ai-content-maker/.venv/Lib/site-packages/scipy/optimize/tests/test_constraint_conversion.py

275 lines
12 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
"""
Unit test for constraint conversion
"""
import numpy as np
from numpy.testing import (assert_array_almost_equal,
assert_allclose, assert_warns, suppress_warnings)
import pytest
from scipy.optimize import (NonlinearConstraint, LinearConstraint,
OptimizeWarning, minimize, BFGS)
from .test_minimize_constrained import (Maratos, HyperbolicIneq, Rosenbrock,
IneqRosenbrock, EqIneqRosenbrock,
BoundedRosenbrock, Elec)
class TestOldToNew:
x0 = (2, 0)
bnds = ((0, None), (0, None))
method = "trust-constr"
def test_constraint_dictionary_1(self):
def fun(x):
return (x[0] - 1) ** 2 + (x[1] - 2.5) ** 2
cons = ({'type': 'ineq', 'fun': lambda x: x[0] - 2 * x[1] + 2},
{'type': 'ineq', 'fun': lambda x: -x[0] - 2 * x[1] + 6},
{'type': 'ineq', 'fun': lambda x: -x[0] + 2 * x[1] + 2})
with suppress_warnings() as sup:
sup.filter(UserWarning, "delta_grad == 0.0")
res = minimize(fun, self.x0, method=self.method,
bounds=self.bnds, constraints=cons)
assert_allclose(res.x, [1.4, 1.7], rtol=1e-4)
assert_allclose(res.fun, 0.8, rtol=1e-4)
def test_constraint_dictionary_2(self):
def fun(x):
return (x[0] - 1) ** 2 + (x[1] - 2.5) ** 2
cons = {'type': 'eq',
'fun': lambda x, p1, p2: p1*x[0] - p2*x[1],
'args': (1, 1.1),
'jac': lambda x, p1, p2: np.array([[p1, -p2]])}
with suppress_warnings() as sup:
sup.filter(UserWarning, "delta_grad == 0.0")
res = minimize(fun, self.x0, method=self.method,
bounds=self.bnds, constraints=cons)
assert_allclose(res.x, [1.7918552, 1.62895927])
assert_allclose(res.fun, 1.3857466063348418)
def test_constraint_dictionary_3(self):
def fun(x):
return (x[0] - 1) ** 2 + (x[1] - 2.5) ** 2
cons = [{'type': 'ineq', 'fun': lambda x: x[0] - 2 * x[1] + 2},
NonlinearConstraint(lambda x: x[0] - x[1], 0, 0)]
with suppress_warnings() as sup:
sup.filter(UserWarning, "delta_grad == 0.0")
res = minimize(fun, self.x0, method=self.method,
bounds=self.bnds, constraints=cons)
assert_allclose(res.x, [1.75, 1.75], rtol=1e-4)
assert_allclose(res.fun, 1.125, rtol=1e-4)
class TestNewToOld:
def test_multiple_constraint_objects(self):
def fun(x):
return (x[0] - 1) ** 2 + (x[1] - 2.5) ** 2 + (x[2] - 0.75) ** 2
x0 = [2, 0, 1]
coni = [] # only inequality constraints (can use cobyla)
methods = ["slsqp", "cobyla", "trust-constr"]
# mixed old and new
coni.append([{'type': 'ineq', 'fun': lambda x: x[0] - 2 * x[1] + 2},
NonlinearConstraint(lambda x: x[0] - x[1], -1, 1)])
coni.append([LinearConstraint([1, -2, 0], -2, np.inf),
NonlinearConstraint(lambda x: x[0] - x[1], -1, 1)])
coni.append([NonlinearConstraint(lambda x: x[0] - 2 * x[1] + 2, 0, np.inf),
NonlinearConstraint(lambda x: x[0] - x[1], -1, 1)])
for con in coni:
funs = {}
for method in methods:
with suppress_warnings() as sup:
sup.filter(UserWarning)
result = minimize(fun, x0, method=method, constraints=con)
funs[method] = result.fun
assert_allclose(funs['slsqp'], funs['trust-constr'], rtol=1e-4)
assert_allclose(funs['cobyla'], funs['trust-constr'], rtol=1e-4)
def test_individual_constraint_objects(self):
def fun(x):
return (x[0] - 1) ** 2 + (x[1] - 2.5) ** 2 + (x[2] - 0.75) ** 2
x0 = [2, 0, 1]
cone = [] # with equality constraints (can't use cobyla)
coni = [] # only inequality constraints (can use cobyla)
methods = ["slsqp", "cobyla", "trust-constr"]
# nonstandard data types for constraint equality bounds
cone.append(NonlinearConstraint(lambda x: x[0] - x[1], 1, 1))
cone.append(NonlinearConstraint(lambda x: x[0] - x[1], [1.21], [1.21]))
cone.append(NonlinearConstraint(lambda x: x[0] - x[1],
1.21, np.array([1.21])))
# multiple equalities
cone.append(NonlinearConstraint(
lambda x: [x[0] - x[1], x[1] - x[2]],
1.21, 1.21)) # two same equalities
cone.append(NonlinearConstraint(
lambda x: [x[0] - x[1], x[1] - x[2]],
[1.21, 1.4], [1.21, 1.4])) # two different equalities
cone.append(NonlinearConstraint(
lambda x: [x[0] - x[1], x[1] - x[2]],
[1.21, 1.21], 1.21)) # equality specified two ways
cone.append(NonlinearConstraint(
lambda x: [x[0] - x[1], x[1] - x[2]],
[1.21, -np.inf], [1.21, np.inf])) # equality + unbounded
# nonstandard data types for constraint inequality bounds
coni.append(NonlinearConstraint(lambda x: x[0] - x[1], 1.21, np.inf))
coni.append(NonlinearConstraint(lambda x: x[0] - x[1], [1.21], np.inf))
coni.append(NonlinearConstraint(lambda x: x[0] - x[1],
1.21, np.array([np.inf])))
coni.append(NonlinearConstraint(lambda x: x[0] - x[1], -np.inf, -3))
coni.append(NonlinearConstraint(lambda x: x[0] - x[1],
np.array(-np.inf), -3))
# multiple inequalities/equalities
coni.append(NonlinearConstraint(
lambda x: [x[0] - x[1], x[1] - x[2]],
1.21, np.inf)) # two same inequalities
cone.append(NonlinearConstraint(
lambda x: [x[0] - x[1], x[1] - x[2]],
[1.21, -np.inf], [1.21, 1.4])) # mixed equality/inequality
coni.append(NonlinearConstraint(
lambda x: [x[0] - x[1], x[1] - x[2]],
[1.1, .8], [1.2, 1.4])) # bounded above and below
coni.append(NonlinearConstraint(
lambda x: [x[0] - x[1], x[1] - x[2]],
[-1.2, -1.4], [-1.1, -.8])) # - bounded above and below
# quick check of LinearConstraint class (very little new code to test)
cone.append(LinearConstraint([1, -1, 0], 1.21, 1.21))
cone.append(LinearConstraint([[1, -1, 0], [0, 1, -1]], 1.21, 1.21))
cone.append(LinearConstraint([[1, -1, 0], [0, 1, -1]],
[1.21, -np.inf], [1.21, 1.4]))
for con in coni:
funs = {}
for method in methods:
with suppress_warnings() as sup:
sup.filter(UserWarning)
result = minimize(fun, x0, method=method, constraints=con)
funs[method] = result.fun
assert_allclose(funs['slsqp'], funs['trust-constr'], rtol=1e-3)
assert_allclose(funs['cobyla'], funs['trust-constr'], rtol=1e-3)
for con in cone:
funs = {}
for method in methods[::2]: # skip cobyla
with suppress_warnings() as sup:
sup.filter(UserWarning)
result = minimize(fun, x0, method=method, constraints=con)
funs[method] = result.fun
assert_allclose(funs['slsqp'], funs['trust-constr'], rtol=1e-3)
class TestNewToOldSLSQP:
method = 'slsqp'
elec = Elec(n_electrons=2)
elec.x_opt = np.array([-0.58438468, 0.58438466, 0.73597047,
-0.73597044, 0.34180668, -0.34180667])
brock = BoundedRosenbrock()
brock.x_opt = [0, 0]
list_of_problems = [Maratos(),
HyperbolicIneq(),
Rosenbrock(),
IneqRosenbrock(),
EqIneqRosenbrock(),
elec,
brock
]
def test_list_of_problems(self):
for prob in self.list_of_problems:
with suppress_warnings() as sup:
sup.filter(UserWarning)
result = minimize(prob.fun, prob.x0,
method=self.method,
bounds=prob.bounds,
constraints=prob.constr)
assert_array_almost_equal(result.x, prob.x_opt, decimal=3)
def test_warn_mixed_constraints(self):
# warns about inefficiency of mixed equality/inequality constraints
def fun(x):
return (x[0] - 1) ** 2 + (x[1] - 2.5) ** 2 + (x[2] - 0.75) ** 2
cons = NonlinearConstraint(lambda x: [x[0]**2 - x[1], x[1] - x[2]],
[1.1, .8], [1.1, 1.4])
bnds = ((0, None), (0, None), (0, None))
with suppress_warnings() as sup:
sup.filter(UserWarning, "delta_grad == 0.0")
assert_warns(OptimizeWarning, minimize, fun, (2, 0, 1),
method=self.method, bounds=bnds, constraints=cons)
def test_warn_ignored_options(self):
# warns about constraint options being ignored
def fun(x):
return (x[0] - 1) ** 2 + (x[1] - 2.5) ** 2 + (x[2] - 0.75) ** 2
x0 = (2, 0, 1)
if self.method == "slsqp":
bnds = ((0, None), (0, None), (0, None))
else:
bnds = None
cons = NonlinearConstraint(lambda x: x[0], 2, np.inf)
res = minimize(fun, x0, method=self.method,
bounds=bnds, constraints=cons)
# no warnings without constraint options
assert_allclose(res.fun, 1)
cons = LinearConstraint([1, 0, 0], 2, np.inf)
res = minimize(fun, x0, method=self.method,
bounds=bnds, constraints=cons)
# no warnings without constraint options
assert_allclose(res.fun, 1)
cons = []
cons.append(NonlinearConstraint(lambda x: x[0]**2, 2, np.inf,
keep_feasible=True))
cons.append(NonlinearConstraint(lambda x: x[0]**2, 2, np.inf,
hess=BFGS()))
cons.append(NonlinearConstraint(lambda x: x[0]**2, 2, np.inf,
finite_diff_jac_sparsity=42))
cons.append(NonlinearConstraint(lambda x: x[0]**2, 2, np.inf,
finite_diff_rel_step=42))
cons.append(LinearConstraint([1, 0, 0], 2, np.inf,
keep_feasible=True))
for con in cons:
assert_warns(OptimizeWarning, minimize, fun, x0,
method=self.method, bounds=bnds, constraints=cons)
class TestNewToOldCobyla:
method = 'cobyla'
list_of_problems = [
Elec(n_electrons=2),
Elec(n_electrons=4),
]
@pytest.mark.slow
def test_list_of_problems(self):
for prob in self.list_of_problems:
with suppress_warnings() as sup:
sup.filter(UserWarning)
truth = minimize(prob.fun, prob.x0,
method='trust-constr',
bounds=prob.bounds,
constraints=prob.constr)
result = minimize(prob.fun, prob.x0,
method=self.method,
bounds=prob.bounds,
constraints=prob.constr)
assert_allclose(result.fun, truth.fun, rtol=1e-3)