ai-content-maker/.venv/Lib/site-packages/pygame/docs/generated/tut/SurfarrayIntro.html

658 lines
49 KiB
HTML
Raw Normal View History

2024-05-12 06:17:42 +03:00
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="generator" content="Docutils 0.17.1: http://docutils.sourceforge.net/" />
<title>Pygame Tutorials - Surfarray Introduction &#8212; pygame v2.5.2 documentation</title>
<link rel="stylesheet" type="text/css" href="../_static/pygments.css" />
<link rel="stylesheet" type="text/css" href="../_static/pygame.css" />
<script data-url_root="../" id="documentation_options" src="../_static/documentation_options.js"></script>
<script src="../_static/jquery.js"></script>
<script src="../_static/underscore.js"></script>
<script src="../_static/doctools.js"></script>
<link rel="shortcut icon" href="../_static/pygame.ico"/>
<link rel="index" title="Index" href="../genindex.html" />
<link rel="search" title="Search" href="../search.html" />
<link rel="next" title="Newbie Guide to Pygame" href="newbieguide.html" />
<link rel="prev" title="Pygame Tutorials - Sprite Module Introduction" href="SpriteIntro.html" />
</head><body>
<div class="document">
<div class="header">
<div class="flex-container">
<div class="logo">
<a href="https://www.pygame.org/">
<img src="../_static/pygame_tiny.png"/>
</a>
<h5>pygame documentation</h5>
</div>
<div class="pagelinks">
<div class="top">
<a href="https://www.pygame.org/">Pygame Home</a> ||
<a href="../index.html">Help Contents</a> ||
<a href="../genindex.html">Reference Index</a>
<form action="../search.html" method="get" style="display:inline;float:right;">
<input name="q" value="" type="text">
<input value="search" type="submit">
</form>
</div>
<hr style="color:black;border-bottom:none;border-style: dotted;border-bottom-style:none;">
<p class="bottom"><b>Most useful stuff</b>:
<a href="../ref/color.html">Color</a> |
<a href="../ref/display.html">display</a> |
<a href="../ref/draw.html">draw</a> |
<a href="../ref/event.html">event</a> |
<a href="../ref/font.html">font</a> |
<a href="../ref/image.html">image</a> |
<a href="../ref/key.html">key</a> |
<a href="../ref/locals.html">locals</a> |
<a href="../ref/mixer.html">mixer</a> |
<a href="../ref/mouse.html">mouse</a> |
<a href="../ref/rect.html">Rect</a> |
<a href="../ref/surface.html">Surface</a> |
<a href="../ref/time.html">time</a> |
<a href="../ref/music.html">music</a> |
<a href="../ref/pygame.html">pygame</a>
</p>
<p class="bottom"><b>Advanced stuff</b>:
<a href="../ref/cursors.html">cursors</a> |
<a href="../ref/joystick.html">joystick</a> |
<a href="../ref/mask.html">mask</a> |
<a href="../ref/sprite.html">sprite</a> |
<a href="../ref/transform.html">transform</a> |
<a href="../ref/bufferproxy.html">BufferProxy</a> |
<a href="../ref/freetype.html">freetype</a> |
<a href="../ref/gfxdraw.html">gfxdraw</a> |
<a href="../ref/midi.html">midi</a> |
<a href="../ref/pixelarray.html">PixelArray</a> |
<a href="../ref/pixelcopy.html">pixelcopy</a> |
<a href="../ref/sndarray.html">sndarray</a> |
<a href="../ref/surfarray.html">surfarray</a> |
<a href="../ref/math.html">math</a>
</p>
<p class="bottom"><b>Other</b>:
<a href="../ref/camera.html">camera</a> |
<a href="../ref/sdl2_controller.html#module-pygame._sdl2.controller">controller</a> |
<a href="../ref/examples.html">examples</a> |
<a href="../ref/fastevent.html">fastevent</a> |
<a href="../ref/scrap.html">scrap</a> |
<a href="../ref/tests.html">tests</a> |
<a href="../ref/touch.html">touch</a> |
<a href="../ref/pygame.html#module-pygame.version">version</a>
</p>
</div>
</div>
</div>
<div class="documentwrapper">
<div class="body" role="main">
<section id="pygame-tutorials-surfarray-introduction">
<section id="surfarray-introduction">
<h2>Surfarray Introduction<a class="headerlink" href="#surfarray-introduction" title="Permalink to this headline"></a></h2>
<dl class="docinfo field-list simple">
<dt class="field-odd">Author</dt>
<dd class="field-odd"><p>Pete Shinners</p>
</dd>
<dt class="field-even">Contact</dt>
<dd class="field-even"><p><a class="reference external" href="mailto:pete&#37;&#52;&#48;shinners&#46;org">pete<span>&#64;</span>shinners<span>&#46;</span>org</a></p>
</dd>
</dl>
<section id="introduction">
<h3>Introduction<a class="headerlink" href="#introduction" title="Permalink to this headline"></a></h3>
<p>This tutorial will attempt to introduce users to both NumPy and the pygame
surfarray module. To beginners, the code that uses surfarray can be quite
intimidating. But actually there are only a few concepts to understand and
you will be up and running. Using the surfarray module, it becomes possible
to perform pixel level operations from straight python code. The performance
can become quite close to the level of doing the code in C.</p>
<p>You may just want to jump down to the <em>&quot;Examples&quot;</em> section to get an
idea of what is possible with this module, then start at the beginning here
to work your way up.</p>
<p>Now I won't try to fool you into thinking everything is very easy. To get
more advanced effects by modifying pixel values is very tricky. Just mastering
Numeric Python (SciPy's original array package was Numeric, the predecessor of NumPy)
takes a lot of learning. In this tutorial I'll be sticking with
the basics and using a lot of examples in an attempt to plant seeds of wisdom.
After finishing the tutorial you should have a basic handle on how the surfarray
works.</p>
</section>
<section id="numeric-python">
<h3>Numeric Python<a class="headerlink" href="#numeric-python" title="Permalink to this headline"></a></h3>
<p>If you do not have the python NumPy package installed,
you will need to do that now, by following the
<a class="reference external" href="https://numpy.org/install/">NumPy Installation Guide</a>.
To make sure NumPy is working for you,
you should get something like this from the interactive python prompt.</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">numpy</span> <span class="kn">import</span> <span class="o">*</span> <span class="c1">#import numeric</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">a</span> <span class="o">=</span> <span class="n">array</span><span class="p">((</span><span class="mi">1</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">4</span><span class="p">,</span><span class="mi">5</span><span class="p">))</span> <span class="c1">#create an array</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">a</span> <span class="c1">#display the array</span>
<span class="go">array([1, 2, 3, 4, 5])</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">a</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span> <span class="c1">#index into the array</span>
<span class="go">3</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">a</span><span class="o">*</span><span class="mi">2</span> <span class="c1">#new array with twiced values</span>
<span class="go">array([ 2, 4, 6, 8, 10])</span>
</pre></div>
</div>
<p>As you can see, the NumPy module gives us a new data type, the <em>array</em>.
This object holds an array of fixed size, and all values inside are of the same
type. The arrays can also be multidimensional, which is how we will use them
with images. There's a bit more to it than this, but it is enough to get us
started.</p>
<p>If you look at the last command above, you'll see that mathematical operations
on NumPy arrays apply to all values in the array. This is called &quot;element-wise
operations&quot;. These arrays can also be sliced like normal lists. The slicing
syntax is the same as used on standard python objects.
<em>(so study up if you need to :] )</em>.
Here are some more examples of working with arrays.</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="nb">len</span><span class="p">(</span><span class="n">a</span><span class="p">)</span> <span class="c1">#get array size</span>
<span class="go">5</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">a</span><span class="p">[</span><span class="mi">2</span><span class="p">:]</span> <span class="c1">#elements 2 and up</span>
<span class="go">array([3, 4, 5])</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">a</span><span class="p">[:</span><span class="o">-</span><span class="mi">2</span><span class="p">]</span> <span class="c1">#all except last 2</span>
<span class="go">array([1, 2, 3])</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">a</span><span class="p">[</span><span class="mi">2</span><span class="p">:]</span> <span class="o">+</span> <span class="n">a</span><span class="p">[:</span><span class="o">-</span><span class="mi">2</span><span class="p">]</span> <span class="c1">#add first and last</span>
<span class="go">array([4, 6, 8])</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">array</span><span class="p">((</span><span class="mi">1</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">))</span> <span class="o">+</span> <span class="n">array</span><span class="p">((</span><span class="mi">3</span><span class="p">,</span><span class="mi">4</span><span class="p">))</span> <span class="c1">#add arrays of wrong sizes</span>
<span class="gt">Traceback (most recent call last):</span>
File <span class="nb">&quot;&lt;stdin&gt;&quot;</span>, line <span class="m">1</span>, in <span class="n">&lt;module&gt;</span>
<span class="gr">ValueError</span>: <span class="n">operands could not be broadcast together with shapes (3,) (2,)</span>
</pre></div>
</div>
<p>We get an error on the last command, because we try add together two arrays
that are different sizes. In order for two arrays two operate with each other,
including comparisons and assignment, they must have the same dimensions. It is
very important to know that the new arrays created from slicing the original all
reference the same values. So changing the values in a slice also changes the
original values. It is important how this is done.</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">a</span> <span class="c1">#show our starting array</span>
<span class="go">array([1, 2, 3, 4, 5])</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">aa</span> <span class="o">=</span> <span class="n">a</span><span class="p">[</span><span class="mi">1</span><span class="p">:</span><span class="mi">3</span><span class="p">]</span> <span class="c1">#slice middle 2 elements</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">aa</span> <span class="c1">#show the slice</span>
<span class="go">array([2, 3])</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">aa</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="mi">13</span> <span class="c1">#chance value in slice</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">a</span> <span class="c1">#show change in original</span>
<span class="go">array([ 1, 2, 13, 4, 5])</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">aaa</span> <span class="o">=</span> <span class="n">array</span><span class="p">(</span><span class="n">a</span><span class="p">)</span> <span class="c1">#make copy of array</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">aaa</span> <span class="c1">#show copy</span>
<span class="go">array([ 1, 2, 13, 4, 5])</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">aaa</span><span class="p">[</span><span class="mi">1</span><span class="p">:</span><span class="mi">4</span><span class="p">]</span> <span class="o">=</span> <span class="mi">0</span> <span class="c1">#set middle values to 0</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">aaa</span> <span class="c1">#show copy</span>
<span class="go">array([1, 0, 0, 0, 5])</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">a</span> <span class="c1">#show original again</span>
<span class="go">array([ 1, 2, 13, 4, 5])</span>
</pre></div>
</div>
<p>Now we will look at small arrays with two
dimensions. Don't be too worried, getting started it is the same as having a
two dimensional tuple <em>(a tuple inside a tuple)</em>. Let's get started with
two dimensional arrays.</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">row1</span> <span class="o">=</span> <span class="p">(</span><span class="mi">1</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">)</span> <span class="c1">#create a tuple of vals</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">row2</span> <span class="o">=</span> <span class="p">(</span><span class="mi">3</span><span class="p">,</span><span class="mi">4</span><span class="p">,</span><span class="mi">5</span><span class="p">)</span> <span class="c1">#another tuple</span>
<span class="gp">&gt;&gt;&gt; </span><span class="p">(</span><span class="n">row1</span><span class="p">,</span><span class="n">row2</span><span class="p">)</span> <span class="c1">#show as a 2D tuple</span>
<span class="go">((1, 2, 3), (3, 4, 5))</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">b</span> <span class="o">=</span> <span class="n">array</span><span class="p">((</span><span class="n">row1</span><span class="p">,</span> <span class="n">row2</span><span class="p">))</span> <span class="c1">#create a 2D array</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">b</span> <span class="c1">#show the array</span>
<span class="go">array([[1, 2, 3],</span>
<span class="go"> [3, 4, 5]])</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">array</span><span class="p">(((</span><span class="mi">1</span><span class="p">,</span><span class="mi">2</span><span class="p">),(</span><span class="mi">3</span><span class="p">,</span><span class="mi">4</span><span class="p">),(</span><span class="mi">5</span><span class="p">,</span><span class="mi">6</span><span class="p">)))</span> <span class="c1">#show a new 2D array</span>
<span class="go">array([[1, 2],</span>
<span class="go"> [3, 4],</span>
<span class="go"> [5, 6]])</span>
</pre></div>
</div>
<p>Now with this two
dimensional array <em>(from now on as &quot;2D&quot;)</em> we can index specific values
and do slicing on both dimensions. Simply using a comma to separate the indices
allows us to lookup/slice in multiple dimensions. Just using &quot;<code class="docutils literal notranslate"><span class="pre">:</span></code>&quot; as an
index <em>(or not supplying enough indices)</em> gives us all the values in
that dimension. Let's see how this works.</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">b</span> <span class="c1">#show our array from above</span>
<span class="go">array([[1, 2, 3],</span>
<span class="go"> [3, 4, 5]])</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">b</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">]</span> <span class="c1">#index a single value</span>
<span class="go">2</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">b</span><span class="p">[</span><span class="mi">1</span><span class="p">,:]</span> <span class="c1">#slice second row</span>
<span class="go">array([3, 4, 5])</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">b</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="c1">#slice second row (same as above)</span>
<span class="go">array([3, 4, 5])</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">b</span><span class="p">[:,</span><span class="mi">2</span><span class="p">]</span> <span class="c1">#slice last column</span>
<span class="go">array([3, 5])</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">b</span><span class="p">[:,:</span><span class="mi">2</span><span class="p">]</span> <span class="c1">#slice into a 2x2 array</span>
<span class="go">array([[1, 2],</span>
<span class="go"> [3, 4]])</span>
</pre></div>
</div>
<p>Ok, stay with me here, this is about as hard as it gets. When using NumPy
there is one more feature to slicing. Slicing arrays also allow you to specify
a <em>slice increment</em>. The syntax for a slice with increment is
<code class="docutils literal notranslate"><span class="pre">start_index</span> <span class="pre">:</span> <span class="pre">end_index</span> <span class="pre">:</span> <span class="pre">increment</span></code>.</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">c</span> <span class="o">=</span> <span class="n">arange</span><span class="p">(</span><span class="mi">10</span><span class="p">)</span> <span class="c1">#like range, but makes an array</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">c</span> <span class="c1">#show the array</span>
<span class="go">array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">c</span><span class="p">[</span><span class="mi">1</span><span class="p">:</span><span class="mi">6</span><span class="p">:</span><span class="mi">2</span><span class="p">]</span> <span class="c1">#slice odd values from 1 to 6</span>
<span class="go">array([1, 3, 5])</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">c</span><span class="p">[</span><span class="mi">4</span><span class="p">::</span><span class="mi">4</span><span class="p">]</span> <span class="c1">#slice every 4th val starting at 4</span>
<span class="go">array([4, 8])</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">c</span><span class="p">[</span><span class="mi">8</span><span class="p">:</span><span class="mi">1</span><span class="p">:</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="c1">#slice 1 to 8, reversed</span>
<span class="go">array([8, 7, 6, 5, 4, 3, 2])</span>
</pre></div>
</div>
<p>Well that is it. There's enough information there to get you started using
NumPy with the surfarray module. There's certainly a lot more to NumPy, but
this is only an introduction. Besides, we want to get on to the fun stuff,
correct?</p>
</section>
<section id="import-surfarray">
<h3>Import Surfarray<a class="headerlink" href="#import-surfarray" title="Permalink to this headline"></a></h3>
<p>In order to use the surfarray module we need to import it. Since both surfarray
and NumPy are optional components for pygame, it is nice to make sure they
import correctly before using them. In these examples I'm going to import
NumPy into a variable named <em>N</em>. This will let you know which functions
I'm using are from the NumPy package.
<em>(and is a lot shorter than typing NumPy before each function)</em></p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="k">try</span><span class="p">:</span>
<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">N</span>
<span class="kn">import</span> <span class="nn">pygame.surfarray</span> <span class="k">as</span> <span class="nn">surfarray</span>
<span class="k">except</span> <span class="ne">ImportError</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ImportError</span><span class="p">,</span> <span class="s2">&quot;NumPy and Surfarray are required.&quot;</span>
</pre></div>
</div>
</section>
<section id="id1">
<h3>Surfarray Introduction<a class="headerlink" href="#id1" title="Permalink to this headline"></a></h3>
<p>There are two main types of functions in surfarray. One set of functions for
creating an array that is a copy of a surface pixel data. The other functions
create a referenced copy of the array pixel data, so that changes to the array
directly affect the original surface. There are other functions that allow you
to access any per-pixel alpha values as arrays along with a few other helpful
functions. We will look at these other functions later on.</p>
<p>When working with these surface arrays, there are two ways of representing the
pixel values. First, they can be represented as mapped integers. This type of
array is a simple 2D array with a single integer representing the surface's
mapped color value. This type of array is good for moving parts of an image
around. The other type of array uses three RGB values to represent each pixel
color. This type of array makes it extremely simple to do types of effects that
change the color of each pixel. This type of array is also a little trickier to
deal with, since it is essentially a 3D numeric array. Still, once you get your
mind into the right mode, it is not much harder than using the normal 2D arrays.</p>
<p>The NumPy module uses a machine's natural number types to represent the data
values, so a NumPy array can consist of integers that are 8-bits, 16-bits, and 32-bits.
<em>(the arrays can also use other types like floats and doubles, but for our image
manipulation we mainly need to worry about the integer types)</em>.
Because of this limitation of integer sizes, you must take a little extra care
that the type of arrays that reference pixel data can be properly mapped to a
proper type of data. The functions create these arrays from surfaces are:</p>
<dl class="py function definition">
<dt class="sig sig-object py title">
<span class="sig-prename descclassname"><span class="pre">surfarray.</span></span><span class="sig-name descname"><span class="pre">pixels2d</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">surface</span></span></em><span class="sig-paren">)</span></dt>
<dd><p>Creates a 2D array <em>(integer pixel values)</em> that reference the original surface data.
This will work for all surface formats except 24-bit.</p>
</dd></dl>
<dl class="py function definition">
<dt class="sig sig-object py title">
<span class="sig-prename descclassname"><span class="pre">surfarray.</span></span><span class="sig-name descname"><span class="pre">array2d</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">surface</span></span></em><span class="sig-paren">)</span></dt>
<dd><p>Creates a 2D array <em>(integer pixel values)</em> that is copied from any type of surface.</p>
</dd></dl>
<dl class="py function definition">
<dt class="sig sig-object py title">
<span class="sig-prename descclassname"><span class="pre">surfarray.</span></span><span class="sig-name descname"><span class="pre">pixels3d</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">surface</span></span></em><span class="sig-paren">)</span></dt>
<dd><p>Creates a 3D array <em>(RGB pixel values)</em> that reference the original surface data.
This will only work on 24-bit and 32-bit surfaces that have RGB or BGR formatting.</p>
</dd></dl>
<dl class="py function definition">
<dt class="sig sig-object py title">
<span class="sig-prename descclassname"><span class="pre">surfarray.</span></span><span class="sig-name descname"><span class="pre">array3d</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">surface</span></span></em><span class="sig-paren">)</span></dt>
<dd><p>Creates a 3D array <em>(RGB pixel values)</em> that is copied from any type of surface.</p>
</dd></dl>
<p>Here is a small chart that might better illustrate what types of functions
should be used on which surfaces. As you can see, both the arrayXD functions
will work with any type of surface.</p>
<table class="colwidths-given matrix docutils align-default">
<colgroup>
<col style="width: 20%" />
<col style="width: 20%" />
<col style="width: 20%" />
<col style="width: 20%" />
<col style="width: 20%" />
</colgroup>
<thead>
<tr class="row-odd"><th class="head stub"></th>
<th class="head"><p>32-bit</p></th>
<th class="head"><p>24-bit</p></th>
<th class="head"><p>16-bit</p></th>
<th class="head"><p>8-bit(c-map)</p></th>
</tr>
</thead>
<tbody>
<tr class="row-even"><th class="stub"><p>pixel2d</p></th>
<td><p>yes</p></td>
<td></td>
<td><p>yes</p></td>
<td><p>yes</p></td>
</tr>
<tr class="row-odd"><th class="stub"><p>array2d</p></th>
<td><p>yes</p></td>
<td><p>yes</p></td>
<td><p>yes</p></td>
<td><p>yes</p></td>
</tr>
<tr class="row-even"><th class="stub"><p>pixel3d</p></th>
<td><p>yes</p></td>
<td><p>yes</p></td>
<td></td>
<td></td>
</tr>
<tr class="row-odd"><th class="stub"><p>array3d</p></th>
<td><p>yes</p></td>
<td><p>yes</p></td>
<td><p>yes</p></td>
<td><p>yes</p></td>
</tr>
</tbody>
</table>
</section>
<section id="examples">
<h3>Examples<a class="headerlink" href="#examples" title="Permalink to this headline"></a></h3>
<p>With this information, we are equipped to start trying things with surface
arrays. The following are short little demonstrations that create a NumPy
array and display them in pygame. These different tests are found in the
<em>arraydemo.py</em> example. There is a simple function named <em>surfdemo_show</em>
that displays an array on the screen.</p>
<div class="examples docutils container">
<div class="example docutils container">
<img alt="allblack" src="../_images/surfarray_allblack.png" />
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">allblack</span> <span class="o">=</span> <span class="n">N</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="mi">128</span><span class="p">,</span> <span class="mi">128</span><span class="p">))</span>
<span class="n">surfdemo_show</span><span class="p">(</span><span class="n">allblack</span><span class="p">,</span> <span class="s1">&#39;allblack&#39;</span><span class="p">)</span>
</pre></div>
</div>
<p>Our first example creates an all black array. Whenever you need
to create a new numeric array of a specific size, it is best to use the
<code class="docutils literal notranslate"><span class="pre">zeros</span></code> function. Here we create a 2D array of all zeros and display
it.</p>
<div class="break docutils container">
</div>
</div>
<div class="example docutils container">
<img alt="striped" src="../_images/surfarray_striped.png" />
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">striped</span> <span class="o">=</span> <span class="n">N</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="mi">128</span><span class="p">,</span> <span class="mi">128</span><span class="p">,</span> <span class="mi">3</span><span class="p">))</span>
<span class="n">striped</span><span class="p">[:]</span> <span class="o">=</span> <span class="p">(</span><span class="mi">255</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
<span class="n">striped</span><span class="p">[:,::</span><span class="mi">3</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">255</span><span class="p">,</span> <span class="mi">255</span><span class="p">)</span>
<span class="n">surfdemo_show</span><span class="p">(</span><span class="n">striped</span><span class="p">,</span> <span class="s1">&#39;striped&#39;</span><span class="p">)</span>
</pre></div>
</div>
<p>Here we are dealing with a 3D array. We start by creating an all red image.
Then we slice out every third row and assign it to a blue/green color. As you
can see, we can treat the 3D arrays almost exactly the same as 2D arrays, just
be sure to assign them 3 values instead of a single mapped integer.</p>
<div class="break docutils container">
</div>
</div>
<div class="example docutils container">
<img alt="rgbarray" src="../_images/surfarray_rgbarray.png" />
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">imgsurface</span> <span class="o">=</span> <span class="n">pygame</span><span class="o">.</span><span class="n">image</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="s1">&#39;surfarray.png&#39;</span><span class="p">)</span>
<span class="n">rgbarray</span> <span class="o">=</span> <span class="n">surfarray</span><span class="o">.</span><span class="n">array3d</span><span class="p">(</span><span class="n">imgsurface</span><span class="p">)</span>
<span class="n">surfdemo_show</span><span class="p">(</span><span class="n">rgbarray</span><span class="p">,</span> <span class="s1">&#39;rgbarray&#39;</span><span class="p">)</span>
</pre></div>
</div>
<p>Here we load an image with the image module, then convert it to a 3D
array of integer RGB color elements. An RGB copy of a surface always
has the colors arranged as a[r,c,0] for the red component,
a[r,c,1] for the green component, and a[r,c,2] for blue. This can then
be used without caring how the pixels of the actual surface are configured,
unlike a 2D array which is a copy of the <a class="reference internal" href="../ref/surface.html#pygame.Surface.map_rgb" title="pygame.Surface.map_rgb"><code class="xref py py-meth docutils literal notranslate"><span class="pre">mapped</span></code></a>
(raw) surface pixels. We will use this image in the rest of the samples.</p>
<div class="break docutils container">
</div>
</div>
<div class="example docutils container">
<img alt="flipped" src="../_images/surfarray_flipped.png" />
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">flipped</span> <span class="o">=</span> <span class="n">rgbarray</span><span class="p">[:,::</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span>
<span class="n">surfdemo_show</span><span class="p">(</span><span class="n">flipped</span><span class="p">,</span> <span class="s1">&#39;flipped&#39;</span><span class="p">)</span>
</pre></div>
</div>
<p>Here we flip the image vertically. All we need to do is take the original
image array and slice it using a negative increment.</p>
<div class="break docutils container">
</div>
</div>
<div class="example docutils container">
<img alt="scaledown" src="../_images/surfarray_scaledown.png" />
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">scaledown</span> <span class="o">=</span> <span class="n">rgbarray</span><span class="p">[::</span><span class="mi">2</span><span class="p">,::</span><span class="mi">2</span><span class="p">]</span>
<span class="n">surfdemo_show</span><span class="p">(</span><span class="n">scaledown</span><span class="p">,</span> <span class="s1">&#39;scaledown&#39;</span><span class="p">)</span>
</pre></div>
</div>
<p>Based on the last example, scaling an image down is pretty logical. We just
slice out all the pixels using an increment of 2 vertically and horizontally.</p>
<div class="break docutils container">
</div>
</div>
<div class="example docutils container">
<img alt="scaleup" src="../_images/surfarray_scaleup.png" />
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">shape</span> <span class="o">=</span> <span class="n">rgbarray</span><span class="o">.</span><span class="n">shape</span>
<span class="n">scaleup</span> <span class="o">=</span> <span class="n">N</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">*</span><span class="mi">2</span><span class="p">,</span> <span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">*</span><span class="mi">2</span><span class="p">,</span> <span class="n">shape</span><span class="p">[</span><span class="mi">2</span><span class="p">]))</span>
<span class="n">scaleup</span><span class="p">[::</span><span class="mi">2</span><span class="p">,::</span><span class="mi">2</span><span class="p">,:]</span> <span class="o">=</span> <span class="n">rgbarray</span>
<span class="n">scaleup</span><span class="p">[</span><span class="mi">1</span><span class="p">::</span><span class="mi">2</span><span class="p">,::</span><span class="mi">2</span><span class="p">,:]</span> <span class="o">=</span> <span class="n">rgbarray</span>
<span class="n">scaleup</span><span class="p">[:,</span><span class="mi">1</span><span class="p">::</span><span class="mi">2</span><span class="p">]</span> <span class="o">=</span> <span class="n">scaleup</span><span class="p">[:,::</span><span class="mi">2</span><span class="p">]</span>
<span class="n">surfdemo_show</span><span class="p">(</span><span class="n">scaleup</span><span class="p">,</span> <span class="s1">&#39;scaleup&#39;</span><span class="p">)</span>
</pre></div>
</div>
<p>Scaling the image up is a little more work, but is similar to the previous
scaling down, we do it all with slicing. First we create an array that is
double the size of our original. First we copy the original array into every
other pixel of the new array. Then we do it again for every other pixel doing
the odd columns. At this point we have the image scaled properly going across,
but every other row is black, so we simply need to copy each row to the one
underneath it. Then we have an image doubled in size.</p>
<div class="break docutils container">
</div>
</div>
<div class="example docutils container">
<img alt="redimg" src="../_images/surfarray_redimg.png" />
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">redimg</span> <span class="o">=</span> <span class="n">N</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">rgbarray</span><span class="p">)</span>
<span class="n">redimg</span><span class="p">[:,:,</span><span class="mi">1</span><span class="p">:]</span> <span class="o">=</span> <span class="mi">0</span>
<span class="n">surfdemo_show</span><span class="p">(</span><span class="n">redimg</span><span class="p">,</span> <span class="s1">&#39;redimg&#39;</span><span class="p">)</span>
</pre></div>
</div>
<p>Now we are using 3D arrays to change the colors. Here we
set all the values in green and blue to zero.
This leaves us with just the red channel.</p>
<div class="break docutils container">
</div>
</div>
<div class="example docutils container">
<img alt="soften" src="../_images/surfarray_soften.png" />
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">factor</span> <span class="o">=</span> <span class="n">N</span><span class="o">.</span><span class="n">array</span><span class="p">((</span><span class="mi">8</span><span class="p">,),</span> <span class="n">N</span><span class="o">.</span><span class="n">int32</span><span class="p">)</span>
<span class="n">soften</span> <span class="o">=</span> <span class="n">N</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">rgbarray</span><span class="p">,</span> <span class="n">N</span><span class="o">.</span><span class="n">int32</span><span class="p">)</span>
<span class="n">soften</span><span class="p">[</span><span class="mi">1</span><span class="p">:,:]</span> <span class="o">+=</span> <span class="n">rgbarray</span><span class="p">[:</span><span class="o">-</span><span class="mi">1</span><span class="p">,:]</span> <span class="o">*</span> <span class="n">factor</span>
<span class="n">soften</span><span class="p">[:</span><span class="o">-</span><span class="mi">1</span><span class="p">,:]</span> <span class="o">+=</span> <span class="n">rgbarray</span><span class="p">[</span><span class="mi">1</span><span class="p">:,:]</span> <span class="o">*</span> <span class="n">factor</span>
<span class="n">soften</span><span class="p">[:,</span><span class="mi">1</span><span class="p">:]</span> <span class="o">+=</span> <span class="n">rgbarray</span><span class="p">[:,:</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">*</span> <span class="n">factor</span>
<span class="n">soften</span><span class="p">[:,:</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">+=</span> <span class="n">rgbarray</span><span class="p">[:,</span><span class="mi">1</span><span class="p">:]</span> <span class="o">*</span> <span class="n">factor</span>
<span class="n">soften</span> <span class="o">//=</span> <span class="mi">33</span>
<span class="n">surfdemo_show</span><span class="p">(</span><span class="n">soften</span><span class="p">,</span> <span class="s1">&#39;soften&#39;</span><span class="p">)</span>
</pre></div>
</div>
<p>Here we perform a 3x3 convolution filter that will soften our image.
It looks like a lot of steps here, but what we are doing is shifting
the image 1 pixel in each direction and adding them all together (with some
multiplication for weighting). Then average all the values. It's no Gaussian,
but it's fast. One point with NumPy arrays, the precision of arithmetic
operations is determined by the array with the largest data type.
So if factor was not declared as a 1 element array of type numpy.int32,
the multiplications would be performed using numpy.int8, the 8 bit integer
type of each rgbarray element. This will cause value truncation. The soften
array must also be declared to have a larger integer size than rgbarray to
avoid truncation.</p>
<div class="break docutils container">
</div>
</div>
<div class="example docutils container">
<img alt="xfade" src="../_images/surfarray_xfade.png" />
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">src</span> <span class="o">=</span> <span class="n">N</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">rgbarray</span><span class="p">)</span>
<span class="n">dest</span> <span class="o">=</span> <span class="n">N</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">rgbarray</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span>
<span class="n">dest</span><span class="p">[:]</span> <span class="o">=</span> <span class="mi">20</span><span class="p">,</span> <span class="mi">50</span><span class="p">,</span> <span class="mi">100</span>
<span class="n">diff</span> <span class="o">=</span> <span class="p">(</span><span class="n">dest</span> <span class="o">-</span> <span class="n">src</span><span class="p">)</span> <span class="o">*</span> <span class="mf">0.50</span>
<span class="n">xfade</span> <span class="o">=</span> <span class="n">src</span> <span class="o">+</span> <span class="n">diff</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="n">N</span><span class="o">.</span><span class="n">uint</span><span class="p">)</span>
<span class="n">surfdemo_show</span><span class="p">(</span><span class="n">xfade</span><span class="p">,</span> <span class="s1">&#39;xfade&#39;</span><span class="p">)</span>
</pre></div>
</div>
<p>Lastly, we are cross fading between the original image and a solid bluish
image. Not exciting, but the dest image could be anything, and changing the 0.50
multiplier will let you choose any step in a linear crossfade between two images.</p>
<div class="break docutils container">
</div>
</div>
</div>
<p>Hopefully by this point you are starting to see how surfarray can be used to
perform special effects and transformations that are only possible at the pixel
level. At the very least, you can use the surfarray to do a lot of Surface.set_at()
Surface.get_at() type operations very quickly. But don't think you are finished
yet, there is still much to learn.</p>
</section>
<section id="surface-locking">
<h3>Surface Locking<a class="headerlink" href="#surface-locking" title="Permalink to this headline"></a></h3>
<p>Like the rest of pygame, surfarray will lock any Surfaces it needs to
automatically when accessing pixel data. There is one extra thing to be aware
of though. When creating the <em>pixel</em> arrays, the original surface will
be locked during the lifetime of that pixel array. This is important to remember.
Be sure to <em>&quot;del&quot;</em> the pixel array or let it go out of scope
<em>(ie, when the function returns, etc)</em>.</p>
<p>Also be aware that you really don't want to be doing much <em>(if any)</em>
direct pixel access on hardware surfaces <em>(HWSURFACE)</em>. This is because
the actual surface data lives on the graphics card, and transferring pixel
changes over the PCI/AGP bus is not fast.</p>
</section>
<section id="transparency">
<h3>Transparency<a class="headerlink" href="#transparency" title="Permalink to this headline"></a></h3>
<p>The surfarray module has several methods for accessing a Surface's alpha/colorkey
values. None of the alpha functions are affected by overall transparency of a
Surface, just the pixel alpha values. Here's the list of those functions.</p>
<dl class="py function definition">
<dt class="sig sig-object py title">
<span class="sig-prename descclassname"><span class="pre">surfarray.</span></span><span class="sig-name descname"><span class="pre">pixels_alpha</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">surface</span></span></em><span class="sig-paren">)</span></dt>
<dd><p>Creates a 2D array <em>(integer pixel values)</em> that references the original
surface alpha data.
This will only work on 32-bit images with an 8-bit alpha component.</p>
</dd></dl>
<dl class="py function definition">
<dt class="sig sig-object py title">
<span class="sig-prename descclassname"><span class="pre">surfarray.</span></span><span class="sig-name descname"><span class="pre">array_alpha</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">surface</span></span></em><span class="sig-paren">)</span></dt>
<dd><p>Creates a 2D array <em>(integer pixel values)</em> that is copied from any
type of surface.
If the surface has no alpha values,
the array will be fully opaque values <em>(255)</em>.</p>
</dd></dl>
<dl class="py function definition">
<dt class="sig sig-object py title">
<span class="sig-prename descclassname"><span class="pre">surfarray.</span></span><span class="sig-name descname"><span class="pre">array_colorkey</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">surface</span></span></em><span class="sig-paren">)</span></dt>
<dd><p>Creates a 2D array <em>(integer pixel values)</em> that is set to transparent
<em>(0)</em> wherever that pixel color matches the Surface colorkey.</p>
</dd></dl>
</section>
<section id="other-surfarray-functions">
<h3>Other Surfarray Functions<a class="headerlink" href="#other-surfarray-functions" title="Permalink to this headline"></a></h3>
<p>There are only a few other functions available in surfarray. You can get a better
list with more documentation on the
<a class="reference internal" href="../ref/surfarray.html#module-pygame.surfarray" title="pygame.surfarray: pygame module for accessing surface pixel data using array interfaces"><code class="xref py py-mod docutils literal notranslate"><span class="pre">surfarray</span> <span class="pre">reference</span> <span class="pre">page</span></code></a>.
There is one very useful function though.</p>
<dl class="py function definition">
<dt class="sig sig-object py title">
<span class="sig-prename descclassname"><span class="pre">surfarray.</span></span><span class="sig-name descname"><span class="pre">blit_array</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">surface</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">array</span></span></em><span class="sig-paren">)</span></dt>
<dd><p>This will transfer any type of 2D or 3D surface array onto a Surface
of the same dimensions.
This surfarray blit will generally be faster than assigning an array to a
referenced pixel array.
Still, it should not be as fast as normal Surface blitting,
since those are very optimized.</p>
</dd></dl>
</section>
<section id="more-advanced-numpy">
<h3>More Advanced NumPy<a class="headerlink" href="#more-advanced-numpy" title="Permalink to this headline"></a></h3>
<p>There's a couple last things you should know about NumPy arrays. When dealing
with very large arrays, like the kind that are 640x480 big, there are some extra
things you should be careful about. Mainly, while using the operators like + and
* on the arrays makes them easy to use, it is also very expensive on big arrays.
These operators must make new temporary copies of the array, that are then
usually copied into another array. This can get very time consuming. Fortunately,
all the NumPy operators come with special functions that can perform the
operation <em>&quot;in place&quot;</em>. For example, you would want to replace
<code class="docutils literal notranslate"><span class="pre">screen[:]</span> <span class="pre">=</span> <span class="pre">screen</span> <span class="pre">+</span> <span class="pre">brightmap</span></code> with the much faster
<code class="docutils literal notranslate"><span class="pre">add(screen,</span> <span class="pre">brightmap,</span> <span class="pre">screen)</span></code>.
Anyway, you'll want to read up on the NumPy UFunc
documentation for more about this.
It is important when dealing with the arrays.</p>
<p>Another thing to be aware of when working with NumPy arrays is the datatype
of the array. Some of the arrays (especially the mapped pixel type) often return
arrays with an unsigned 8-bit value. These arrays will easily overflow if you are
not careful. NumPy will use the same coercion that you find in C programs, so
mixing an operation with 8-bit numbers and 32-bit numbers will give a result as
32-bit numbers. You can convert the datatype of an array, but definitely be
aware of what types of arrays you have, if NumPy gets in a situation where
precision would be ruined, it will raise an exception.</p>
<p>Lastly, be aware that when assigning values into the 3D arrays, they must be
between 0 and 255, or you will get some undefined truncating.</p>
</section>
<section id="graduation">
<h3>Graduation<a class="headerlink" href="#graduation" title="Permalink to this headline"></a></h3>
<p>Well there you have it. My quick primer on Numeric Python and surfarray.
Hopefully now you see what is possible, and even if you never use them for
yourself, you do not have to be afraid when you see code that does. Look into
the vgrade example for more numeric array action. There are also some <em>&quot;flame&quot;</em>
demos floating around that use surfarray to create a realtime fire effect.</p>
<p>Best of all, try some things on your own. Take it slow at first and build up,
I've seen some great things with surfarray already like radial gradients and
more. Good Luck.</p>
</section>
</section>
</section>
<br /><br />
<hr />
<a href="https://github.com/pygame/pygame/edit/main/docs/reST/tut\SurfarrayIntro.rst" rel="nofollow">Edit on GitHub</a>
<div class="clearer"></div>
</div>
</div>
<div class="clearer"></div>
</div>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="../genindex.html" title="General Index"
accesskey="I">index</a></li>
<li class="right" >
<a href="../py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="right" >
<a href="newbieguide.html" title="Newbie Guide to Pygame"
accesskey="N">next</a> |</li>
<li class="right" >
<a href="SpriteIntro.html" title="Pygame Tutorials - Sprite Module Introduction"
accesskey="P">previous</a> |</li>
<li class="nav-item nav-item-0"><a href="../index.html">pygame v2.5.2 documentation</a> &#187;</li>
<li class="nav-item nav-item-this"><a href="">Pygame Tutorials - Surfarray Introduction</a></li>
<script type="text/javascript" src="https://www.pygame.org/comment/jquery.plugin.docscomments.js"></script>
</ul>
</div>
<div class="footer" role="contentinfo">
&#169; Copyright 2000-2023, pygame developers.
</div>
</body>
</html>