ai-content-maker/.venv/Lib/site-packages/pandas/tests/window/test_rolling_functions.py

534 lines
18 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
from datetime import datetime
import numpy as np
import pytest
import pandas.util._test_decorators as td
from pandas import (
DataFrame,
DatetimeIndex,
Series,
concat,
isna,
notna,
)
import pandas._testing as tm
import pandas.tseries.offsets as offsets
@pytest.mark.parametrize(
"compare_func, roll_func, kwargs",
[
[np.mean, "mean", {}],
[np.nansum, "sum", {}],
pytest.param(
lambda x: np.isfinite(x).astype(float).sum(),
"count",
{},
marks=pytest.mark.filterwarnings("ignore:min_periods:FutureWarning"),
),
[np.median, "median", {}],
[np.min, "min", {}],
[np.max, "max", {}],
[lambda x: np.std(x, ddof=1), "std", {}],
[lambda x: np.std(x, ddof=0), "std", {"ddof": 0}],
[lambda x: np.var(x, ddof=1), "var", {}],
[lambda x: np.var(x, ddof=0), "var", {"ddof": 0}],
],
)
def test_series(series, compare_func, roll_func, kwargs, step):
result = getattr(series.rolling(50, step=step), roll_func)(**kwargs)
assert isinstance(result, Series)
end = range(0, len(series), step or 1)[-1] + 1
tm.assert_almost_equal(result.iloc[-1], compare_func(series[end - 50 : end]))
@pytest.mark.parametrize(
"compare_func, roll_func, kwargs",
[
[np.mean, "mean", {}],
[np.nansum, "sum", {}],
pytest.param(
lambda x: np.isfinite(x).astype(float).sum(),
"count",
{},
marks=pytest.mark.filterwarnings("ignore:min_periods:FutureWarning"),
),
[np.median, "median", {}],
[np.min, "min", {}],
[np.max, "max", {}],
[lambda x: np.std(x, ddof=1), "std", {}],
[lambda x: np.std(x, ddof=0), "std", {"ddof": 0}],
[lambda x: np.var(x, ddof=1), "var", {}],
[lambda x: np.var(x, ddof=0), "var", {"ddof": 0}],
],
)
def test_frame(raw, frame, compare_func, roll_func, kwargs, step):
result = getattr(frame.rolling(50, step=step), roll_func)(**kwargs)
assert isinstance(result, DataFrame)
end = range(0, len(frame), step or 1)[-1] + 1
tm.assert_series_equal(
result.iloc[-1, :],
frame.iloc[end - 50 : end, :].apply(compare_func, axis=0, raw=raw),
check_names=False,
)
@pytest.mark.parametrize(
"compare_func, roll_func, kwargs, minp",
[
[np.mean, "mean", {}, 10],
[np.nansum, "sum", {}, 10],
[lambda x: np.isfinite(x).astype(float).sum(), "count", {}, 0],
[np.median, "median", {}, 10],
[np.min, "min", {}, 10],
[np.max, "max", {}, 10],
[lambda x: np.std(x, ddof=1), "std", {}, 10],
[lambda x: np.std(x, ddof=0), "std", {"ddof": 0}, 10],
[lambda x: np.var(x, ddof=1), "var", {}, 10],
[lambda x: np.var(x, ddof=0), "var", {"ddof": 0}, 10],
],
)
def test_time_rule_series(series, compare_func, roll_func, kwargs, minp):
win = 25
ser = series[::2].resample("B").mean()
series_result = getattr(ser.rolling(window=win, min_periods=minp), roll_func)(
**kwargs
)
last_date = series_result.index[-1]
prev_date = last_date - 24 * offsets.BDay()
trunc_series = series[::2].truncate(prev_date, last_date)
tm.assert_almost_equal(series_result[-1], compare_func(trunc_series))
@pytest.mark.parametrize(
"compare_func, roll_func, kwargs, minp",
[
[np.mean, "mean", {}, 10],
[np.nansum, "sum", {}, 10],
[lambda x: np.isfinite(x).astype(float).sum(), "count", {}, 0],
[np.median, "median", {}, 10],
[np.min, "min", {}, 10],
[np.max, "max", {}, 10],
[lambda x: np.std(x, ddof=1), "std", {}, 10],
[lambda x: np.std(x, ddof=0), "std", {"ddof": 0}, 10],
[lambda x: np.var(x, ddof=1), "var", {}, 10],
[lambda x: np.var(x, ddof=0), "var", {"ddof": 0}, 10],
],
)
def test_time_rule_frame(raw, frame, compare_func, roll_func, kwargs, minp):
win = 25
frm = frame[::2].resample("B").mean()
frame_result = getattr(frm.rolling(window=win, min_periods=minp), roll_func)(
**kwargs
)
last_date = frame_result.index[-1]
prev_date = last_date - 24 * offsets.BDay()
trunc_frame = frame[::2].truncate(prev_date, last_date)
tm.assert_series_equal(
frame_result.xs(last_date),
trunc_frame.apply(compare_func, raw=raw),
check_names=False,
)
@pytest.mark.parametrize(
"compare_func, roll_func, kwargs",
[
[np.mean, "mean", {}],
[np.nansum, "sum", {}],
[np.median, "median", {}],
[np.min, "min", {}],
[np.max, "max", {}],
[lambda x: np.std(x, ddof=1), "std", {}],
[lambda x: np.std(x, ddof=0), "std", {"ddof": 0}],
[lambda x: np.var(x, ddof=1), "var", {}],
[lambda x: np.var(x, ddof=0), "var", {"ddof": 0}],
],
)
def test_nans(compare_func, roll_func, kwargs):
obj = Series(np.random.randn(50))
obj[:10] = np.NaN
obj[-10:] = np.NaN
result = getattr(obj.rolling(50, min_periods=30), roll_func)(**kwargs)
tm.assert_almost_equal(result.iloc[-1], compare_func(obj[10:-10]))
# min_periods is working correctly
result = getattr(obj.rolling(20, min_periods=15), roll_func)(**kwargs)
assert isna(result.iloc[23])
assert not isna(result.iloc[24])
assert not isna(result.iloc[-6])
assert isna(result.iloc[-5])
obj2 = Series(np.random.randn(20))
result = getattr(obj2.rolling(10, min_periods=5), roll_func)(**kwargs)
assert isna(result.iloc[3])
assert notna(result.iloc[4])
if roll_func != "sum":
result0 = getattr(obj.rolling(20, min_periods=0), roll_func)(**kwargs)
result1 = getattr(obj.rolling(20, min_periods=1), roll_func)(**kwargs)
tm.assert_almost_equal(result0, result1)
def test_nans_count():
obj = Series(np.random.randn(50))
obj[:10] = np.NaN
obj[-10:] = np.NaN
result = obj.rolling(50, min_periods=30).count()
tm.assert_almost_equal(
result.iloc[-1], np.isfinite(obj[10:-10]).astype(float).sum()
)
@pytest.mark.parametrize(
"roll_func, kwargs",
[
["mean", {}],
["sum", {}],
["median", {}],
["min", {}],
["max", {}],
["std", {}],
["std", {"ddof": 0}],
["var", {}],
["var", {"ddof": 0}],
],
)
@pytest.mark.parametrize("minp", [0, 99, 100])
def test_min_periods(series, minp, roll_func, kwargs, step):
result = getattr(
series.rolling(len(series) + 1, min_periods=minp, step=step), roll_func
)(**kwargs)
expected = getattr(
series.rolling(len(series), min_periods=minp, step=step), roll_func
)(**kwargs)
nan_mask = isna(result)
tm.assert_series_equal(nan_mask, isna(expected))
nan_mask = ~nan_mask
tm.assert_almost_equal(result[nan_mask], expected[nan_mask])
def test_min_periods_count(series, step):
result = series.rolling(len(series) + 1, min_periods=0, step=step).count()
expected = series.rolling(len(series), min_periods=0, step=step).count()
nan_mask = isna(result)
tm.assert_series_equal(nan_mask, isna(expected))
nan_mask = ~nan_mask
tm.assert_almost_equal(result[nan_mask], expected[nan_mask])
@pytest.mark.parametrize(
"roll_func, kwargs, minp",
[
["mean", {}, 15],
["sum", {}, 15],
["count", {}, 0],
["median", {}, 15],
["min", {}, 15],
["max", {}, 15],
["std", {}, 15],
["std", {"ddof": 0}, 15],
["var", {}, 15],
["var", {"ddof": 0}, 15],
],
)
def test_center(roll_func, kwargs, minp):
obj = Series(np.random.randn(50))
obj[:10] = np.NaN
obj[-10:] = np.NaN
result = getattr(obj.rolling(20, min_periods=minp, center=True), roll_func)(
**kwargs
)
expected = (
getattr(
concat([obj, Series([np.NaN] * 9)]).rolling(20, min_periods=minp), roll_func
)(**kwargs)
.iloc[9:]
.reset_index(drop=True)
)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"roll_func, kwargs, minp, fill_value",
[
["mean", {}, 10, None],
["sum", {}, 10, None],
["count", {}, 0, 0],
["median", {}, 10, None],
["min", {}, 10, None],
["max", {}, 10, None],
["std", {}, 10, None],
["std", {"ddof": 0}, 10, None],
["var", {}, 10, None],
["var", {"ddof": 0}, 10, None],
],
)
def test_center_reindex_series(series, roll_func, kwargs, minp, fill_value):
# shifter index
s = [f"x{x:d}" for x in range(12)]
series_xp = (
getattr(
series.reindex(list(series.index) + s).rolling(window=25, min_periods=minp),
roll_func,
)(**kwargs)
.shift(-12)
.reindex(series.index)
)
series_rs = getattr(
series.rolling(window=25, min_periods=minp, center=True), roll_func
)(**kwargs)
if fill_value is not None:
series_xp = series_xp.fillna(fill_value)
tm.assert_series_equal(series_xp, series_rs)
@pytest.mark.parametrize(
"roll_func, kwargs, minp, fill_value",
[
["mean", {}, 10, None],
["sum", {}, 10, None],
["count", {}, 0, 0],
["median", {}, 10, None],
["min", {}, 10, None],
["max", {}, 10, None],
["std", {}, 10, None],
["std", {"ddof": 0}, 10, None],
["var", {}, 10, None],
["var", {"ddof": 0}, 10, None],
],
)
def test_center_reindex_frame(frame, roll_func, kwargs, minp, fill_value):
# shifter index
s = [f"x{x:d}" for x in range(12)]
frame_xp = (
getattr(
frame.reindex(list(frame.index) + s).rolling(window=25, min_periods=minp),
roll_func,
)(**kwargs)
.shift(-12)
.reindex(frame.index)
)
frame_rs = getattr(
frame.rolling(window=25, min_periods=minp, center=True), roll_func
)(**kwargs)
if fill_value is not None:
frame_xp = frame_xp.fillna(fill_value)
tm.assert_frame_equal(frame_xp, frame_rs)
@pytest.mark.parametrize(
"f",
[
lambda x: x.rolling(window=10, min_periods=5).cov(x, pairwise=False),
lambda x: x.rolling(window=10, min_periods=5).corr(x, pairwise=False),
lambda x: x.rolling(window=10, min_periods=5).max(),
lambda x: x.rolling(window=10, min_periods=5).min(),
lambda x: x.rolling(window=10, min_periods=5).sum(),
lambda x: x.rolling(window=10, min_periods=5).mean(),
lambda x: x.rolling(window=10, min_periods=5).std(),
lambda x: x.rolling(window=10, min_periods=5).var(),
lambda x: x.rolling(window=10, min_periods=5).skew(),
lambda x: x.rolling(window=10, min_periods=5).kurt(),
lambda x: x.rolling(window=10, min_periods=5).quantile(quantile=0.5),
lambda x: x.rolling(window=10, min_periods=5).median(),
lambda x: x.rolling(window=10, min_periods=5).apply(sum, raw=False),
lambda x: x.rolling(window=10, min_periods=5).apply(sum, raw=True),
pytest.param(
lambda x: x.rolling(win_type="boxcar", window=10, min_periods=5).mean(),
marks=td.skip_if_no_scipy,
),
],
)
def test_rolling_functions_window_non_shrinkage(f):
# GH 7764
s = Series(range(4))
s_expected = Series(np.nan, index=s.index)
df = DataFrame([[1, 5], [3, 2], [3, 9], [-1, 0]], columns=["A", "B"])
df_expected = DataFrame(np.nan, index=df.index, columns=df.columns)
s_result = f(s)
tm.assert_series_equal(s_result, s_expected)
df_result = f(df)
tm.assert_frame_equal(df_result, df_expected)
def test_rolling_max_gh6297(step):
"""Replicate result expected in GH #6297"""
indices = [datetime(1975, 1, i) for i in range(1, 6)]
# So that we can have 2 datapoints on one of the days
indices.append(datetime(1975, 1, 3, 6, 0))
series = Series(range(1, 7), index=indices)
# Use floats instead of ints as values
series = series.map(lambda x: float(x))
# Sort chronologically
series = series.sort_index()
expected = Series(
[1.0, 2.0, 6.0, 4.0, 5.0],
index=DatetimeIndex([datetime(1975, 1, i, 0) for i in range(1, 6)], freq="D"),
)[::step]
x = series.resample("D").max().rolling(window=1, step=step).max()
tm.assert_series_equal(expected, x)
def test_rolling_max_resample(step):
indices = [datetime(1975, 1, i) for i in range(1, 6)]
# So that we can have 3 datapoints on last day (4, 10, and 20)
indices.append(datetime(1975, 1, 5, 1))
indices.append(datetime(1975, 1, 5, 2))
series = Series(list(range(0, 5)) + [10, 20], index=indices)
# Use floats instead of ints as values
series = series.map(lambda x: float(x))
# Sort chronologically
series = series.sort_index()
# Default how should be max
expected = Series(
[0.0, 1.0, 2.0, 3.0, 20.0],
index=DatetimeIndex([datetime(1975, 1, i, 0) for i in range(1, 6)], freq="D"),
)[::step]
x = series.resample("D").max().rolling(window=1, step=step).max()
tm.assert_series_equal(expected, x)
# Now specify median (10.0)
expected = Series(
[0.0, 1.0, 2.0, 3.0, 10.0],
index=DatetimeIndex([datetime(1975, 1, i, 0) for i in range(1, 6)], freq="D"),
)[::step]
x = series.resample("D").median().rolling(window=1, step=step).max()
tm.assert_series_equal(expected, x)
# Now specify mean (4+10+20)/3
v = (4.0 + 10.0 + 20.0) / 3.0
expected = Series(
[0.0, 1.0, 2.0, 3.0, v],
index=DatetimeIndex([datetime(1975, 1, i, 0) for i in range(1, 6)], freq="D"),
)[::step]
x = series.resample("D").mean().rolling(window=1, step=step).max()
tm.assert_series_equal(expected, x)
def test_rolling_min_resample(step):
indices = [datetime(1975, 1, i) for i in range(1, 6)]
# So that we can have 3 datapoints on last day (4, 10, and 20)
indices.append(datetime(1975, 1, 5, 1))
indices.append(datetime(1975, 1, 5, 2))
series = Series(list(range(0, 5)) + [10, 20], index=indices)
# Use floats instead of ints as values
series = series.map(lambda x: float(x))
# Sort chronologically
series = series.sort_index()
# Default how should be min
expected = Series(
[0.0, 1.0, 2.0, 3.0, 4.0],
index=DatetimeIndex([datetime(1975, 1, i, 0) for i in range(1, 6)], freq="D"),
)[::step]
r = series.resample("D").min().rolling(window=1, step=step)
tm.assert_series_equal(expected, r.min())
def test_rolling_median_resample():
indices = [datetime(1975, 1, i) for i in range(1, 6)]
# So that we can have 3 datapoints on last day (4, 10, and 20)
indices.append(datetime(1975, 1, 5, 1))
indices.append(datetime(1975, 1, 5, 2))
series = Series(list(range(0, 5)) + [10, 20], index=indices)
# Use floats instead of ints as values
series = series.map(lambda x: float(x))
# Sort chronologically
series = series.sort_index()
# Default how should be median
expected = Series(
[0.0, 1.0, 2.0, 3.0, 10],
index=DatetimeIndex([datetime(1975, 1, i, 0) for i in range(1, 6)], freq="D"),
)
x = series.resample("D").median().rolling(window=1).median()
tm.assert_series_equal(expected, x)
def test_rolling_median_memory_error():
# GH11722
n = 20000
Series(np.random.randn(n)).rolling(window=2, center=False).median()
Series(np.random.randn(n)).rolling(window=2, center=False).median()
@pytest.mark.parametrize(
"data_type",
[np.dtype(f"f{width}") for width in [4, 8]]
+ [np.dtype(f"{sign}{width}") for width in [1, 2, 4, 8] for sign in "ui"],
)
def test_rolling_min_max_numeric_types(data_type):
# GH12373
# Just testing that these don't throw exceptions and that
# the return type is float64. Other tests will cover quantitative
# correctness
result = DataFrame(np.arange(20, dtype=data_type)).rolling(window=5).max()
assert result.dtypes[0] == np.dtype("f8")
result = DataFrame(np.arange(20, dtype=data_type)).rolling(window=5).min()
assert result.dtypes[0] == np.dtype("f8")
@pytest.mark.parametrize(
"f",
[
lambda x: x.rolling(window=10, min_periods=0).count(),
lambda x: x.rolling(window=10, min_periods=5).cov(x, pairwise=False),
lambda x: x.rolling(window=10, min_periods=5).corr(x, pairwise=False),
lambda x: x.rolling(window=10, min_periods=5).max(),
lambda x: x.rolling(window=10, min_periods=5).min(),
lambda x: x.rolling(window=10, min_periods=5).sum(),
lambda x: x.rolling(window=10, min_periods=5).mean(),
lambda x: x.rolling(window=10, min_periods=5).std(),
lambda x: x.rolling(window=10, min_periods=5).var(),
lambda x: x.rolling(window=10, min_periods=5).skew(),
lambda x: x.rolling(window=10, min_periods=5).kurt(),
lambda x: x.rolling(window=10, min_periods=5).quantile(0.5),
lambda x: x.rolling(window=10, min_periods=5).median(),
lambda x: x.rolling(window=10, min_periods=5).apply(sum, raw=False),
lambda x: x.rolling(window=10, min_periods=5).apply(sum, raw=True),
pytest.param(
lambda x: x.rolling(win_type="boxcar", window=10, min_periods=5).mean(),
marks=td.skip_if_no_scipy,
),
],
)
def test_moment_functions_zero_length(f):
# GH 8056
s = Series(dtype=np.float64)
s_expected = s
df1 = DataFrame()
df1_expected = df1
df2 = DataFrame(columns=["a"])
df2["a"] = df2["a"].astype("float64")
df2_expected = df2
s_result = f(s)
tm.assert_series_equal(s_result, s_expected)
df1_result = f(df1)
tm.assert_frame_equal(df1_result, df1_expected)
df2_result = f(df2)
tm.assert_frame_equal(df2_result, df2_expected)