ai-content-maker/.venv/Lib/site-packages/scipy/interpolate/tests/test_rbfinterp.py

517 lines
18 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
import pickle
import pytest
import numpy as np
from numpy.linalg import LinAlgError
from numpy.testing import assert_allclose, assert_array_equal
from scipy.stats.qmc import Halton
from scipy.spatial import cKDTree
from scipy.interpolate._rbfinterp import (
_AVAILABLE, _SCALE_INVARIANT, _NAME_TO_MIN_DEGREE, _monomial_powers,
RBFInterpolator
)
from scipy.interpolate import _rbfinterp_pythran
def _vandermonde(x, degree):
# Returns a matrix of monomials that span polynomials with the specified
# degree evaluated at x.
powers = _monomial_powers(x.shape[1], degree)
return _rbfinterp_pythran._polynomial_matrix(x, powers)
def _1d_test_function(x):
# Test function used in Wahba's "Spline Models for Observational Data".
# domain ~= (0, 3), range ~= (-1.0, 0.2)
x = x[:, 0]
y = 4.26*(np.exp(-x) - 4*np.exp(-2*x) + 3*np.exp(-3*x))
return y
def _2d_test_function(x):
# Franke's test function.
# domain ~= (0, 1) X (0, 1), range ~= (0.0, 1.2)
x1, x2 = x[:, 0], x[:, 1]
term1 = 0.75 * np.exp(-(9*x1-2)**2/4 - (9*x2-2)**2/4)
term2 = 0.75 * np.exp(-(9*x1+1)**2/49 - (9*x2+1)/10)
term3 = 0.5 * np.exp(-(9*x1-7)**2/4 - (9*x2-3)**2/4)
term4 = -0.2 * np.exp(-(9*x1-4)**2 - (9*x2-7)**2)
y = term1 + term2 + term3 + term4
return y
def _is_conditionally_positive_definite(kernel, m):
# Tests whether the kernel is conditionally positive definite of order m.
# See chapter 7 of Fasshauer's "Meshfree Approximation Methods with
# MATLAB".
nx = 10
ntests = 100
for ndim in [1, 2, 3, 4, 5]:
# Generate sample points with a Halton sequence to avoid samples that
# are too close to each other, which can make the matrix singular.
seq = Halton(ndim, scramble=False, seed=np.random.RandomState())
for _ in range(ntests):
x = 2*seq.random(nx) - 1
A = _rbfinterp_pythran._kernel_matrix(x, kernel)
P = _vandermonde(x, m - 1)
Q, R = np.linalg.qr(P, mode='complete')
# Q2 forms a basis spanning the space where P.T.dot(x) = 0. Project
# A onto this space, and then see if it is positive definite using
# the Cholesky decomposition. If not, then the kernel is not c.p.d.
# of order m.
Q2 = Q[:, P.shape[1]:]
B = Q2.T.dot(A).dot(Q2)
try:
np.linalg.cholesky(B)
except np.linalg.LinAlgError:
return False
return True
# Sorting the parametrize arguments is necessary to avoid a parallelization
# issue described here: https://github.com/pytest-dev/pytest-xdist/issues/432.
@pytest.mark.parametrize('kernel', sorted(_AVAILABLE))
def test_conditionally_positive_definite(kernel):
# Test if each kernel in _AVAILABLE is conditionally positive definite of
# order m, where m comes from _NAME_TO_MIN_DEGREE. This is a necessary
# condition for the smoothed RBF interpolant to be well-posed in general.
m = _NAME_TO_MIN_DEGREE.get(kernel, -1) + 1
assert _is_conditionally_positive_definite(kernel, m)
class _TestRBFInterpolator:
@pytest.mark.parametrize('kernel', sorted(_SCALE_INVARIANT))
def test_scale_invariance_1d(self, kernel):
# Verify that the functions in _SCALE_INVARIANT are insensitive to the
# shape parameter (when smoothing == 0) in 1d.
seq = Halton(1, scramble=False, seed=np.random.RandomState())
x = 3*seq.random(50)
y = _1d_test_function(x)
xitp = 3*seq.random(50)
yitp1 = self.build(x, y, epsilon=1.0, kernel=kernel)(xitp)
yitp2 = self.build(x, y, epsilon=2.0, kernel=kernel)(xitp)
assert_allclose(yitp1, yitp2, atol=1e-8)
@pytest.mark.parametrize('kernel', sorted(_SCALE_INVARIANT))
def test_scale_invariance_2d(self, kernel):
# Verify that the functions in _SCALE_INVARIANT are insensitive to the
# shape parameter (when smoothing == 0) in 2d.
seq = Halton(2, scramble=False, seed=np.random.RandomState())
x = seq.random(100)
y = _2d_test_function(x)
xitp = seq.random(100)
yitp1 = self.build(x, y, epsilon=1.0, kernel=kernel)(xitp)
yitp2 = self.build(x, y, epsilon=2.0, kernel=kernel)(xitp)
assert_allclose(yitp1, yitp2, atol=1e-8)
@pytest.mark.parametrize('kernel', sorted(_AVAILABLE))
def test_extreme_domains(self, kernel):
# Make sure the interpolant remains numerically stable for very
# large/small domains.
seq = Halton(2, scramble=False, seed=np.random.RandomState())
scale = 1e50
shift = 1e55
x = seq.random(100)
y = _2d_test_function(x)
xitp = seq.random(100)
if kernel in _SCALE_INVARIANT:
yitp1 = self.build(x, y, kernel=kernel)(xitp)
yitp2 = self.build(
x*scale + shift, y,
kernel=kernel
)(xitp*scale + shift)
else:
yitp1 = self.build(x, y, epsilon=5.0, kernel=kernel)(xitp)
yitp2 = self.build(
x*scale + shift, y,
epsilon=5.0/scale,
kernel=kernel
)(xitp*scale + shift)
assert_allclose(yitp1, yitp2, atol=1e-8)
def test_polynomial_reproduction(self):
# If the observed data comes from a polynomial, then the interpolant
# should be able to reproduce the polynomial exactly, provided that
# `degree` is sufficiently high.
rng = np.random.RandomState(0)
seq = Halton(2, scramble=False, seed=rng)
degree = 3
x = seq.random(50)
xitp = seq.random(50)
P = _vandermonde(x, degree)
Pitp = _vandermonde(xitp, degree)
poly_coeffs = rng.normal(0.0, 1.0, P.shape[1])
y = P.dot(poly_coeffs)
yitp1 = Pitp.dot(poly_coeffs)
yitp2 = self.build(x, y, degree=degree)(xitp)
assert_allclose(yitp1, yitp2, atol=1e-8)
@pytest.mark.slow
def test_chunking(self, monkeypatch):
# If the observed data comes from a polynomial, then the interpolant
# should be able to reproduce the polynomial exactly, provided that
# `degree` is sufficiently high.
rng = np.random.RandomState(0)
seq = Halton(2, scramble=False, seed=rng)
degree = 3
largeN = 1000 + 33
# this is large to check that chunking of the RBFInterpolator is tested
x = seq.random(50)
xitp = seq.random(largeN)
P = _vandermonde(x, degree)
Pitp = _vandermonde(xitp, degree)
poly_coeffs = rng.normal(0.0, 1.0, P.shape[1])
y = P.dot(poly_coeffs)
yitp1 = Pitp.dot(poly_coeffs)
interp = self.build(x, y, degree=degree)
ce_real = interp._chunk_evaluator
def _chunk_evaluator(*args, **kwargs):
kwargs.update(memory_budget=100)
return ce_real(*args, **kwargs)
monkeypatch.setattr(interp, '_chunk_evaluator', _chunk_evaluator)
yitp2 = interp(xitp)
assert_allclose(yitp1, yitp2, atol=1e-8)
def test_vector_data(self):
# Make sure interpolating a vector field is the same as interpolating
# each component separately.
seq = Halton(2, scramble=False, seed=np.random.RandomState())
x = seq.random(100)
xitp = seq.random(100)
y = np.array([_2d_test_function(x),
_2d_test_function(x[:, ::-1])]).T
yitp1 = self.build(x, y)(xitp)
yitp2 = self.build(x, y[:, 0])(xitp)
yitp3 = self.build(x, y[:, 1])(xitp)
assert_allclose(yitp1[:, 0], yitp2)
assert_allclose(yitp1[:, 1], yitp3)
def test_complex_data(self):
# Interpolating complex input should be the same as interpolating the
# real and complex components.
seq = Halton(2, scramble=False, seed=np.random.RandomState())
x = seq.random(100)
xitp = seq.random(100)
y = _2d_test_function(x) + 1j*_2d_test_function(x[:, ::-1])
yitp1 = self.build(x, y)(xitp)
yitp2 = self.build(x, y.real)(xitp)
yitp3 = self.build(x, y.imag)(xitp)
assert_allclose(yitp1.real, yitp2)
assert_allclose(yitp1.imag, yitp3)
@pytest.mark.parametrize('kernel', sorted(_AVAILABLE))
def test_interpolation_misfit_1d(self, kernel):
# Make sure that each kernel, with its default `degree` and an
# appropriate `epsilon`, does a good job at interpolation in 1d.
seq = Halton(1, scramble=False, seed=np.random.RandomState())
x = 3*seq.random(50)
xitp = 3*seq.random(50)
y = _1d_test_function(x)
ytrue = _1d_test_function(xitp)
yitp = self.build(x, y, epsilon=5.0, kernel=kernel)(xitp)
mse = np.mean((yitp - ytrue)**2)
assert mse < 1.0e-4
@pytest.mark.parametrize('kernel', sorted(_AVAILABLE))
def test_interpolation_misfit_2d(self, kernel):
# Make sure that each kernel, with its default `degree` and an
# appropriate `epsilon`, does a good job at interpolation in 2d.
seq = Halton(2, scramble=False, seed=np.random.RandomState())
x = seq.random(100)
xitp = seq.random(100)
y = _2d_test_function(x)
ytrue = _2d_test_function(xitp)
yitp = self.build(x, y, epsilon=5.0, kernel=kernel)(xitp)
mse = np.mean((yitp - ytrue)**2)
assert mse < 2.0e-4
@pytest.mark.parametrize('kernel', sorted(_AVAILABLE))
def test_smoothing_misfit(self, kernel):
# Make sure we can find a smoothing parameter for each kernel that
# removes a sufficient amount of noise.
rng = np.random.RandomState(0)
seq = Halton(1, scramble=False, seed=rng)
noise = 0.2
rmse_tol = 0.1
smoothing_range = 10**np.linspace(-4, 1, 20)
x = 3*seq.random(100)
y = _1d_test_function(x) + rng.normal(0.0, noise, (100,))
ytrue = _1d_test_function(x)
rmse_within_tol = False
for smoothing in smoothing_range:
ysmooth = self.build(
x, y,
epsilon=1.0,
smoothing=smoothing,
kernel=kernel)(x)
rmse = np.sqrt(np.mean((ysmooth - ytrue)**2))
if rmse < rmse_tol:
rmse_within_tol = True
break
assert rmse_within_tol
def test_array_smoothing(self):
# Test using an array for `smoothing` to give less weight to a known
# outlier.
rng = np.random.RandomState(0)
seq = Halton(1, scramble=False, seed=rng)
degree = 2
x = seq.random(50)
P = _vandermonde(x, degree)
poly_coeffs = rng.normal(0.0, 1.0, P.shape[1])
y = P.dot(poly_coeffs)
y_with_outlier = np.copy(y)
y_with_outlier[10] += 1.0
smoothing = np.zeros((50,))
smoothing[10] = 1000.0
yitp = self.build(x, y_with_outlier, smoothing=smoothing)(x)
# Should be able to reproduce the uncorrupted data almost exactly.
assert_allclose(yitp, y, atol=1e-4)
def test_inconsistent_x_dimensions_error(self):
# ValueError should be raised if the observation points and evaluation
# points have a different number of dimensions.
y = Halton(2, scramble=False, seed=np.random.RandomState()).random(10)
d = _2d_test_function(y)
x = Halton(1, scramble=False, seed=np.random.RandomState()).random(10)
match = 'Expected the second axis of `x`'
with pytest.raises(ValueError, match=match):
self.build(y, d)(x)
def test_inconsistent_d_length_error(self):
y = np.linspace(0, 1, 5)[:, None]
d = np.zeros(1)
match = 'Expected the first axis of `d`'
with pytest.raises(ValueError, match=match):
self.build(y, d)
def test_y_not_2d_error(self):
y = np.linspace(0, 1, 5)
d = np.zeros(5)
match = '`y` must be a 2-dimensional array.'
with pytest.raises(ValueError, match=match):
self.build(y, d)
def test_inconsistent_smoothing_length_error(self):
y = np.linspace(0, 1, 5)[:, None]
d = np.zeros(5)
smoothing = np.ones(1)
match = 'Expected `smoothing` to be'
with pytest.raises(ValueError, match=match):
self.build(y, d, smoothing=smoothing)
def test_invalid_kernel_name_error(self):
y = np.linspace(0, 1, 5)[:, None]
d = np.zeros(5)
match = '`kernel` must be one of'
with pytest.raises(ValueError, match=match):
self.build(y, d, kernel='test')
def test_epsilon_not_specified_error(self):
y = np.linspace(0, 1, 5)[:, None]
d = np.zeros(5)
for kernel in _AVAILABLE:
if kernel in _SCALE_INVARIANT:
continue
match = '`epsilon` must be specified'
with pytest.raises(ValueError, match=match):
self.build(y, d, kernel=kernel)
def test_x_not_2d_error(self):
y = np.linspace(0, 1, 5)[:, None]
x = np.linspace(0, 1, 5)
d = np.zeros(5)
match = '`x` must be a 2-dimensional array.'
with pytest.raises(ValueError, match=match):
self.build(y, d)(x)
def test_not_enough_observations_error(self):
y = np.linspace(0, 1, 1)[:, None]
d = np.zeros(1)
match = 'At least 2 data points are required'
with pytest.raises(ValueError, match=match):
self.build(y, d, kernel='thin_plate_spline')
def test_degree_warning(self):
y = np.linspace(0, 1, 5)[:, None]
d = np.zeros(5)
for kernel, deg in _NAME_TO_MIN_DEGREE.items():
# Only test for kernels that its minimum degree is not 0.
if deg >= 1:
match = f'`degree` should not be below {deg}'
with pytest.warns(Warning, match=match):
self.build(y, d, epsilon=1.0, kernel=kernel, degree=deg-1)
def test_minus_one_degree(self):
# Make sure a degree of -1 is accepted without any warning.
y = np.linspace(0, 1, 5)[:, None]
d = np.zeros(5)
for kernel, _ in _NAME_TO_MIN_DEGREE.items():
self.build(y, d, epsilon=1.0, kernel=kernel, degree=-1)
def test_rank_error(self):
# An error should be raised when `kernel` is "thin_plate_spline" and
# observations are 2-D and collinear.
y = np.array([[2.0, 0.0], [1.0, 0.0], [0.0, 0.0]])
d = np.array([0.0, 0.0, 0.0])
match = 'does not have full column rank'
with pytest.raises(LinAlgError, match=match):
self.build(y, d, kernel='thin_plate_spline')(y)
def test_single_point(self):
# Make sure interpolation still works with only one point (in 1, 2, and
# 3 dimensions).
for dim in [1, 2, 3]:
y = np.zeros((1, dim))
d = np.ones((1,))
f = self.build(y, d, kernel='linear')(y)
assert_allclose(d, f)
def test_pickleable(self):
# Make sure we can pickle and unpickle the interpolant without any
# changes in the behavior.
seq = Halton(1, scramble=False, seed=np.random.RandomState(2305982309))
x = 3*seq.random(50)
xitp = 3*seq.random(50)
y = _1d_test_function(x)
interp = self.build(x, y)
yitp1 = interp(xitp)
yitp2 = pickle.loads(pickle.dumps(interp))(xitp)
assert_array_equal(yitp1, yitp2)
class TestRBFInterpolatorNeighborsNone(_TestRBFInterpolator):
def build(self, *args, **kwargs):
return RBFInterpolator(*args, **kwargs)
def test_smoothing_limit_1d(self):
# For large smoothing parameters, the interpolant should approach a
# least squares fit of a polynomial with the specified degree.
seq = Halton(1, scramble=False, seed=np.random.RandomState())
degree = 3
smoothing = 1e8
x = 3*seq.random(50)
xitp = 3*seq.random(50)
y = _1d_test_function(x)
yitp1 = self.build(
x, y,
degree=degree,
smoothing=smoothing
)(xitp)
P = _vandermonde(x, degree)
Pitp = _vandermonde(xitp, degree)
yitp2 = Pitp.dot(np.linalg.lstsq(P, y, rcond=None)[0])
assert_allclose(yitp1, yitp2, atol=1e-8)
def test_smoothing_limit_2d(self):
# For large smoothing parameters, the interpolant should approach a
# least squares fit of a polynomial with the specified degree.
seq = Halton(2, scramble=False, seed=np.random.RandomState())
degree = 3
smoothing = 1e8
x = seq.random(100)
xitp = seq.random(100)
y = _2d_test_function(x)
yitp1 = self.build(
x, y,
degree=degree,
smoothing=smoothing
)(xitp)
P = _vandermonde(x, degree)
Pitp = _vandermonde(xitp, degree)
yitp2 = Pitp.dot(np.linalg.lstsq(P, y, rcond=None)[0])
assert_allclose(yitp1, yitp2, atol=1e-8)
class TestRBFInterpolatorNeighbors20(_TestRBFInterpolator):
# RBFInterpolator using 20 nearest neighbors.
def build(self, *args, **kwargs):
return RBFInterpolator(*args, **kwargs, neighbors=20)
def test_equivalent_to_rbf_interpolator(self):
seq = Halton(2, scramble=False, seed=np.random.RandomState())
x = seq.random(100)
xitp = seq.random(100)
y = _2d_test_function(x)
yitp1 = self.build(x, y)(xitp)
yitp2 = []
tree = cKDTree(x)
for xi in xitp:
_, nbr = tree.query(xi, 20)
yitp2.append(RBFInterpolator(x[nbr], y[nbr])(xi[None])[0])
assert_allclose(yitp1, yitp2, atol=1e-8)
class TestRBFInterpolatorNeighborsInf(TestRBFInterpolatorNeighborsNone):
# RBFInterpolator using neighbors=np.inf. This should give exactly the same
# results as neighbors=None, but it will be slower.
def build(self, *args, **kwargs):
return RBFInterpolator(*args, **kwargs, neighbors=np.inf)
def test_equivalent_to_rbf_interpolator(self):
seq = Halton(1, scramble=False, seed=np.random.RandomState())
x = 3*seq.random(50)
xitp = 3*seq.random(50)
y = _1d_test_function(x)
yitp1 = self.build(x, y)(xitp)
yitp2 = RBFInterpolator(x, y)(xitp)
assert_allclose(yitp1, yitp2, atol=1e-8)