714 lines
31 KiB
Python
714 lines
31 KiB
Python
|
"""Private logic for creating models."""
|
||
|
from __future__ import annotations as _annotations
|
||
|
|
||
|
import builtins
|
||
|
import operator
|
||
|
import typing
|
||
|
import warnings
|
||
|
import weakref
|
||
|
from abc import ABCMeta
|
||
|
from functools import partial
|
||
|
from types import FunctionType
|
||
|
from typing import Any, Callable, Generic, NoReturn
|
||
|
|
||
|
import typing_extensions
|
||
|
from pydantic_core import PydanticUndefined, SchemaSerializer
|
||
|
from typing_extensions import dataclass_transform, deprecated
|
||
|
|
||
|
from ..errors import PydanticUndefinedAnnotation, PydanticUserError
|
||
|
from ..plugin._schema_validator import create_schema_validator
|
||
|
from ..warnings import GenericBeforeBaseModelWarning, PydanticDeprecatedSince20
|
||
|
from ._config import ConfigWrapper
|
||
|
from ._decorators import DecoratorInfos, PydanticDescriptorProxy, get_attribute_from_bases, unwrap_wrapped_function
|
||
|
from ._fields import collect_model_fields, is_valid_field_name, is_valid_privateattr_name
|
||
|
from ._generate_schema import GenerateSchema
|
||
|
from ._generics import PydanticGenericMetadata, get_model_typevars_map
|
||
|
from ._mock_val_ser import MockValSer, set_model_mocks
|
||
|
from ._schema_generation_shared import CallbackGetCoreSchemaHandler
|
||
|
from ._signature import generate_pydantic_signature
|
||
|
from ._typing_extra import get_cls_types_namespace, is_annotated, is_classvar, parent_frame_namespace
|
||
|
from ._utils import ClassAttribute, SafeGetItemProxy
|
||
|
from ._validate_call import ValidateCallWrapper
|
||
|
|
||
|
if typing.TYPE_CHECKING:
|
||
|
from ..fields import Field as PydanticModelField
|
||
|
from ..fields import FieldInfo, ModelPrivateAttr
|
||
|
from ..main import BaseModel
|
||
|
else:
|
||
|
# See PyCharm issues https://youtrack.jetbrains.com/issue/PY-21915
|
||
|
# and https://youtrack.jetbrains.com/issue/PY-51428
|
||
|
DeprecationWarning = PydanticDeprecatedSince20
|
||
|
PydanticModelField = object()
|
||
|
|
||
|
object_setattr = object.__setattr__
|
||
|
|
||
|
|
||
|
class _ModelNamespaceDict(dict):
|
||
|
"""A dictionary subclass that intercepts attribute setting on model classes and
|
||
|
warns about overriding of decorators.
|
||
|
"""
|
||
|
|
||
|
def __setitem__(self, k: str, v: object) -> None:
|
||
|
existing: Any = self.get(k, None)
|
||
|
if existing and v is not existing and isinstance(existing, PydanticDescriptorProxy):
|
||
|
warnings.warn(f'`{k}` overrides an existing Pydantic `{existing.decorator_info.decorator_repr}` decorator')
|
||
|
|
||
|
return super().__setitem__(k, v)
|
||
|
|
||
|
|
||
|
@dataclass_transform(kw_only_default=True, field_specifiers=(PydanticModelField,))
|
||
|
class ModelMetaclass(ABCMeta):
|
||
|
def __new__(
|
||
|
mcs,
|
||
|
cls_name: str,
|
||
|
bases: tuple[type[Any], ...],
|
||
|
namespace: dict[str, Any],
|
||
|
__pydantic_generic_metadata__: PydanticGenericMetadata | None = None,
|
||
|
__pydantic_reset_parent_namespace__: bool = True,
|
||
|
_create_model_module: str | None = None,
|
||
|
**kwargs: Any,
|
||
|
) -> type:
|
||
|
"""Metaclass for creating Pydantic models.
|
||
|
|
||
|
Args:
|
||
|
cls_name: The name of the class to be created.
|
||
|
bases: The base classes of the class to be created.
|
||
|
namespace: The attribute dictionary of the class to be created.
|
||
|
__pydantic_generic_metadata__: Metadata for generic models.
|
||
|
__pydantic_reset_parent_namespace__: Reset parent namespace.
|
||
|
_create_model_module: The module of the class to be created, if created by `create_model`.
|
||
|
**kwargs: Catch-all for any other keyword arguments.
|
||
|
|
||
|
Returns:
|
||
|
The new class created by the metaclass.
|
||
|
"""
|
||
|
# Note `ModelMetaclass` refers to `BaseModel`, but is also used to *create* `BaseModel`, so we rely on the fact
|
||
|
# that `BaseModel` itself won't have any bases, but any subclass of it will, to determine whether the `__new__`
|
||
|
# call we're in the middle of is for the `BaseModel` class.
|
||
|
if bases:
|
||
|
base_field_names, class_vars, base_private_attributes = mcs._collect_bases_data(bases)
|
||
|
|
||
|
config_wrapper = ConfigWrapper.for_model(bases, namespace, kwargs)
|
||
|
namespace['model_config'] = config_wrapper.config_dict
|
||
|
private_attributes = inspect_namespace(
|
||
|
namespace, config_wrapper.ignored_types, class_vars, base_field_names
|
||
|
)
|
||
|
if private_attributes or base_private_attributes:
|
||
|
original_model_post_init = get_model_post_init(namespace, bases)
|
||
|
if original_model_post_init is not None:
|
||
|
# if there are private_attributes and a model_post_init function, we handle both
|
||
|
|
||
|
def wrapped_model_post_init(self: BaseModel, __context: Any) -> None:
|
||
|
"""We need to both initialize private attributes and call the user-defined model_post_init
|
||
|
method.
|
||
|
"""
|
||
|
init_private_attributes(self, __context)
|
||
|
original_model_post_init(self, __context)
|
||
|
|
||
|
namespace['model_post_init'] = wrapped_model_post_init
|
||
|
else:
|
||
|
namespace['model_post_init'] = init_private_attributes
|
||
|
|
||
|
namespace['__class_vars__'] = class_vars
|
||
|
namespace['__private_attributes__'] = {**base_private_attributes, **private_attributes}
|
||
|
|
||
|
cls: type[BaseModel] = super().__new__(mcs, cls_name, bases, namespace, **kwargs) # type: ignore
|
||
|
|
||
|
from ..main import BaseModel
|
||
|
|
||
|
mro = cls.__mro__
|
||
|
if Generic in mro and mro.index(Generic) < mro.index(BaseModel):
|
||
|
warnings.warn(
|
||
|
GenericBeforeBaseModelWarning(
|
||
|
'Classes should inherit from `BaseModel` before generic classes (e.g. `typing.Generic[T]`) '
|
||
|
'for pydantic generics to work properly.'
|
||
|
),
|
||
|
stacklevel=2,
|
||
|
)
|
||
|
|
||
|
cls.__pydantic_custom_init__ = not getattr(cls.__init__, '__pydantic_base_init__', False)
|
||
|
cls.__pydantic_post_init__ = None if cls.model_post_init is BaseModel.model_post_init else 'model_post_init'
|
||
|
|
||
|
cls.__pydantic_decorators__ = DecoratorInfos.build(cls)
|
||
|
|
||
|
# Use the getattr below to grab the __parameters__ from the `typing.Generic` parent class
|
||
|
if __pydantic_generic_metadata__:
|
||
|
cls.__pydantic_generic_metadata__ = __pydantic_generic_metadata__
|
||
|
else:
|
||
|
parent_parameters = getattr(cls, '__pydantic_generic_metadata__', {}).get('parameters', ())
|
||
|
parameters = getattr(cls, '__parameters__', None) or parent_parameters
|
||
|
if parameters and parent_parameters and not all(x in parameters for x in parent_parameters):
|
||
|
from ..root_model import RootModelRootType
|
||
|
|
||
|
missing_parameters = tuple(x for x in parameters if x not in parent_parameters)
|
||
|
if RootModelRootType in parent_parameters and RootModelRootType not in parameters:
|
||
|
# This is a special case where the user has subclassed `RootModel`, but has not parametrized
|
||
|
# RootModel with the generic type identifiers being used. Ex:
|
||
|
# class MyModel(RootModel, Generic[T]):
|
||
|
# root: T
|
||
|
# Should instead just be:
|
||
|
# class MyModel(RootModel[T]):
|
||
|
# root: T
|
||
|
parameters_str = ', '.join([x.__name__ for x in missing_parameters])
|
||
|
error_message = (
|
||
|
f'{cls.__name__} is a subclass of `RootModel`, but does not include the generic type identifier(s) '
|
||
|
f'{parameters_str} in its parameters. '
|
||
|
f'You should parametrize RootModel directly, e.g., `class {cls.__name__}(RootModel[{parameters_str}]): ...`.'
|
||
|
)
|
||
|
else:
|
||
|
combined_parameters = parent_parameters + missing_parameters
|
||
|
parameters_str = ', '.join([str(x) for x in combined_parameters])
|
||
|
generic_type_label = f'typing.Generic[{parameters_str}]'
|
||
|
error_message = (
|
||
|
f'All parameters must be present on typing.Generic;'
|
||
|
f' you should inherit from {generic_type_label}.'
|
||
|
)
|
||
|
if Generic not in bases: # pragma: no cover
|
||
|
# We raise an error here not because it is desirable, but because some cases are mishandled.
|
||
|
# It would be nice to remove this error and still have things behave as expected, it's just
|
||
|
# challenging because we are using a custom `__class_getitem__` to parametrize generic models,
|
||
|
# and not returning a typing._GenericAlias from it.
|
||
|
bases_str = ', '.join([x.__name__ for x in bases] + [generic_type_label])
|
||
|
error_message += (
|
||
|
f' Note: `typing.Generic` must go last: `class {cls.__name__}({bases_str}): ...`)'
|
||
|
)
|
||
|
raise TypeError(error_message)
|
||
|
|
||
|
cls.__pydantic_generic_metadata__ = {
|
||
|
'origin': None,
|
||
|
'args': (),
|
||
|
'parameters': parameters,
|
||
|
}
|
||
|
|
||
|
cls.__pydantic_complete__ = False # Ensure this specific class gets completed
|
||
|
|
||
|
# preserve `__set_name__` protocol defined in https://peps.python.org/pep-0487
|
||
|
# for attributes not in `new_namespace` (e.g. private attributes)
|
||
|
for name, obj in private_attributes.items():
|
||
|
obj.__set_name__(cls, name)
|
||
|
|
||
|
if __pydantic_reset_parent_namespace__:
|
||
|
cls.__pydantic_parent_namespace__ = build_lenient_weakvaluedict(parent_frame_namespace())
|
||
|
parent_namespace = getattr(cls, '__pydantic_parent_namespace__', None)
|
||
|
if isinstance(parent_namespace, dict):
|
||
|
parent_namespace = unpack_lenient_weakvaluedict(parent_namespace)
|
||
|
|
||
|
types_namespace = get_cls_types_namespace(cls, parent_namespace)
|
||
|
set_model_fields(cls, bases, config_wrapper, types_namespace)
|
||
|
|
||
|
if config_wrapper.frozen and '__hash__' not in namespace:
|
||
|
set_default_hash_func(cls, bases)
|
||
|
|
||
|
complete_model_class(
|
||
|
cls,
|
||
|
cls_name,
|
||
|
config_wrapper,
|
||
|
raise_errors=False,
|
||
|
types_namespace=types_namespace,
|
||
|
create_model_module=_create_model_module,
|
||
|
)
|
||
|
|
||
|
# If this is placed before the complete_model_class call above,
|
||
|
# the generic computed fields return type is set to PydanticUndefined
|
||
|
cls.model_computed_fields = {k: v.info for k, v in cls.__pydantic_decorators__.computed_fields.items()}
|
||
|
|
||
|
set_deprecated_descriptors(cls)
|
||
|
|
||
|
# using super(cls, cls) on the next line ensures we only call the parent class's __pydantic_init_subclass__
|
||
|
# I believe the `type: ignore` is only necessary because mypy doesn't realize that this code branch is
|
||
|
# only hit for _proper_ subclasses of BaseModel
|
||
|
super(cls, cls).__pydantic_init_subclass__(**kwargs) # type: ignore[misc]
|
||
|
return cls
|
||
|
else:
|
||
|
# this is the BaseModel class itself being created, no logic required
|
||
|
return super().__new__(mcs, cls_name, bases, namespace, **kwargs)
|
||
|
|
||
|
if not typing.TYPE_CHECKING: # pragma: no branch
|
||
|
# We put `__getattr__` in a non-TYPE_CHECKING block because otherwise, mypy allows arbitrary attribute access
|
||
|
|
||
|
def __getattr__(self, item: str) -> Any:
|
||
|
"""This is necessary to keep attribute access working for class attribute access."""
|
||
|
private_attributes = self.__dict__.get('__private_attributes__')
|
||
|
if private_attributes and item in private_attributes:
|
||
|
return private_attributes[item]
|
||
|
if item == '__pydantic_core_schema__':
|
||
|
# This means the class didn't get a schema generated for it, likely because there was an undefined reference
|
||
|
maybe_mock_validator = getattr(self, '__pydantic_validator__', None)
|
||
|
if isinstance(maybe_mock_validator, MockValSer):
|
||
|
rebuilt_validator = maybe_mock_validator.rebuild()
|
||
|
if rebuilt_validator is not None:
|
||
|
# In this case, a validator was built, and so `__pydantic_core_schema__` should now be set
|
||
|
return getattr(self, '__pydantic_core_schema__')
|
||
|
raise AttributeError(item)
|
||
|
|
||
|
@classmethod
|
||
|
def __prepare__(cls, *args: Any, **kwargs: Any) -> dict[str, object]:
|
||
|
return _ModelNamespaceDict()
|
||
|
|
||
|
def __instancecheck__(self, instance: Any) -> bool:
|
||
|
"""Avoid calling ABC _abc_subclasscheck unless we're pretty sure.
|
||
|
|
||
|
See #3829 and python/cpython#92810
|
||
|
"""
|
||
|
return hasattr(instance, '__pydantic_validator__') and super().__instancecheck__(instance)
|
||
|
|
||
|
@staticmethod
|
||
|
def _collect_bases_data(bases: tuple[type[Any], ...]) -> tuple[set[str], set[str], dict[str, ModelPrivateAttr]]:
|
||
|
from ..main import BaseModel
|
||
|
|
||
|
field_names: set[str] = set()
|
||
|
class_vars: set[str] = set()
|
||
|
private_attributes: dict[str, ModelPrivateAttr] = {}
|
||
|
for base in bases:
|
||
|
if issubclass(base, BaseModel) and base is not BaseModel:
|
||
|
# model_fields might not be defined yet in the case of generics, so we use getattr here:
|
||
|
field_names.update(getattr(base, 'model_fields', {}).keys())
|
||
|
class_vars.update(base.__class_vars__)
|
||
|
private_attributes.update(base.__private_attributes__)
|
||
|
return field_names, class_vars, private_attributes
|
||
|
|
||
|
@property
|
||
|
@deprecated('The `__fields__` attribute is deprecated, use `model_fields` instead.', category=None)
|
||
|
def __fields__(self) -> dict[str, FieldInfo]:
|
||
|
warnings.warn(
|
||
|
'The `__fields__` attribute is deprecated, use `model_fields` instead.', PydanticDeprecatedSince20
|
||
|
)
|
||
|
return self.model_fields # type: ignore
|
||
|
|
||
|
def __dir__(self) -> list[str]:
|
||
|
attributes = list(super().__dir__())
|
||
|
if '__fields__' in attributes:
|
||
|
attributes.remove('__fields__')
|
||
|
return attributes
|
||
|
|
||
|
|
||
|
def init_private_attributes(self: BaseModel, __context: Any) -> None:
|
||
|
"""This function is meant to behave like a BaseModel method to initialise private attributes.
|
||
|
|
||
|
It takes context as an argument since that's what pydantic-core passes when calling it.
|
||
|
|
||
|
Args:
|
||
|
self: The BaseModel instance.
|
||
|
__context: The context.
|
||
|
"""
|
||
|
if getattr(self, '__pydantic_private__', None) is None:
|
||
|
pydantic_private = {}
|
||
|
for name, private_attr in self.__private_attributes__.items():
|
||
|
default = private_attr.get_default()
|
||
|
if default is not PydanticUndefined:
|
||
|
pydantic_private[name] = default
|
||
|
object_setattr(self, '__pydantic_private__', pydantic_private)
|
||
|
|
||
|
|
||
|
def get_model_post_init(namespace: dict[str, Any], bases: tuple[type[Any], ...]) -> Callable[..., Any] | None:
|
||
|
"""Get the `model_post_init` method from the namespace or the class bases, or `None` if not defined."""
|
||
|
if 'model_post_init' in namespace:
|
||
|
return namespace['model_post_init']
|
||
|
|
||
|
from ..main import BaseModel
|
||
|
|
||
|
model_post_init = get_attribute_from_bases(bases, 'model_post_init')
|
||
|
if model_post_init is not BaseModel.model_post_init:
|
||
|
return model_post_init
|
||
|
|
||
|
|
||
|
def inspect_namespace( # noqa C901
|
||
|
namespace: dict[str, Any],
|
||
|
ignored_types: tuple[type[Any], ...],
|
||
|
base_class_vars: set[str],
|
||
|
base_class_fields: set[str],
|
||
|
) -> dict[str, ModelPrivateAttr]:
|
||
|
"""Iterate over the namespace and:
|
||
|
* gather private attributes
|
||
|
* check for items which look like fields but are not (e.g. have no annotation) and warn.
|
||
|
|
||
|
Args:
|
||
|
namespace: The attribute dictionary of the class to be created.
|
||
|
ignored_types: A tuple of ignore types.
|
||
|
base_class_vars: A set of base class class variables.
|
||
|
base_class_fields: A set of base class fields.
|
||
|
|
||
|
Returns:
|
||
|
A dict contains private attributes info.
|
||
|
|
||
|
Raises:
|
||
|
TypeError: If there is a `__root__` field in model.
|
||
|
NameError: If private attribute name is invalid.
|
||
|
PydanticUserError:
|
||
|
- If a field does not have a type annotation.
|
||
|
- If a field on base class was overridden by a non-annotated attribute.
|
||
|
"""
|
||
|
from ..fields import FieldInfo, ModelPrivateAttr, PrivateAttr
|
||
|
|
||
|
all_ignored_types = ignored_types + default_ignored_types()
|
||
|
|
||
|
private_attributes: dict[str, ModelPrivateAttr] = {}
|
||
|
raw_annotations = namespace.get('__annotations__', {})
|
||
|
|
||
|
if '__root__' in raw_annotations or '__root__' in namespace:
|
||
|
raise TypeError("To define root models, use `pydantic.RootModel` rather than a field called '__root__'")
|
||
|
|
||
|
ignored_names: set[str] = set()
|
||
|
for var_name, value in list(namespace.items()):
|
||
|
if var_name == 'model_config':
|
||
|
continue
|
||
|
elif (
|
||
|
isinstance(value, type)
|
||
|
and value.__module__ == namespace['__module__']
|
||
|
and '__qualname__' in namespace
|
||
|
and value.__qualname__.startswith(namespace['__qualname__'])
|
||
|
):
|
||
|
# `value` is a nested type defined in this namespace; don't error
|
||
|
continue
|
||
|
elif isinstance(value, all_ignored_types) or value.__class__.__module__ == 'functools':
|
||
|
ignored_names.add(var_name)
|
||
|
continue
|
||
|
elif isinstance(value, ModelPrivateAttr):
|
||
|
if var_name.startswith('__'):
|
||
|
raise NameError(
|
||
|
'Private attributes must not use dunder names;'
|
||
|
f' use a single underscore prefix instead of {var_name!r}.'
|
||
|
)
|
||
|
elif is_valid_field_name(var_name):
|
||
|
raise NameError(
|
||
|
'Private attributes must not use valid field names;'
|
||
|
f' use sunder names, e.g. {"_" + var_name!r} instead of {var_name!r}.'
|
||
|
)
|
||
|
private_attributes[var_name] = value
|
||
|
del namespace[var_name]
|
||
|
elif isinstance(value, FieldInfo) and not is_valid_field_name(var_name):
|
||
|
suggested_name = var_name.lstrip('_') or 'my_field' # don't suggest '' for all-underscore name
|
||
|
raise NameError(
|
||
|
f'Fields must not use names with leading underscores;'
|
||
|
f' e.g., use {suggested_name!r} instead of {var_name!r}.'
|
||
|
)
|
||
|
|
||
|
elif var_name.startswith('__'):
|
||
|
continue
|
||
|
elif is_valid_privateattr_name(var_name):
|
||
|
if var_name not in raw_annotations or not is_classvar(raw_annotations[var_name]):
|
||
|
private_attributes[var_name] = PrivateAttr(default=value)
|
||
|
del namespace[var_name]
|
||
|
elif var_name in base_class_vars:
|
||
|
continue
|
||
|
elif var_name not in raw_annotations:
|
||
|
if var_name in base_class_fields:
|
||
|
raise PydanticUserError(
|
||
|
f'Field {var_name!r} defined on a base class was overridden by a non-annotated attribute. '
|
||
|
f'All field definitions, including overrides, require a type annotation.',
|
||
|
code='model-field-overridden',
|
||
|
)
|
||
|
elif isinstance(value, FieldInfo):
|
||
|
raise PydanticUserError(
|
||
|
f'Field {var_name!r} requires a type annotation', code='model-field-missing-annotation'
|
||
|
)
|
||
|
else:
|
||
|
raise PydanticUserError(
|
||
|
f'A non-annotated attribute was detected: `{var_name} = {value!r}`. All model fields require a '
|
||
|
f'type annotation; if `{var_name}` is not meant to be a field, you may be able to resolve this '
|
||
|
f"error by annotating it as a `ClassVar` or updating `model_config['ignored_types']`.",
|
||
|
code='model-field-missing-annotation',
|
||
|
)
|
||
|
|
||
|
for ann_name, ann_type in raw_annotations.items():
|
||
|
if (
|
||
|
is_valid_privateattr_name(ann_name)
|
||
|
and ann_name not in private_attributes
|
||
|
and ann_name not in ignored_names
|
||
|
and not is_classvar(ann_type)
|
||
|
and ann_type not in all_ignored_types
|
||
|
and getattr(ann_type, '__module__', None) != 'functools'
|
||
|
):
|
||
|
if is_annotated(ann_type):
|
||
|
_, *metadata = typing_extensions.get_args(ann_type)
|
||
|
private_attr = next((v for v in metadata if isinstance(v, ModelPrivateAttr)), None)
|
||
|
if private_attr is not None:
|
||
|
private_attributes[ann_name] = private_attr
|
||
|
continue
|
||
|
private_attributes[ann_name] = PrivateAttr()
|
||
|
|
||
|
return private_attributes
|
||
|
|
||
|
|
||
|
def set_default_hash_func(cls: type[BaseModel], bases: tuple[type[Any], ...]) -> None:
|
||
|
base_hash_func = get_attribute_from_bases(bases, '__hash__')
|
||
|
new_hash_func = make_hash_func(cls)
|
||
|
if base_hash_func in {None, object.__hash__} or getattr(base_hash_func, '__code__', None) == new_hash_func.__code__:
|
||
|
# If `__hash__` is some default, we generate a hash function.
|
||
|
# It will be `None` if not overridden from BaseModel.
|
||
|
# It may be `object.__hash__` if there is another
|
||
|
# parent class earlier in the bases which doesn't override `__hash__` (e.g. `typing.Generic`).
|
||
|
# It may be a value set by `set_default_hash_func` if `cls` is a subclass of another frozen model.
|
||
|
# In the last case we still need a new hash function to account for new `model_fields`.
|
||
|
cls.__hash__ = new_hash_func
|
||
|
|
||
|
|
||
|
def make_hash_func(cls: type[BaseModel]) -> Any:
|
||
|
getter = operator.itemgetter(*cls.model_fields.keys()) if cls.model_fields else lambda _: 0
|
||
|
|
||
|
def hash_func(self: Any) -> int:
|
||
|
try:
|
||
|
return hash(getter(self.__dict__))
|
||
|
except KeyError:
|
||
|
# In rare cases (such as when using the deprecated copy method), the __dict__ may not contain
|
||
|
# all model fields, which is how we can get here.
|
||
|
# getter(self.__dict__) is much faster than any 'safe' method that accounts for missing keys,
|
||
|
# and wrapping it in a `try` doesn't slow things down much in the common case.
|
||
|
return hash(getter(SafeGetItemProxy(self.__dict__)))
|
||
|
|
||
|
return hash_func
|
||
|
|
||
|
|
||
|
def set_model_fields(
|
||
|
cls: type[BaseModel], bases: tuple[type[Any], ...], config_wrapper: ConfigWrapper, types_namespace: dict[str, Any]
|
||
|
) -> None:
|
||
|
"""Collect and set `cls.model_fields` and `cls.__class_vars__`.
|
||
|
|
||
|
Args:
|
||
|
cls: BaseModel or dataclass.
|
||
|
bases: Parents of the class, generally `cls.__bases__`.
|
||
|
config_wrapper: The config wrapper instance.
|
||
|
types_namespace: Optional extra namespace to look for types in.
|
||
|
"""
|
||
|
typevars_map = get_model_typevars_map(cls)
|
||
|
fields, class_vars = collect_model_fields(cls, bases, config_wrapper, types_namespace, typevars_map=typevars_map)
|
||
|
|
||
|
cls.model_fields = fields
|
||
|
cls.__class_vars__.update(class_vars)
|
||
|
|
||
|
for k in class_vars:
|
||
|
# Class vars should not be private attributes
|
||
|
# We remove them _here_ and not earlier because we rely on inspecting the class to determine its classvars,
|
||
|
# but private attributes are determined by inspecting the namespace _prior_ to class creation.
|
||
|
# In the case that a classvar with a leading-'_' is defined via a ForwardRef (e.g., when using
|
||
|
# `__future__.annotations`), we want to remove the private attribute which was detected _before_ we knew it
|
||
|
# evaluated to a classvar
|
||
|
|
||
|
value = cls.__private_attributes__.pop(k, None)
|
||
|
if value is not None and value.default is not PydanticUndefined:
|
||
|
setattr(cls, k, value.default)
|
||
|
|
||
|
|
||
|
def complete_model_class(
|
||
|
cls: type[BaseModel],
|
||
|
cls_name: str,
|
||
|
config_wrapper: ConfigWrapper,
|
||
|
*,
|
||
|
raise_errors: bool = True,
|
||
|
types_namespace: dict[str, Any] | None,
|
||
|
create_model_module: str | None = None,
|
||
|
) -> bool:
|
||
|
"""Finish building a model class.
|
||
|
|
||
|
This logic must be called after class has been created since validation functions must be bound
|
||
|
and `get_type_hints` requires a class object.
|
||
|
|
||
|
Args:
|
||
|
cls: BaseModel or dataclass.
|
||
|
cls_name: The model or dataclass name.
|
||
|
config_wrapper: The config wrapper instance.
|
||
|
raise_errors: Whether to raise errors.
|
||
|
types_namespace: Optional extra namespace to look for types in.
|
||
|
create_model_module: The module of the class to be created, if created by `create_model`.
|
||
|
|
||
|
Returns:
|
||
|
`True` if the model is successfully completed, else `False`.
|
||
|
|
||
|
Raises:
|
||
|
PydanticUndefinedAnnotation: If `PydanticUndefinedAnnotation` occurs in`__get_pydantic_core_schema__`
|
||
|
and `raise_errors=True`.
|
||
|
"""
|
||
|
typevars_map = get_model_typevars_map(cls)
|
||
|
gen_schema = GenerateSchema(
|
||
|
config_wrapper,
|
||
|
types_namespace,
|
||
|
typevars_map,
|
||
|
)
|
||
|
|
||
|
handler = CallbackGetCoreSchemaHandler(
|
||
|
partial(gen_schema.generate_schema, from_dunder_get_core_schema=False),
|
||
|
gen_schema,
|
||
|
ref_mode='unpack',
|
||
|
)
|
||
|
|
||
|
if config_wrapper.defer_build:
|
||
|
set_model_mocks(cls, cls_name)
|
||
|
return False
|
||
|
|
||
|
try:
|
||
|
schema = cls.__get_pydantic_core_schema__(cls, handler)
|
||
|
except PydanticUndefinedAnnotation as e:
|
||
|
if raise_errors:
|
||
|
raise
|
||
|
set_model_mocks(cls, cls_name, f'`{e.name}`')
|
||
|
return False
|
||
|
|
||
|
core_config = config_wrapper.core_config(cls)
|
||
|
|
||
|
try:
|
||
|
schema = gen_schema.clean_schema(schema)
|
||
|
except gen_schema.CollectedInvalid:
|
||
|
set_model_mocks(cls, cls_name)
|
||
|
return False
|
||
|
|
||
|
# debug(schema)
|
||
|
cls.__pydantic_core_schema__ = schema
|
||
|
|
||
|
cls.__pydantic_validator__ = create_schema_validator(
|
||
|
schema,
|
||
|
cls,
|
||
|
create_model_module or cls.__module__,
|
||
|
cls.__qualname__,
|
||
|
'create_model' if create_model_module else 'BaseModel',
|
||
|
core_config,
|
||
|
config_wrapper.plugin_settings,
|
||
|
)
|
||
|
cls.__pydantic_serializer__ = SchemaSerializer(schema, core_config)
|
||
|
cls.__pydantic_complete__ = True
|
||
|
|
||
|
# set __signature__ attr only for model class, but not for its instances
|
||
|
cls.__signature__ = ClassAttribute(
|
||
|
'__signature__',
|
||
|
generate_pydantic_signature(init=cls.__init__, fields=cls.model_fields, config_wrapper=config_wrapper),
|
||
|
)
|
||
|
return True
|
||
|
|
||
|
|
||
|
def set_deprecated_descriptors(cls: type[BaseModel]) -> None:
|
||
|
"""Set data descriptors on the class for deprecated fields."""
|
||
|
for field, field_info in cls.model_fields.items():
|
||
|
if (msg := field_info.deprecation_message) is not None:
|
||
|
desc = _DeprecatedFieldDescriptor(msg)
|
||
|
desc.__set_name__(cls, field)
|
||
|
setattr(cls, field, desc)
|
||
|
|
||
|
for field, computed_field_info in cls.model_computed_fields.items():
|
||
|
if (
|
||
|
(msg := computed_field_info.deprecation_message) is not None
|
||
|
# Avoid having two warnings emitted:
|
||
|
and not hasattr(unwrap_wrapped_function(computed_field_info.wrapped_property), '__deprecated__')
|
||
|
):
|
||
|
desc = _DeprecatedFieldDescriptor(msg, computed_field_info.wrapped_property)
|
||
|
desc.__set_name__(cls, field)
|
||
|
setattr(cls, field, desc)
|
||
|
|
||
|
|
||
|
class _DeprecatedFieldDescriptor:
|
||
|
"""Data descriptor used to emit a runtime deprecation warning before accessing a deprecated field.
|
||
|
|
||
|
Attributes:
|
||
|
msg: The deprecation message to be emitted.
|
||
|
wrapped_property: The property instance if the deprecated field is a computed field, or `None`.
|
||
|
field_name: The name of the field being deprecated.
|
||
|
"""
|
||
|
|
||
|
field_name: str
|
||
|
|
||
|
def __init__(self, msg: str, wrapped_property: property | None = None) -> None:
|
||
|
self.msg = msg
|
||
|
self.wrapped_property = wrapped_property
|
||
|
|
||
|
def __set_name__(self, cls: type[BaseModel], name: str) -> None:
|
||
|
self.field_name = name
|
||
|
|
||
|
def __get__(self, obj: BaseModel | None, obj_type: type[BaseModel] | None = None) -> Any:
|
||
|
if obj is None:
|
||
|
raise AttributeError(self.field_name)
|
||
|
|
||
|
warnings.warn(self.msg, builtins.DeprecationWarning, stacklevel=2)
|
||
|
|
||
|
if self.wrapped_property is not None:
|
||
|
return self.wrapped_property.__get__(obj, obj_type)
|
||
|
return obj.__dict__[self.field_name]
|
||
|
|
||
|
# Defined to take precedence over the instance's dictionary
|
||
|
# Note that it will not be called when setting a value on a model instance
|
||
|
# as `BaseModel.__setattr__` is defined and takes priority.
|
||
|
def __set__(self, obj: Any, value: Any) -> NoReturn:
|
||
|
raise AttributeError(self.field_name)
|
||
|
|
||
|
|
||
|
class _PydanticWeakRef:
|
||
|
"""Wrapper for `weakref.ref` that enables `pickle` serialization.
|
||
|
|
||
|
Cloudpickle fails to serialize `weakref.ref` objects due to an arcane error related
|
||
|
to abstract base classes (`abc.ABC`). This class works around the issue by wrapping
|
||
|
`weakref.ref` instead of subclassing it.
|
||
|
|
||
|
See https://github.com/pydantic/pydantic/issues/6763 for context.
|
||
|
|
||
|
Semantics:
|
||
|
- If not pickled, behaves the same as a `weakref.ref`.
|
||
|
- If pickled along with the referenced object, the same `weakref.ref` behavior
|
||
|
will be maintained between them after unpickling.
|
||
|
- If pickled without the referenced object, after unpickling the underlying
|
||
|
reference will be cleared (`__call__` will always return `None`).
|
||
|
"""
|
||
|
|
||
|
def __init__(self, obj: Any):
|
||
|
if obj is None:
|
||
|
# The object will be `None` upon deserialization if the serialized weakref
|
||
|
# had lost its underlying object.
|
||
|
self._wr = None
|
||
|
else:
|
||
|
self._wr = weakref.ref(obj)
|
||
|
|
||
|
def __call__(self) -> Any:
|
||
|
if self._wr is None:
|
||
|
return None
|
||
|
else:
|
||
|
return self._wr()
|
||
|
|
||
|
def __reduce__(self) -> tuple[Callable, tuple[weakref.ReferenceType | None]]:
|
||
|
return _PydanticWeakRef, (self(),)
|
||
|
|
||
|
|
||
|
def build_lenient_weakvaluedict(d: dict[str, Any] | None) -> dict[str, Any] | None:
|
||
|
"""Takes an input dictionary, and produces a new value that (invertibly) replaces the values with weakrefs.
|
||
|
|
||
|
We can't just use a WeakValueDictionary because many types (including int, str, etc.) can't be stored as values
|
||
|
in a WeakValueDictionary.
|
||
|
|
||
|
The `unpack_lenient_weakvaluedict` function can be used to reverse this operation.
|
||
|
"""
|
||
|
if d is None:
|
||
|
return None
|
||
|
result = {}
|
||
|
for k, v in d.items():
|
||
|
try:
|
||
|
proxy = _PydanticWeakRef(v)
|
||
|
except TypeError:
|
||
|
proxy = v
|
||
|
result[k] = proxy
|
||
|
return result
|
||
|
|
||
|
|
||
|
def unpack_lenient_weakvaluedict(d: dict[str, Any] | None) -> dict[str, Any] | None:
|
||
|
"""Inverts the transform performed by `build_lenient_weakvaluedict`."""
|
||
|
if d is None:
|
||
|
return None
|
||
|
|
||
|
result = {}
|
||
|
for k, v in d.items():
|
||
|
if isinstance(v, _PydanticWeakRef):
|
||
|
v = v()
|
||
|
if v is not None:
|
||
|
result[k] = v
|
||
|
else:
|
||
|
result[k] = v
|
||
|
return result
|
||
|
|
||
|
|
||
|
def default_ignored_types() -> tuple[type[Any], ...]:
|
||
|
from ..fields import ComputedFieldInfo
|
||
|
|
||
|
return (
|
||
|
FunctionType,
|
||
|
property,
|
||
|
classmethod,
|
||
|
staticmethod,
|
||
|
PydanticDescriptorProxy,
|
||
|
ComputedFieldInfo,
|
||
|
ValidateCallWrapper,
|
||
|
)
|