ai-content-maker/.venv/Lib/site-packages/scipy/optimize/tests/test_isotonic_regression.py

166 lines
6.8 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
import numpy as np
from numpy.testing import assert_allclose, assert_equal
import pytest
from scipy.optimize._pava_pybind import pava
from scipy.optimize import isotonic_regression
class TestIsotonicRegression:
@pytest.mark.parametrize(
("y", "w", "msg"),
[
([[0, 1]], None,
"array has incorrect number of dimensions: 2; expected 1"),
([0, 1], [[1, 2]],
"Input arrays y and w must have one dimension of equal length"),
([0, 1], [1],
"Input arrays y and w must have one dimension of equal length"),
(1, 2,
"Input arrays y and w must have one dimension of equal length"),
([0, 1], [0, 1],
"Weights w must be strictly positive"),
]
)
def test_raise_error(self, y, w, msg):
with pytest.raises(ValueError, match=msg):
isotonic_regression(y=y, weights=w)
def test_simple_pava(self):
# Test case of Busing 2020
# https://doi.org/10.18637/jss.v102.c01
y = np.array([8, 4, 8, 2, 2, 0, 8], dtype=np.float64)
w = np.ones_like(y)
r = np.full(shape=y.shape[0] + 1, fill_value=-1, dtype=np.intp)
pava(y, w, r)
assert_allclose(y, [4, 4, 4, 4, 4, 4, 8])
# Only first 2 elements of w are changed.
assert_allclose(w, [6, 1, 1, 1, 1, 1, 1])
# Only first 3 elements of r are changed.
assert_allclose(r, [0, 6, 7, -1, -1, -1, -1, -1])
@pytest.mark.parametrize("y_dtype", [np.float64, np.float32, np.int64, np.int32])
@pytest.mark.parametrize("w_dtype", [np.float64, np.float32, np.int64, np.int32])
@pytest.mark.parametrize("w", [None, "ones"])
def test_simple_isotonic_regression(self, w, w_dtype, y_dtype):
# Test case of Busing 2020
# https://doi.org/10.18637/jss.v102.c01
y = np.array([8, 4, 8, 2, 2, 0, 8], dtype=y_dtype)
if w is not None:
w = np.ones_like(y, dtype=w_dtype)
res = isotonic_regression(y, weights=w)
assert res.x.dtype == np.float64
assert res.weights.dtype == np.float64
assert_allclose(res.x, [4, 4, 4, 4, 4, 4, 8])
assert_allclose(res.weights, [6, 1])
assert_allclose(res.blocks, [0, 6, 7])
# Assert that y was not overwritten
assert_equal(y, np.array([8, 4, 8, 2, 2, 0, 8], dtype=np.float64))
@pytest.mark.parametrize("increasing", [True, False])
def test_linspace(self, increasing):
n = 10
y = np.linspace(0, 1, n) if increasing else np.linspace(1, 0, n)
res = isotonic_regression(y, increasing=increasing)
assert_allclose(res.x, y)
assert_allclose(res.blocks, np.arange(n + 1))
def test_weights(self):
w = np.array([1, 2, 5, 0.5, 0.5, 0.5, 1, 3])
y = np.array([3, 2, 1, 10, 9, 8, 20, 10])
res = isotonic_regression(y, weights=w)
assert_allclose(res.x, [12/8, 12/8, 12/8, 9, 9, 9, 50/4, 50/4])
assert_allclose(res.weights, [8, 1.5, 4])
assert_allclose(res.blocks, [0, 3, 6, 8])
# weights are like repeated observations, we repeat the 3rd element 5
# times.
w2 = np.array([1, 2, 1, 1, 1, 1, 1, 0.5, 0.5, 0.5, 1, 3])
y2 = np.array([3, 2, 1, 1, 1, 1, 1, 10, 9, 8, 20, 10])
res2 = isotonic_regression(y2, weights=w2)
assert_allclose(np.diff(res2.x[0:7]), 0)
assert_allclose(res2.x[4:], res.x)
assert_allclose(res2.weights, res.weights)
assert_allclose(res2.blocks[1:] - 4, res.blocks[1:])
def test_against_R_monotone(self):
y = [0, 6, 8, 3, 5, 2, 1, 7, 9, 4]
res = isotonic_regression(y)
# R code
# library(monotone)
# options(digits=8)
# monotone(c(0, 6, 8, 3, 5, 2, 1, 7, 9, 4))
x_R = [
0, 4.1666667, 4.1666667, 4.1666667, 4.1666667, 4.1666667,
4.1666667, 6.6666667, 6.6666667, 6.6666667,
]
assert_allclose(res.x, x_R)
assert_equal(res.blocks, [0, 1, 7, 10])
n = 100
y = np.linspace(0, 1, num=n, endpoint=False)
y = 5 * y + np.sin(10 * y)
res = isotonic_regression(y)
# R code
# library(monotone)
# n <- 100
# y <- 5 * ((1:n)-1)/n + sin(10 * ((1:n)-1)/n)
# options(digits=8)
# monotone(y)
x_R = [
0.00000000, 0.14983342, 0.29866933, 0.44552021, 0.58941834, 0.72942554,
0.86464247, 0.99421769, 1.11735609, 1.23332691, 1.34147098, 1.44120736,
1.53203909, 1.57081100, 1.57081100, 1.57081100, 1.57081100, 1.57081100,
1.57081100, 1.57081100, 1.57081100, 1.57081100, 1.57081100, 1.57081100,
1.57081100, 1.57081100, 1.57081100, 1.57081100, 1.57081100, 1.57081100,
1.57081100, 1.57081100, 1.57081100, 1.57081100, 1.57081100, 1.57081100,
1.57081100, 1.57081100, 1.57081100, 1.57081100, 1.57081100, 1.57081100,
1.57081100, 1.57081100, 1.57081100, 1.57081100, 1.57081100, 1.57081100,
1.57081100, 1.57081100, 1.57081100, 1.62418532, 1.71654534, 1.81773256,
1.92723551, 2.04445967, 2.16873336, 2.29931446, 2.43539782, 2.57612334,
2.72058450, 2.86783750, 3.01691060, 3.16681390, 3.31654920, 3.46511999,
3.61154136, 3.75484992, 3.89411335, 4.02843976, 4.15698660, 4.27896904,
4.39366786, 4.50043662, 4.59870810, 4.68799998, 4.76791967, 4.83816823,
4.86564130, 4.86564130, 4.86564130, 4.86564130, 4.86564130, 4.86564130,
4.86564130, 4.86564130, 4.86564130, 4.86564130, 4.86564130, 4.86564130,
4.86564130, 4.86564130, 4.86564130, 4.86564130, 4.86564130, 4.86564130,
4.86564130, 4.86564130, 4.86564130, 4.86564130,
]
assert_allclose(res.x, x_R)
# Test increasing
assert np.all(np.diff(res.x) >= 0)
# Test balance property: sum(y) == sum(x)
assert_allclose(np.sum(res.x), np.sum(y))
# Reverse order
res_inv = isotonic_regression(-y, increasing=False)
assert_allclose(-res_inv.x, res.x)
assert_equal(res_inv.blocks, res.blocks)
def test_readonly(self):
x = np.arange(3, dtype=float)
w = np.ones(3, dtype=float)
x.flags.writeable = False
w.flags.writeable = False
res = isotonic_regression(x, weights=w)
assert np.all(np.isfinite(res.x))
assert np.all(np.isfinite(res.weights))
assert np.all(np.isfinite(res.blocks))
def test_non_contiguous_arrays(self):
x = np.arange(10, dtype=float)[::3]
w = np.ones(10, dtype=float)[::3]
assert not x.flags.c_contiguous
assert not x.flags.f_contiguous
assert not w.flags.c_contiguous
assert not w.flags.f_contiguous
res = isotonic_regression(x, weights=w)
assert np.all(np.isfinite(res.x))
assert np.all(np.isfinite(res.weights))
assert np.all(np.isfinite(res.blocks))