ai-content-maker/.venv/Lib/site-packages/scipy/_lib/_array_api.py

357 lines
12 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
"""Utility functions to use Python Array API compatible libraries.
For the context about the Array API see:
https://data-apis.org/array-api/latest/purpose_and_scope.html
The SciPy use case of the Array API is described on the following page:
https://data-apis.org/array-api/latest/use_cases.html#use-case-scipy
"""
from __future__ import annotations
import os
import warnings
import numpy as np
from scipy._lib import array_api_compat
from scipy._lib.array_api_compat import (
is_array_api_obj,
size,
numpy as np_compat,
)
__all__ = ['array_namespace', '_asarray', 'size']
# To enable array API and strict array-like input validation
SCIPY_ARRAY_API: str | bool = os.environ.get("SCIPY_ARRAY_API", False)
# To control the default device - for use in the test suite only
SCIPY_DEVICE = os.environ.get("SCIPY_DEVICE", "cpu")
_GLOBAL_CONFIG = {
"SCIPY_ARRAY_API": SCIPY_ARRAY_API,
"SCIPY_DEVICE": SCIPY_DEVICE,
}
def compliance_scipy(arrays):
"""Raise exceptions on known-bad subclasses.
The following subclasses are not supported and raise and error:
- `numpy.ma.MaskedArray`
- `numpy.matrix`
- NumPy arrays which do not have a boolean or numerical dtype
- Any array-like which is neither array API compatible nor coercible by NumPy
- Any array-like which is coerced by NumPy to an unsupported dtype
"""
for i in range(len(arrays)):
array = arrays[i]
if isinstance(array, np.ma.MaskedArray):
raise TypeError("Inputs of type `numpy.ma.MaskedArray` are not supported.")
elif isinstance(array, np.matrix):
raise TypeError("Inputs of type `numpy.matrix` are not supported.")
if isinstance(array, (np.ndarray, np.generic)):
dtype = array.dtype
if not (np.issubdtype(dtype, np.number) or np.issubdtype(dtype, np.bool_)):
raise TypeError(f"An argument has dtype `{dtype!r}`; "
f"only boolean and numerical dtypes are supported.")
elif not is_array_api_obj(array):
try:
array = np.asanyarray(array)
except TypeError:
raise TypeError("An argument is neither array API compatible nor "
"coercible by NumPy.")
dtype = array.dtype
if not (np.issubdtype(dtype, np.number) or np.issubdtype(dtype, np.bool_)):
message = (
f"An argument was coerced to an unsupported dtype `{dtype!r}`; "
f"only boolean and numerical dtypes are supported."
)
raise TypeError(message)
arrays[i] = array
return arrays
def _check_finite(array, xp):
"""Check for NaNs or Infs."""
msg = "array must not contain infs or NaNs"
try:
if not xp.all(xp.isfinite(array)):
raise ValueError(msg)
except TypeError:
raise ValueError(msg)
def array_namespace(*arrays):
"""Get the array API compatible namespace for the arrays xs.
Parameters
----------
*arrays : sequence of array_like
Arrays used to infer the common namespace.
Returns
-------
namespace : module
Common namespace.
Notes
-----
Thin wrapper around `array_api_compat.array_namespace`.
1. Check for the global switch: SCIPY_ARRAY_API. This can also be accessed
dynamically through ``_GLOBAL_CONFIG['SCIPY_ARRAY_API']``.
2. `compliance_scipy` raise exceptions on known-bad subclasses. See
its definition for more details.
When the global switch is False, it defaults to the `numpy` namespace.
In that case, there is no compliance check. This is a convenience to
ease the adoption. Otherwise, arrays must comply with the new rules.
"""
if not _GLOBAL_CONFIG["SCIPY_ARRAY_API"]:
# here we could wrap the namespace if needed
return np_compat
arrays = [array for array in arrays if array is not None]
arrays = compliance_scipy(arrays)
return array_api_compat.array_namespace(*arrays)
def _asarray(
array, dtype=None, order=None, copy=None, *, xp=None, check_finite=False
):
"""SciPy-specific replacement for `np.asarray` with `order` and `check_finite`.
Memory layout parameter `order` is not exposed in the Array API standard.
`order` is only enforced if the input array implementation
is NumPy based, otherwise `order` is just silently ignored.
`check_finite` is also not a keyword in the array API standard; included
here for convenience rather than that having to be a separate function
call inside SciPy functions.
"""
if xp is None:
xp = array_namespace(array)
if xp.__name__ in {"numpy", "scipy._lib.array_api_compat.numpy"}:
# Use NumPy API to support order
if copy is True:
array = np.array(array, order=order, dtype=dtype)
else:
array = np.asarray(array, order=order, dtype=dtype)
# At this point array is a NumPy ndarray. We convert it to an array
# container that is consistent with the input's namespace.
array = xp.asarray(array)
else:
try:
array = xp.asarray(array, dtype=dtype, copy=copy)
except TypeError:
coerced_xp = array_namespace(xp.asarray(3))
array = coerced_xp.asarray(array, dtype=dtype, copy=copy)
if check_finite:
_check_finite(array, xp)
return array
def atleast_nd(x, *, ndim, xp=None):
"""Recursively expand the dimension to have at least `ndim`."""
if xp is None:
xp = array_namespace(x)
x = xp.asarray(x)
if x.ndim < ndim:
x = xp.expand_dims(x, axis=0)
x = atleast_nd(x, ndim=ndim, xp=xp)
return x
def copy(x, *, xp=None):
"""
Copies an array.
Parameters
----------
x : array
xp : array_namespace
Returns
-------
copy : array
Copied array
Notes
-----
This copy function does not offer all the semantics of `np.copy`, i.e. the
`subok` and `order` keywords are not used.
"""
# Note: xp.asarray fails if xp is numpy.
if xp is None:
xp = array_namespace(x)
return _asarray(x, copy=True, xp=xp)
def is_numpy(xp):
return xp.__name__ in ('numpy', 'scipy._lib.array_api_compat.numpy')
def is_cupy(xp):
return xp.__name__ in ('cupy', 'scipy._lib.array_api_compat.cupy')
def is_torch(xp):
return xp.__name__ in ('torch', 'scipy._lib.array_api_compat.torch')
def _strict_check(actual, desired, xp,
check_namespace=True, check_dtype=True, check_shape=True):
__tracebackhide__ = True # Hide traceback for py.test
if check_namespace:
_assert_matching_namespace(actual, desired)
desired = xp.asarray(desired)
if check_dtype:
_msg = "dtypes do not match.\nActual: {actual.dtype}\nDesired: {desired.dtype}"
assert actual.dtype == desired.dtype, _msg
if check_shape:
_msg = "Shapes do not match.\nActual: {actual.shape}\nDesired: {desired.shape}"
assert actual.shape == desired.shape, _msg
_check_scalar(actual, desired, xp)
desired = xp.broadcast_to(desired, actual.shape)
return desired
def _assert_matching_namespace(actual, desired):
__tracebackhide__ = True # Hide traceback for py.test
actual = actual if isinstance(actual, tuple) else (actual,)
desired_space = array_namespace(desired)
for arr in actual:
arr_space = array_namespace(arr)
_msg = (f"Namespaces do not match.\n"
f"Actual: {arr_space.__name__}\n"
f"Desired: {desired_space.__name__}")
assert arr_space == desired_space, _msg
def _check_scalar(actual, desired, xp):
__tracebackhide__ = True # Hide traceback for py.test
# Shape check alone is sufficient unless desired.shape == (). Also,
# only NumPy distinguishes between scalars and arrays.
if desired.shape != () or not is_numpy(xp):
return
# We want to follow the conventions of the `xp` library. Libraries like
# NumPy, for which `np.asarray(0)[()]` returns a scalar, tend to return
# a scalar even when a 0D array might be more appropriate:
# import numpy as np
# np.mean([1, 2, 3]) # scalar, not 0d array
# np.asarray(0)*2 # scalar, not 0d array
# np.sin(np.asarray(0)) # scalar, not 0d array
# Libraries like CuPy, for which `cp.asarray(0)[()]` returns a 0D array,
# tend to return a 0D array in scenarios like those above.
# Therefore, regardless of whether the developer provides a scalar or 0D
# array for `desired`, we would typically want the type of `actual` to be
# the type of `desired[()]`. If the developer wants to override this
# behavior, they can set `check_shape=False`.
desired = desired[()]
_msg = f"Types do not match:\n Actual: {type(actual)}\n Desired: {type(desired)}"
assert (xp.isscalar(actual) and xp.isscalar(desired)
or (not xp.isscalar(actual) and not xp.isscalar(desired))), _msg
def xp_assert_equal(actual, desired, check_namespace=True, check_dtype=True,
check_shape=True, err_msg='', xp=None):
__tracebackhide__ = True # Hide traceback for py.test
if xp is None:
xp = array_namespace(actual)
desired = _strict_check(actual, desired, xp, check_namespace=check_namespace,
check_dtype=check_dtype, check_shape=check_shape)
if is_cupy(xp):
return xp.testing.assert_array_equal(actual, desired, err_msg=err_msg)
elif is_torch(xp):
# PyTorch recommends using `rtol=0, atol=0` like this
# to test for exact equality
err_msg = None if err_msg == '' else err_msg
return xp.testing.assert_close(actual, desired, rtol=0, atol=0, equal_nan=True,
check_dtype=False, msg=err_msg)
return np.testing.assert_array_equal(actual, desired, err_msg=err_msg)
def xp_assert_close(actual, desired, rtol=1e-07, atol=0, check_namespace=True,
check_dtype=True, check_shape=True, err_msg='', xp=None):
__tracebackhide__ = True # Hide traceback for py.test
if xp is None:
xp = array_namespace(actual)
desired = _strict_check(actual, desired, xp, check_namespace=check_namespace,
check_dtype=check_dtype, check_shape=check_shape)
if is_cupy(xp):
return xp.testing.assert_allclose(actual, desired, rtol=rtol,
atol=atol, err_msg=err_msg)
elif is_torch(xp):
err_msg = None if err_msg == '' else err_msg
return xp.testing.assert_close(actual, desired, rtol=rtol, atol=atol,
equal_nan=True, check_dtype=False, msg=err_msg)
return np.testing.assert_allclose(actual, desired, rtol=rtol,
atol=atol, err_msg=err_msg)
def xp_assert_less(actual, desired, check_namespace=True, check_dtype=True,
check_shape=True, err_msg='', verbose=True, xp=None):
__tracebackhide__ = True # Hide traceback for py.test
if xp is None:
xp = array_namespace(actual)
desired = _strict_check(actual, desired, xp, check_namespace=check_namespace,
check_dtype=check_dtype, check_shape=check_shape)
if is_cupy(xp):
return xp.testing.assert_array_less(actual, desired,
err_msg=err_msg, verbose=verbose)
elif is_torch(xp):
if actual.device.type != 'cpu':
actual = actual.cpu()
if desired.device.type != 'cpu':
desired = desired.cpu()
return np.testing.assert_array_less(actual, desired,
err_msg=err_msg, verbose=verbose)
def cov(x, *, xp=None):
if xp is None:
xp = array_namespace(x)
X = copy(x, xp=xp)
dtype = xp.result_type(X, xp.float64)
X = atleast_nd(X, ndim=2, xp=xp)
X = xp.asarray(X, dtype=dtype)
avg = xp.mean(X, axis=1)
fact = X.shape[1] - 1
if fact <= 0:
warnings.warn("Degrees of freedom <= 0 for slice",
RuntimeWarning, stacklevel=2)
fact = 0.0
X -= avg[:, None]
X_T = X.T
if xp.isdtype(X_T.dtype, 'complex floating'):
X_T = xp.conj(X_T)
c = X @ X_T
c /= fact
axes = tuple(axis for axis, length in enumerate(c.shape) if length == 1)
return xp.squeeze(c, axis=axes)
def xp_unsupported_param_msg(param):
return f'Providing {param!r} is only supported for numpy arrays.'
def is_complex(x, xp):
return xp.isdtype(x.dtype, 'complex floating')