, indkey, expected, val, indexer_sli, is_inplace)
genkey = (x for x in [key])
self.check_indexer(obj, genkey, expected, val, indexer_sli, is_inplace)
def test_slice_key(self, obj, key, expected, val, indexer_sli, is_inplace):
if not isinstance(key, slice):
return
if indexer_sli is not tm.loc:
# Note: no .loc because that handles slice edges differently
self.check_indexer(obj, key, expected, val, indexer_sli, is_inplace)
ilkey = list(range(len(obj)))[key]
self.check_indexer(obj, ilkey, expected, val, indexer_sli, is_inplace)
indkey = np.array(ilkey)
self.check_indexer(obj, indkey, expected, val, indexer_sli, is_inplace)
genkey = (x for x in indkey)
self.check_indexer(obj, genkey, expected, val, indexer_sli, is_inplace)
def test_mask_key(self, obj, key, expected, val, indexer_sli):
# setitem with boolean mask
mask = np.zeros(obj.shape, dtype=bool)
mask[key] = True
obj = obj.copy()
if is_list_like(val) and len(val) < mask.sum():
msg = "boolean index did not match indexed array along dimension"
with pytest.raises(IndexError, match=msg):
indexer_sli(obj)[mask] = val
return
indexer_sli(obj)[mask] = val
tm.assert_series_equal(obj, expected)
def test_series_where(self, obj, key, expected, val, is_inplace):
mask = np.zeros(obj.shape, dtype=bool)
mask[key] = True
if is_list_like(val) and len(val) < len(obj):
# Series.where is not valid here
msg = "operands could not be broadcast together with shapes"
with pytest.raises(ValueError, match=msg):
obj.where(~mask, val)
return
orig = obj
obj = obj.copy()
arr = obj._values
res = obj.where(~mask, val)
tm.assert_series_equal(res, expected)
self._check_inplace(is_inplace, orig, arr, obj)
def test_index_where(self, obj, key, expected, val):
mask = np.zeros(obj.shape, dtype=bool)
mask[key] = True
res = Index(obj).where(~mask, val)
tm.assert_index_equal(res, Index(expected, dtype=expected.dtype))
def test_index_putmask(self, obj, key, expected, val):
mask = np.zeros(obj.shape, dtype=bool)
mask[key] = True
res = Index(obj).putmask(mask, val)
tm.assert_index_equal(res, Index(expected, dtype=expected.dtype))
@pytest.mark.parametrize(
"obj,expected,key",
[
pytest.param(
# GH#45568 setting a valid NA value into IntervalDtype[int] should
# cast to IntervalDtype[float]
Series(interval_range(1, 5)),
Series(
[Interval(1, 2), np.nan, Interval(3, 4), Interval(4, 5)],
dtype="interval[float64]",
),
1,
id="interval_int_na_value",
),
pytest.param(
# these induce dtype changes
Series([2, 3, 4, 5, 6, 7, 8, 9, 10]),
Series([np.nan, 3, np.nan, 5, np.nan, 7, np.nan, 9, np.nan]),
slice(None, None, 2),
id="int_series_slice_key_step",
),
pytest.param(
Series([True, True, False, False]),
Series([np.nan, True, np.nan, False], dtype=object),
slice(None, None, 2),
id="bool_series_slice_key_step",
),
pytest.param(
# these induce dtype changes
Series(np.arange(10)),
Series([np.nan, np.nan, np.nan, np.nan, np.nan, 5, 6, 7, 8, 9]),
slice(None, 5),
id="int_series_slice_key",
),
pytest.param(
# changes dtype GH#4463
Series([1, 2, 3]),
Series([np.nan, 2, 3]),
0,
id="int_series_int_key",
),
pytest.param(
# changes dtype GH#4463
Series([False]),
Series([np.nan], dtype=object),
# TODO: maybe go to float64 since we are changing the _whole_ Series?
0,
id="bool_series_int_key_change_all",
),
pytest.param(
# changes dtype GH#4463
Series([False, True]),
Series([np.nan, True], dtype=object),
0,
id="bool_series_int_key",
),
],
)
class TestSetitemCastingEquivalents(SetitemCastingEquivalents):
@pytest.fixture(params=[np.nan, np.float64("NaN"), None, NA])
def val(self, request):
"""
NA values that should generally be valid_na for *all* dtypes.
Include both python float NaN and np.float64; only np.float64 has a
`dtype` attribute.
"""
return request.param
class TestSetitemTimedelta64IntoNumeric(SetitemCastingEquivalents):
# timedelta64 should not be treated as integers when setting into
# numeric Series
@pytest.fixture
def val(self):
td = np.timedelta64(4, "ns")
return td
# TODO: could also try np.full((1,), td)
@pytest.fixture(params=[complex, int, float])
def dtype(self, request):
return request.param
@pytest.fixture
def obj(self, dtype):
arr = np.arange(5).astype(dtype)
ser = Series(arr)
return ser
@pytest.fixture
def expected(self, dtype):
arr = np.arange(5).astype(dtype)
ser = Series(arr)
ser = ser.astype(object)
ser.values[0] = np.timedelta64(4, "ns")
return ser
@pytest.fixture
def key(self):
return 0
class TestSetitemDT64IntoInt(SetitemCastingEquivalents):
# GH#39619 dont cast dt64 to int when doing this setitem
@pytest.fixture(params=["M8[ns]", "m8[ns]"])
def dtype(self, request):
return request.param
@pytest.fixture
def scalar(self, dtype):
val = np.datetime64("2021-01-18 13:25:00", "ns")
if dtype == "m8[ns]":
val = val - val
return val
@pytest.fixture
def expected(self, scalar):
expected = Series([scalar, scalar, 3], dtype=object)
assert isinstance(expected[0], type(scalar))
return expected
@pytest.fixture
def obj(self):
return Series([1, 2, 3])
@pytest.fixture
def key(self):
return slice(None, -1)
@pytest.fixture(params=[None, list, np.array])
def val(self, scalar, request):
box = request.param
if box is None:
return scalar
return box([scalar, scalar])
class TestSetitemNAPeriodDtype(SetitemCastingEquivalents):
# Setting compatible NA values into Series with PeriodDtype
@pytest.fixture
def expected(self, key):
exp = Series(period_range("2000-01-01", periods=10, freq="D"))
exp._values.view("i8")[key] = NaT.value
assert exp[key] is NaT or all(x is NaT for x in exp[key])
return exp
@pytest.fixture
def obj(self):
return Series(period_range("2000-01-01", periods=10, freq="D"))
@pytest.fixture(params=[3, slice(3, 5)])
def key(self, request):
return request.param
@pytest.fixture(params=[None, np.nan])
def val(self, request):
return request.param
class TestSetitemNADatetimeLikeDtype(SetitemCastingEquivalents):
# some nat-like values should be cast to datetime64/timedelta64 when
# inserting into a datetime64/timedelta64 series. Others should coerce
# to object and retain their dtypes.
# GH#18586 for td64 and boolean mask case
@pytest.fixture(
params=["m8[ns]", "M8[ns]", "datetime64[ns, UTC]", "datetime64[ns, US/Central]"]
)
def dtype(self, request):
return request.param
@pytest.fixture
def obj(self, dtype):
i8vals = date_range("2016-01-01", periods=3).asi8
idx = Index(i8vals, dtype=dtype)
assert idx.dtype == dtype
return Series(idx)
@pytest.fixture(
params=[
None,
np.nan,
NaT,
np.timedelta64("NaT", "ns"),
np.datetime64("NaT", "ns"),
]
)
def val(self, request):
return request.param
@pytest.fixture
def is_inplace(self, val, obj):
# td64 -> cast to object iff val is datetime64("NaT")
# dt64 -> cast to object iff val is timedelta64("NaT")
# dt64tz -> cast to object with anything _but_ NaT
return val is NaT or val is None or val is np.nan or obj.dtype == val.dtype
@pytest.fixture
def expected(self, obj, val, is_inplace):
dtype = obj.dtype if is_inplace else object
expected = Series([val] + list(obj[1:]), dtype=dtype)
return expected
@pytest.fixture
def key(self):
return 0
class TestSetitemMismatchedTZCastsToObject(SetitemCastingEquivalents):
# GH#24024
@pytest.fixture
def obj(self):
return Series(date_range("2000", periods=2, tz="US/Central"))
@pytest.fixture
def val(self):
return Timestamp("2000", tz="US/Eastern")
@pytest.fixture
def key(self):
return 0
@pytest.fixture
def expected(self):
expected = Series(
[
Timestamp("2000-01-01 00:00:00-05:00", tz="US/Eastern"),
Timestamp("2000-01-02 00:00:00-06:00", tz="US/Central"),
],
dtype=object,
)
return expected
@pytest.fixture(autouse=True)
def assert_warns(self, request):
# check that we issue a FutureWarning about timezone-matching
if request.function.__name__ == "test_slice_key":
key = request.getfixturevalue("key")
if not isinstance(key, slice):
# The test is a no-op, so no warning will be issued
yield
return
with tm.assert_produces_warning(FutureWarning, match="mismatched timezone"):
yield
@pytest.mark.parametrize(
"obj,expected",
[
# For numeric series, we should coerce to NaN.
(Series([1, 2, 3]), Series([np.nan, 2, 3])),
(Series([1.0, 2.0, 3.0]), Series([np.nan, 2.0, 3.0])),
# For datetime series, we should coerce to NaT.
(
Series([datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)]),
Series([NaT, datetime(2000, 1, 2), datetime(2000, 1, 3)]),
),
# For objects, we should preserve the None value.
(Series(["foo", "bar", "baz"]), Series([None, "bar", "baz"])),
],
)
class TestSeriesNoneCoercion(SetitemCastingEquivalents):
@pytest.fixture
def key(self):
return 0
@pytest.fixture
def val(self):
return None
class TestSetitemFloatIntervalWithIntIntervalValues(SetitemCastingEquivalents):
# GH#44201 Cast to shared IntervalDtype rather than object
def test_setitem_example(self):
# Just a case here to make obvious what this test class is aimed at
idx = IntervalIndex.from_breaks(range(4))
obj = Series(idx)
val = Interval(0.5, 1.5)
obj[0] = val
assert obj.dtype == "Interval[float64, right]"
@pytest.fixture
def obj(self):
idx = IntervalIndex.from_breaks(range(4))
return Series(idx)
@pytest.fixture
def val(self):
return Interval(0.5, 1.5)
@pytest.fixture
def key(self):
return 0
@pytest.fixture
def expected(self, obj, val):
data = [val] + list(obj[1:])
idx = IntervalIndex(data, dtype="Interval[float64]")
return Series(idx)
class TestSetitemRangeIntoIntegerSeries(SetitemCastingEquivalents):
# GH#44261 Setting a range with sufficiently-small integers into
# small-itemsize integer dtypes should not need to upcast
@pytest.fixture
def obj(self, any_int_numpy_dtype):
dtype = np.dtype(any_int_numpy_dtype)
ser = Series(range(5), dtype=dtype)
return ser
@pytest.fixture
def val(self):
return range(2, 4)
@pytest.fixture
def key(self):
return slice(0, 2)
@pytest.fixture
def expected(self, any_int_numpy_dtype):
dtype = np.dtype(any_int_numpy_dtype)
exp = Series([2, 3, 2, 3, 4], dtype=dtype)
return exp
@pytest.mark.parametrize(
"val",
[
np.array([2.0, 3.0]),
np.array([2.5, 3.5]),
np.array([2**65, 2**65 + 1], dtype=np.float64), # all ints, but can't cast
],
)
class TestSetitemFloatNDarrayIntoIntegerSeries(SetitemCastingEquivalents):
@pytest.fixture
def obj(self):
return Series(range(5), dtype=np.int64)
@pytest.fixture
def key(self):
return slice(0, 2)
@pytest.fixture
def expected(self, val):
if val[0] == 2:
# NB: this condition is based on currently-hardcoded "val" cases
dtype = np.int64
else:
dtype = np.float64
res_values = np.array(range(5), dtype=dtype)
res_values[:2] = val
return Series(res_values)
@pytest.mark.parametrize("val", [512, np.int16(512)])
class TestSetitemIntoIntegerSeriesNeedsUpcast(SetitemCastingEquivalents):
@pytest.fixture
def obj(self):
return Series([1, 2, 3], dtype=np.int8)
@pytest.fixture
def key(self):
return 1
@pytest.fixture
def expected(self):
return Series([1, 512, 3], dtype=np.int16)
@pytest.mark.parametrize("val", [2**33 + 1.0, 2**33 + 1.1, 2**62])
class TestSmallIntegerSetitemUpcast(SetitemCastingEquivalents):
# https://github.com/pandas-dev/pandas/issues/39584#issuecomment-941212124
@pytest.fixture
def obj(self):
return Series([1, 2, 3], dtype="i4")
@pytest.fixture
def key(self):
return 0
@pytest.fixture
def expected(self, val):
if val % 1 != 0:
dtype = "f8"
else:
dtype = "i8"
return Series([val, 2, 3], dtype=dtype)
class CoercionTest(SetitemCastingEquivalents):
# Tests ported from tests.indexing.test_coercion
@pytest.fixture
def key(self):
return 1
@pytest.fixture
def expected(self, obj, key, val, exp_dtype):
vals = list(obj)
vals[key] = val
return Series(vals, dtype=exp_dtype)
@pytest.mark.parametrize(
"val,exp_dtype", [(np.int32(1), np.int8), (np.int16(2**9), np.int16)]
)
class TestCoercionInt8(CoercionTest):
# previously test_setitem_series_int8 in tests.indexing.test_coercion
@pytest.fixture
def obj(self):
return Series([1, 2, 3, 4], dtype=np.int8)
@pytest.mark.parametrize("val", [1, 1.1, 1 + 1j, True])
@pytest.mark.parametrize("exp_dtype", [object])
class TestCoercionObject(CoercionTest):
# previously test_setitem_series_object in tests.indexing.test_coercion
@pytest.fixture
def obj(self):
return Series(["a", "b", "c", "d"], dtype=object)
@pytest.mark.parametrize(
"val,exp_dtype",
[(1, np.complex128), (1.1, np.complex128), (1 + 1j, np.complex128), (True, object)],
)
class TestCoercionComplex(CoercionTest):
# previously test_setitem_series_complex128 in tests.indexing.test_coercion
@pytest.fixture
def obj(self):
return Series([1 + 1j, 2 + 2j, 3 + 3j, 4 + 4j])
@pytest.mark.parametrize(
"val,exp_dtype",
[
(1, object),
("3", object),
(3, object),
(1.1, object),
(1 + 1j, object),
(True, bool),
],
)
class TestCoercionBool(CoercionTest):
# previously test_setitem_series_bool in tests.indexing.test_coercion
@pytest.fixture
def obj(self):
return Series([True, False, True, False], dtype=bool)
@pytest.mark.parametrize(
"val,exp_dtype",
[(1, np.int64), (1.1, np.float64), (1 + 1j, np.complex128), (True, object)],
)
class TestCoercionInt64(CoercionTest):
# previously test_setitem_series_int64 in tests.indexing.test_coercion
@pytest.fixture
def obj(self):
return Series([1, 2, 3, 4])
@pytest.mark.parametrize(
"val,exp_dtype",
[(1, np.float64), (1.1, np.float64), (1 + 1j, np.complex128), (True, object)],
)
class TestCoercionFloat64(CoercionTest):
# previously test_setitem_series_float64 in tests.indexing.test_coercion
@pytest.fixture
def obj(self):
return Series([1.1, 2.2, 3.3, 4.4])
@pytest.mark.parametrize(
"val,exp_dtype",
[
(1, np.float32),
pytest.param(
1.1,
np.float32,
marks=pytest.mark.xfail(
reason="np.float32(1.1) ends up as 1.100000023841858, so "
"np_can_hold_element raises and we cast to float64",
),
),
(1 + 1j, np.complex128),
(True, object),
(np.uint8(2), np.float32),
(np.uint32(2), np.float32),
# float32 cannot hold np.iinfo(np.uint32).max exactly
# (closest it can hold is 4294967300.0 which off by 5.0), so
# we cast to float64
(np.uint32(np.iinfo(np.uint32).max), np.float64),
(np.uint64(2), np.float32),
(np.int64(2), np.float32),
],
)
class TestCoercionFloat32(CoercionTest):
@pytest.fixture
def obj(self):
return Series([1.1, 2.2, 3.3, 4.4], dtype=np.float32)
def test_slice_key(self, obj, key, expected, val, indexer_sli, is_inplace):
super().test_slice_key(obj, key, expected, val, indexer_sli, is_inplace)
if type(val) is float:
# the xfail would xpass bc test_slice_key short-circuits
raise AssertionError("xfail not relevant for this test.")
@pytest.mark.parametrize(
"val,exp_dtype",
[(Timestamp("2012-01-01"), "datetime64[ns]"), (1, object), ("x", object)],
)
class TestCoercionDatetime64(CoercionTest):
# previously test_setitem_series_datetime64 in tests.indexing.test_coercion
@pytest.fixture
def obj(self):
return Series(date_range("2011-01-01", freq="D", periods=4))
@pytest.mark.parametrize(
"val,exp_dtype",
[
(Timestamp("2012-01-01", tz="US/Eastern"), "datetime64[ns, US/Eastern]"),
(Timestamp("2012-01-01", tz="US/Pacific"), object),
(Timestamp("2012-01-01"), object),
(1, object),
],
)
class TestCoercionDatetime64TZ(CoercionTest):
# previously test_setitem_series_datetime64tz in tests.indexing.test_coercion
@pytest.fixture
def obj(self):
tz = "US/Eastern"
return Series(date_range("2011-01-01", freq="D", periods=4, tz=tz))
@pytest.fixture(autouse=True)
def assert_warns(self, request):
# check that we issue a FutureWarning about timezone-matching
if request.function.__name__ == "test_slice_key":
key = request.getfixturevalue("key")
if not isinstance(key, slice):
# The test is a no-op, so no warning will be issued
yield
return
exp_dtype = request.getfixturevalue("exp_dtype")
val = request.getfixturevalue("val")
if exp_dtype == object and isinstance(val, Timestamp) and val.tz is not None:
with tm.assert_produces_warning(FutureWarning, match="mismatched timezone"):
yield
else:
yield
@pytest.mark.parametrize(
"val,exp_dtype",
[(Timedelta("12 day"), "timedelta64[ns]"), (1, object), ("x", object)],
)
class TestCoercionTimedelta64(CoercionTest):
# previously test_setitem_series_timedelta64 in tests.indexing.test_coercion
@pytest.fixture
def obj(self):
return Series(timedelta_range("1 day", periods=4))
@pytest.mark.parametrize(
"val", ["foo", Period("2016", freq="Y"), Interval(1, 2, closed="both")]
)
@pytest.mark.parametrize("exp_dtype", [object])
class TestPeriodIntervalCoercion(CoercionTest):
# GH#45768
@pytest.fixture(
params=[
period_range("2016-01-01", periods=3, freq="D"),
interval_range(1, 5),
]
)
def obj(self, request):
return Series(request.param)
def test_20643():
# closed by GH#45121
orig = Series([0, 1, 2], index=["a", "b", "c"])
expected = Series([0, 2.7, 2], index=["a", "b", "c"])
ser = orig.copy()
ser.at["b"] = 2.7
tm.assert_series_equal(ser, expected)
ser = orig.copy()
ser.loc["b"] = 2.7
tm.assert_series_equal(ser, expected)
ser = orig.copy()
ser["b"] = 2.7
tm.assert_series_equal(ser, expected)
ser = orig.copy()
ser.iat[1] = 2.7
tm.assert_series_equal(ser, expected)
ser = orig.copy()
ser.iloc[1] = 2.7
tm.assert_series_equal(ser, expected)
orig_df = orig.to_frame("A")
expected_df = expected.to_frame("A")
df = orig_df.copy()
df.at["b", "A"] = 2.7
tm.assert_frame_equal(df, expected_df)
df = orig_df.copy()
df.loc["b", "A"] = 2.7
tm.assert_frame_equal(df, expected_df)
df = orig_df.copy()
df.iloc[1, 0] = 2.7
tm.assert_frame_equal(df, expected_df)
df = orig_df.copy()
df.iat[1, 0] = 2.7
tm.assert_frame_equal(df, expected_df)
def test_20643_comment():
# https://github.com/pandas-dev/pandas/issues/20643#issuecomment-431244590
# fixed sometime prior to GH#45121
orig = Series([0, 1, 2], index=["a", "b", "c"])
expected = Series([np.nan, 1, 2], index=["a", "b", "c"])
ser = orig.copy()
ser.iat[0] = None
tm.assert_series_equal(ser, expected)
ser = orig.copy()
ser.iloc[0] = None
tm.assert_series_equal(ser, expected)
def test_15413():
# fixed by GH#45121
ser = Series([1, 2, 3])
ser[ser == 2] += 0.5
expected = Series([1, 2.5, 3])
tm.assert_series_equal(ser, expected)
ser = Series([1, 2, 3])
ser[1] += 0.5
tm.assert_series_equal(ser, expected)
ser = Series([1, 2, 3])
ser.loc[1] += 0.5
tm.assert_series_equal(ser, expected)
ser = Series([1, 2, 3])
ser.iloc[1] += 0.5
tm.assert_series_equal(ser, expected)
ser = Series([1, 2, 3])
ser.iat[1] += 0.5
tm.assert_series_equal(ser, expected)
ser = Series([1, 2, 3])
ser.at[1] += 0.5
tm.assert_series_equal(ser, expected)
def test_32878_int_itemsize():
# Fixed by GH#45121
arr = np.arange(5).astype("i4")
ser = Series(arr)
val = np.int64(np.iinfo(np.int64).max)
ser[0] = val
expected = Series([val, 1, 2, 3, 4], dtype=np.int64)
tm.assert_series_equal(ser, expected)
def test_32878_complex_itemsize():
arr = np.arange(5).astype("c8")
ser = Series(arr)
val = np.finfo(np.float64).max
val = val.astype("c16")
# GH#32878 used to coerce val to inf+0.000000e+00j
ser[0] = val
assert ser[0] == val
expected = Series([val, 1, 2, 3, 4], dtype="c16")
tm.assert_series_equal(ser, expected)
def test_37692(indexer_al):
# GH#37692
ser = Series([1, 2, 3], index=["a", "b", "c"])
indexer_al(ser)["b"] = "test"
expected = Series([1, "test", 3], index=["a", "b", "c"], dtype=object)
tm.assert_series_equal(ser, expected)
def test_setitem_bool_int_float_consistency(indexer_sli):
# GH#21513
# bool-with-int and bool-with-float both upcast to object
# int-with-float and float-with-int are both non-casting so long
# as the setitem can be done losslessly
for dtype in [np.float64, np.int64]:
ser = Series(0, index=range(3), dtype=dtype)
indexer_sli(ser)[0] = True
assert ser.dtype == object
ser = Series(0, index=range(3), dtype=bool)
ser[0] = dtype(1)
assert ser.dtype == object
# 1.0 can be held losslessly, so no casting
ser = Series(0, index=range(3), dtype=np.int64)
indexer_sli(ser)[0] = np.float64(1.0)
assert ser.dtype == np.int64
# 1 can be held losslessly, so no casting
ser = Series(0, index=range(3), dtype=np.float64)
indexer_sli(ser)[0] = np.int64(1)
def test_setitem_positional_with_casting():
# GH#45070 case where in __setitem__ we get a KeyError, then when
# we fallback we *also* get a ValueError if we try to set inplace.
ser = Series([1, 2, 3], index=["a", "b", "c"])
ser[0] = "X"
expected = Series(["X", 2, 3], index=["a", "b", "c"], dtype=object)
tm.assert_series_equal(ser, expected)
def test_setitem_positional_float_into_int_coerces():
# Case where we hit a KeyError and then trying to set in-place incorrectly
# casts a float to an int
ser = Series([1, 2, 3], index=["a", "b", "c"])
ser[0] = 1.5
expected = Series([1.5, 2, 3], index=["a", "b", "c"])
tm.assert_series_equal(ser, expected)
def test_setitem_int_as_positional_fallback_deprecation():
# GH#42215 deprecated falling back to positional on __setitem__ with an
# int not contained in the index
ser = Series([1, 2, 3, 4], index=[1.1, 2.1, 3.0, 4.1])
assert not ser.index._should_fallback_to_positional
# assert not ser.index.astype(object)._should_fallback_to_positional
with tm.assert_produces_warning(None):
# 3.0 is in our index, so future behavior is unchanged
ser[3] = 10
expected = Series([1, 2, 10, 4], index=ser.index)
tm.assert_series_equal(ser, expected)
msg = "Treating integers as positional in Series.__setitem__"
with tm.assert_produces_warning(FutureWarning, match=msg):
with pytest.raises(IndexError, match="index 5 is out of bounds"):
ser[5] = 5
# Once the deprecation is enforced, we will have
# expected = Series([1, 2, 3, 4, 5], index=[1.1, 2.1, 3.0, 4.1, 5.0])
ii = IntervalIndex.from_breaks(range(10))[::2]
ser2 = Series(range(len(ii)), index=ii)
expected2 = ser2.copy()
expected2.iloc[-1] = 9
with tm.assert_produces_warning(FutureWarning, match=msg):
ser2[4] = 9
tm.assert_series_equal(ser2, expected2)
mi = MultiIndex.from_product([ser.index, ["A", "B"]])
ser3 = Series(range(len(mi)), index=mi)
expected3 = ser3.copy()
expected3.iloc[4] = 99
with tm.assert_produces_warning(FutureWarning, match=msg):
ser3[4] = 99
tm.assert_series_equal(ser3, expected3)
def test_setitem_with_bool_indexer():
# GH#42530
df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
result = df.pop("b")
result[[True, False, False]] = 9
expected = Series(data=[9, 5, 6], name="b")
tm.assert_series_equal(result, expected)
df.loc[[True, False, False], "a"] = 10
expected = DataFrame({"a": [10, 2, 3]})
tm.assert_frame_equal(df, expected)
@pytest.mark.parametrize("size", range(2, 6))
@pytest.mark.parametrize(
"mask", [[True, False, False, False, False], [True, False], [False]]
)
@pytest.mark.parametrize(
"item", [2.0, np.nan, np.finfo(float).max, np.finfo(float).min]
)
# Test numpy arrays, lists and tuples as the input to be
# broadcast
@pytest.mark.parametrize(
"box", [lambda x: np.array([x]), lambda x: [x], lambda x: (x,)]
)
def test_setitem_bool_indexer_dont_broadcast_length1_values(size, mask, item, box):
# GH#44265
# see also tests.series.indexing.test_where.test_broadcast
selection = np.resize(mask, size)
data = np.arange(size, dtype=float)
ser = Series(data)
if selection.sum() != 1:
msg = (
"cannot set using a list-like indexer with a different "
"length than the value"
)
with pytest.raises(ValueError, match=msg):
# GH#44265
ser[selection] = box(item)
else:
# In this corner case setting is equivalent to setting with the unboxed
# item
ser[selection] = box(item)
expected = Series(np.arange(size, dtype=float))
expected[selection] = item
tm.assert_series_equal(ser, expected)
def test_setitem_empty_mask_dont_upcast_dt64():
dti = date_range("2016-01-01", periods=3)
ser = Series(dti)
orig = ser.copy()
mask = np.zeros(3, dtype=bool)
ser[mask] = "foo"
assert ser.dtype == dti.dtype # no-op -> dont upcast
tm.assert_series_equal(ser, orig)
ser.mask(mask, "foo", inplace=True)
assert ser.dtype == dti.dtype # no-op -> dont upcast
tm.assert_series_equal(ser, orig)