ai-content-maker/.venv/Lib/site-packages/pynndescent/threaded_rp_trees.py

99 lines
2.9 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
import numpy as np
import numba
from pynndescent.utils import tau_rand_int, norm
######################################################
# Alternative tree approach; should be the basis
# for a dask-distributed version of the algorithm
######################################################
@numba.njit(fastmath=True, nogil=True)
def apply_hyperplane(
data,
hyperplane_vector,
hyperplane_offset,
hyperplane_node_num,
current_num_nodes,
data_node_loc,
rng_state,
):
left_node = current_num_nodes
right_node = current_num_nodes + 1
for i in range(data_node_loc.shape[0]):
if data_node_loc[i] != hyperplane_node_num:
continue
margin = hyperplane_offset
for d in range(hyperplane_vector.shape[0]):
margin += hyperplane_vector[d] * data[i, d]
if margin == 0:
if abs(tau_rand_int(rng_state)) % 2 == 0:
data_node_loc[i] = left_node
else:
data_node_loc[i] = right_node
elif margin > 0:
data_node_loc[i] = left_node
else:
data_node_loc[i] = right_node
return
@numba.njit(fastmath=True, nogil=True)
def make_euclidean_hyperplane(data, indices, rng_state):
left_index = tau_rand_int(rng_state) % indices.shape[0]
right_index = tau_rand_int(rng_state) % indices.shape[0]
right_index += left_index == right_index
right_index = right_index % indices.shape[0]
left = indices[left_index]
right = indices[right_index]
# Compute the normal vector to the hyperplane (the vector between
# the two points) and the offset from the origin
hyperplane_offset = 0.0
hyperplane_vector = np.empty(data.shape[1], dtype=np.float32)
for d in range(data.shape[1]):
hyperplane_vector[d] = data[left, d] - data[right, d]
hyperplane_offset -= (
hyperplane_vector[d] * (data[left, d] + data[right, d]) / 2.0
)
return hyperplane_vector, hyperplane_offset
@numba.njit(fastmath=True, nogil=True)
def make_angular_hyperplane(data, indices, rng_state):
left_index = tau_rand_int(rng_state) % indices.shape[0]
right_index = tau_rand_int(rng_state) % indices.shape[0]
right_index += left_index == right_index
right_index = right_index % indices.shape[0]
left = indices[left_index]
right = indices[right_index]
left_norm = norm(data[left])
right_norm = norm(data[right])
if left_norm == 0.0:
left_norm = 1.0
if right_norm == 0.0:
right_norm = 1.0
# Compute the normal vector to the hyperplane (the vector between
# the two points) and the offset from the origin
hyperplane_offset = 0.0
hyperplane_vector = np.empty(data.shape[1], dtype=np.float32)
for d in range(data.shape[1]):
hyperplane_vector[d] = (data[left, d] / left_norm) - (
data[right, d] / right_norm
)
return hyperplane_vector, hyperplane_offset