14581 lines
389 KiB
Python
14581 lines
389 KiB
Python
|
# Docstrings for generated ufuncs
|
||
|
#
|
||
|
# The syntax is designed to look like the function add_newdoc is being
|
||
|
# called from numpy.lib, but in this file add_newdoc puts the
|
||
|
# docstrings in a dictionary. This dictionary is used in
|
||
|
# _generate_pyx.py to generate the docstrings for the ufuncs in
|
||
|
# scipy.special at the C level when the ufuncs are created at compile
|
||
|
# time.
|
||
|
|
||
|
docdict: dict[str, str] = {}
|
||
|
|
||
|
|
||
|
def get(name):
|
||
|
return docdict.get(name)
|
||
|
|
||
|
|
||
|
def add_newdoc(name, doc):
|
||
|
docdict[name] = doc
|
||
|
|
||
|
|
||
|
add_newdoc("_sf_error_test_function",
|
||
|
"""
|
||
|
Private function; do not use.
|
||
|
""")
|
||
|
|
||
|
|
||
|
add_newdoc("_cosine_cdf",
|
||
|
"""
|
||
|
_cosine_cdf(x)
|
||
|
|
||
|
Cumulative distribution function (CDF) of the cosine distribution::
|
||
|
|
||
|
{ 0, x < -pi
|
||
|
cdf(x) = { (pi + x + sin(x))/(2*pi), -pi <= x <= pi
|
||
|
{ 1, x > pi
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
`x` must contain real numbers.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
The cosine distribution CDF evaluated at `x`.
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("_cosine_invcdf",
|
||
|
"""
|
||
|
_cosine_invcdf(p)
|
||
|
|
||
|
Inverse of the cumulative distribution function (CDF) of the cosine
|
||
|
distribution.
|
||
|
|
||
|
The CDF of the cosine distribution is::
|
||
|
|
||
|
cdf(x) = (pi + x + sin(x))/(2*pi)
|
||
|
|
||
|
This function computes the inverse of cdf(x).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
p : array_like
|
||
|
`p` must contain real numbers in the interval ``0 <= p <= 1``.
|
||
|
`nan` is returned for values of `p` outside the interval [0, 1].
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
The inverse of the cosine distribution CDF evaluated at `p`.
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("sph_harm",
|
||
|
r"""
|
||
|
sph_harm(m, n, theta, phi, out=None)
|
||
|
|
||
|
Compute spherical harmonics.
|
||
|
|
||
|
The spherical harmonics are defined as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
Y^m_n(\theta,\phi) = \sqrt{\frac{2n+1}{4\pi} \frac{(n-m)!}{(n+m)!}}
|
||
|
e^{i m \theta} P^m_n(\cos(\phi))
|
||
|
|
||
|
where :math:`P_n^m` are the associated Legendre functions; see `lpmv`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
m : array_like
|
||
|
Order of the harmonic (int); must have ``|m| <= n``.
|
||
|
n : array_like
|
||
|
Degree of the harmonic (int); must have ``n >= 0``. This is
|
||
|
often denoted by ``l`` (lower case L) in descriptions of
|
||
|
spherical harmonics.
|
||
|
theta : array_like
|
||
|
Azimuthal (longitudinal) coordinate; must be in ``[0, 2*pi]``.
|
||
|
phi : array_like
|
||
|
Polar (colatitudinal) coordinate; must be in ``[0, pi]``.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
y_mn : complex scalar or ndarray
|
||
|
The harmonic :math:`Y^m_n` sampled at ``theta`` and ``phi``.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
There are different conventions for the meanings of the input
|
||
|
arguments ``theta`` and ``phi``. In SciPy ``theta`` is the
|
||
|
azimuthal angle and ``phi`` is the polar angle. It is common to
|
||
|
see the opposite convention, that is, ``theta`` as the polar angle
|
||
|
and ``phi`` as the azimuthal angle.
|
||
|
|
||
|
Note that SciPy's spherical harmonics include the Condon-Shortley
|
||
|
phase [2]_ because it is part of `lpmv`.
|
||
|
|
||
|
With SciPy's conventions, the first several spherical harmonics
|
||
|
are
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
Y_0^0(\theta, \phi) &= \frac{1}{2} \sqrt{\frac{1}{\pi}} \\
|
||
|
Y_1^{-1}(\theta, \phi) &= \frac{1}{2} \sqrt{\frac{3}{2\pi}}
|
||
|
e^{-i\theta} \sin(\phi) \\
|
||
|
Y_1^0(\theta, \phi) &= \frac{1}{2} \sqrt{\frac{3}{\pi}}
|
||
|
\cos(\phi) \\
|
||
|
Y_1^1(\theta, \phi) &= -\frac{1}{2} \sqrt{\frac{3}{2\pi}}
|
||
|
e^{i\theta} \sin(\phi).
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Digital Library of Mathematical Functions, 14.30.
|
||
|
https://dlmf.nist.gov/14.30
|
||
|
.. [2] https://en.wikipedia.org/wiki/Spherical_harmonics#Condon.E2.80.93Shortley_phase
|
||
|
""")
|
||
|
|
||
|
add_newdoc("_ellip_harm",
|
||
|
"""
|
||
|
Internal function, use `ellip_harm` instead.
|
||
|
""")
|
||
|
|
||
|
add_newdoc("_ellip_norm",
|
||
|
"""
|
||
|
Internal function, use `ellip_norm` instead.
|
||
|
""")
|
||
|
|
||
|
add_newdoc("_lambertw",
|
||
|
"""
|
||
|
Internal function, use `lambertw` instead.
|
||
|
""")
|
||
|
|
||
|
add_newdoc("voigt_profile",
|
||
|
r"""
|
||
|
voigt_profile(x, sigma, gamma, out=None)
|
||
|
|
||
|
Voigt profile.
|
||
|
|
||
|
The Voigt profile is a convolution of a 1-D Normal distribution with
|
||
|
standard deviation ``sigma`` and a 1-D Cauchy distribution with half-width at
|
||
|
half-maximum ``gamma``.
|
||
|
|
||
|
If ``sigma = 0``, PDF of Cauchy distribution is returned.
|
||
|
Conversely, if ``gamma = 0``, PDF of Normal distribution is returned.
|
||
|
If ``sigma = gamma = 0``, the return value is ``Inf`` for ``x = 0``,
|
||
|
and ``0`` for all other ``x``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Real argument
|
||
|
sigma : array_like
|
||
|
The standard deviation of the Normal distribution part
|
||
|
gamma : array_like
|
||
|
The half-width at half-maximum of the Cauchy distribution part
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
The Voigt profile at the given arguments
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
wofz : Faddeeva function
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
It can be expressed in terms of Faddeeva function
|
||
|
|
||
|
.. math:: V(x; \sigma, \gamma) = \frac{Re[w(z)]}{\sigma\sqrt{2\pi}},
|
||
|
.. math:: z = \frac{x + i\gamma}{\sqrt{2}\sigma}
|
||
|
|
||
|
where :math:`w(z)` is the Faddeeva function.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] https://en.wikipedia.org/wiki/Voigt_profile
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Calculate the function at point 2 for ``sigma=1`` and ``gamma=1``.
|
||
|
|
||
|
>>> from scipy.special import voigt_profile
|
||
|
>>> import numpy as np
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> voigt_profile(2, 1., 1.)
|
||
|
0.09071519942627544
|
||
|
|
||
|
Calculate the function at several points by providing a NumPy array
|
||
|
for `x`.
|
||
|
|
||
|
>>> values = np.array([-2., 0., 5])
|
||
|
>>> voigt_profile(values, 1., 1.)
|
||
|
array([0.0907152 , 0.20870928, 0.01388492])
|
||
|
|
||
|
Plot the function for different parameter sets.
|
||
|
|
||
|
>>> fig, ax = plt.subplots(figsize=(8, 8))
|
||
|
>>> x = np.linspace(-10, 10, 500)
|
||
|
>>> parameters_list = [(1.5, 0., "solid"), (1.3, 0.5, "dashed"),
|
||
|
... (0., 1.8, "dotted"), (1., 1., "dashdot")]
|
||
|
>>> for params in parameters_list:
|
||
|
... sigma, gamma, linestyle = params
|
||
|
... voigt = voigt_profile(x, sigma, gamma)
|
||
|
... ax.plot(x, voigt, label=rf"$\sigma={sigma},\, \gamma={gamma}$",
|
||
|
... ls=linestyle)
|
||
|
>>> ax.legend()
|
||
|
>>> plt.show()
|
||
|
|
||
|
Verify visually that the Voigt profile indeed arises as the convolution
|
||
|
of a normal and a Cauchy distribution.
|
||
|
|
||
|
>>> from scipy.signal import convolve
|
||
|
>>> x, dx = np.linspace(-10, 10, 500, retstep=True)
|
||
|
>>> def gaussian(x, sigma):
|
||
|
... return np.exp(-0.5 * x**2/sigma**2)/(sigma * np.sqrt(2*np.pi))
|
||
|
>>> def cauchy(x, gamma):
|
||
|
... return gamma/(np.pi * (np.square(x)+gamma**2))
|
||
|
>>> sigma = 2
|
||
|
>>> gamma = 1
|
||
|
>>> gauss_profile = gaussian(x, sigma)
|
||
|
>>> cauchy_profile = cauchy(x, gamma)
|
||
|
>>> convolved = dx * convolve(cauchy_profile, gauss_profile, mode="same")
|
||
|
>>> voigt = voigt_profile(x, sigma, gamma)
|
||
|
>>> fig, ax = plt.subplots(figsize=(8, 8))
|
||
|
>>> ax.plot(x, gauss_profile, label="Gauss: $G$", c='b')
|
||
|
>>> ax.plot(x, cauchy_profile, label="Cauchy: $C$", c='y', ls="dashed")
|
||
|
>>> xx = 0.5*(x[1:] + x[:-1]) # midpoints
|
||
|
>>> ax.plot(xx, convolved[1:], label="Convolution: $G * C$", ls='dashdot',
|
||
|
... c='k')
|
||
|
>>> ax.plot(x, voigt, label="Voigt", ls='dotted', c='r')
|
||
|
>>> ax.legend()
|
||
|
>>> plt.show()
|
||
|
""")
|
||
|
|
||
|
add_newdoc("wrightomega",
|
||
|
r"""
|
||
|
wrightomega(z, out=None)
|
||
|
|
||
|
Wright Omega function.
|
||
|
|
||
|
Defined as the solution to
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\omega + \log(\omega) = z
|
||
|
|
||
|
where :math:`\log` is the principal branch of the complex logarithm.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
z : array_like
|
||
|
Points at which to evaluate the Wright Omega function
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
omega : scalar or ndarray
|
||
|
Values of the Wright Omega function
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
lambertw : The Lambert W function
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
.. versionadded:: 0.19.0
|
||
|
|
||
|
The function can also be defined as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\omega(z) = W_{K(z)}(e^z)
|
||
|
|
||
|
where :math:`K(z) = \lceil (\Im(z) - \pi)/(2\pi) \rceil` is the
|
||
|
unwinding number and :math:`W` is the Lambert W function.
|
||
|
|
||
|
The implementation here is taken from [1]_.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Lawrence, Corless, and Jeffrey, "Algorithm 917: Complex
|
||
|
Double-Precision Evaluation of the Wright :math:`\omega`
|
||
|
Function." ACM Transactions on Mathematical Software,
|
||
|
2012. :doi:`10.1145/2168773.2168779`.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import wrightomega, lambertw
|
||
|
|
||
|
>>> wrightomega([-2, -1, 0, 1, 2])
|
||
|
array([0.12002824, 0.27846454, 0.56714329, 1. , 1.5571456 ])
|
||
|
|
||
|
Complex input:
|
||
|
|
||
|
>>> wrightomega(3 + 5j)
|
||
|
(1.5804428632097158+3.8213626783287937j)
|
||
|
|
||
|
Verify that ``wrightomega(z)`` satisfies ``w + log(w) = z``:
|
||
|
|
||
|
>>> w = -5 + 4j
|
||
|
>>> wrightomega(w + np.log(w))
|
||
|
(-5+4j)
|
||
|
|
||
|
Verify the connection to ``lambertw``:
|
||
|
|
||
|
>>> z = 0.5 + 3j
|
||
|
>>> wrightomega(z)
|
||
|
(0.0966015889280649+1.4937828458191993j)
|
||
|
>>> lambertw(np.exp(z))
|
||
|
(0.09660158892806493+1.4937828458191993j)
|
||
|
|
||
|
>>> z = 0.5 + 4j
|
||
|
>>> wrightomega(z)
|
||
|
(-0.3362123489037213+2.282986001579032j)
|
||
|
>>> lambertw(np.exp(z), k=1)
|
||
|
(-0.33621234890372115+2.282986001579032j)
|
||
|
""")
|
||
|
|
||
|
|
||
|
add_newdoc("agm",
|
||
|
"""
|
||
|
agm(a, b, out=None)
|
||
|
|
||
|
Compute the arithmetic-geometric mean of `a` and `b`.
|
||
|
|
||
|
Start with a_0 = a and b_0 = b and iteratively compute::
|
||
|
|
||
|
a_{n+1} = (a_n + b_n)/2
|
||
|
b_{n+1} = sqrt(a_n*b_n)
|
||
|
|
||
|
a_n and b_n converge to the same limit as n increases; their common
|
||
|
limit is agm(a, b).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
a, b : array_like
|
||
|
Real values only. If the values are both negative, the result
|
||
|
is negative. If one value is negative and the other is positive,
|
||
|
`nan` is returned.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
The arithmetic-geometric mean of `a` and `b`.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import agm
|
||
|
>>> a, b = 24.0, 6.0
|
||
|
>>> agm(a, b)
|
||
|
13.458171481725614
|
||
|
|
||
|
Compare that result to the iteration:
|
||
|
|
||
|
>>> while a != b:
|
||
|
... a, b = (a + b)/2, np.sqrt(a*b)
|
||
|
... print("a = %19.16f b=%19.16f" % (a, b))
|
||
|
...
|
||
|
a = 15.0000000000000000 b=12.0000000000000000
|
||
|
a = 13.5000000000000000 b=13.4164078649987388
|
||
|
a = 13.4582039324993694 b=13.4581390309909850
|
||
|
a = 13.4581714817451772 b=13.4581714817060547
|
||
|
a = 13.4581714817256159 b=13.4581714817256159
|
||
|
|
||
|
When array-like arguments are given, broadcasting applies:
|
||
|
|
||
|
>>> a = np.array([[1.5], [3], [6]]) # a has shape (3, 1).
|
||
|
>>> b = np.array([6, 12, 24, 48]) # b has shape (4,).
|
||
|
>>> agm(a, b)
|
||
|
array([[ 3.36454287, 5.42363427, 9.05798751, 15.53650756],
|
||
|
[ 4.37037309, 6.72908574, 10.84726853, 18.11597502],
|
||
|
[ 6. , 8.74074619, 13.45817148, 21.69453707]])
|
||
|
""")
|
||
|
|
||
|
add_newdoc("airy",
|
||
|
r"""
|
||
|
airy(z, out=None)
|
||
|
|
||
|
Airy functions and their derivatives.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
z : array_like
|
||
|
Real or complex argument.
|
||
|
out : tuple of ndarray, optional
|
||
|
Optional output arrays for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Ai, Aip, Bi, Bip : 4-tuple of scalar or ndarray
|
||
|
Airy functions Ai and Bi, and their derivatives Aip and Bip.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
airye : exponentially scaled Airy functions.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The Airy functions Ai and Bi are two independent solutions of
|
||
|
|
||
|
.. math:: y''(x) = x y(x).
|
||
|
|
||
|
For real `z` in [-10, 10], the computation is carried out by calling
|
||
|
the Cephes [1]_ `airy` routine, which uses power series summation
|
||
|
for small `z` and rational minimax approximations for large `z`.
|
||
|
|
||
|
Outside this range, the AMOS [2]_ `zairy` and `zbiry` routines are
|
||
|
employed. They are computed using power series for :math:`|z| < 1` and
|
||
|
the following relations to modified Bessel functions for larger `z`
|
||
|
(where :math:`t \equiv 2 z^{3/2}/3`):
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
Ai(z) = \frac{1}{\pi \sqrt{3}} K_{1/3}(t)
|
||
|
|
||
|
Ai'(z) = -\frac{z}{\pi \sqrt{3}} K_{2/3}(t)
|
||
|
|
||
|
Bi(z) = \sqrt{\frac{z}{3}} \left(I_{-1/3}(t) + I_{1/3}(t) \right)
|
||
|
|
||
|
Bi'(z) = \frac{z}{\sqrt{3}} \left(I_{-2/3}(t) + I_{2/3}(t)\right)
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Cephes Mathematical Functions Library,
|
||
|
http://www.netlib.org/cephes/
|
||
|
.. [2] Donald E. Amos, "AMOS, A Portable Package for Bessel Functions
|
||
|
of a Complex Argument and Nonnegative Order",
|
||
|
http://netlib.org/amos/
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Compute the Airy functions on the interval [-15, 5].
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy import special
|
||
|
>>> x = np.linspace(-15, 5, 201)
|
||
|
>>> ai, aip, bi, bip = special.airy(x)
|
||
|
|
||
|
Plot Ai(x) and Bi(x).
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> plt.plot(x, ai, 'r', label='Ai(x)')
|
||
|
>>> plt.plot(x, bi, 'b--', label='Bi(x)')
|
||
|
>>> plt.ylim(-0.5, 1.0)
|
||
|
>>> plt.grid()
|
||
|
>>> plt.legend(loc='upper left')
|
||
|
>>> plt.show()
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("airye",
|
||
|
"""
|
||
|
airye(z, out=None)
|
||
|
|
||
|
Exponentially scaled Airy functions and their derivatives.
|
||
|
|
||
|
Scaling::
|
||
|
|
||
|
eAi = Ai * exp(2.0/3.0*z*sqrt(z))
|
||
|
eAip = Aip * exp(2.0/3.0*z*sqrt(z))
|
||
|
eBi = Bi * exp(-abs(2.0/3.0*(z*sqrt(z)).real))
|
||
|
eBip = Bip * exp(-abs(2.0/3.0*(z*sqrt(z)).real))
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
z : array_like
|
||
|
Real or complex argument.
|
||
|
out : tuple of ndarray, optional
|
||
|
Optional output arrays for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
eAi, eAip, eBi, eBip : 4-tuple of scalar or ndarray
|
||
|
Exponentially scaled Airy functions eAi and eBi, and their derivatives
|
||
|
eAip and eBip
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
airy
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Wrapper for the AMOS [1]_ routines `zairy` and `zbiry`.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Donald E. Amos, "AMOS, A Portable Package for Bessel Functions
|
||
|
of a Complex Argument and Nonnegative Order",
|
||
|
http://netlib.org/amos/
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
We can compute exponentially scaled Airy functions and their derivatives:
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import airye
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> z = np.linspace(0, 50, 500)
|
||
|
>>> eAi, eAip, eBi, eBip = airye(z)
|
||
|
>>> f, ax = plt.subplots(2, 1, sharex=True)
|
||
|
>>> for ind, data in enumerate([[eAi, eAip, ["eAi", "eAip"]],
|
||
|
... [eBi, eBip, ["eBi", "eBip"]]]):
|
||
|
... ax[ind].plot(z, data[0], "-r", z, data[1], "-b")
|
||
|
... ax[ind].legend(data[2])
|
||
|
... ax[ind].grid(True)
|
||
|
>>> plt.show()
|
||
|
|
||
|
We can compute these using usual non-scaled Airy functions by:
|
||
|
|
||
|
>>> from scipy.special import airy
|
||
|
>>> Ai, Aip, Bi, Bip = airy(z)
|
||
|
>>> np.allclose(eAi, Ai * np.exp(2.0 / 3.0 * z * np.sqrt(z)))
|
||
|
True
|
||
|
>>> np.allclose(eAip, Aip * np.exp(2.0 / 3.0 * z * np.sqrt(z)))
|
||
|
True
|
||
|
>>> np.allclose(eBi, Bi * np.exp(-abs(np.real(2.0 / 3.0 * z * np.sqrt(z)))))
|
||
|
True
|
||
|
>>> np.allclose(eBip, Bip * np.exp(-abs(np.real(2.0 / 3.0 * z * np.sqrt(z)))))
|
||
|
True
|
||
|
|
||
|
Comparing non-scaled and exponentially scaled ones, the usual non-scaled
|
||
|
function quickly underflows for large values, whereas the exponentially
|
||
|
scaled function does not.
|
||
|
|
||
|
>>> airy(200)
|
||
|
(0.0, 0.0, nan, nan)
|
||
|
>>> airye(200)
|
||
|
(0.07501041684381093, -1.0609012305109042, 0.15003188417418148, 2.1215836725571093)
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("bdtr",
|
||
|
r"""
|
||
|
bdtr(k, n, p, out=None)
|
||
|
|
||
|
Binomial distribution cumulative distribution function.
|
||
|
|
||
|
Sum of the terms 0 through `floor(k)` of the Binomial probability density.
|
||
|
|
||
|
.. math::
|
||
|
\mathrm{bdtr}(k, n, p) =
|
||
|
\sum_{j=0}^{\lfloor k \rfloor} {{n}\choose{j}} p^j (1-p)^{n-j}
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
k : array_like
|
||
|
Number of successes (double), rounded down to the nearest integer.
|
||
|
n : array_like
|
||
|
Number of events (int).
|
||
|
p : array_like
|
||
|
Probability of success in a single event (float).
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
y : scalar or ndarray
|
||
|
Probability of `floor(k)` or fewer successes in `n` independent events with
|
||
|
success probabilities of `p`.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The terms are not summed directly; instead the regularized incomplete beta
|
||
|
function is employed, according to the formula,
|
||
|
|
||
|
.. math::
|
||
|
\mathrm{bdtr}(k, n, p) =
|
||
|
I_{1 - p}(n - \lfloor k \rfloor, \lfloor k \rfloor + 1).
|
||
|
|
||
|
Wrapper for the Cephes [1]_ routine `bdtr`.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Cephes Mathematical Functions Library,
|
||
|
http://www.netlib.org/cephes/
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("bdtrc",
|
||
|
r"""
|
||
|
bdtrc(k, n, p, out=None)
|
||
|
|
||
|
Binomial distribution survival function.
|
||
|
|
||
|
Sum of the terms `floor(k) + 1` through `n` of the binomial probability
|
||
|
density,
|
||
|
|
||
|
.. math::
|
||
|
\mathrm{bdtrc}(k, n, p) =
|
||
|
\sum_{j=\lfloor k \rfloor +1}^n {{n}\choose{j}} p^j (1-p)^{n-j}
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
k : array_like
|
||
|
Number of successes (double), rounded down to nearest integer.
|
||
|
n : array_like
|
||
|
Number of events (int)
|
||
|
p : array_like
|
||
|
Probability of success in a single event.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
y : scalar or ndarray
|
||
|
Probability of `floor(k) + 1` or more successes in `n` independent
|
||
|
events with success probabilities of `p`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
bdtr
|
||
|
betainc
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The terms are not summed directly; instead the regularized incomplete beta
|
||
|
function is employed, according to the formula,
|
||
|
|
||
|
.. math::
|
||
|
\mathrm{bdtrc}(k, n, p) = I_{p}(\lfloor k \rfloor + 1, n - \lfloor k \rfloor).
|
||
|
|
||
|
Wrapper for the Cephes [1]_ routine `bdtrc`.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Cephes Mathematical Functions Library,
|
||
|
http://www.netlib.org/cephes/
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("bdtri",
|
||
|
r"""
|
||
|
bdtri(k, n, y, out=None)
|
||
|
|
||
|
Inverse function to `bdtr` with respect to `p`.
|
||
|
|
||
|
Finds the event probability `p` such that the sum of the terms 0 through
|
||
|
`k` of the binomial probability density is equal to the given cumulative
|
||
|
probability `y`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
k : array_like
|
||
|
Number of successes (float), rounded down to the nearest integer.
|
||
|
n : array_like
|
||
|
Number of events (float)
|
||
|
y : array_like
|
||
|
Cumulative probability (probability of `k` or fewer successes in `n`
|
||
|
events).
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
p : scalar or ndarray
|
||
|
The event probability such that `bdtr(\lfloor k \rfloor, n, p) = y`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
bdtr
|
||
|
betaincinv
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The computation is carried out using the inverse beta integral function
|
||
|
and the relation,::
|
||
|
|
||
|
1 - p = betaincinv(n - k, k + 1, y).
|
||
|
|
||
|
Wrapper for the Cephes [1]_ routine `bdtri`.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Cephes Mathematical Functions Library,
|
||
|
http://www.netlib.org/cephes/
|
||
|
""")
|
||
|
|
||
|
add_newdoc("bdtrik",
|
||
|
"""
|
||
|
bdtrik(y, n, p, out=None)
|
||
|
|
||
|
Inverse function to `bdtr` with respect to `k`.
|
||
|
|
||
|
Finds the number of successes `k` such that the sum of the terms 0 through
|
||
|
`k` of the Binomial probability density for `n` events with probability
|
||
|
`p` is equal to the given cumulative probability `y`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
y : array_like
|
||
|
Cumulative probability (probability of `k` or fewer successes in `n`
|
||
|
events).
|
||
|
n : array_like
|
||
|
Number of events (float).
|
||
|
p : array_like
|
||
|
Success probability (float).
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
k : scalar or ndarray
|
||
|
The number of successes `k` such that `bdtr(k, n, p) = y`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
bdtr
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Formula 26.5.24 of [1]_ is used to reduce the binomial distribution to the
|
||
|
cumulative incomplete beta distribution.
|
||
|
|
||
|
Computation of `k` involves a search for a value that produces the desired
|
||
|
value of `y`. The search relies on the monotonicity of `y` with `k`.
|
||
|
|
||
|
Wrapper for the CDFLIB [2]_ Fortran routine `cdfbin`.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Milton Abramowitz and Irene A. Stegun, eds.
|
||
|
Handbook of Mathematical Functions with Formulas,
|
||
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
||
|
.. [2] Barry Brown, James Lovato, and Kathy Russell,
|
||
|
CDFLIB: Library of Fortran Routines for Cumulative Distribution
|
||
|
Functions, Inverses, and Other Parameters.
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("bdtrin",
|
||
|
"""
|
||
|
bdtrin(k, y, p, out=None)
|
||
|
|
||
|
Inverse function to `bdtr` with respect to `n`.
|
||
|
|
||
|
Finds the number of events `n` such that the sum of the terms 0 through
|
||
|
`k` of the Binomial probability density for events with probability `p` is
|
||
|
equal to the given cumulative probability `y`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
k : array_like
|
||
|
Number of successes (float).
|
||
|
y : array_like
|
||
|
Cumulative probability (probability of `k` or fewer successes in `n`
|
||
|
events).
|
||
|
p : array_like
|
||
|
Success probability (float).
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
n : scalar or ndarray
|
||
|
The number of events `n` such that `bdtr(k, n, p) = y`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
bdtr
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Formula 26.5.24 of [1]_ is used to reduce the binomial distribution to the
|
||
|
cumulative incomplete beta distribution.
|
||
|
|
||
|
Computation of `n` involves a search for a value that produces the desired
|
||
|
value of `y`. The search relies on the monotonicity of `y` with `n`.
|
||
|
|
||
|
Wrapper for the CDFLIB [2]_ Fortran routine `cdfbin`.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Milton Abramowitz and Irene A. Stegun, eds.
|
||
|
Handbook of Mathematical Functions with Formulas,
|
||
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
||
|
.. [2] Barry Brown, James Lovato, and Kathy Russell,
|
||
|
CDFLIB: Library of Fortran Routines for Cumulative Distribution
|
||
|
Functions, Inverses, and Other Parameters.
|
||
|
""")
|
||
|
|
||
|
add_newdoc(
|
||
|
"binom",
|
||
|
r"""
|
||
|
binom(x, y, out=None)
|
||
|
|
||
|
Binomial coefficient considered as a function of two real variables.
|
||
|
|
||
|
For real arguments, the binomial coefficient is defined as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\binom{x}{y} = \frac{\Gamma(x + 1)}{\Gamma(y + 1)\Gamma(x - y + 1)} =
|
||
|
\frac{1}{(x + 1)\mathrm{B}(x - y + 1, y + 1)}
|
||
|
|
||
|
Where :math:`\Gamma` is the Gamma function (`gamma`) and :math:`\mathrm{B}`
|
||
|
is the Beta function (`beta`) [1]_.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x, y: array_like
|
||
|
Real arguments to :math:`\binom{x}{y}`.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Value of binomial coefficient.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
comb : The number of combinations of N things taken k at a time.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The Gamma function has poles at non-positive integers and tends to either
|
||
|
positive or negative infinity depending on the direction on the real line
|
||
|
from which a pole is approached. When considered as a function of two real
|
||
|
variables, :math:`\binom{x}{y}` is thus undefined when `x` is a negative
|
||
|
integer. `binom` returns ``nan`` when ``x`` is a negative integer. This
|
||
|
is the case even when ``x`` is a negative integer and ``y`` an integer,
|
||
|
contrary to the usual convention for defining :math:`\binom{n}{k}` when it
|
||
|
is considered as a function of two integer variables.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] https://en.wikipedia.org/wiki/Binomial_coefficient
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
The following examples illustrate the ways in which `binom` differs from
|
||
|
the function `comb`.
|
||
|
|
||
|
>>> from scipy.special import binom, comb
|
||
|
|
||
|
When ``exact=False`` and ``x`` and ``y`` are both positive, `comb` calls
|
||
|
`binom` internally.
|
||
|
|
||
|
>>> x, y = 3, 2
|
||
|
>>> (binom(x, y), comb(x, y), comb(x, y, exact=True))
|
||
|
(3.0, 3.0, 3)
|
||
|
|
||
|
For larger values, `comb` with ``exact=True`` no longer agrees
|
||
|
with `binom`.
|
||
|
|
||
|
>>> x, y = 43, 23
|
||
|
>>> (binom(x, y), comb(x, y), comb(x, y, exact=True))
|
||
|
(960566918219.9999, 960566918219.9999, 960566918220)
|
||
|
|
||
|
`binom` returns ``nan`` when ``x`` is a negative integer, but is otherwise
|
||
|
defined for negative arguments. `comb` returns 0 whenever one of ``x`` or
|
||
|
``y`` is negative or ``x`` is less than ``y``.
|
||
|
|
||
|
>>> x, y = -3, 2
|
||
|
>>> (binom(x, y), comb(x, y), comb(x, y, exact=True))
|
||
|
(nan, 0.0, 0)
|
||
|
|
||
|
>>> x, y = -3.1, 2.2
|
||
|
>>> (binom(x, y), comb(x, y), comb(x, y, exact=True))
|
||
|
(18.714147876804432, 0.0, 0)
|
||
|
|
||
|
>>> x, y = 2.2, 3.1
|
||
|
>>> (binom(x, y), comb(x, y), comb(x, y, exact=True))
|
||
|
(0.037399983365134115, 0.0, 0)
|
||
|
"""
|
||
|
)
|
||
|
|
||
|
add_newdoc("btdtria",
|
||
|
r"""
|
||
|
btdtria(p, b, x, out=None)
|
||
|
|
||
|
Inverse of `btdtr` with respect to `a`.
|
||
|
|
||
|
This is the inverse of the beta cumulative distribution function, `btdtr`,
|
||
|
considered as a function of `a`, returning the value of `a` for which
|
||
|
`btdtr(a, b, x) = p`, or
|
||
|
|
||
|
.. math::
|
||
|
p = \int_0^x \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} t^{a-1} (1-t)^{b-1}\,dt
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
p : array_like
|
||
|
Cumulative probability, in [0, 1].
|
||
|
b : array_like
|
||
|
Shape parameter (`b` > 0).
|
||
|
x : array_like
|
||
|
The quantile, in [0, 1].
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
a : scalar or ndarray
|
||
|
The value of the shape parameter `a` such that `btdtr(a, b, x) = p`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
btdtr : Cumulative distribution function of the beta distribution.
|
||
|
btdtri : Inverse with respect to `x`.
|
||
|
btdtrib : Inverse with respect to `b`.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Wrapper for the CDFLIB [1]_ Fortran routine `cdfbet`.
|
||
|
|
||
|
The cumulative distribution function `p` is computed using a routine by
|
||
|
DiDinato and Morris [2]_. Computation of `a` involves a search for a value
|
||
|
that produces the desired value of `p`. The search relies on the
|
||
|
monotonicity of `p` with `a`.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Barry Brown, James Lovato, and Kathy Russell,
|
||
|
CDFLIB: Library of Fortran Routines for Cumulative Distribution
|
||
|
Functions, Inverses, and Other Parameters.
|
||
|
.. [2] DiDinato, A. R. and Morris, A. H.,
|
||
|
Algorithm 708: Significant Digit Computation of the Incomplete Beta
|
||
|
Function Ratios. ACM Trans. Math. Softw. 18 (1993), 360-373.
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("btdtrib",
|
||
|
r"""
|
||
|
btdtria(a, p, x, out=None)
|
||
|
|
||
|
Inverse of `btdtr` with respect to `b`.
|
||
|
|
||
|
This is the inverse of the beta cumulative distribution function, `btdtr`,
|
||
|
considered as a function of `b`, returning the value of `b` for which
|
||
|
`btdtr(a, b, x) = p`, or
|
||
|
|
||
|
.. math::
|
||
|
p = \int_0^x \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} t^{a-1} (1-t)^{b-1}\,dt
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
a : array_like
|
||
|
Shape parameter (`a` > 0).
|
||
|
p : array_like
|
||
|
Cumulative probability, in [0, 1].
|
||
|
x : array_like
|
||
|
The quantile, in [0, 1].
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
b : scalar or ndarray
|
||
|
The value of the shape parameter `b` such that `btdtr(a, b, x) = p`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
btdtr : Cumulative distribution function of the beta distribution.
|
||
|
btdtri : Inverse with respect to `x`.
|
||
|
btdtria : Inverse with respect to `a`.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Wrapper for the CDFLIB [1]_ Fortran routine `cdfbet`.
|
||
|
|
||
|
The cumulative distribution function `p` is computed using a routine by
|
||
|
DiDinato and Morris [2]_. Computation of `b` involves a search for a value
|
||
|
that produces the desired value of `p`. The search relies on the
|
||
|
monotonicity of `p` with `b`.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Barry Brown, James Lovato, and Kathy Russell,
|
||
|
CDFLIB: Library of Fortran Routines for Cumulative Distribution
|
||
|
Functions, Inverses, and Other Parameters.
|
||
|
.. [2] DiDinato, A. R. and Morris, A. H.,
|
||
|
Algorithm 708: Significant Digit Computation of the Incomplete Beta
|
||
|
Function Ratios. ACM Trans. Math. Softw. 18 (1993), 360-373.
|
||
|
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("bei",
|
||
|
r"""
|
||
|
bei(x, out=None)
|
||
|
|
||
|
Kelvin function bei.
|
||
|
|
||
|
Defined as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\mathrm{bei}(x) = \Im[J_0(x e^{3 \pi i / 4})]
|
||
|
|
||
|
where :math:`J_0` is the Bessel function of the first kind of
|
||
|
order zero (see `jv`). See [dlmf]_ for more details.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Real argument.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Values of the Kelvin function.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
ber : the corresponding real part
|
||
|
beip : the derivative of bei
|
||
|
jv : Bessel function of the first kind
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [dlmf] NIST, Digital Library of Mathematical Functions,
|
||
|
https://dlmf.nist.gov/10.61
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
It can be expressed using Bessel functions.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> import scipy.special as sc
|
||
|
>>> x = np.array([1.0, 2.0, 3.0, 4.0])
|
||
|
>>> sc.jv(0, x * np.exp(3 * np.pi * 1j / 4)).imag
|
||
|
array([0.24956604, 0.97229163, 1.93758679, 2.29269032])
|
||
|
>>> sc.bei(x)
|
||
|
array([0.24956604, 0.97229163, 1.93758679, 2.29269032])
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("beip",
|
||
|
r"""
|
||
|
beip(x, out=None)
|
||
|
|
||
|
Derivative of the Kelvin function bei.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Real argument.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
The values of the derivative of bei.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
bei
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [dlmf] NIST, Digital Library of Mathematical Functions,
|
||
|
https://dlmf.nist.gov/10#PT5
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("ber",
|
||
|
r"""
|
||
|
ber(x, out=None)
|
||
|
|
||
|
Kelvin function ber.
|
||
|
|
||
|
Defined as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\mathrm{ber}(x) = \Re[J_0(x e^{3 \pi i / 4})]
|
||
|
|
||
|
where :math:`J_0` is the Bessel function of the first kind of
|
||
|
order zero (see `jv`). See [dlmf]_ for more details.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Real argument.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Values of the Kelvin function.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
bei : the corresponding real part
|
||
|
berp : the derivative of bei
|
||
|
jv : Bessel function of the first kind
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [dlmf] NIST, Digital Library of Mathematical Functions,
|
||
|
https://dlmf.nist.gov/10.61
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
It can be expressed using Bessel functions.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> import scipy.special as sc
|
||
|
>>> x = np.array([1.0, 2.0, 3.0, 4.0])
|
||
|
>>> sc.jv(0, x * np.exp(3 * np.pi * 1j / 4)).real
|
||
|
array([ 0.98438178, 0.75173418, -0.22138025, -2.56341656])
|
||
|
>>> sc.ber(x)
|
||
|
array([ 0.98438178, 0.75173418, -0.22138025, -2.56341656])
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("berp",
|
||
|
r"""
|
||
|
berp(x, out=None)
|
||
|
|
||
|
Derivative of the Kelvin function ber.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Real argument.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
The values of the derivative of ber.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
ber
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [dlmf] NIST, Digital Library of Mathematical Functions,
|
||
|
https://dlmf.nist.gov/10#PT5
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("besselpoly",
|
||
|
r"""
|
||
|
besselpoly(a, lmb, nu, out=None)
|
||
|
|
||
|
Weighted integral of the Bessel function of the first kind.
|
||
|
|
||
|
Computes
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\int_0^1 x^\lambda J_\nu(2 a x) \, dx
|
||
|
|
||
|
where :math:`J_\nu` is a Bessel function and :math:`\lambda=lmb`,
|
||
|
:math:`\nu=nu`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
a : array_like
|
||
|
Scale factor inside the Bessel function.
|
||
|
lmb : array_like
|
||
|
Power of `x`
|
||
|
nu : array_like
|
||
|
Order of the Bessel function.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Value of the integral.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Cephes Mathematical Functions Library,
|
||
|
http://www.netlib.org/cephes/
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Evaluate the function for one parameter set.
|
||
|
|
||
|
>>> from scipy.special import besselpoly
|
||
|
>>> besselpoly(1, 1, 1)
|
||
|
0.24449718372863877
|
||
|
|
||
|
Evaluate the function for different scale factors.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> factors = np.array([0., 3., 6.])
|
||
|
>>> besselpoly(factors, 1, 1)
|
||
|
array([ 0. , -0.00549029, 0.00140174])
|
||
|
|
||
|
Plot the function for varying powers, orders and scales.
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> powers = np.linspace(0, 10, 100)
|
||
|
>>> orders = [1, 2, 3]
|
||
|
>>> scales = [1, 2]
|
||
|
>>> all_combinations = [(order, scale) for order in orders
|
||
|
... for scale in scales]
|
||
|
>>> for order, scale in all_combinations:
|
||
|
... ax.plot(powers, besselpoly(scale, powers, order),
|
||
|
... label=rf"$\nu={order}, a={scale}$")
|
||
|
>>> ax.legend()
|
||
|
>>> ax.set_xlabel(r"$\lambda$")
|
||
|
>>> ax.set_ylabel(r"$\int_0^1 x^{\lambda} J_{\nu}(2ax)\,dx$")
|
||
|
>>> plt.show()
|
||
|
""")
|
||
|
|
||
|
add_newdoc("beta",
|
||
|
r"""
|
||
|
beta(a, b, out=None)
|
||
|
|
||
|
Beta function.
|
||
|
|
||
|
This function is defined in [1]_ as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
B(a, b) = \int_0^1 t^{a-1}(1-t)^{b-1}dt
|
||
|
= \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)},
|
||
|
|
||
|
where :math:`\Gamma` is the gamma function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
a, b : array_like
|
||
|
Real-valued arguments
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function result
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Value of the beta function
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
gamma : the gamma function
|
||
|
betainc : the regularized incomplete beta function
|
||
|
betaln : the natural logarithm of the absolute
|
||
|
value of the beta function
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] NIST Digital Library of Mathematical Functions,
|
||
|
Eq. 5.12.1. https://dlmf.nist.gov/5.12
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import scipy.special as sc
|
||
|
|
||
|
The beta function relates to the gamma function by the
|
||
|
definition given above:
|
||
|
|
||
|
>>> sc.beta(2, 3)
|
||
|
0.08333333333333333
|
||
|
>>> sc.gamma(2)*sc.gamma(3)/sc.gamma(2 + 3)
|
||
|
0.08333333333333333
|
||
|
|
||
|
As this relationship demonstrates, the beta function
|
||
|
is symmetric:
|
||
|
|
||
|
>>> sc.beta(1.7, 2.4)
|
||
|
0.16567527689031739
|
||
|
>>> sc.beta(2.4, 1.7)
|
||
|
0.16567527689031739
|
||
|
|
||
|
This function satisfies :math:`B(1, b) = 1/b`:
|
||
|
|
||
|
>>> sc.beta(1, 4)
|
||
|
0.25
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc(
|
||
|
"betainc",
|
||
|
r"""
|
||
|
betainc(a, b, x, out=None)
|
||
|
|
||
|
Regularized incomplete beta function.
|
||
|
|
||
|
Computes the regularized incomplete beta function, defined as [1]_:
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
I_x(a, b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \int_0^x
|
||
|
t^{a-1}(1-t)^{b-1}dt,
|
||
|
|
||
|
for :math:`0 \leq x \leq 1`.
|
||
|
|
||
|
This function is the cumulative distribution function for the beta
|
||
|
distribution; its range is [0, 1].
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
a, b : array_like
|
||
|
Positive, real-valued parameters
|
||
|
x : array_like
|
||
|
Real-valued such that :math:`0 \leq x \leq 1`,
|
||
|
the upper limit of integration
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Value of the regularized incomplete beta function
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
beta : beta function
|
||
|
betaincinv : inverse of the regularized incomplete beta function
|
||
|
betaincc : complement of the regularized incomplete beta function
|
||
|
scipy.stats.beta : beta distribution
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The term *regularized* in the name of this function refers to the
|
||
|
scaling of the function by the gamma function terms shown in the
|
||
|
formula. When not qualified as *regularized*, the name *incomplete
|
||
|
beta function* often refers to just the integral expression,
|
||
|
without the gamma terms. One can use the function `beta` from
|
||
|
`scipy.special` to get this "nonregularized" incomplete beta
|
||
|
function by multiplying the result of ``betainc(a, b, x)`` by
|
||
|
``beta(a, b)``.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] NIST Digital Library of Mathematical Functions
|
||
|
https://dlmf.nist.gov/8.17
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
|
||
|
Let :math:`B(a, b)` be the `beta` function.
|
||
|
|
||
|
>>> import scipy.special as sc
|
||
|
|
||
|
The coefficient in terms of `gamma` is equal to
|
||
|
:math:`1/B(a, b)`. Also, when :math:`x=1`
|
||
|
the integral is equal to :math:`B(a, b)`.
|
||
|
Therefore, :math:`I_{x=1}(a, b) = 1` for any :math:`a, b`.
|
||
|
|
||
|
>>> sc.betainc(0.2, 3.5, 1.0)
|
||
|
1.0
|
||
|
|
||
|
It satisfies
|
||
|
:math:`I_x(a, b) = x^a F(a, 1-b, a+1, x)/ (aB(a, b))`,
|
||
|
where :math:`F` is the hypergeometric function `hyp2f1`:
|
||
|
|
||
|
>>> a, b, x = 1.4, 3.1, 0.5
|
||
|
>>> x**a * sc.hyp2f1(a, 1 - b, a + 1, x)/(a * sc.beta(a, b))
|
||
|
0.8148904036225295
|
||
|
>>> sc.betainc(a, b, x)
|
||
|
0.8148904036225296
|
||
|
|
||
|
This functions satisfies the relationship
|
||
|
:math:`I_x(a, b) = 1 - I_{1-x}(b, a)`:
|
||
|
|
||
|
>>> sc.betainc(2.2, 3.1, 0.4)
|
||
|
0.49339638807619446
|
||
|
>>> 1 - sc.betainc(3.1, 2.2, 1 - 0.4)
|
||
|
0.49339638807619446
|
||
|
|
||
|
""")
|
||
|
|
||
|
|
||
|
add_newdoc(
|
||
|
"betaincc",
|
||
|
r"""
|
||
|
betaincc(a, b, x, out=None)
|
||
|
|
||
|
Complement of the regularized incomplete beta function.
|
||
|
|
||
|
Computes the complement of the regularized incomplete beta function,
|
||
|
defined as [1]_:
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\bar{I}_x(a, b) = 1 - I_x(a, b)
|
||
|
= 1 - \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \int_0^x
|
||
|
t^{a-1}(1-t)^{b-1}dt,
|
||
|
|
||
|
for :math:`0 \leq x \leq 1`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
a, b : array_like
|
||
|
Positive, real-valued parameters
|
||
|
x : array_like
|
||
|
Real-valued such that :math:`0 \leq x \leq 1`,
|
||
|
the upper limit of integration
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Value of the regularized incomplete beta function
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
betainc : regularized incomplete beta function
|
||
|
betaincinv : inverse of the regularized incomplete beta function
|
||
|
betainccinv :
|
||
|
inverse of the complement of the regularized incomplete beta function
|
||
|
beta : beta function
|
||
|
scipy.stats.beta : beta distribution
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
.. versionadded:: 1.11.0
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] NIST Digital Library of Mathematical Functions
|
||
|
https://dlmf.nist.gov/8.17
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.special import betaincc, betainc
|
||
|
|
||
|
The naive calculation ``1 - betainc(a, b, x)`` loses precision when
|
||
|
the values of ``betainc(a, b, x)`` are close to 1:
|
||
|
|
||
|
>>> 1 - betainc(0.5, 8, [0.9, 0.99, 0.999])
|
||
|
array([2.0574632e-09, 0.0000000e+00, 0.0000000e+00])
|
||
|
|
||
|
By using ``betaincc``, we get the correct values:
|
||
|
|
||
|
>>> betaincc(0.5, 8, [0.9, 0.99, 0.999])
|
||
|
array([2.05746321e-09, 1.97259354e-17, 1.96467954e-25])
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc(
|
||
|
"betaincinv",
|
||
|
r"""
|
||
|
betaincinv(a, b, y, out=None)
|
||
|
|
||
|
Inverse of the regularized incomplete beta function.
|
||
|
|
||
|
Computes :math:`x` such that:
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
y = I_x(a, b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}
|
||
|
\int_0^x t^{a-1}(1-t)^{b-1}dt,
|
||
|
|
||
|
where :math:`I_x` is the normalized incomplete beta function `betainc`
|
||
|
and :math:`\Gamma` is the `gamma` function [1]_.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
a, b : array_like
|
||
|
Positive, real-valued parameters
|
||
|
y : array_like
|
||
|
Real-valued input
|
||
|
out : ndarray, optional
|
||
|
Optional output array for function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Value of the inverse of the regularized incomplete beta function
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
betainc : regularized incomplete beta function
|
||
|
gamma : gamma function
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] NIST Digital Library of Mathematical Functions
|
||
|
https://dlmf.nist.gov/8.17
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import scipy.special as sc
|
||
|
|
||
|
This function is the inverse of `betainc` for fixed
|
||
|
values of :math:`a` and :math:`b`.
|
||
|
|
||
|
>>> a, b = 1.2, 3.1
|
||
|
>>> y = sc.betainc(a, b, 0.2)
|
||
|
>>> sc.betaincinv(a, b, y)
|
||
|
0.2
|
||
|
>>>
|
||
|
>>> a, b = 7.5, 0.4
|
||
|
>>> x = sc.betaincinv(a, b, 0.5)
|
||
|
>>> sc.betainc(a, b, x)
|
||
|
0.5
|
||
|
|
||
|
""")
|
||
|
|
||
|
|
||
|
add_newdoc(
|
||
|
"betainccinv",
|
||
|
r"""
|
||
|
betainccinv(a, b, y, out=None)
|
||
|
|
||
|
Inverse of the complemented regularized incomplete beta function.
|
||
|
|
||
|
Computes :math:`x` such that:
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
y = 1 - I_x(a, b) = 1 - \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}
|
||
|
\int_0^x t^{a-1}(1-t)^{b-1}dt,
|
||
|
|
||
|
where :math:`I_x` is the normalized incomplete beta function `betainc`
|
||
|
and :math:`\Gamma` is the `gamma` function [1]_.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
a, b : array_like
|
||
|
Positive, real-valued parameters
|
||
|
y : array_like
|
||
|
Real-valued input
|
||
|
out : ndarray, optional
|
||
|
Optional output array for function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Value of the inverse of the regularized incomplete beta function
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
betainc : regularized incomplete beta function
|
||
|
betaincc : complement of the regularized incomplete beta function
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
.. versionadded:: 1.11.0
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] NIST Digital Library of Mathematical Functions
|
||
|
https://dlmf.nist.gov/8.17
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.special import betainccinv, betaincc
|
||
|
|
||
|
This function is the inverse of `betaincc` for fixed
|
||
|
values of :math:`a` and :math:`b`.
|
||
|
|
||
|
>>> a, b = 1.2, 3.1
|
||
|
>>> y = betaincc(a, b, 0.2)
|
||
|
>>> betainccinv(a, b, y)
|
||
|
0.2
|
||
|
|
||
|
>>> a, b = 7, 2.5
|
||
|
>>> x = betainccinv(a, b, 0.875)
|
||
|
>>> betaincc(a, b, x)
|
||
|
0.875
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("betaln",
|
||
|
"""
|
||
|
betaln(a, b, out=None)
|
||
|
|
||
|
Natural logarithm of absolute value of beta function.
|
||
|
|
||
|
Computes ``ln(abs(beta(a, b)))``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
a, b : array_like
|
||
|
Positive, real-valued parameters
|
||
|
out : ndarray, optional
|
||
|
Optional output array for function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Value of the betaln function
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
gamma : the gamma function
|
||
|
betainc : the regularized incomplete beta function
|
||
|
beta : the beta function
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import betaln, beta
|
||
|
|
||
|
Verify that, for moderate values of ``a`` and ``b``, ``betaln(a, b)``
|
||
|
is the same as ``log(beta(a, b))``:
|
||
|
|
||
|
>>> betaln(3, 4)
|
||
|
-4.0943445622221
|
||
|
|
||
|
>>> np.log(beta(3, 4))
|
||
|
-4.0943445622221
|
||
|
|
||
|
In the following ``beta(a, b)`` underflows to 0, so we can't compute
|
||
|
the logarithm of the actual value.
|
||
|
|
||
|
>>> a = 400
|
||
|
>>> b = 900
|
||
|
>>> beta(a, b)
|
||
|
0.0
|
||
|
|
||
|
We can compute the logarithm of ``beta(a, b)`` by using `betaln`:
|
||
|
|
||
|
>>> betaln(a, b)
|
||
|
-804.3069951764146
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("boxcox",
|
||
|
"""
|
||
|
boxcox(x, lmbda, out=None)
|
||
|
|
||
|
Compute the Box-Cox transformation.
|
||
|
|
||
|
The Box-Cox transformation is::
|
||
|
|
||
|
y = (x**lmbda - 1) / lmbda if lmbda != 0
|
||
|
log(x) if lmbda == 0
|
||
|
|
||
|
Returns `nan` if ``x < 0``.
|
||
|
Returns `-inf` if ``x == 0`` and ``lmbda < 0``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Data to be transformed.
|
||
|
lmbda : array_like
|
||
|
Power parameter of the Box-Cox transform.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
y : scalar or ndarray
|
||
|
Transformed data.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
|
||
|
.. versionadded:: 0.14.0
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.special import boxcox
|
||
|
>>> boxcox([1, 4, 10], 2.5)
|
||
|
array([ 0. , 12.4 , 126.09110641])
|
||
|
>>> boxcox(2, [0, 1, 2])
|
||
|
array([ 0.69314718, 1. , 1.5 ])
|
||
|
""")
|
||
|
|
||
|
add_newdoc("boxcox1p",
|
||
|
"""
|
||
|
boxcox1p(x, lmbda, out=None)
|
||
|
|
||
|
Compute the Box-Cox transformation of 1 + `x`.
|
||
|
|
||
|
The Box-Cox transformation computed by `boxcox1p` is::
|
||
|
|
||
|
y = ((1+x)**lmbda - 1) / lmbda if lmbda != 0
|
||
|
log(1+x) if lmbda == 0
|
||
|
|
||
|
Returns `nan` if ``x < -1``.
|
||
|
Returns `-inf` if ``x == -1`` and ``lmbda < 0``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Data to be transformed.
|
||
|
lmbda : array_like
|
||
|
Power parameter of the Box-Cox transform.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
y : scalar or ndarray
|
||
|
Transformed data.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
|
||
|
.. versionadded:: 0.14.0
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.special import boxcox1p
|
||
|
>>> boxcox1p(1e-4, [0, 0.5, 1])
|
||
|
array([ 9.99950003e-05, 9.99975001e-05, 1.00000000e-04])
|
||
|
>>> boxcox1p([0.01, 0.1], 0.25)
|
||
|
array([ 0.00996272, 0.09645476])
|
||
|
""")
|
||
|
|
||
|
add_newdoc("inv_boxcox",
|
||
|
"""
|
||
|
inv_boxcox(y, lmbda, out=None)
|
||
|
|
||
|
Compute the inverse of the Box-Cox transformation.
|
||
|
|
||
|
Find ``x`` such that::
|
||
|
|
||
|
y = (x**lmbda - 1) / lmbda if lmbda != 0
|
||
|
log(x) if lmbda == 0
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
y : array_like
|
||
|
Data to be transformed.
|
||
|
lmbda : array_like
|
||
|
Power parameter of the Box-Cox transform.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
x : scalar or ndarray
|
||
|
Transformed data.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
|
||
|
.. versionadded:: 0.16.0
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.special import boxcox, inv_boxcox
|
||
|
>>> y = boxcox([1, 4, 10], 2.5)
|
||
|
>>> inv_boxcox(y, 2.5)
|
||
|
array([1., 4., 10.])
|
||
|
""")
|
||
|
|
||
|
add_newdoc("inv_boxcox1p",
|
||
|
"""
|
||
|
inv_boxcox1p(y, lmbda, out=None)
|
||
|
|
||
|
Compute the inverse of the Box-Cox transformation.
|
||
|
|
||
|
Find ``x`` such that::
|
||
|
|
||
|
y = ((1+x)**lmbda - 1) / lmbda if lmbda != 0
|
||
|
log(1+x) if lmbda == 0
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
y : array_like
|
||
|
Data to be transformed.
|
||
|
lmbda : array_like
|
||
|
Power parameter of the Box-Cox transform.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
x : scalar or ndarray
|
||
|
Transformed data.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
|
||
|
.. versionadded:: 0.16.0
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.special import boxcox1p, inv_boxcox1p
|
||
|
>>> y = boxcox1p([1, 4, 10], 2.5)
|
||
|
>>> inv_boxcox1p(y, 2.5)
|
||
|
array([1., 4., 10.])
|
||
|
""")
|
||
|
|
||
|
add_newdoc("btdtr",
|
||
|
r"""
|
||
|
btdtr(a, b, x, out=None)
|
||
|
|
||
|
Cumulative distribution function of the beta distribution.
|
||
|
|
||
|
Returns the integral from zero to `x` of the beta probability density
|
||
|
function,
|
||
|
|
||
|
.. math::
|
||
|
I = \int_0^x \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} t^{a-1} (1-t)^{b-1}\,dt
|
||
|
|
||
|
where :math:`\Gamma` is the gamma function.
|
||
|
|
||
|
.. deprecated:: 1.12.0
|
||
|
This function is deprecated and will be removed from SciPy 1.14.0.
|
||
|
Use `scipy.special.betainc` instead.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
a : array_like
|
||
|
Shape parameter (a > 0).
|
||
|
b : array_like
|
||
|
Shape parameter (b > 0).
|
||
|
x : array_like
|
||
|
Upper limit of integration, in [0, 1].
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
I : scalar or ndarray
|
||
|
Cumulative distribution function of the beta distribution with
|
||
|
parameters `a` and `b` at `x`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
betainc
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This function is identical to the incomplete beta integral function
|
||
|
`betainc`.
|
||
|
|
||
|
Wrapper for the Cephes [1]_ routine `btdtr`.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Cephes Mathematical Functions Library,
|
||
|
http://www.netlib.org/cephes/
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("btdtri",
|
||
|
r"""
|
||
|
btdtri(a, b, p, out=None)
|
||
|
|
||
|
The `p`-th quantile of the beta distribution.
|
||
|
|
||
|
This function is the inverse of the beta cumulative distribution function,
|
||
|
`btdtr`, returning the value of `x` for which `btdtr(a, b, x) = p`, or
|
||
|
|
||
|
.. math::
|
||
|
p = \int_0^x \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} t^{a-1} (1-t)^{b-1}\,dt
|
||
|
|
||
|
.. deprecated:: 1.12.0
|
||
|
This function is deprecated and will be removed from SciPy 1.14.0.
|
||
|
Use `scipy.special.betaincinv` instead.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
a : array_like
|
||
|
Shape parameter (`a` > 0).
|
||
|
b : array_like
|
||
|
Shape parameter (`b` > 0).
|
||
|
p : array_like
|
||
|
Cumulative probability, in [0, 1].
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
x : scalar or ndarray
|
||
|
The quantile corresponding to `p`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
betaincinv
|
||
|
btdtr
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The value of `x` is found by interval halving or Newton iterations.
|
||
|
|
||
|
Wrapper for the Cephes [1]_ routine `incbi`, which solves the equivalent
|
||
|
problem of finding the inverse of the incomplete beta integral.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Cephes Mathematical Functions Library,
|
||
|
http://www.netlib.org/cephes/
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("cbrt",
|
||
|
"""
|
||
|
cbrt(x, out=None)
|
||
|
|
||
|
Element-wise cube root of `x`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
`x` must contain real numbers.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
The cube root of each value in `x`.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.special import cbrt
|
||
|
|
||
|
>>> cbrt(8)
|
||
|
2.0
|
||
|
>>> cbrt([-8, -3, 0.125, 1.331])
|
||
|
array([-2. , -1.44224957, 0.5 , 1.1 ])
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("chdtr",
|
||
|
r"""
|
||
|
chdtr(v, x, out=None)
|
||
|
|
||
|
Chi square cumulative distribution function.
|
||
|
|
||
|
Returns the area under the left tail (from 0 to `x`) of the Chi
|
||
|
square probability density function with `v` degrees of freedom:
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\frac{1}{2^{v/2} \Gamma(v/2)} \int_0^x t^{v/2 - 1} e^{-t/2} dt
|
||
|
|
||
|
Here :math:`\Gamma` is the Gamma function; see `gamma`. This
|
||
|
integral can be expressed in terms of the regularized lower
|
||
|
incomplete gamma function `gammainc` as
|
||
|
``gammainc(v / 2, x / 2)``. [1]_
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
v : array_like
|
||
|
Degrees of freedom.
|
||
|
x : array_like
|
||
|
Upper bound of the integral.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Values of the cumulative distribution function.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
chdtrc, chdtri, chdtriv, gammainc
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Chi-Square distribution,
|
||
|
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> import scipy.special as sc
|
||
|
|
||
|
It can be expressed in terms of the regularized lower incomplete
|
||
|
gamma function.
|
||
|
|
||
|
>>> v = 1
|
||
|
>>> x = np.arange(4)
|
||
|
>>> sc.chdtr(v, x)
|
||
|
array([0. , 0.68268949, 0.84270079, 0.91673548])
|
||
|
>>> sc.gammainc(v / 2, x / 2)
|
||
|
array([0. , 0.68268949, 0.84270079, 0.91673548])
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("chdtrc",
|
||
|
r"""
|
||
|
chdtrc(v, x, out=None)
|
||
|
|
||
|
Chi square survival function.
|
||
|
|
||
|
Returns the area under the right hand tail (from `x` to infinity)
|
||
|
of the Chi square probability density function with `v` degrees of
|
||
|
freedom:
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\frac{1}{2^{v/2} \Gamma(v/2)} \int_x^\infty t^{v/2 - 1} e^{-t/2} dt
|
||
|
|
||
|
Here :math:`\Gamma` is the Gamma function; see `gamma`. This
|
||
|
integral can be expressed in terms of the regularized upper
|
||
|
incomplete gamma function `gammaincc` as
|
||
|
``gammaincc(v / 2, x / 2)``. [1]_
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
v : array_like
|
||
|
Degrees of freedom.
|
||
|
x : array_like
|
||
|
Lower bound of the integral.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Values of the survival function.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
chdtr, chdtri, chdtriv, gammaincc
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Chi-Square distribution,
|
||
|
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> import scipy.special as sc
|
||
|
|
||
|
It can be expressed in terms of the regularized upper incomplete
|
||
|
gamma function.
|
||
|
|
||
|
>>> v = 1
|
||
|
>>> x = np.arange(4)
|
||
|
>>> sc.chdtrc(v, x)
|
||
|
array([1. , 0.31731051, 0.15729921, 0.08326452])
|
||
|
>>> sc.gammaincc(v / 2, x / 2)
|
||
|
array([1. , 0.31731051, 0.15729921, 0.08326452])
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("chdtri",
|
||
|
"""
|
||
|
chdtri(v, p, out=None)
|
||
|
|
||
|
Inverse to `chdtrc` with respect to `x`.
|
||
|
|
||
|
Returns `x` such that ``chdtrc(v, x) == p``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
v : array_like
|
||
|
Degrees of freedom.
|
||
|
p : array_like
|
||
|
Probability.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
x : scalar or ndarray
|
||
|
Value so that the probability a Chi square random variable
|
||
|
with `v` degrees of freedom is greater than `x` equals `p`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
chdtrc, chdtr, chdtriv
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Chi-Square distribution,
|
||
|
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import scipy.special as sc
|
||
|
|
||
|
It inverts `chdtrc`.
|
||
|
|
||
|
>>> v, p = 1, 0.3
|
||
|
>>> sc.chdtrc(v, sc.chdtri(v, p))
|
||
|
0.3
|
||
|
>>> x = 1
|
||
|
>>> sc.chdtri(v, sc.chdtrc(v, x))
|
||
|
1.0
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("chdtriv",
|
||
|
"""
|
||
|
chdtriv(p, x, out=None)
|
||
|
|
||
|
Inverse to `chdtr` with respect to `v`.
|
||
|
|
||
|
Returns `v` such that ``chdtr(v, x) == p``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
p : array_like
|
||
|
Probability that the Chi square random variable is less than
|
||
|
or equal to `x`.
|
||
|
x : array_like
|
||
|
Nonnegative input.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Degrees of freedom.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
chdtr, chdtrc, chdtri
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Chi-Square distribution,
|
||
|
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import scipy.special as sc
|
||
|
|
||
|
It inverts `chdtr`.
|
||
|
|
||
|
>>> p, x = 0.5, 1
|
||
|
>>> sc.chdtr(sc.chdtriv(p, x), x)
|
||
|
0.5000000000202172
|
||
|
>>> v = 1
|
||
|
>>> sc.chdtriv(sc.chdtr(v, x), v)
|
||
|
1.0000000000000013
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("chndtr",
|
||
|
r"""
|
||
|
chndtr(x, df, nc, out=None)
|
||
|
|
||
|
Non-central chi square cumulative distribution function
|
||
|
|
||
|
The cumulative distribution function is given by:
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
P(\chi^{\prime 2} \vert \nu, \lambda) =\sum_{j=0}^{\infty}
|
||
|
e^{-\lambda /2}
|
||
|
\frac{(\lambda /2)^j}{j!} P(\chi^{\prime 2} \vert \nu + 2j),
|
||
|
|
||
|
where :math:`\nu > 0` is the degrees of freedom (``df``) and
|
||
|
:math:`\lambda \geq 0` is the non-centrality parameter (``nc``).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Upper bound of the integral; must satisfy ``x >= 0``
|
||
|
df : array_like
|
||
|
Degrees of freedom; must satisfy ``df > 0``
|
||
|
nc : array_like
|
||
|
Non-centrality parameter; must satisfy ``nc >= 0``
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
x : scalar or ndarray
|
||
|
Value of the non-central chi square cumulative distribution function.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
chndtrix, chndtridf, chndtrinc
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("chndtrix",
|
||
|
"""
|
||
|
chndtrix(p, df, nc, out=None)
|
||
|
|
||
|
Inverse to `chndtr` vs `x`
|
||
|
|
||
|
Calculated using a search to find a value for `x` that produces the
|
||
|
desired value of `p`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
p : array_like
|
||
|
Probability; must satisfy ``0 <= p < 1``
|
||
|
df : array_like
|
||
|
Degrees of freedom; must satisfy ``df > 0``
|
||
|
nc : array_like
|
||
|
Non-centrality parameter; must satisfy ``nc >= 0``
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
x : scalar or ndarray
|
||
|
Value so that the probability a non-central Chi square random variable
|
||
|
with `df` degrees of freedom and non-centrality, `nc`, is greater than
|
||
|
`x` equals `p`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
chndtr, chndtridf, chndtrinc
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("chndtridf",
|
||
|
"""
|
||
|
chndtridf(x, p, nc, out=None)
|
||
|
|
||
|
Inverse to `chndtr` vs `df`
|
||
|
|
||
|
Calculated using a search to find a value for `df` that produces the
|
||
|
desired value of `p`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Upper bound of the integral; must satisfy ``x >= 0``
|
||
|
p : array_like
|
||
|
Probability; must satisfy ``0 <= p < 1``
|
||
|
nc : array_like
|
||
|
Non-centrality parameter; must satisfy ``nc >= 0``
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
df : scalar or ndarray
|
||
|
Degrees of freedom
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
chndtr, chndtrix, chndtrinc
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("chndtrinc",
|
||
|
"""
|
||
|
chndtrinc(x, df, p, out=None)
|
||
|
|
||
|
Inverse to `chndtr` vs `nc`
|
||
|
|
||
|
Calculated using a search to find a value for `df` that produces the
|
||
|
desired value of `p`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Upper bound of the integral; must satisfy ``x >= 0``
|
||
|
df : array_like
|
||
|
Degrees of freedom; must satisfy ``df > 0``
|
||
|
p : array_like
|
||
|
Probability; must satisfy ``0 <= p < 1``
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
nc : scalar or ndarray
|
||
|
Non-centrality
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
chndtr, chndtrix, chndtrinc
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("cosdg",
|
||
|
"""
|
||
|
cosdg(x, out=None)
|
||
|
|
||
|
Cosine of the angle `x` given in degrees.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Angle, given in degrees.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Cosine of the input.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
sindg, tandg, cotdg
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> import scipy.special as sc
|
||
|
|
||
|
It is more accurate than using cosine directly.
|
||
|
|
||
|
>>> x = 90 + 180 * np.arange(3)
|
||
|
>>> sc.cosdg(x)
|
||
|
array([-0., 0., -0.])
|
||
|
>>> np.cos(x * np.pi / 180)
|
||
|
array([ 6.1232340e-17, -1.8369702e-16, 3.0616170e-16])
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("cosm1",
|
||
|
"""
|
||
|
cosm1(x, out=None)
|
||
|
|
||
|
cos(x) - 1 for use when `x` is near zero.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Real valued argument.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Values of ``cos(x) - 1``.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
expm1, log1p
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> import scipy.special as sc
|
||
|
|
||
|
It is more accurate than computing ``cos(x) - 1`` directly for
|
||
|
``x`` around 0.
|
||
|
|
||
|
>>> x = 1e-30
|
||
|
>>> np.cos(x) - 1
|
||
|
0.0
|
||
|
>>> sc.cosm1(x)
|
||
|
-5.0000000000000005e-61
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("cotdg",
|
||
|
"""
|
||
|
cotdg(x, out=None)
|
||
|
|
||
|
Cotangent of the angle `x` given in degrees.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Angle, given in degrees.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Cotangent at the input.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
sindg, cosdg, tandg
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> import scipy.special as sc
|
||
|
|
||
|
It is more accurate than using cotangent directly.
|
||
|
|
||
|
>>> x = 90 + 180 * np.arange(3)
|
||
|
>>> sc.cotdg(x)
|
||
|
array([0., 0., 0.])
|
||
|
>>> 1 / np.tan(x * np.pi / 180)
|
||
|
array([6.1232340e-17, 1.8369702e-16, 3.0616170e-16])
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("dawsn",
|
||
|
"""
|
||
|
dawsn(x, out=None)
|
||
|
|
||
|
Dawson's integral.
|
||
|
|
||
|
Computes::
|
||
|
|
||
|
exp(-x**2) * integral(exp(t**2), t=0..x).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Function parameter.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
y : scalar or ndarray
|
||
|
Value of the integral.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
wofz, erf, erfc, erfcx, erfi
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Steven G. Johnson, Faddeeva W function implementation.
|
||
|
http://ab-initio.mit.edu/Faddeeva
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy import special
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> x = np.linspace(-15, 15, num=1000)
|
||
|
>>> plt.plot(x, special.dawsn(x))
|
||
|
>>> plt.xlabel('$x$')
|
||
|
>>> plt.ylabel('$dawsn(x)$')
|
||
|
>>> plt.show()
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("ellipe",
|
||
|
r"""
|
||
|
ellipe(m, out=None)
|
||
|
|
||
|
Complete elliptic integral of the second kind
|
||
|
|
||
|
This function is defined as
|
||
|
|
||
|
.. math:: E(m) = \int_0^{\pi/2} [1 - m \sin(t)^2]^{1/2} dt
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
m : array_like
|
||
|
Defines the parameter of the elliptic integral.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
E : scalar or ndarray
|
||
|
Value of the elliptic integral.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
ellipkm1 : Complete elliptic integral of the first kind, near `m` = 1
|
||
|
ellipk : Complete elliptic integral of the first kind
|
||
|
ellipkinc : Incomplete elliptic integral of the first kind
|
||
|
ellipeinc : Incomplete elliptic integral of the second kind
|
||
|
elliprd : Symmetric elliptic integral of the second kind.
|
||
|
elliprg : Completely-symmetric elliptic integral of the second kind.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Wrapper for the Cephes [1]_ routine `ellpe`.
|
||
|
|
||
|
For `m > 0` the computation uses the approximation,
|
||
|
|
||
|
.. math:: E(m) \approx P(1-m) - (1-m) \log(1-m) Q(1-m),
|
||
|
|
||
|
where :math:`P` and :math:`Q` are tenth-order polynomials. For
|
||
|
`m < 0`, the relation
|
||
|
|
||
|
.. math:: E(m) = E(m/(m - 1)) \sqrt(1-m)
|
||
|
|
||
|
is used.
|
||
|
|
||
|
The parameterization in terms of :math:`m` follows that of section
|
||
|
17.2 in [2]_. Other parameterizations in terms of the
|
||
|
complementary parameter :math:`1 - m`, modular angle
|
||
|
:math:`\sin^2(\alpha) = m`, or modulus :math:`k^2 = m` are also
|
||
|
used, so be careful that you choose the correct parameter.
|
||
|
|
||
|
The Legendre E integral is related to Carlson's symmetric R_D or R_G
|
||
|
functions in multiple ways [3]_. For example,
|
||
|
|
||
|
.. math:: E(m) = 2 R_G(0, 1-k^2, 1) .
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Cephes Mathematical Functions Library,
|
||
|
http://www.netlib.org/cephes/
|
||
|
.. [2] Milton Abramowitz and Irene A. Stegun, eds.
|
||
|
Handbook of Mathematical Functions with Formulas,
|
||
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
||
|
.. [3] NIST Digital Library of Mathematical
|
||
|
Functions. http://dlmf.nist.gov/, Release 1.0.28 of
|
||
|
2020-09-15. See Sec. 19.25(i) https://dlmf.nist.gov/19.25#i
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
This function is used in finding the circumference of an
|
||
|
ellipse with semi-major axis `a` and semi-minor axis `b`.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy import special
|
||
|
|
||
|
>>> a = 3.5
|
||
|
>>> b = 2.1
|
||
|
>>> e_sq = 1.0 - b**2/a**2 # eccentricity squared
|
||
|
|
||
|
Then the circumference is found using the following:
|
||
|
|
||
|
>>> C = 4*a*special.ellipe(e_sq) # circumference formula
|
||
|
>>> C
|
||
|
17.868899204378693
|
||
|
|
||
|
When `a` and `b` are the same (meaning eccentricity is 0),
|
||
|
this reduces to the circumference of a circle.
|
||
|
|
||
|
>>> 4*a*special.ellipe(0.0) # formula for ellipse with a = b
|
||
|
21.991148575128552
|
||
|
>>> 2*np.pi*a # formula for circle of radius a
|
||
|
21.991148575128552
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("ellipeinc",
|
||
|
r"""
|
||
|
ellipeinc(phi, m, out=None)
|
||
|
|
||
|
Incomplete elliptic integral of the second kind
|
||
|
|
||
|
This function is defined as
|
||
|
|
||
|
.. math:: E(\phi, m) = \int_0^{\phi} [1 - m \sin(t)^2]^{1/2} dt
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
phi : array_like
|
||
|
amplitude of the elliptic integral.
|
||
|
m : array_like
|
||
|
parameter of the elliptic integral.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
E : scalar or ndarray
|
||
|
Value of the elliptic integral.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
ellipkm1 : Complete elliptic integral of the first kind, near `m` = 1
|
||
|
ellipk : Complete elliptic integral of the first kind
|
||
|
ellipkinc : Incomplete elliptic integral of the first kind
|
||
|
ellipe : Complete elliptic integral of the second kind
|
||
|
elliprd : Symmetric elliptic integral of the second kind.
|
||
|
elliprf : Completely-symmetric elliptic integral of the first kind.
|
||
|
elliprg : Completely-symmetric elliptic integral of the second kind.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Wrapper for the Cephes [1]_ routine `ellie`.
|
||
|
|
||
|
Computation uses arithmetic-geometric means algorithm.
|
||
|
|
||
|
The parameterization in terms of :math:`m` follows that of section
|
||
|
17.2 in [2]_. Other parameterizations in terms of the
|
||
|
complementary parameter :math:`1 - m`, modular angle
|
||
|
:math:`\sin^2(\alpha) = m`, or modulus :math:`k^2 = m` are also
|
||
|
used, so be careful that you choose the correct parameter.
|
||
|
|
||
|
The Legendre E incomplete integral can be related to combinations
|
||
|
of Carlson's symmetric integrals R_D, R_F, and R_G in multiple
|
||
|
ways [3]_. For example, with :math:`c = \csc^2\phi`,
|
||
|
|
||
|
.. math::
|
||
|
E(\phi, m) = R_F(c-1, c-k^2, c)
|
||
|
- \frac{1}{3} k^2 R_D(c-1, c-k^2, c) .
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Cephes Mathematical Functions Library,
|
||
|
http://www.netlib.org/cephes/
|
||
|
.. [2] Milton Abramowitz and Irene A. Stegun, eds.
|
||
|
Handbook of Mathematical Functions with Formulas,
|
||
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
||
|
.. [3] NIST Digital Library of Mathematical
|
||
|
Functions. http://dlmf.nist.gov/, Release 1.0.28 of
|
||
|
2020-09-15. See Sec. 19.25(i) https://dlmf.nist.gov/19.25#i
|
||
|
""")
|
||
|
|
||
|
add_newdoc("ellipj",
|
||
|
"""
|
||
|
ellipj(u, m, out=None)
|
||
|
|
||
|
Jacobian elliptic functions
|
||
|
|
||
|
Calculates the Jacobian elliptic functions of parameter `m` between
|
||
|
0 and 1, and real argument `u`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
m : array_like
|
||
|
Parameter.
|
||
|
u : array_like
|
||
|
Argument.
|
||
|
out : tuple of ndarray, optional
|
||
|
Optional output arrays for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
sn, cn, dn, ph : 4-tuple of scalar or ndarray
|
||
|
The returned functions::
|
||
|
|
||
|
sn(u|m), cn(u|m), dn(u|m)
|
||
|
|
||
|
The value `ph` is such that if `u = ellipkinc(ph, m)`,
|
||
|
then `sn(u|m) = sin(ph)` and `cn(u|m) = cos(ph)`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
ellipk : Complete elliptic integral of the first kind
|
||
|
ellipkinc : Incomplete elliptic integral of the first kind
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Wrapper for the Cephes [1]_ routine `ellpj`.
|
||
|
|
||
|
These functions are periodic, with quarter-period on the real axis
|
||
|
equal to the complete elliptic integral `ellipk(m)`.
|
||
|
|
||
|
Relation to incomplete elliptic integral: If `u = ellipkinc(phi,m)`, then
|
||
|
`sn(u|m) = sin(phi)`, and `cn(u|m) = cos(phi)`. The `phi` is called
|
||
|
the amplitude of `u`.
|
||
|
|
||
|
Computation is by means of the arithmetic-geometric mean algorithm,
|
||
|
except when `m` is within 1e-9 of 0 or 1. In the latter case with `m`
|
||
|
close to 1, the approximation applies only for `phi < pi/2`.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Cephes Mathematical Functions Library,
|
||
|
http://www.netlib.org/cephes/
|
||
|
""")
|
||
|
|
||
|
add_newdoc("ellipkm1",
|
||
|
"""
|
||
|
ellipkm1(p, out=None)
|
||
|
|
||
|
Complete elliptic integral of the first kind around `m` = 1
|
||
|
|
||
|
This function is defined as
|
||
|
|
||
|
.. math:: K(p) = \\int_0^{\\pi/2} [1 - m \\sin(t)^2]^{-1/2} dt
|
||
|
|
||
|
where `m = 1 - p`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
p : array_like
|
||
|
Defines the parameter of the elliptic integral as `m = 1 - p`.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
K : scalar or ndarray
|
||
|
Value of the elliptic integral.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
ellipk : Complete elliptic integral of the first kind
|
||
|
ellipkinc : Incomplete elliptic integral of the first kind
|
||
|
ellipe : Complete elliptic integral of the second kind
|
||
|
ellipeinc : Incomplete elliptic integral of the second kind
|
||
|
elliprf : Completely-symmetric elliptic integral of the first kind.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Wrapper for the Cephes [1]_ routine `ellpk`.
|
||
|
|
||
|
For `p <= 1`, computation uses the approximation,
|
||
|
|
||
|
.. math:: K(p) \\approx P(p) - \\log(p) Q(p),
|
||
|
|
||
|
where :math:`P` and :math:`Q` are tenth-order polynomials. The
|
||
|
argument `p` is used internally rather than `m` so that the logarithmic
|
||
|
singularity at `m = 1` will be shifted to the origin; this preserves
|
||
|
maximum accuracy. For `p > 1`, the identity
|
||
|
|
||
|
.. math:: K(p) = K(1/p)/\\sqrt(p)
|
||
|
|
||
|
is used.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Cephes Mathematical Functions Library,
|
||
|
http://www.netlib.org/cephes/
|
||
|
""")
|
||
|
|
||
|
add_newdoc("ellipk",
|
||
|
r"""
|
||
|
ellipk(m, out=None)
|
||
|
|
||
|
Complete elliptic integral of the first kind.
|
||
|
|
||
|
This function is defined as
|
||
|
|
||
|
.. math:: K(m) = \int_0^{\pi/2} [1 - m \sin(t)^2]^{-1/2} dt
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
m : array_like
|
||
|
The parameter of the elliptic integral.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
K : scalar or ndarray
|
||
|
Value of the elliptic integral.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
ellipkm1 : Complete elliptic integral of the first kind around m = 1
|
||
|
ellipkinc : Incomplete elliptic integral of the first kind
|
||
|
ellipe : Complete elliptic integral of the second kind
|
||
|
ellipeinc : Incomplete elliptic integral of the second kind
|
||
|
elliprf : Completely-symmetric elliptic integral of the first kind.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For more precision around point m = 1, use `ellipkm1`, which this
|
||
|
function calls.
|
||
|
|
||
|
The parameterization in terms of :math:`m` follows that of section
|
||
|
17.2 in [1]_. Other parameterizations in terms of the
|
||
|
complementary parameter :math:`1 - m`, modular angle
|
||
|
:math:`\sin^2(\alpha) = m`, or modulus :math:`k^2 = m` are also
|
||
|
used, so be careful that you choose the correct parameter.
|
||
|
|
||
|
The Legendre K integral is related to Carlson's symmetric R_F
|
||
|
function by [2]_:
|
||
|
|
||
|
.. math:: K(m) = R_F(0, 1-k^2, 1) .
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Milton Abramowitz and Irene A. Stegun, eds.
|
||
|
Handbook of Mathematical Functions with Formulas,
|
||
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
||
|
.. [2] NIST Digital Library of Mathematical
|
||
|
Functions. http://dlmf.nist.gov/, Release 1.0.28 of
|
||
|
2020-09-15. See Sec. 19.25(i) https://dlmf.nist.gov/19.25#i
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("ellipkinc",
|
||
|
r"""
|
||
|
ellipkinc(phi, m, out=None)
|
||
|
|
||
|
Incomplete elliptic integral of the first kind
|
||
|
|
||
|
This function is defined as
|
||
|
|
||
|
.. math:: K(\phi, m) = \int_0^{\phi} [1 - m \sin(t)^2]^{-1/2} dt
|
||
|
|
||
|
This function is also called :math:`F(\phi, m)`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
phi : array_like
|
||
|
amplitude of the elliptic integral
|
||
|
m : array_like
|
||
|
parameter of the elliptic integral
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
K : scalar or ndarray
|
||
|
Value of the elliptic integral
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
ellipkm1 : Complete elliptic integral of the first kind, near `m` = 1
|
||
|
ellipk : Complete elliptic integral of the first kind
|
||
|
ellipe : Complete elliptic integral of the second kind
|
||
|
ellipeinc : Incomplete elliptic integral of the second kind
|
||
|
elliprf : Completely-symmetric elliptic integral of the first kind.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Wrapper for the Cephes [1]_ routine `ellik`. The computation is
|
||
|
carried out using the arithmetic-geometric mean algorithm.
|
||
|
|
||
|
The parameterization in terms of :math:`m` follows that of section
|
||
|
17.2 in [2]_. Other parameterizations in terms of the
|
||
|
complementary parameter :math:`1 - m`, modular angle
|
||
|
:math:`\sin^2(\alpha) = m`, or modulus :math:`k^2 = m` are also
|
||
|
used, so be careful that you choose the correct parameter.
|
||
|
|
||
|
The Legendre K incomplete integral (or F integral) is related to
|
||
|
Carlson's symmetric R_F function [3]_.
|
||
|
Setting :math:`c = \csc^2\phi`,
|
||
|
|
||
|
.. math:: F(\phi, m) = R_F(c-1, c-k^2, c) .
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Cephes Mathematical Functions Library,
|
||
|
http://www.netlib.org/cephes/
|
||
|
.. [2] Milton Abramowitz and Irene A. Stegun, eds.
|
||
|
Handbook of Mathematical Functions with Formulas,
|
||
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
||
|
.. [3] NIST Digital Library of Mathematical
|
||
|
Functions. http://dlmf.nist.gov/, Release 1.0.28 of
|
||
|
2020-09-15. See Sec. 19.25(i) https://dlmf.nist.gov/19.25#i
|
||
|
""")
|
||
|
|
||
|
add_newdoc(
|
||
|
"elliprc",
|
||
|
r"""
|
||
|
elliprc(x, y, out=None)
|
||
|
|
||
|
Degenerate symmetric elliptic integral.
|
||
|
|
||
|
The function RC is defined as [1]_
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
R_{\mathrm{C}}(x, y) =
|
||
|
\frac{1}{2} \int_0^{+\infty} (t + x)^{-1/2} (t + y)^{-1} dt
|
||
|
= R_{\mathrm{F}}(x, y, y)
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x, y : array_like
|
||
|
Real or complex input parameters. `x` can be any number in the
|
||
|
complex plane cut along the negative real axis. `y` must be non-zero.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
R : scalar or ndarray
|
||
|
Value of the integral. If `y` is real and negative, the Cauchy
|
||
|
principal value is returned. If both of `x` and `y` are real, the
|
||
|
return value is real. Otherwise, the return value is complex.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
elliprf : Completely-symmetric elliptic integral of the first kind.
|
||
|
elliprd : Symmetric elliptic integral of the second kind.
|
||
|
elliprg : Completely-symmetric elliptic integral of the second kind.
|
||
|
elliprj : Symmetric elliptic integral of the third kind.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
RC is a degenerate case of the symmetric integral RF: ``elliprc(x, y) ==
|
||
|
elliprf(x, y, y)``. It is an elementary function rather than an elliptic
|
||
|
integral.
|
||
|
|
||
|
The code implements Carlson's algorithm based on the duplication theorems
|
||
|
and series expansion up to the 7th order. [2]_
|
||
|
|
||
|
.. versionadded:: 1.8.0
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] B. C. Carlson, ed., Chapter 19 in "Digital Library of Mathematical
|
||
|
Functions," NIST, US Dept. of Commerce.
|
||
|
https://dlmf.nist.gov/19.16.E6
|
||
|
.. [2] B. C. Carlson, "Numerical computation of real or complex elliptic
|
||
|
integrals," Numer. Algorithm, vol. 10, no. 1, pp. 13-26, 1995.
|
||
|
https://arxiv.org/abs/math/9409227
|
||
|
https://doi.org/10.1007/BF02198293
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Basic homogeneity property:
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import elliprc
|
||
|
|
||
|
>>> x = 1.2 + 3.4j
|
||
|
>>> y = 5.
|
||
|
>>> scale = 0.3 + 0.4j
|
||
|
>>> elliprc(scale*x, scale*y)
|
||
|
(0.5484493976710874-0.4169557678995833j)
|
||
|
|
||
|
>>> elliprc(x, y)/np.sqrt(scale)
|
||
|
(0.5484493976710874-0.41695576789958333j)
|
||
|
|
||
|
When the two arguments coincide, the integral is particularly
|
||
|
simple:
|
||
|
|
||
|
>>> x = 1.2 + 3.4j
|
||
|
>>> elliprc(x, x)
|
||
|
(0.4299173120614631-0.3041729818745595j)
|
||
|
|
||
|
>>> 1/np.sqrt(x)
|
||
|
(0.4299173120614631-0.30417298187455954j)
|
||
|
|
||
|
Another simple case: the first argument vanishes:
|
||
|
|
||
|
>>> y = 1.2 + 3.4j
|
||
|
>>> elliprc(0, y)
|
||
|
(0.6753125346116815-0.47779380263880866j)
|
||
|
|
||
|
>>> np.pi/2/np.sqrt(y)
|
||
|
(0.6753125346116815-0.4777938026388088j)
|
||
|
|
||
|
When `x` and `y` are both positive, we can express
|
||
|
:math:`R_C(x,y)` in terms of more elementary functions. For the
|
||
|
case :math:`0 \le x < y`,
|
||
|
|
||
|
>>> x = 3.2
|
||
|
>>> y = 6.
|
||
|
>>> elliprc(x, y)
|
||
|
0.44942991498453444
|
||
|
|
||
|
>>> np.arctan(np.sqrt((y-x)/x))/np.sqrt(y-x)
|
||
|
0.44942991498453433
|
||
|
|
||
|
And for the case :math:`0 \le y < x`,
|
||
|
|
||
|
>>> x = 6.
|
||
|
>>> y = 3.2
|
||
|
>>> elliprc(x,y)
|
||
|
0.4989837501576147
|
||
|
|
||
|
>>> np.log((np.sqrt(x)+np.sqrt(x-y))/np.sqrt(y))/np.sqrt(x-y)
|
||
|
0.49898375015761476
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc(
|
||
|
"elliprd",
|
||
|
r"""
|
||
|
elliprd(x, y, z, out=None)
|
||
|
|
||
|
Symmetric elliptic integral of the second kind.
|
||
|
|
||
|
The function RD is defined as [1]_
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
R_{\mathrm{D}}(x, y, z) =
|
||
|
\frac{3}{2} \int_0^{+\infty} [(t + x) (t + y)]^{-1/2} (t + z)^{-3/2}
|
||
|
dt
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x, y, z : array_like
|
||
|
Real or complex input parameters. `x` or `y` can be any number in the
|
||
|
complex plane cut along the negative real axis, but at most one of them
|
||
|
can be zero, while `z` must be non-zero.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
R : scalar or ndarray
|
||
|
Value of the integral. If all of `x`, `y`, and `z` are real, the
|
||
|
return value is real. Otherwise, the return value is complex.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
elliprc : Degenerate symmetric elliptic integral.
|
||
|
elliprf : Completely-symmetric elliptic integral of the first kind.
|
||
|
elliprg : Completely-symmetric elliptic integral of the second kind.
|
||
|
elliprj : Symmetric elliptic integral of the third kind.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
RD is a degenerate case of the elliptic integral RJ: ``elliprd(x, y, z) ==
|
||
|
elliprj(x, y, z, z)``.
|
||
|
|
||
|
The code implements Carlson's algorithm based on the duplication theorems
|
||
|
and series expansion up to the 7th order. [2]_
|
||
|
|
||
|
.. versionadded:: 1.8.0
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] B. C. Carlson, ed., Chapter 19 in "Digital Library of Mathematical
|
||
|
Functions," NIST, US Dept. of Commerce.
|
||
|
https://dlmf.nist.gov/19.16.E5
|
||
|
.. [2] B. C. Carlson, "Numerical computation of real or complex elliptic
|
||
|
integrals," Numer. Algorithm, vol. 10, no. 1, pp. 13-26, 1995.
|
||
|
https://arxiv.org/abs/math/9409227
|
||
|
https://doi.org/10.1007/BF02198293
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Basic homogeneity property:
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import elliprd
|
||
|
|
||
|
>>> x = 1.2 + 3.4j
|
||
|
>>> y = 5.
|
||
|
>>> z = 6.
|
||
|
>>> scale = 0.3 + 0.4j
|
||
|
>>> elliprd(scale*x, scale*y, scale*z)
|
||
|
(-0.03703043835680379-0.24500934665683802j)
|
||
|
|
||
|
>>> elliprd(x, y, z)*np.power(scale, -1.5)
|
||
|
(-0.0370304383568038-0.24500934665683805j)
|
||
|
|
||
|
All three arguments coincide:
|
||
|
|
||
|
>>> x = 1.2 + 3.4j
|
||
|
>>> elliprd(x, x, x)
|
||
|
(-0.03986825876151896-0.14051741840449586j)
|
||
|
|
||
|
>>> np.power(x, -1.5)
|
||
|
(-0.03986825876151894-0.14051741840449583j)
|
||
|
|
||
|
The so-called "second lemniscate constant":
|
||
|
|
||
|
>>> elliprd(0, 2, 1)/3
|
||
|
0.5990701173677961
|
||
|
|
||
|
>>> from scipy.special import gamma
|
||
|
>>> gamma(0.75)**2/np.sqrt(2*np.pi)
|
||
|
0.5990701173677959
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc(
|
||
|
"elliprf",
|
||
|
r"""
|
||
|
elliprf(x, y, z, out=None)
|
||
|
|
||
|
Completely-symmetric elliptic integral of the first kind.
|
||
|
|
||
|
The function RF is defined as [1]_
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
R_{\mathrm{F}}(x, y, z) =
|
||
|
\frac{1}{2} \int_0^{+\infty} [(t + x) (t + y) (t + z)]^{-1/2} dt
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x, y, z : array_like
|
||
|
Real or complex input parameters. `x`, `y`, or `z` can be any number in
|
||
|
the complex plane cut along the negative real axis, but at most one of
|
||
|
them can be zero.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
R : scalar or ndarray
|
||
|
Value of the integral. If all of `x`, `y`, and `z` are real, the return
|
||
|
value is real. Otherwise, the return value is complex.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
elliprc : Degenerate symmetric integral.
|
||
|
elliprd : Symmetric elliptic integral of the second kind.
|
||
|
elliprg : Completely-symmetric elliptic integral of the second kind.
|
||
|
elliprj : Symmetric elliptic integral of the third kind.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The code implements Carlson's algorithm based on the duplication theorems
|
||
|
and series expansion up to the 7th order (cf.:
|
||
|
https://dlmf.nist.gov/19.36.i) and the AGM algorithm for the complete
|
||
|
integral. [2]_
|
||
|
|
||
|
.. versionadded:: 1.8.0
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] B. C. Carlson, ed., Chapter 19 in "Digital Library of Mathematical
|
||
|
Functions," NIST, US Dept. of Commerce.
|
||
|
https://dlmf.nist.gov/19.16.E1
|
||
|
.. [2] B. C. Carlson, "Numerical computation of real or complex elliptic
|
||
|
integrals," Numer. Algorithm, vol. 10, no. 1, pp. 13-26, 1995.
|
||
|
https://arxiv.org/abs/math/9409227
|
||
|
https://doi.org/10.1007/BF02198293
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Basic homogeneity property:
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import elliprf
|
||
|
|
||
|
>>> x = 1.2 + 3.4j
|
||
|
>>> y = 5.
|
||
|
>>> z = 6.
|
||
|
>>> scale = 0.3 + 0.4j
|
||
|
>>> elliprf(scale*x, scale*y, scale*z)
|
||
|
(0.5328051227278146-0.4008623567957094j)
|
||
|
|
||
|
>>> elliprf(x, y, z)/np.sqrt(scale)
|
||
|
(0.5328051227278147-0.4008623567957095j)
|
||
|
|
||
|
All three arguments coincide:
|
||
|
|
||
|
>>> x = 1.2 + 3.4j
|
||
|
>>> elliprf(x, x, x)
|
||
|
(0.42991731206146316-0.30417298187455954j)
|
||
|
|
||
|
>>> 1/np.sqrt(x)
|
||
|
(0.4299173120614631-0.30417298187455954j)
|
||
|
|
||
|
The so-called "first lemniscate constant":
|
||
|
|
||
|
>>> elliprf(0, 1, 2)
|
||
|
1.3110287771460598
|
||
|
|
||
|
>>> from scipy.special import gamma
|
||
|
>>> gamma(0.25)**2/(4*np.sqrt(2*np.pi))
|
||
|
1.3110287771460598
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc(
|
||
|
"elliprg",
|
||
|
r"""
|
||
|
elliprg(x, y, z, out=None)
|
||
|
|
||
|
Completely-symmetric elliptic integral of the second kind.
|
||
|
|
||
|
The function RG is defined as [1]_
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
R_{\mathrm{G}}(x, y, z) =
|
||
|
\frac{1}{4} \int_0^{+\infty} [(t + x) (t + y) (t + z)]^{-1/2}
|
||
|
\left(\frac{x}{t + x} + \frac{y}{t + y} + \frac{z}{t + z}\right) t
|
||
|
dt
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x, y, z : array_like
|
||
|
Real or complex input parameters. `x`, `y`, or `z` can be any number in
|
||
|
the complex plane cut along the negative real axis.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
R : scalar or ndarray
|
||
|
Value of the integral. If all of `x`, `y`, and `z` are real, the return
|
||
|
value is real. Otherwise, the return value is complex.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
elliprc : Degenerate symmetric integral.
|
||
|
elliprd : Symmetric elliptic integral of the second kind.
|
||
|
elliprf : Completely-symmetric elliptic integral of the first kind.
|
||
|
elliprj : Symmetric elliptic integral of the third kind.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The implementation uses the relation [1]_
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
2 R_{\mathrm{G}}(x, y, z) =
|
||
|
z R_{\mathrm{F}}(x, y, z) -
|
||
|
\frac{1}{3} (x - z) (y - z) R_{\mathrm{D}}(x, y, z) +
|
||
|
\sqrt{\frac{x y}{z}}
|
||
|
|
||
|
and the symmetry of `x`, `y`, `z` when at least one non-zero parameter can
|
||
|
be chosen as the pivot. When one of the arguments is close to zero, the AGM
|
||
|
method is applied instead. Other special cases are computed following Ref.
|
||
|
[2]_
|
||
|
|
||
|
.. versionadded:: 1.8.0
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] B. C. Carlson, "Numerical computation of real or complex elliptic
|
||
|
integrals," Numer. Algorithm, vol. 10, no. 1, pp. 13-26, 1995.
|
||
|
https://arxiv.org/abs/math/9409227
|
||
|
https://doi.org/10.1007/BF02198293
|
||
|
.. [2] B. C. Carlson, ed., Chapter 19 in "Digital Library of Mathematical
|
||
|
Functions," NIST, US Dept. of Commerce.
|
||
|
https://dlmf.nist.gov/19.16.E1
|
||
|
https://dlmf.nist.gov/19.20.ii
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Basic homogeneity property:
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import elliprg
|
||
|
|
||
|
>>> x = 1.2 + 3.4j
|
||
|
>>> y = 5.
|
||
|
>>> z = 6.
|
||
|
>>> scale = 0.3 + 0.4j
|
||
|
>>> elliprg(scale*x, scale*y, scale*z)
|
||
|
(1.195936862005246+0.8470988320464167j)
|
||
|
|
||
|
>>> elliprg(x, y, z)*np.sqrt(scale)
|
||
|
(1.195936862005246+0.8470988320464165j)
|
||
|
|
||
|
Simplifications:
|
||
|
|
||
|
>>> elliprg(0, y, y)
|
||
|
1.756203682760182
|
||
|
|
||
|
>>> 0.25*np.pi*np.sqrt(y)
|
||
|
1.7562036827601817
|
||
|
|
||
|
>>> elliprg(0, 0, z)
|
||
|
1.224744871391589
|
||
|
|
||
|
>>> 0.5*np.sqrt(z)
|
||
|
1.224744871391589
|
||
|
|
||
|
The surface area of a triaxial ellipsoid with semiaxes ``a``, ``b``, and
|
||
|
``c`` is given by
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
S = 4 \pi a b c R_{\mathrm{G}}(1 / a^2, 1 / b^2, 1 / c^2).
|
||
|
|
||
|
>>> def ellipsoid_area(a, b, c):
|
||
|
... r = 4.0 * np.pi * a * b * c
|
||
|
... return r * elliprg(1.0 / (a * a), 1.0 / (b * b), 1.0 / (c * c))
|
||
|
>>> print(ellipsoid_area(1, 3, 5))
|
||
|
108.62688289491807
|
||
|
""")
|
||
|
|
||
|
add_newdoc(
|
||
|
"elliprj",
|
||
|
r"""
|
||
|
elliprj(x, y, z, p, out=None)
|
||
|
|
||
|
Symmetric elliptic integral of the third kind.
|
||
|
|
||
|
The function RJ is defined as [1]_
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
R_{\mathrm{J}}(x, y, z, p) =
|
||
|
\frac{3}{2} \int_0^{+\infty} [(t + x) (t + y) (t + z)]^{-1/2}
|
||
|
(t + p)^{-1} dt
|
||
|
|
||
|
.. warning::
|
||
|
This function should be considered experimental when the inputs are
|
||
|
unbalanced. Check correctness with another independent implementation.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x, y, z, p : array_like
|
||
|
Real or complex input parameters. `x`, `y`, or `z` are numbers in
|
||
|
the complex plane cut along the negative real axis (subject to further
|
||
|
constraints, see Notes), and at most one of them can be zero. `p` must
|
||
|
be non-zero.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
R : scalar or ndarray
|
||
|
Value of the integral. If all of `x`, `y`, `z`, and `p` are real, the
|
||
|
return value is real. Otherwise, the return value is complex.
|
||
|
|
||
|
If `p` is real and negative, while `x`, `y`, and `z` are real,
|
||
|
non-negative, and at most one of them is zero, the Cauchy principal
|
||
|
value is returned. [1]_ [2]_
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
elliprc : Degenerate symmetric integral.
|
||
|
elliprd : Symmetric elliptic integral of the second kind.
|
||
|
elliprf : Completely-symmetric elliptic integral of the first kind.
|
||
|
elliprg : Completely-symmetric elliptic integral of the second kind.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The code implements Carlson's algorithm based on the duplication theorems
|
||
|
and series expansion up to the 7th order. [3]_ The algorithm is slightly
|
||
|
different from its earlier incarnation as it appears in [1]_, in that the
|
||
|
call to `elliprc` (or ``atan``/``atanh``, see [4]_) is no longer needed in
|
||
|
the inner loop. Asymptotic approximations are used where arguments differ
|
||
|
widely in the order of magnitude. [5]_
|
||
|
|
||
|
The input values are subject to certain sufficient but not necessary
|
||
|
constraints when input arguments are complex. Notably, ``x``, ``y``, and
|
||
|
``z`` must have non-negative real parts, unless two of them are
|
||
|
non-negative and complex-conjugates to each other while the other is a real
|
||
|
non-negative number. [1]_ If the inputs do not satisfy the sufficient
|
||
|
condition described in Ref. [1]_ they are rejected outright with the output
|
||
|
set to NaN.
|
||
|
|
||
|
In the case where one of ``x``, ``y``, and ``z`` is equal to ``p``, the
|
||
|
function ``elliprd`` should be preferred because of its less restrictive
|
||
|
domain.
|
||
|
|
||
|
.. versionadded:: 1.8.0
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] B. C. Carlson, "Numerical computation of real or complex elliptic
|
||
|
integrals," Numer. Algorithm, vol. 10, no. 1, pp. 13-26, 1995.
|
||
|
https://arxiv.org/abs/math/9409227
|
||
|
https://doi.org/10.1007/BF02198293
|
||
|
.. [2] B. C. Carlson, ed., Chapter 19 in "Digital Library of Mathematical
|
||
|
Functions," NIST, US Dept. of Commerce.
|
||
|
https://dlmf.nist.gov/19.20.iii
|
||
|
.. [3] B. C. Carlson, J. FitzSimmons, "Reduction Theorems for Elliptic
|
||
|
Integrands with the Square Root of Two Quadratic Factors," J.
|
||
|
Comput. Appl. Math., vol. 118, nos. 1-2, pp. 71-85, 2000.
|
||
|
https://doi.org/10.1016/S0377-0427(00)00282-X
|
||
|
.. [4] F. Johansson, "Numerical Evaluation of Elliptic Functions, Elliptic
|
||
|
Integrals and Modular Forms," in J. Blumlein, C. Schneider, P.
|
||
|
Paule, eds., "Elliptic Integrals, Elliptic Functions and Modular
|
||
|
Forms in Quantum Field Theory," pp. 269-293, 2019 (Cham,
|
||
|
Switzerland: Springer Nature Switzerland)
|
||
|
https://arxiv.org/abs/1806.06725
|
||
|
https://doi.org/10.1007/978-3-030-04480-0
|
||
|
.. [5] B. C. Carlson, J. L. Gustafson, "Asymptotic Approximations for
|
||
|
Symmetric Elliptic Integrals," SIAM J. Math. Anls., vol. 25, no. 2,
|
||
|
pp. 288-303, 1994.
|
||
|
https://arxiv.org/abs/math/9310223
|
||
|
https://doi.org/10.1137/S0036141092228477
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Basic homogeneity property:
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import elliprj
|
||
|
|
||
|
>>> x = 1.2 + 3.4j
|
||
|
>>> y = 5.
|
||
|
>>> z = 6.
|
||
|
>>> p = 7.
|
||
|
>>> scale = 0.3 - 0.4j
|
||
|
>>> elliprj(scale*x, scale*y, scale*z, scale*p)
|
||
|
(0.10834905565679157+0.19694950747103812j)
|
||
|
|
||
|
>>> elliprj(x, y, z, p)*np.power(scale, -1.5)
|
||
|
(0.10834905565679556+0.19694950747103854j)
|
||
|
|
||
|
Reduction to simpler elliptic integral:
|
||
|
|
||
|
>>> elliprj(x, y, z, z)
|
||
|
(0.08288462362195129-0.028376809745123258j)
|
||
|
|
||
|
>>> from scipy.special import elliprd
|
||
|
>>> elliprd(x, y, z)
|
||
|
(0.08288462362195136-0.028376809745123296j)
|
||
|
|
||
|
All arguments coincide:
|
||
|
|
||
|
>>> elliprj(x, x, x, x)
|
||
|
(-0.03986825876151896-0.14051741840449586j)
|
||
|
|
||
|
>>> np.power(x, -1.5)
|
||
|
(-0.03986825876151894-0.14051741840449583j)
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("entr",
|
||
|
r"""
|
||
|
entr(x, out=None)
|
||
|
|
||
|
Elementwise function for computing entropy.
|
||
|
|
||
|
.. math:: \text{entr}(x) = \begin{cases} - x \log(x) & x > 0 \\ 0 & x = 0
|
||
|
\\ -\infty & \text{otherwise} \end{cases}
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : ndarray
|
||
|
Input array.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
res : scalar or ndarray
|
||
|
The value of the elementwise entropy function at the given points `x`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
kl_div, rel_entr, scipy.stats.entropy
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
.. versionadded:: 0.15.0
|
||
|
|
||
|
This function is concave.
|
||
|
|
||
|
The origin of this function is in convex programming; see [1]_.
|
||
|
Given a probability distribution :math:`p_1, \ldots, p_n`,
|
||
|
the definition of entropy in the context of *information theory* is
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\sum_{i = 1}^n \mathrm{entr}(p_i).
|
||
|
|
||
|
To compute the latter quantity, use `scipy.stats.entropy`.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Boyd, Stephen and Lieven Vandenberghe. *Convex optimization*.
|
||
|
Cambridge University Press, 2004.
|
||
|
:doi:`https://doi.org/10.1017/CBO9780511804441`
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("erf",
|
||
|
"""
|
||
|
erf(z, out=None)
|
||
|
|
||
|
Returns the error function of complex argument.
|
||
|
|
||
|
It is defined as ``2/sqrt(pi)*integral(exp(-t**2), t=0..z)``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : ndarray
|
||
|
Input array.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
res : scalar or ndarray
|
||
|
The values of the error function at the given points `x`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
erfc, erfinv, erfcinv, wofz, erfcx, erfi
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The cumulative of the unit normal distribution is given by
|
||
|
``Phi(z) = 1/2[1 + erf(z/sqrt(2))]``.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] https://en.wikipedia.org/wiki/Error_function
|
||
|
.. [2] Milton Abramowitz and Irene A. Stegun, eds.
|
||
|
Handbook of Mathematical Functions with Formulas,
|
||
|
Graphs, and Mathematical Tables. New York: Dover,
|
||
|
1972. http://www.math.sfu.ca/~cbm/aands/page_297.htm
|
||
|
.. [3] Steven G. Johnson, Faddeeva W function implementation.
|
||
|
http://ab-initio.mit.edu/Faddeeva
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy import special
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> x = np.linspace(-3, 3)
|
||
|
>>> plt.plot(x, special.erf(x))
|
||
|
>>> plt.xlabel('$x$')
|
||
|
>>> plt.ylabel('$erf(x)$')
|
||
|
>>> plt.show()
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("erfc",
|
||
|
"""
|
||
|
erfc(x, out=None)
|
||
|
|
||
|
Complementary error function, ``1 - erf(x)``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Real or complex valued argument
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Values of the complementary error function
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
erf, erfi, erfcx, dawsn, wofz
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Steven G. Johnson, Faddeeva W function implementation.
|
||
|
http://ab-initio.mit.edu/Faddeeva
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy import special
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> x = np.linspace(-3, 3)
|
||
|
>>> plt.plot(x, special.erfc(x))
|
||
|
>>> plt.xlabel('$x$')
|
||
|
>>> plt.ylabel('$erfc(x)$')
|
||
|
>>> plt.show()
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("erfi",
|
||
|
"""
|
||
|
erfi(z, out=None)
|
||
|
|
||
|
Imaginary error function, ``-i erf(i z)``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
z : array_like
|
||
|
Real or complex valued argument
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Values of the imaginary error function
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
erf, erfc, erfcx, dawsn, wofz
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
|
||
|
.. versionadded:: 0.12.0
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Steven G. Johnson, Faddeeva W function implementation.
|
||
|
http://ab-initio.mit.edu/Faddeeva
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy import special
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> x = np.linspace(-3, 3)
|
||
|
>>> plt.plot(x, special.erfi(x))
|
||
|
>>> plt.xlabel('$x$')
|
||
|
>>> plt.ylabel('$erfi(x)$')
|
||
|
>>> plt.show()
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("erfcx",
|
||
|
"""
|
||
|
erfcx(x, out=None)
|
||
|
|
||
|
Scaled complementary error function, ``exp(x**2) * erfc(x)``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Real or complex valued argument
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Values of the scaled complementary error function
|
||
|
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
erf, erfc, erfi, dawsn, wofz
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
|
||
|
.. versionadded:: 0.12.0
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Steven G. Johnson, Faddeeva W function implementation.
|
||
|
http://ab-initio.mit.edu/Faddeeva
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy import special
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> x = np.linspace(-3, 3)
|
||
|
>>> plt.plot(x, special.erfcx(x))
|
||
|
>>> plt.xlabel('$x$')
|
||
|
>>> plt.ylabel('$erfcx(x)$')
|
||
|
>>> plt.show()
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc(
|
||
|
"erfinv",
|
||
|
"""
|
||
|
erfinv(y, out=None)
|
||
|
|
||
|
Inverse of the error function.
|
||
|
|
||
|
Computes the inverse of the error function.
|
||
|
|
||
|
In the complex domain, there is no unique complex number w satisfying
|
||
|
erf(w)=z. This indicates a true inverse function would be multivalued.
|
||
|
When the domain restricts to the real, -1 < x < 1, there is a unique real
|
||
|
number satisfying erf(erfinv(x)) = x.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
y : ndarray
|
||
|
Argument at which to evaluate. Domain: [-1, 1]
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
erfinv : scalar or ndarray
|
||
|
The inverse of erf of y, element-wise
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
erf : Error function of a complex argument
|
||
|
erfc : Complementary error function, ``1 - erf(x)``
|
||
|
erfcinv : Inverse of the complementary error function
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> from scipy.special import erfinv, erf
|
||
|
|
||
|
>>> erfinv(0.5)
|
||
|
0.4769362762044699
|
||
|
|
||
|
>>> y = np.linspace(-1.0, 1.0, num=9)
|
||
|
>>> x = erfinv(y)
|
||
|
>>> x
|
||
|
array([ -inf, -0.81341985, -0.47693628, -0.22531206, 0. ,
|
||
|
0.22531206, 0.47693628, 0.81341985, inf])
|
||
|
|
||
|
Verify that ``erf(erfinv(y))`` is ``y``.
|
||
|
|
||
|
>>> erf(x)
|
||
|
array([-1. , -0.75, -0.5 , -0.25, 0. , 0.25, 0.5 , 0.75, 1. ])
|
||
|
|
||
|
Plot the function:
|
||
|
|
||
|
>>> y = np.linspace(-1, 1, 200)
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> ax.plot(y, erfinv(y))
|
||
|
>>> ax.grid(True)
|
||
|
>>> ax.set_xlabel('y')
|
||
|
>>> ax.set_title('erfinv(y)')
|
||
|
>>> plt.show()
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc(
|
||
|
"erfcinv",
|
||
|
"""
|
||
|
erfcinv(y, out=None)
|
||
|
|
||
|
Inverse of the complementary error function.
|
||
|
|
||
|
Computes the inverse of the complementary error function.
|
||
|
|
||
|
In the complex domain, there is no unique complex number w satisfying
|
||
|
erfc(w)=z. This indicates a true inverse function would be multivalued.
|
||
|
When the domain restricts to the real, 0 < x < 2, there is a unique real
|
||
|
number satisfying erfc(erfcinv(x)) = erfcinv(erfc(x)).
|
||
|
|
||
|
It is related to inverse of the error function by erfcinv(1-x) = erfinv(x)
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
y : ndarray
|
||
|
Argument at which to evaluate. Domain: [0, 2]
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
erfcinv : scalar or ndarray
|
||
|
The inverse of erfc of y, element-wise
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
erf : Error function of a complex argument
|
||
|
erfc : Complementary error function, ``1 - erf(x)``
|
||
|
erfinv : Inverse of the error function
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> from scipy.special import erfcinv
|
||
|
|
||
|
>>> erfcinv(0.5)
|
||
|
0.4769362762044699
|
||
|
|
||
|
>>> y = np.linspace(0.0, 2.0, num=11)
|
||
|
>>> erfcinv(y)
|
||
|
array([ inf, 0.9061938 , 0.59511608, 0.37080716, 0.17914345,
|
||
|
-0. , -0.17914345, -0.37080716, -0.59511608, -0.9061938 ,
|
||
|
-inf])
|
||
|
|
||
|
Plot the function:
|
||
|
|
||
|
>>> y = np.linspace(0, 2, 200)
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> ax.plot(y, erfcinv(y))
|
||
|
>>> ax.grid(True)
|
||
|
>>> ax.set_xlabel('y')
|
||
|
>>> ax.set_title('erfcinv(y)')
|
||
|
>>> plt.show()
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("eval_jacobi",
|
||
|
r"""
|
||
|
eval_jacobi(n, alpha, beta, x, out=None)
|
||
|
|
||
|
Evaluate Jacobi polynomial at a point.
|
||
|
|
||
|
The Jacobi polynomials can be defined via the Gauss hypergeometric
|
||
|
function :math:`{}_2F_1` as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
P_n^{(\alpha, \beta)}(x) = \frac{(\alpha + 1)_n}{\Gamma(n + 1)}
|
||
|
{}_2F_1(-n, 1 + \alpha + \beta + n; \alpha + 1; (1 - z)/2)
|
||
|
|
||
|
where :math:`(\cdot)_n` is the Pochhammer symbol; see `poch`. When
|
||
|
:math:`n` is an integer the result is a polynomial of degree
|
||
|
:math:`n`. See 22.5.42 in [AS]_ for details.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : array_like
|
||
|
Degree of the polynomial. If not an integer the result is
|
||
|
determined via the relation to the Gauss hypergeometric
|
||
|
function.
|
||
|
alpha : array_like
|
||
|
Parameter
|
||
|
beta : array_like
|
||
|
Parameter
|
||
|
x : array_like
|
||
|
Points at which to evaluate the polynomial
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
P : scalar or ndarray
|
||
|
Values of the Jacobi polynomial
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
roots_jacobi : roots and quadrature weights of Jacobi polynomials
|
||
|
jacobi : Jacobi polynomial object
|
||
|
hyp2f1 : Gauss hypergeometric function
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
||
|
Handbook of Mathematical Functions with Formulas,
|
||
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("eval_sh_jacobi",
|
||
|
r"""
|
||
|
eval_sh_jacobi(n, p, q, x, out=None)
|
||
|
|
||
|
Evaluate shifted Jacobi polynomial at a point.
|
||
|
|
||
|
Defined by
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
G_n^{(p, q)}(x)
|
||
|
= \binom{2n + p - 1}{n}^{-1} P_n^{(p - q, q - 1)}(2x - 1),
|
||
|
|
||
|
where :math:`P_n^{(\cdot, \cdot)}` is the n-th Jacobi
|
||
|
polynomial. See 22.5.2 in [AS]_ for details.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : int
|
||
|
Degree of the polynomial. If not an integer, the result is
|
||
|
determined via the relation to `binom` and `eval_jacobi`.
|
||
|
p : float
|
||
|
Parameter
|
||
|
q : float
|
||
|
Parameter
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
G : scalar or ndarray
|
||
|
Values of the shifted Jacobi polynomial.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
roots_sh_jacobi : roots and quadrature weights of shifted Jacobi
|
||
|
polynomials
|
||
|
sh_jacobi : shifted Jacobi polynomial object
|
||
|
eval_jacobi : evaluate Jacobi polynomials
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
||
|
Handbook of Mathematical Functions with Formulas,
|
||
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("eval_gegenbauer",
|
||
|
r"""
|
||
|
eval_gegenbauer(n, alpha, x, out=None)
|
||
|
|
||
|
Evaluate Gegenbauer polynomial at a point.
|
||
|
|
||
|
The Gegenbauer polynomials can be defined via the Gauss
|
||
|
hypergeometric function :math:`{}_2F_1` as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
C_n^{(\alpha)} = \frac{(2\alpha)_n}{\Gamma(n + 1)}
|
||
|
{}_2F_1(-n, 2\alpha + n; \alpha + 1/2; (1 - z)/2).
|
||
|
|
||
|
When :math:`n` is an integer the result is a polynomial of degree
|
||
|
:math:`n`. See 22.5.46 in [AS]_ for details.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : array_like
|
||
|
Degree of the polynomial. If not an integer, the result is
|
||
|
determined via the relation to the Gauss hypergeometric
|
||
|
function.
|
||
|
alpha : array_like
|
||
|
Parameter
|
||
|
x : array_like
|
||
|
Points at which to evaluate the Gegenbauer polynomial
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
C : scalar or ndarray
|
||
|
Values of the Gegenbauer polynomial
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
roots_gegenbauer : roots and quadrature weights of Gegenbauer
|
||
|
polynomials
|
||
|
gegenbauer : Gegenbauer polynomial object
|
||
|
hyp2f1 : Gauss hypergeometric function
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
||
|
Handbook of Mathematical Functions with Formulas,
|
||
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("eval_chebyt",
|
||
|
r"""
|
||
|
eval_chebyt(n, x, out=None)
|
||
|
|
||
|
Evaluate Chebyshev polynomial of the first kind at a point.
|
||
|
|
||
|
The Chebyshev polynomials of the first kind can be defined via the
|
||
|
Gauss hypergeometric function :math:`{}_2F_1` as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
T_n(x) = {}_2F_1(n, -n; 1/2; (1 - x)/2).
|
||
|
|
||
|
When :math:`n` is an integer the result is a polynomial of degree
|
||
|
:math:`n`. See 22.5.47 in [AS]_ for details.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : array_like
|
||
|
Degree of the polynomial. If not an integer, the result is
|
||
|
determined via the relation to the Gauss hypergeometric
|
||
|
function.
|
||
|
x : array_like
|
||
|
Points at which to evaluate the Chebyshev polynomial
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
T : scalar or ndarray
|
||
|
Values of the Chebyshev polynomial
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
roots_chebyt : roots and quadrature weights of Chebyshev
|
||
|
polynomials of the first kind
|
||
|
chebyu : Chebychev polynomial object
|
||
|
eval_chebyu : evaluate Chebyshev polynomials of the second kind
|
||
|
hyp2f1 : Gauss hypergeometric function
|
||
|
numpy.polynomial.chebyshev.Chebyshev : Chebyshev series
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This routine is numerically stable for `x` in ``[-1, 1]`` at least
|
||
|
up to order ``10000``.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
||
|
Handbook of Mathematical Functions with Formulas,
|
||
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("eval_chebyu",
|
||
|
r"""
|
||
|
eval_chebyu(n, x, out=None)
|
||
|
|
||
|
Evaluate Chebyshev polynomial of the second kind at a point.
|
||
|
|
||
|
The Chebyshev polynomials of the second kind can be defined via
|
||
|
the Gauss hypergeometric function :math:`{}_2F_1` as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
U_n(x) = (n + 1) {}_2F_1(-n, n + 2; 3/2; (1 - x)/2).
|
||
|
|
||
|
When :math:`n` is an integer the result is a polynomial of degree
|
||
|
:math:`n`. See 22.5.48 in [AS]_ for details.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : array_like
|
||
|
Degree of the polynomial. If not an integer, the result is
|
||
|
determined via the relation to the Gauss hypergeometric
|
||
|
function.
|
||
|
x : array_like
|
||
|
Points at which to evaluate the Chebyshev polynomial
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
U : scalar or ndarray
|
||
|
Values of the Chebyshev polynomial
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
roots_chebyu : roots and quadrature weights of Chebyshev
|
||
|
polynomials of the second kind
|
||
|
chebyu : Chebyshev polynomial object
|
||
|
eval_chebyt : evaluate Chebyshev polynomials of the first kind
|
||
|
hyp2f1 : Gauss hypergeometric function
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
||
|
Handbook of Mathematical Functions with Formulas,
|
||
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("eval_chebys",
|
||
|
r"""
|
||
|
eval_chebys(n, x, out=None)
|
||
|
|
||
|
Evaluate Chebyshev polynomial of the second kind on [-2, 2] at a
|
||
|
point.
|
||
|
|
||
|
These polynomials are defined as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
S_n(x) = U_n(x/2)
|
||
|
|
||
|
where :math:`U_n` is a Chebyshev polynomial of the second
|
||
|
kind. See 22.5.13 in [AS]_ for details.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : array_like
|
||
|
Degree of the polynomial. If not an integer, the result is
|
||
|
determined via the relation to `eval_chebyu`.
|
||
|
x : array_like
|
||
|
Points at which to evaluate the Chebyshev polynomial
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
S : scalar or ndarray
|
||
|
Values of the Chebyshev polynomial
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
roots_chebys : roots and quadrature weights of Chebyshev
|
||
|
polynomials of the second kind on [-2, 2]
|
||
|
chebys : Chebyshev polynomial object
|
||
|
eval_chebyu : evaluate Chebyshev polynomials of the second kind
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
||
|
Handbook of Mathematical Functions with Formulas,
|
||
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> import scipy.special as sc
|
||
|
|
||
|
They are a scaled version of the Chebyshev polynomials of the
|
||
|
second kind.
|
||
|
|
||
|
>>> x = np.linspace(-2, 2, 6)
|
||
|
>>> sc.eval_chebys(3, x)
|
||
|
array([-4. , 0.672, 0.736, -0.736, -0.672, 4. ])
|
||
|
>>> sc.eval_chebyu(3, x / 2)
|
||
|
array([-4. , 0.672, 0.736, -0.736, -0.672, 4. ])
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("eval_chebyc",
|
||
|
r"""
|
||
|
eval_chebyc(n, x, out=None)
|
||
|
|
||
|
Evaluate Chebyshev polynomial of the first kind on [-2, 2] at a
|
||
|
point.
|
||
|
|
||
|
These polynomials are defined as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
C_n(x) = 2 T_n(x/2)
|
||
|
|
||
|
where :math:`T_n` is a Chebyshev polynomial of the first kind. See
|
||
|
22.5.11 in [AS]_ for details.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : array_like
|
||
|
Degree of the polynomial. If not an integer, the result is
|
||
|
determined via the relation to `eval_chebyt`.
|
||
|
x : array_like
|
||
|
Points at which to evaluate the Chebyshev polynomial
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
C : scalar or ndarray
|
||
|
Values of the Chebyshev polynomial
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
roots_chebyc : roots and quadrature weights of Chebyshev
|
||
|
polynomials of the first kind on [-2, 2]
|
||
|
chebyc : Chebyshev polynomial object
|
||
|
numpy.polynomial.chebyshev.Chebyshev : Chebyshev series
|
||
|
eval_chebyt : evaluate Chebycshev polynomials of the first kind
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
||
|
Handbook of Mathematical Functions with Formulas,
|
||
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> import scipy.special as sc
|
||
|
|
||
|
They are a scaled version of the Chebyshev polynomials of the
|
||
|
first kind.
|
||
|
|
||
|
>>> x = np.linspace(-2, 2, 6)
|
||
|
>>> sc.eval_chebyc(3, x)
|
||
|
array([-2. , 1.872, 1.136, -1.136, -1.872, 2. ])
|
||
|
>>> 2 * sc.eval_chebyt(3, x / 2)
|
||
|
array([-2. , 1.872, 1.136, -1.136, -1.872, 2. ])
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("eval_sh_chebyt",
|
||
|
r"""
|
||
|
eval_sh_chebyt(n, x, out=None)
|
||
|
|
||
|
Evaluate shifted Chebyshev polynomial of the first kind at a
|
||
|
point.
|
||
|
|
||
|
These polynomials are defined as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
T_n^*(x) = T_n(2x - 1)
|
||
|
|
||
|
where :math:`T_n` is a Chebyshev polynomial of the first kind. See
|
||
|
22.5.14 in [AS]_ for details.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : array_like
|
||
|
Degree of the polynomial. If not an integer, the result is
|
||
|
determined via the relation to `eval_chebyt`.
|
||
|
x : array_like
|
||
|
Points at which to evaluate the shifted Chebyshev polynomial
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
T : scalar or ndarray
|
||
|
Values of the shifted Chebyshev polynomial
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
roots_sh_chebyt : roots and quadrature weights of shifted
|
||
|
Chebyshev polynomials of the first kind
|
||
|
sh_chebyt : shifted Chebyshev polynomial object
|
||
|
eval_chebyt : evaluate Chebyshev polynomials of the first kind
|
||
|
numpy.polynomial.chebyshev.Chebyshev : Chebyshev series
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
||
|
Handbook of Mathematical Functions with Formulas,
|
||
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("eval_sh_chebyu",
|
||
|
r"""
|
||
|
eval_sh_chebyu(n, x, out=None)
|
||
|
|
||
|
Evaluate shifted Chebyshev polynomial of the second kind at a
|
||
|
point.
|
||
|
|
||
|
These polynomials are defined as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
U_n^*(x) = U_n(2x - 1)
|
||
|
|
||
|
where :math:`U_n` is a Chebyshev polynomial of the first kind. See
|
||
|
22.5.15 in [AS]_ for details.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : array_like
|
||
|
Degree of the polynomial. If not an integer, the result is
|
||
|
determined via the relation to `eval_chebyu`.
|
||
|
x : array_like
|
||
|
Points at which to evaluate the shifted Chebyshev polynomial
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
U : scalar or ndarray
|
||
|
Values of the shifted Chebyshev polynomial
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
roots_sh_chebyu : roots and quadrature weights of shifted
|
||
|
Chebychev polynomials of the second kind
|
||
|
sh_chebyu : shifted Chebyshev polynomial object
|
||
|
eval_chebyu : evaluate Chebyshev polynomials of the second kind
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
||
|
Handbook of Mathematical Functions with Formulas,
|
||
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("eval_legendre",
|
||
|
r"""
|
||
|
eval_legendre(n, x, out=None)
|
||
|
|
||
|
Evaluate Legendre polynomial at a point.
|
||
|
|
||
|
The Legendre polynomials can be defined via the Gauss
|
||
|
hypergeometric function :math:`{}_2F_1` as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
P_n(x) = {}_2F_1(-n, n + 1; 1; (1 - x)/2).
|
||
|
|
||
|
When :math:`n` is an integer the result is a polynomial of degree
|
||
|
:math:`n`. See 22.5.49 in [AS]_ for details.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : array_like
|
||
|
Degree of the polynomial. If not an integer, the result is
|
||
|
determined via the relation to the Gauss hypergeometric
|
||
|
function.
|
||
|
x : array_like
|
||
|
Points at which to evaluate the Legendre polynomial
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
P : scalar or ndarray
|
||
|
Values of the Legendre polynomial
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
roots_legendre : roots and quadrature weights of Legendre
|
||
|
polynomials
|
||
|
legendre : Legendre polynomial object
|
||
|
hyp2f1 : Gauss hypergeometric function
|
||
|
numpy.polynomial.legendre.Legendre : Legendre series
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
||
|
Handbook of Mathematical Functions with Formulas,
|
||
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import eval_legendre
|
||
|
|
||
|
Evaluate the zero-order Legendre polynomial at x = 0
|
||
|
|
||
|
>>> eval_legendre(0, 0)
|
||
|
1.0
|
||
|
|
||
|
Evaluate the first-order Legendre polynomial between -1 and 1
|
||
|
|
||
|
>>> X = np.linspace(-1, 1, 5) # Domain of Legendre polynomials
|
||
|
>>> eval_legendre(1, X)
|
||
|
array([-1. , -0.5, 0. , 0.5, 1. ])
|
||
|
|
||
|
Evaluate Legendre polynomials of order 0 through 4 at x = 0
|
||
|
|
||
|
>>> N = range(0, 5)
|
||
|
>>> eval_legendre(N, 0)
|
||
|
array([ 1. , 0. , -0.5 , 0. , 0.375])
|
||
|
|
||
|
Plot Legendre polynomials of order 0 through 4
|
||
|
|
||
|
>>> X = np.linspace(-1, 1)
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> for n in range(0, 5):
|
||
|
... y = eval_legendre(n, X)
|
||
|
... plt.plot(X, y, label=r'$P_{}(x)$'.format(n))
|
||
|
|
||
|
>>> plt.title("Legendre Polynomials")
|
||
|
>>> plt.xlabel("x")
|
||
|
>>> plt.ylabel(r'$P_n(x)$')
|
||
|
>>> plt.legend(loc='lower right')
|
||
|
>>> plt.show()
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("eval_sh_legendre",
|
||
|
r"""
|
||
|
eval_sh_legendre(n, x, out=None)
|
||
|
|
||
|
Evaluate shifted Legendre polynomial at a point.
|
||
|
|
||
|
These polynomials are defined as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
P_n^*(x) = P_n(2x - 1)
|
||
|
|
||
|
where :math:`P_n` is a Legendre polynomial. See 2.2.11 in [AS]_
|
||
|
for details.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : array_like
|
||
|
Degree of the polynomial. If not an integer, the value is
|
||
|
determined via the relation to `eval_legendre`.
|
||
|
x : array_like
|
||
|
Points at which to evaluate the shifted Legendre polynomial
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
P : scalar or ndarray
|
||
|
Values of the shifted Legendre polynomial
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
roots_sh_legendre : roots and quadrature weights of shifted
|
||
|
Legendre polynomials
|
||
|
sh_legendre : shifted Legendre polynomial object
|
||
|
eval_legendre : evaluate Legendre polynomials
|
||
|
numpy.polynomial.legendre.Legendre : Legendre series
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
||
|
Handbook of Mathematical Functions with Formulas,
|
||
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("eval_genlaguerre",
|
||
|
r"""
|
||
|
eval_genlaguerre(n, alpha, x, out=None)
|
||
|
|
||
|
Evaluate generalized Laguerre polynomial at a point.
|
||
|
|
||
|
The generalized Laguerre polynomials can be defined via the
|
||
|
confluent hypergeometric function :math:`{}_1F_1` as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
L_n^{(\alpha)}(x) = \binom{n + \alpha}{n}
|
||
|
{}_1F_1(-n, \alpha + 1, x).
|
||
|
|
||
|
When :math:`n` is an integer the result is a polynomial of degree
|
||
|
:math:`n`. See 22.5.54 in [AS]_ for details. The Laguerre
|
||
|
polynomials are the special case where :math:`\alpha = 0`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : array_like
|
||
|
Degree of the polynomial. If not an integer, the result is
|
||
|
determined via the relation to the confluent hypergeometric
|
||
|
function.
|
||
|
alpha : array_like
|
||
|
Parameter; must have ``alpha > -1``
|
||
|
x : array_like
|
||
|
Points at which to evaluate the generalized Laguerre
|
||
|
polynomial
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
L : scalar or ndarray
|
||
|
Values of the generalized Laguerre polynomial
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
roots_genlaguerre : roots and quadrature weights of generalized
|
||
|
Laguerre polynomials
|
||
|
genlaguerre : generalized Laguerre polynomial object
|
||
|
hyp1f1 : confluent hypergeometric function
|
||
|
eval_laguerre : evaluate Laguerre polynomials
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
||
|
Handbook of Mathematical Functions with Formulas,
|
||
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("eval_laguerre",
|
||
|
r"""
|
||
|
eval_laguerre(n, x, out=None)
|
||
|
|
||
|
Evaluate Laguerre polynomial at a point.
|
||
|
|
||
|
The Laguerre polynomials can be defined via the confluent
|
||
|
hypergeometric function :math:`{}_1F_1` as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
L_n(x) = {}_1F_1(-n, 1, x).
|
||
|
|
||
|
See 22.5.16 and 22.5.54 in [AS]_ for details. When :math:`n` is an
|
||
|
integer the result is a polynomial of degree :math:`n`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : array_like
|
||
|
Degree of the polynomial. If not an integer the result is
|
||
|
determined via the relation to the confluent hypergeometric
|
||
|
function.
|
||
|
x : array_like
|
||
|
Points at which to evaluate the Laguerre polynomial
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
L : scalar or ndarray
|
||
|
Values of the Laguerre polynomial
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
roots_laguerre : roots and quadrature weights of Laguerre
|
||
|
polynomials
|
||
|
laguerre : Laguerre polynomial object
|
||
|
numpy.polynomial.laguerre.Laguerre : Laguerre series
|
||
|
eval_genlaguerre : evaluate generalized Laguerre polynomials
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
||
|
Handbook of Mathematical Functions with Formulas,
|
||
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("eval_hermite",
|
||
|
r"""
|
||
|
eval_hermite(n, x, out=None)
|
||
|
|
||
|
Evaluate physicist's Hermite polynomial at a point.
|
||
|
|
||
|
Defined by
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2};
|
||
|
|
||
|
:math:`H_n` is a polynomial of degree :math:`n`. See 22.11.7 in
|
||
|
[AS]_ for details.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : array_like
|
||
|
Degree of the polynomial
|
||
|
x : array_like
|
||
|
Points at which to evaluate the Hermite polynomial
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
H : scalar or ndarray
|
||
|
Values of the Hermite polynomial
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
roots_hermite : roots and quadrature weights of physicist's
|
||
|
Hermite polynomials
|
||
|
hermite : physicist's Hermite polynomial object
|
||
|
numpy.polynomial.hermite.Hermite : Physicist's Hermite series
|
||
|
eval_hermitenorm : evaluate Probabilist's Hermite polynomials
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
||
|
Handbook of Mathematical Functions with Formulas,
|
||
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("eval_hermitenorm",
|
||
|
r"""
|
||
|
eval_hermitenorm(n, x, out=None)
|
||
|
|
||
|
Evaluate probabilist's (normalized) Hermite polynomial at a
|
||
|
point.
|
||
|
|
||
|
Defined by
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
He_n(x) = (-1)^n e^{x^2/2} \frac{d^n}{dx^n} e^{-x^2/2};
|
||
|
|
||
|
:math:`He_n` is a polynomial of degree :math:`n`. See 22.11.8 in
|
||
|
[AS]_ for details.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : array_like
|
||
|
Degree of the polynomial
|
||
|
x : array_like
|
||
|
Points at which to evaluate the Hermite polynomial
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
He : scalar or ndarray
|
||
|
Values of the Hermite polynomial
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
roots_hermitenorm : roots and quadrature weights of probabilist's
|
||
|
Hermite polynomials
|
||
|
hermitenorm : probabilist's Hermite polynomial object
|
||
|
numpy.polynomial.hermite_e.HermiteE : Probabilist's Hermite series
|
||
|
eval_hermite : evaluate physicist's Hermite polynomials
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
||
|
Handbook of Mathematical Functions with Formulas,
|
||
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("exp1",
|
||
|
r"""
|
||
|
exp1(z, out=None)
|
||
|
|
||
|
Exponential integral E1.
|
||
|
|
||
|
For complex :math:`z \ne 0` the exponential integral can be defined as
|
||
|
[1]_
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
E_1(z) = \int_z^\infty \frac{e^{-t}}{t} dt,
|
||
|
|
||
|
where the path of the integral does not cross the negative real
|
||
|
axis or pass through the origin.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
z: array_like
|
||
|
Real or complex argument.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Values of the exponential integral E1
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
expi : exponential integral :math:`Ei`
|
||
|
expn : generalization of :math:`E_1`
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For :math:`x > 0` it is related to the exponential integral
|
||
|
:math:`Ei` (see `expi`) via the relation
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
E_1(x) = -Ei(-x).
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Digital Library of Mathematical Functions, 6.2.1
|
||
|
https://dlmf.nist.gov/6.2#E1
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> import scipy.special as sc
|
||
|
|
||
|
It has a pole at 0.
|
||
|
|
||
|
>>> sc.exp1(0)
|
||
|
inf
|
||
|
|
||
|
It has a branch cut on the negative real axis.
|
||
|
|
||
|
>>> sc.exp1(-1)
|
||
|
nan
|
||
|
>>> sc.exp1(complex(-1, 0))
|
||
|
(-1.8951178163559368-3.141592653589793j)
|
||
|
>>> sc.exp1(complex(-1, -0.0))
|
||
|
(-1.8951178163559368+3.141592653589793j)
|
||
|
|
||
|
It approaches 0 along the positive real axis.
|
||
|
|
||
|
>>> sc.exp1([1, 10, 100, 1000])
|
||
|
array([2.19383934e-01, 4.15696893e-06, 3.68359776e-46, 0.00000000e+00])
|
||
|
|
||
|
It is related to `expi`.
|
||
|
|
||
|
>>> x = np.array([1, 2, 3, 4])
|
||
|
>>> sc.exp1(x)
|
||
|
array([0.21938393, 0.04890051, 0.01304838, 0.00377935])
|
||
|
>>> -sc.expi(-x)
|
||
|
array([0.21938393, 0.04890051, 0.01304838, 0.00377935])
|
||
|
|
||
|
""")
|
||
|
|
||
|
|
||
|
add_newdoc(
|
||
|
"_scaled_exp1",
|
||
|
"""
|
||
|
_scaled_exp1(x, out=None):
|
||
|
|
||
|
Compute the scaled exponential integral.
|
||
|
|
||
|
This is a private function, subject to change or removal with no
|
||
|
deprecation.
|
||
|
|
||
|
This function computes F(x), where F is the factor remaining in E_1(x)
|
||
|
when exp(-x)/x is factored out. That is,::
|
||
|
|
||
|
E_1(x) = exp(-x)/x * F(x)
|
||
|
|
||
|
or
|
||
|
|
||
|
F(x) = x * exp(x) * E_1(x)
|
||
|
|
||
|
The function is defined for real x >= 0. For x < 0, nan is returned.
|
||
|
|
||
|
F has the properties:
|
||
|
|
||
|
* F(0) = 0
|
||
|
* F(x) is increasing on [0, inf).
|
||
|
* The limit as x goes to infinity of F(x) is 1.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x: array_like
|
||
|
The input values. Must be real. The implementation is limited to
|
||
|
double precision floating point, so other types will be cast to
|
||
|
to double precision.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Values of the scaled exponential integral.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
exp1 : exponential integral E_1
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.special import _scaled_exp1
|
||
|
>>> _scaled_exp1([0, 0.1, 1, 10, 100])
|
||
|
|
||
|
"""
|
||
|
)
|
||
|
|
||
|
|
||
|
add_newdoc("exp10",
|
||
|
"""
|
||
|
exp10(x, out=None)
|
||
|
|
||
|
Compute ``10**x`` element-wise.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
`x` must contain real numbers.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
``10**x``, computed element-wise.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import exp10
|
||
|
|
||
|
>>> exp10(3)
|
||
|
1000.0
|
||
|
>>> x = np.array([[-1, -0.5, 0], [0.5, 1, 1.5]])
|
||
|
>>> exp10(x)
|
||
|
array([[ 0.1 , 0.31622777, 1. ],
|
||
|
[ 3.16227766, 10. , 31.6227766 ]])
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("exp2",
|
||
|
"""
|
||
|
exp2(x, out=None)
|
||
|
|
||
|
Compute ``2**x`` element-wise.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
`x` must contain real numbers.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
``2**x``, computed element-wise.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import exp2
|
||
|
|
||
|
>>> exp2(3)
|
||
|
8.0
|
||
|
>>> x = np.array([[-1, -0.5, 0], [0.5, 1, 1.5]])
|
||
|
>>> exp2(x)
|
||
|
array([[ 0.5 , 0.70710678, 1. ],
|
||
|
[ 1.41421356, 2. , 2.82842712]])
|
||
|
""")
|
||
|
|
||
|
add_newdoc("expi",
|
||
|
r"""
|
||
|
expi(x, out=None)
|
||
|
|
||
|
Exponential integral Ei.
|
||
|
|
||
|
For real :math:`x`, the exponential integral is defined as [1]_
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
Ei(x) = \int_{-\infty}^x \frac{e^t}{t} dt.
|
||
|
|
||
|
For :math:`x > 0` the integral is understood as a Cauchy principal
|
||
|
value.
|
||
|
|
||
|
It is extended to the complex plane by analytic continuation of
|
||
|
the function on the interval :math:`(0, \infty)`. The complex
|
||
|
variant has a branch cut on the negative real axis.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Real or complex valued argument
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Values of the exponential integral
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
exp1 : Exponential integral :math:`E_1`
|
||
|
expn : Generalized exponential integral :math:`E_n`
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The exponential integrals :math:`E_1` and :math:`Ei` satisfy the
|
||
|
relation
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
E_1(x) = -Ei(-x)
|
||
|
|
||
|
for :math:`x > 0`.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Digital Library of Mathematical Functions, 6.2.5
|
||
|
https://dlmf.nist.gov/6.2#E5
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> import scipy.special as sc
|
||
|
|
||
|
It is related to `exp1`.
|
||
|
|
||
|
>>> x = np.array([1, 2, 3, 4])
|
||
|
>>> -sc.expi(-x)
|
||
|
array([0.21938393, 0.04890051, 0.01304838, 0.00377935])
|
||
|
>>> sc.exp1(x)
|
||
|
array([0.21938393, 0.04890051, 0.01304838, 0.00377935])
|
||
|
|
||
|
The complex variant has a branch cut on the negative real axis.
|
||
|
|
||
|
>>> sc.expi(-1 + 1e-12j)
|
||
|
(-0.21938393439552062+3.1415926535894254j)
|
||
|
>>> sc.expi(-1 - 1e-12j)
|
||
|
(-0.21938393439552062-3.1415926535894254j)
|
||
|
|
||
|
As the complex variant approaches the branch cut, the real parts
|
||
|
approach the value of the real variant.
|
||
|
|
||
|
>>> sc.expi(-1)
|
||
|
-0.21938393439552062
|
||
|
|
||
|
The SciPy implementation returns the real variant for complex
|
||
|
values on the branch cut.
|
||
|
|
||
|
>>> sc.expi(complex(-1, 0.0))
|
||
|
(-0.21938393439552062-0j)
|
||
|
>>> sc.expi(complex(-1, -0.0))
|
||
|
(-0.21938393439552062-0j)
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc('expit',
|
||
|
"""
|
||
|
expit(x, out=None)
|
||
|
|
||
|
Expit (a.k.a. logistic sigmoid) ufunc for ndarrays.
|
||
|
|
||
|
The expit function, also known as the logistic sigmoid function, is
|
||
|
defined as ``expit(x) = 1/(1+exp(-x))``. It is the inverse of the
|
||
|
logit function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : ndarray
|
||
|
The ndarray to apply expit to element-wise.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
An ndarray of the same shape as x. Its entries
|
||
|
are `expit` of the corresponding entry of x.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
logit
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
As a ufunc expit takes a number of optional
|
||
|
keyword arguments. For more information
|
||
|
see `ufuncs <https://docs.scipy.org/doc/numpy/reference/ufuncs.html>`_
|
||
|
|
||
|
.. versionadded:: 0.10.0
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import expit, logit
|
||
|
|
||
|
>>> expit([-np.inf, -1.5, 0, 1.5, np.inf])
|
||
|
array([ 0. , 0.18242552, 0.5 , 0.81757448, 1. ])
|
||
|
|
||
|
`logit` is the inverse of `expit`:
|
||
|
|
||
|
>>> logit(expit([-2.5, 0, 3.1, 5.0]))
|
||
|
array([-2.5, 0. , 3.1, 5. ])
|
||
|
|
||
|
Plot expit(x) for x in [-6, 6]:
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> x = np.linspace(-6, 6, 121)
|
||
|
>>> y = expit(x)
|
||
|
>>> plt.plot(x, y)
|
||
|
>>> plt.grid()
|
||
|
>>> plt.xlim(-6, 6)
|
||
|
>>> plt.xlabel('x')
|
||
|
>>> plt.title('expit(x)')
|
||
|
>>> plt.show()
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("expm1",
|
||
|
"""
|
||
|
expm1(x, out=None)
|
||
|
|
||
|
Compute ``exp(x) - 1``.
|
||
|
|
||
|
When `x` is near zero, ``exp(x)`` is near 1, so the numerical calculation
|
||
|
of ``exp(x) - 1`` can suffer from catastrophic loss of precision.
|
||
|
``expm1(x)`` is implemented to avoid the loss of precision that occurs when
|
||
|
`x` is near zero.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
`x` must contain real numbers.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
``exp(x) - 1`` computed element-wise.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import expm1
|
||
|
|
||
|
>>> expm1(1.0)
|
||
|
1.7182818284590451
|
||
|
>>> expm1([-0.2, -0.1, 0, 0.1, 0.2])
|
||
|
array([-0.18126925, -0.09516258, 0. , 0.10517092, 0.22140276])
|
||
|
|
||
|
The exact value of ``exp(7.5e-13) - 1`` is::
|
||
|
|
||
|
7.5000000000028125000000007031250000001318...*10**-13.
|
||
|
|
||
|
Here is what ``expm1(7.5e-13)`` gives:
|
||
|
|
||
|
>>> expm1(7.5e-13)
|
||
|
7.5000000000028135e-13
|
||
|
|
||
|
Compare that to ``exp(7.5e-13) - 1``, where the subtraction results in
|
||
|
a "catastrophic" loss of precision:
|
||
|
|
||
|
>>> np.exp(7.5e-13) - 1
|
||
|
7.5006667543675576e-13
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("expn",
|
||
|
r"""
|
||
|
expn(n, x, out=None)
|
||
|
|
||
|
Generalized exponential integral En.
|
||
|
|
||
|
For integer :math:`n \geq 0` and real :math:`x \geq 0` the
|
||
|
generalized exponential integral is defined as [dlmf]_
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
E_n(x) = x^{n - 1} \int_x^\infty \frac{e^{-t}}{t^n} dt.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : array_like
|
||
|
Non-negative integers
|
||
|
x : array_like
|
||
|
Real argument
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Values of the generalized exponential integral
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
exp1 : special case of :math:`E_n` for :math:`n = 1`
|
||
|
expi : related to :math:`E_n` when :math:`n = 1`
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [dlmf] Digital Library of Mathematical Functions, 8.19.2
|
||
|
https://dlmf.nist.gov/8.19#E2
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> import scipy.special as sc
|
||
|
|
||
|
Its domain is nonnegative n and x.
|
||
|
|
||
|
>>> sc.expn(-1, 1.0), sc.expn(1, -1.0)
|
||
|
(nan, nan)
|
||
|
|
||
|
It has a pole at ``x = 0`` for ``n = 1, 2``; for larger ``n`` it
|
||
|
is equal to ``1 / (n - 1)``.
|
||
|
|
||
|
>>> sc.expn([0, 1, 2, 3, 4], 0)
|
||
|
array([ inf, inf, 1. , 0.5 , 0.33333333])
|
||
|
|
||
|
For n equal to 0 it reduces to ``exp(-x) / x``.
|
||
|
|
||
|
>>> x = np.array([1, 2, 3, 4])
|
||
|
>>> sc.expn(0, x)
|
||
|
array([0.36787944, 0.06766764, 0.01659569, 0.00457891])
|
||
|
>>> np.exp(-x) / x
|
||
|
array([0.36787944, 0.06766764, 0.01659569, 0.00457891])
|
||
|
|
||
|
For n equal to 1 it reduces to `exp1`.
|
||
|
|
||
|
>>> sc.expn(1, x)
|
||
|
array([0.21938393, 0.04890051, 0.01304838, 0.00377935])
|
||
|
>>> sc.exp1(x)
|
||
|
array([0.21938393, 0.04890051, 0.01304838, 0.00377935])
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("exprel",
|
||
|
r"""
|
||
|
exprel(x, out=None)
|
||
|
|
||
|
Relative error exponential, ``(exp(x) - 1)/x``.
|
||
|
|
||
|
When `x` is near zero, ``exp(x)`` is near 1, so the numerical calculation
|
||
|
of ``exp(x) - 1`` can suffer from catastrophic loss of precision.
|
||
|
``exprel(x)`` is implemented to avoid the loss of precision that occurs when
|
||
|
`x` is near zero.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : ndarray
|
||
|
Input array. `x` must contain real numbers.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
``(exp(x) - 1)/x``, computed element-wise.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
expm1
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
.. versionadded:: 0.17.0
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import exprel
|
||
|
|
||
|
>>> exprel(0.01)
|
||
|
1.0050167084168056
|
||
|
>>> exprel([-0.25, -0.1, 0, 0.1, 0.25])
|
||
|
array([ 0.88479687, 0.95162582, 1. , 1.05170918, 1.13610167])
|
||
|
|
||
|
Compare ``exprel(5e-9)`` to the naive calculation. The exact value
|
||
|
is ``1.00000000250000000416...``.
|
||
|
|
||
|
>>> exprel(5e-9)
|
||
|
1.0000000025
|
||
|
|
||
|
>>> (np.exp(5e-9) - 1)/5e-9
|
||
|
0.99999999392252903
|
||
|
""")
|
||
|
|
||
|
add_newdoc("fdtr",
|
||
|
r"""
|
||
|
fdtr(dfn, dfd, x, out=None)
|
||
|
|
||
|
F cumulative distribution function.
|
||
|
|
||
|
Returns the value of the cumulative distribution function of the
|
||
|
F-distribution, also known as Snedecor's F-distribution or the
|
||
|
Fisher-Snedecor distribution.
|
||
|
|
||
|
The F-distribution with parameters :math:`d_n` and :math:`d_d` is the
|
||
|
distribution of the random variable,
|
||
|
|
||
|
.. math::
|
||
|
X = \frac{U_n/d_n}{U_d/d_d},
|
||
|
|
||
|
where :math:`U_n` and :math:`U_d` are random variables distributed
|
||
|
:math:`\chi^2`, with :math:`d_n` and :math:`d_d` degrees of freedom,
|
||
|
respectively.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
dfn : array_like
|
||
|
First parameter (positive float).
|
||
|
dfd : array_like
|
||
|
Second parameter (positive float).
|
||
|
x : array_like
|
||
|
Argument (nonnegative float).
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
y : scalar or ndarray
|
||
|
The CDF of the F-distribution with parameters `dfn` and `dfd` at `x`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
fdtrc : F distribution survival function
|
||
|
fdtri : F distribution inverse cumulative distribution
|
||
|
scipy.stats.f : F distribution
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The regularized incomplete beta function is used, according to the
|
||
|
formula,
|
||
|
|
||
|
.. math::
|
||
|
F(d_n, d_d; x) = I_{xd_n/(d_d + xd_n)}(d_n/2, d_d/2).
|
||
|
|
||
|
Wrapper for the Cephes [1]_ routine `fdtr`. The F distribution is also
|
||
|
available as `scipy.stats.f`. Calling `fdtr` directly can improve
|
||
|
performance compared to the ``cdf`` method of `scipy.stats.f` (see last
|
||
|
example below).
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Cephes Mathematical Functions Library,
|
||
|
http://www.netlib.org/cephes/
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Calculate the function for ``dfn=1`` and ``dfd=2`` at ``x=1``.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import fdtr
|
||
|
>>> fdtr(1, 2, 1)
|
||
|
0.5773502691896258
|
||
|
|
||
|
Calculate the function at several points by providing a NumPy array for
|
||
|
`x`.
|
||
|
|
||
|
>>> x = np.array([0.5, 2., 3.])
|
||
|
>>> fdtr(1, 2, x)
|
||
|
array([0.4472136 , 0.70710678, 0.77459667])
|
||
|
|
||
|
Plot the function for several parameter sets.
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> dfn_parameters = [1, 5, 10, 50]
|
||
|
>>> dfd_parameters = [1, 1, 2, 3]
|
||
|
>>> linestyles = ['solid', 'dashed', 'dotted', 'dashdot']
|
||
|
>>> parameters_list = list(zip(dfn_parameters, dfd_parameters,
|
||
|
... linestyles))
|
||
|
>>> x = np.linspace(0, 30, 1000)
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> for parameter_set in parameters_list:
|
||
|
... dfn, dfd, style = parameter_set
|
||
|
... fdtr_vals = fdtr(dfn, dfd, x)
|
||
|
... ax.plot(x, fdtr_vals, label=rf"$d_n={dfn},\, d_d={dfd}$",
|
||
|
... ls=style)
|
||
|
>>> ax.legend()
|
||
|
>>> ax.set_xlabel("$x$")
|
||
|
>>> ax.set_title("F distribution cumulative distribution function")
|
||
|
>>> plt.show()
|
||
|
|
||
|
The F distribution is also available as `scipy.stats.f`. Using `fdtr`
|
||
|
directly can be much faster than calling the ``cdf`` method of
|
||
|
`scipy.stats.f`, especially for small arrays or individual values.
|
||
|
To get the same results one must use the following parametrization:
|
||
|
``stats.f(dfn, dfd).cdf(x)=fdtr(dfn, dfd, x)``.
|
||
|
|
||
|
>>> from scipy.stats import f
|
||
|
>>> dfn, dfd = 1, 2
|
||
|
>>> x = 1
|
||
|
>>> fdtr_res = fdtr(dfn, dfd, x) # this will often be faster than below
|
||
|
>>> f_dist_res = f(dfn, dfd).cdf(x)
|
||
|
>>> fdtr_res == f_dist_res # test that results are equal
|
||
|
True
|
||
|
""")
|
||
|
|
||
|
add_newdoc("fdtrc",
|
||
|
r"""
|
||
|
fdtrc(dfn, dfd, x, out=None)
|
||
|
|
||
|
F survival function.
|
||
|
|
||
|
Returns the complemented F-distribution function (the integral of the
|
||
|
density from `x` to infinity).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
dfn : array_like
|
||
|
First parameter (positive float).
|
||
|
dfd : array_like
|
||
|
Second parameter (positive float).
|
||
|
x : array_like
|
||
|
Argument (nonnegative float).
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
y : scalar or ndarray
|
||
|
The complemented F-distribution function with parameters `dfn` and
|
||
|
`dfd` at `x`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
fdtr : F distribution cumulative distribution function
|
||
|
fdtri : F distribution inverse cumulative distribution function
|
||
|
scipy.stats.f : F distribution
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The regularized incomplete beta function is used, according to the
|
||
|
formula,
|
||
|
|
||
|
.. math::
|
||
|
F(d_n, d_d; x) = I_{d_d/(d_d + xd_n)}(d_d/2, d_n/2).
|
||
|
|
||
|
Wrapper for the Cephes [1]_ routine `fdtrc`. The F distribution is also
|
||
|
available as `scipy.stats.f`. Calling `fdtrc` directly can improve
|
||
|
performance compared to the ``sf`` method of `scipy.stats.f` (see last
|
||
|
example below).
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Cephes Mathematical Functions Library,
|
||
|
http://www.netlib.org/cephes/
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Calculate the function for ``dfn=1`` and ``dfd=2`` at ``x=1``.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import fdtrc
|
||
|
>>> fdtrc(1, 2, 1)
|
||
|
0.42264973081037427
|
||
|
|
||
|
Calculate the function at several points by providing a NumPy array for
|
||
|
`x`.
|
||
|
|
||
|
>>> x = np.array([0.5, 2., 3.])
|
||
|
>>> fdtrc(1, 2, x)
|
||
|
array([0.5527864 , 0.29289322, 0.22540333])
|
||
|
|
||
|
Plot the function for several parameter sets.
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> dfn_parameters = [1, 5, 10, 50]
|
||
|
>>> dfd_parameters = [1, 1, 2, 3]
|
||
|
>>> linestyles = ['solid', 'dashed', 'dotted', 'dashdot']
|
||
|
>>> parameters_list = list(zip(dfn_parameters, dfd_parameters,
|
||
|
... linestyles))
|
||
|
>>> x = np.linspace(0, 30, 1000)
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> for parameter_set in parameters_list:
|
||
|
... dfn, dfd, style = parameter_set
|
||
|
... fdtrc_vals = fdtrc(dfn, dfd, x)
|
||
|
... ax.plot(x, fdtrc_vals, label=rf"$d_n={dfn},\, d_d={dfd}$",
|
||
|
... ls=style)
|
||
|
>>> ax.legend()
|
||
|
>>> ax.set_xlabel("$x$")
|
||
|
>>> ax.set_title("F distribution survival function")
|
||
|
>>> plt.show()
|
||
|
|
||
|
The F distribution is also available as `scipy.stats.f`. Using `fdtrc`
|
||
|
directly can be much faster than calling the ``sf`` method of
|
||
|
`scipy.stats.f`, especially for small arrays or individual values.
|
||
|
To get the same results one must use the following parametrization:
|
||
|
``stats.f(dfn, dfd).sf(x)=fdtrc(dfn, dfd, x)``.
|
||
|
|
||
|
>>> from scipy.stats import f
|
||
|
>>> dfn, dfd = 1, 2
|
||
|
>>> x = 1
|
||
|
>>> fdtrc_res = fdtrc(dfn, dfd, x) # this will often be faster than below
|
||
|
>>> f_dist_res = f(dfn, dfd).sf(x)
|
||
|
>>> f_dist_res == fdtrc_res # test that results are equal
|
||
|
True
|
||
|
""")
|
||
|
|
||
|
add_newdoc("fdtri",
|
||
|
r"""
|
||
|
fdtri(dfn, dfd, p, out=None)
|
||
|
|
||
|
The `p`-th quantile of the F-distribution.
|
||
|
|
||
|
This function is the inverse of the F-distribution CDF, `fdtr`, returning
|
||
|
the `x` such that `fdtr(dfn, dfd, x) = p`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
dfn : array_like
|
||
|
First parameter (positive float).
|
||
|
dfd : array_like
|
||
|
Second parameter (positive float).
|
||
|
p : array_like
|
||
|
Cumulative probability, in [0, 1].
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
x : scalar or ndarray
|
||
|
The quantile corresponding to `p`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
fdtr : F distribution cumulative distribution function
|
||
|
fdtrc : F distribution survival function
|
||
|
scipy.stats.f : F distribution
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The computation is carried out using the relation to the inverse
|
||
|
regularized beta function, :math:`I^{-1}_x(a, b)`. Let
|
||
|
:math:`z = I^{-1}_p(d_d/2, d_n/2).` Then,
|
||
|
|
||
|
.. math::
|
||
|
x = \frac{d_d (1 - z)}{d_n z}.
|
||
|
|
||
|
If `p` is such that :math:`x < 0.5`, the following relation is used
|
||
|
instead for improved stability: let
|
||
|
:math:`z' = I^{-1}_{1 - p}(d_n/2, d_d/2).` Then,
|
||
|
|
||
|
.. math::
|
||
|
x = \frac{d_d z'}{d_n (1 - z')}.
|
||
|
|
||
|
Wrapper for the Cephes [1]_ routine `fdtri`.
|
||
|
|
||
|
The F distribution is also available as `scipy.stats.f`. Calling
|
||
|
`fdtri` directly can improve performance compared to the ``ppf``
|
||
|
method of `scipy.stats.f` (see last example below).
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Cephes Mathematical Functions Library,
|
||
|
http://www.netlib.org/cephes/
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
`fdtri` represents the inverse of the F distribution CDF which is
|
||
|
available as `fdtr`. Here, we calculate the CDF for ``df1=1``, ``df2=2``
|
||
|
at ``x=3``. `fdtri` then returns ``3`` given the same values for `df1`,
|
||
|
`df2` and the computed CDF value.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import fdtri, fdtr
|
||
|
>>> df1, df2 = 1, 2
|
||
|
>>> x = 3
|
||
|
>>> cdf_value = fdtr(df1, df2, x)
|
||
|
>>> fdtri(df1, df2, cdf_value)
|
||
|
3.000000000000006
|
||
|
|
||
|
Calculate the function at several points by providing a NumPy array for
|
||
|
`x`.
|
||
|
|
||
|
>>> x = np.array([0.1, 0.4, 0.7])
|
||
|
>>> fdtri(1, 2, x)
|
||
|
array([0.02020202, 0.38095238, 1.92156863])
|
||
|
|
||
|
Plot the function for several parameter sets.
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> dfn_parameters = [50, 10, 1, 50]
|
||
|
>>> dfd_parameters = [0.5, 1, 1, 5]
|
||
|
>>> linestyles = ['solid', 'dashed', 'dotted', 'dashdot']
|
||
|
>>> parameters_list = list(zip(dfn_parameters, dfd_parameters,
|
||
|
... linestyles))
|
||
|
>>> x = np.linspace(0, 1, 1000)
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> for parameter_set in parameters_list:
|
||
|
... dfn, dfd, style = parameter_set
|
||
|
... fdtri_vals = fdtri(dfn, dfd, x)
|
||
|
... ax.plot(x, fdtri_vals, label=rf"$d_n={dfn},\, d_d={dfd}$",
|
||
|
... ls=style)
|
||
|
>>> ax.legend()
|
||
|
>>> ax.set_xlabel("$x$")
|
||
|
>>> title = "F distribution inverse cumulative distribution function"
|
||
|
>>> ax.set_title(title)
|
||
|
>>> ax.set_ylim(0, 30)
|
||
|
>>> plt.show()
|
||
|
|
||
|
The F distribution is also available as `scipy.stats.f`. Using `fdtri`
|
||
|
directly can be much faster than calling the ``ppf`` method of
|
||
|
`scipy.stats.f`, especially for small arrays or individual values.
|
||
|
To get the same results one must use the following parametrization:
|
||
|
``stats.f(dfn, dfd).ppf(x)=fdtri(dfn, dfd, x)``.
|
||
|
|
||
|
>>> from scipy.stats import f
|
||
|
>>> dfn, dfd = 1, 2
|
||
|
>>> x = 0.7
|
||
|
>>> fdtri_res = fdtri(dfn, dfd, x) # this will often be faster than below
|
||
|
>>> f_dist_res = f(dfn, dfd).ppf(x)
|
||
|
>>> f_dist_res == fdtri_res # test that results are equal
|
||
|
True
|
||
|
""")
|
||
|
|
||
|
add_newdoc("fdtridfd",
|
||
|
"""
|
||
|
fdtridfd(dfn, p, x, out=None)
|
||
|
|
||
|
Inverse to `fdtr` vs dfd
|
||
|
|
||
|
Finds the F density argument dfd such that ``fdtr(dfn, dfd, x) == p``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
dfn : array_like
|
||
|
First parameter (positive float).
|
||
|
p : array_like
|
||
|
Cumulative probability, in [0, 1].
|
||
|
x : array_like
|
||
|
Argument (nonnegative float).
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
dfd : scalar or ndarray
|
||
|
`dfd` such that ``fdtr(dfn, dfd, x) == p``.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
fdtr : F distribution cumulative distribution function
|
||
|
fdtrc : F distribution survival function
|
||
|
fdtri : F distribution quantile function
|
||
|
scipy.stats.f : F distribution
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Compute the F distribution cumulative distribution function for one
|
||
|
parameter set.
|
||
|
|
||
|
>>> from scipy.special import fdtridfd, fdtr
|
||
|
>>> dfn, dfd, x = 10, 5, 2
|
||
|
>>> cdf_value = fdtr(dfn, dfd, x)
|
||
|
>>> cdf_value
|
||
|
0.7700248806501017
|
||
|
|
||
|
Verify that `fdtridfd` recovers the original value for `dfd`:
|
||
|
|
||
|
>>> fdtridfd(dfn, cdf_value, x)
|
||
|
5.0
|
||
|
""")
|
||
|
|
||
|
'''
|
||
|
commented out as fdtridfn seems to have bugs and is not in functions.json
|
||
|
see: https://github.com/scipy/scipy/pull/15622#discussion_r811440983
|
||
|
|
||
|
add_newdoc(
|
||
|
"fdtridfn",
|
||
|
"""
|
||
|
fdtridfn(p, dfd, x, out=None)
|
||
|
|
||
|
Inverse to `fdtr` vs dfn
|
||
|
|
||
|
finds the F density argument dfn such that ``fdtr(dfn, dfd, x) == p``.
|
||
|
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
p : array_like
|
||
|
Cumulative probability, in [0, 1].
|
||
|
dfd : array_like
|
||
|
Second parameter (positive float).
|
||
|
x : array_like
|
||
|
Argument (nonnegative float).
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
dfn : scalar or ndarray
|
||
|
`dfn` such that ``fdtr(dfn, dfd, x) == p``.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
fdtr, fdtrc, fdtri, fdtridfd
|
||
|
|
||
|
|
||
|
""")
|
||
|
'''
|
||
|
|
||
|
add_newdoc("fresnel",
|
||
|
r"""
|
||
|
fresnel(z, out=None)
|
||
|
|
||
|
Fresnel integrals.
|
||
|
|
||
|
The Fresnel integrals are defined as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
S(z) &= \int_0^z \sin(\pi t^2 /2) dt \\
|
||
|
C(z) &= \int_0^z \cos(\pi t^2 /2) dt.
|
||
|
|
||
|
See [dlmf]_ for details.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
z : array_like
|
||
|
Real or complex valued argument
|
||
|
out : 2-tuple of ndarrays, optional
|
||
|
Optional output arrays for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
S, C : 2-tuple of scalar or ndarray
|
||
|
Values of the Fresnel integrals
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
fresnel_zeros : zeros of the Fresnel integrals
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [dlmf] NIST Digital Library of Mathematical Functions
|
||
|
https://dlmf.nist.gov/7.2#iii
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> import scipy.special as sc
|
||
|
|
||
|
As z goes to infinity along the real axis, S and C converge to 0.5.
|
||
|
|
||
|
>>> S, C = sc.fresnel([0.1, 1, 10, 100, np.inf])
|
||
|
>>> S
|
||
|
array([0.00052359, 0.43825915, 0.46816998, 0.4968169 , 0.5 ])
|
||
|
>>> C
|
||
|
array([0.09999753, 0.7798934 , 0.49989869, 0.4999999 , 0.5 ])
|
||
|
|
||
|
They are related to the error function `erf`.
|
||
|
|
||
|
>>> z = np.array([1, 2, 3, 4])
|
||
|
>>> zeta = 0.5 * np.sqrt(np.pi) * (1 - 1j) * z
|
||
|
>>> S, C = sc.fresnel(z)
|
||
|
>>> C + 1j*S
|
||
|
array([0.7798934 +0.43825915j, 0.48825341+0.34341568j,
|
||
|
0.60572079+0.496313j , 0.49842603+0.42051575j])
|
||
|
>>> 0.5 * (1 + 1j) * sc.erf(zeta)
|
||
|
array([0.7798934 +0.43825915j, 0.48825341+0.34341568j,
|
||
|
0.60572079+0.496313j , 0.49842603+0.42051575j])
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("gamma",
|
||
|
r"""
|
||
|
gamma(z, out=None)
|
||
|
|
||
|
gamma function.
|
||
|
|
||
|
The gamma function is defined as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt
|
||
|
|
||
|
for :math:`\Re(z) > 0` and is extended to the rest of the complex
|
||
|
plane by analytic continuation. See [dlmf]_ for more details.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
z : array_like
|
||
|
Real or complex valued argument
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Values of the gamma function
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The gamma function is often referred to as the generalized
|
||
|
factorial since :math:`\Gamma(n + 1) = n!` for natural numbers
|
||
|
:math:`n`. More generally it satisfies the recurrence relation
|
||
|
:math:`\Gamma(z + 1) = z \cdot \Gamma(z)` for complex :math:`z`,
|
||
|
which, combined with the fact that :math:`\Gamma(1) = 1`, implies
|
||
|
the above identity for :math:`z = n`.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [dlmf] NIST Digital Library of Mathematical Functions
|
||
|
https://dlmf.nist.gov/5.2#E1
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import gamma, factorial
|
||
|
|
||
|
>>> gamma([0, 0.5, 1, 5])
|
||
|
array([ inf, 1.77245385, 1. , 24. ])
|
||
|
|
||
|
>>> z = 2.5 + 1j
|
||
|
>>> gamma(z)
|
||
|
(0.77476210455108352+0.70763120437959293j)
|
||
|
>>> gamma(z+1), z*gamma(z) # Recurrence property
|
||
|
((1.2292740569981171+2.5438401155000685j),
|
||
|
(1.2292740569981158+2.5438401155000658j))
|
||
|
|
||
|
>>> gamma(0.5)**2 # gamma(0.5) = sqrt(pi)
|
||
|
3.1415926535897927
|
||
|
|
||
|
Plot gamma(x) for real x
|
||
|
|
||
|
>>> x = np.linspace(-3.5, 5.5, 2251)
|
||
|
>>> y = gamma(x)
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> plt.plot(x, y, 'b', alpha=0.6, label='gamma(x)')
|
||
|
>>> k = np.arange(1, 7)
|
||
|
>>> plt.plot(k, factorial(k-1), 'k*', alpha=0.6,
|
||
|
... label='(x-1)!, x = 1, 2, ...')
|
||
|
>>> plt.xlim(-3.5, 5.5)
|
||
|
>>> plt.ylim(-10, 25)
|
||
|
>>> plt.grid()
|
||
|
>>> plt.xlabel('x')
|
||
|
>>> plt.legend(loc='lower right')
|
||
|
>>> plt.show()
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("gammainc",
|
||
|
r"""
|
||
|
gammainc(a, x, out=None)
|
||
|
|
||
|
Regularized lower incomplete gamma function.
|
||
|
|
||
|
It is defined as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
P(a, x) = \frac{1}{\Gamma(a)} \int_0^x t^{a - 1}e^{-t} dt
|
||
|
|
||
|
for :math:`a > 0` and :math:`x \geq 0`. See [dlmf]_ for details.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
a : array_like
|
||
|
Positive parameter
|
||
|
x : array_like
|
||
|
Nonnegative argument
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Values of the lower incomplete gamma function
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
gammaincc : regularized upper incomplete gamma function
|
||
|
gammaincinv : inverse of the regularized lower incomplete gamma function
|
||
|
gammainccinv : inverse of the regularized upper incomplete gamma function
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The function satisfies the relation ``gammainc(a, x) +
|
||
|
gammaincc(a, x) = 1`` where `gammaincc` is the regularized upper
|
||
|
incomplete gamma function.
|
||
|
|
||
|
The implementation largely follows that of [boost]_.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [dlmf] NIST Digital Library of Mathematical functions
|
||
|
https://dlmf.nist.gov/8.2#E4
|
||
|
.. [boost] Maddock et. al., "Incomplete Gamma Functions",
|
||
|
https://www.boost.org/doc/libs/1_61_0/libs/math/doc/html/math_toolkit/sf_gamma/igamma.html
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import scipy.special as sc
|
||
|
|
||
|
It is the CDF of the gamma distribution, so it starts at 0 and
|
||
|
monotonically increases to 1.
|
||
|
|
||
|
>>> sc.gammainc(0.5, [0, 1, 10, 100])
|
||
|
array([0. , 0.84270079, 0.99999226, 1. ])
|
||
|
|
||
|
It is equal to one minus the upper incomplete gamma function.
|
||
|
|
||
|
>>> a, x = 0.5, 0.4
|
||
|
>>> sc.gammainc(a, x)
|
||
|
0.6289066304773024
|
||
|
>>> 1 - sc.gammaincc(a, x)
|
||
|
0.6289066304773024
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("gammaincc",
|
||
|
r"""
|
||
|
gammaincc(a, x, out=None)
|
||
|
|
||
|
Regularized upper incomplete gamma function.
|
||
|
|
||
|
It is defined as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
Q(a, x) = \frac{1}{\Gamma(a)} \int_x^\infty t^{a - 1}e^{-t} dt
|
||
|
|
||
|
for :math:`a > 0` and :math:`x \geq 0`. See [dlmf]_ for details.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
a : array_like
|
||
|
Positive parameter
|
||
|
x : array_like
|
||
|
Nonnegative argument
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Values of the upper incomplete gamma function
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
gammainc : regularized lower incomplete gamma function
|
||
|
gammaincinv : inverse of the regularized lower incomplete gamma function
|
||
|
gammainccinv : inverse of the regularized upper incomplete gamma function
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The function satisfies the relation ``gammainc(a, x) +
|
||
|
gammaincc(a, x) = 1`` where `gammainc` is the regularized lower
|
||
|
incomplete gamma function.
|
||
|
|
||
|
The implementation largely follows that of [boost]_.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [dlmf] NIST Digital Library of Mathematical functions
|
||
|
https://dlmf.nist.gov/8.2#E4
|
||
|
.. [boost] Maddock et. al., "Incomplete Gamma Functions",
|
||
|
https://www.boost.org/doc/libs/1_61_0/libs/math/doc/html/math_toolkit/sf_gamma/igamma.html
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import scipy.special as sc
|
||
|
|
||
|
It is the survival function of the gamma distribution, so it
|
||
|
starts at 1 and monotonically decreases to 0.
|
||
|
|
||
|
>>> sc.gammaincc(0.5, [0, 1, 10, 100, 1000])
|
||
|
array([1.00000000e+00, 1.57299207e-01, 7.74421643e-06, 2.08848758e-45,
|
||
|
0.00000000e+00])
|
||
|
|
||
|
It is equal to one minus the lower incomplete gamma function.
|
||
|
|
||
|
>>> a, x = 0.5, 0.4
|
||
|
>>> sc.gammaincc(a, x)
|
||
|
0.37109336952269756
|
||
|
>>> 1 - sc.gammainc(a, x)
|
||
|
0.37109336952269756
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("gammainccinv",
|
||
|
"""
|
||
|
gammainccinv(a, y, out=None)
|
||
|
|
||
|
Inverse of the regularized upper incomplete gamma function.
|
||
|
|
||
|
Given an input :math:`y` between 0 and 1, returns :math:`x` such
|
||
|
that :math:`y = Q(a, x)`. Here :math:`Q` is the regularized upper
|
||
|
incomplete gamma function; see `gammaincc`. This is well-defined
|
||
|
because the upper incomplete gamma function is monotonic as can
|
||
|
be seen from its definition in [dlmf]_.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
a : array_like
|
||
|
Positive parameter
|
||
|
y : array_like
|
||
|
Argument between 0 and 1, inclusive
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Values of the inverse of the upper incomplete gamma function
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
gammaincc : regularized upper incomplete gamma function
|
||
|
gammainc : regularized lower incomplete gamma function
|
||
|
gammaincinv : inverse of the regularized lower incomplete gamma function
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [dlmf] NIST Digital Library of Mathematical Functions
|
||
|
https://dlmf.nist.gov/8.2#E4
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import scipy.special as sc
|
||
|
|
||
|
It starts at infinity and monotonically decreases to 0.
|
||
|
|
||
|
>>> sc.gammainccinv(0.5, [0, 0.1, 0.5, 1])
|
||
|
array([ inf, 1.35277173, 0.22746821, 0. ])
|
||
|
|
||
|
It inverts the upper incomplete gamma function.
|
||
|
|
||
|
>>> a, x = 0.5, [0, 0.1, 0.5, 1]
|
||
|
>>> sc.gammaincc(a, sc.gammainccinv(a, x))
|
||
|
array([0. , 0.1, 0.5, 1. ])
|
||
|
|
||
|
>>> a, x = 0.5, [0, 10, 50]
|
||
|
>>> sc.gammainccinv(a, sc.gammaincc(a, x))
|
||
|
array([ 0., 10., 50.])
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("gammaincinv",
|
||
|
"""
|
||
|
gammaincinv(a, y, out=None)
|
||
|
|
||
|
Inverse to the regularized lower incomplete gamma function.
|
||
|
|
||
|
Given an input :math:`y` between 0 and 1, returns :math:`x` such
|
||
|
that :math:`y = P(a, x)`. Here :math:`P` is the regularized lower
|
||
|
incomplete gamma function; see `gammainc`. This is well-defined
|
||
|
because the lower incomplete gamma function is monotonic as can be
|
||
|
seen from its definition in [dlmf]_.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
a : array_like
|
||
|
Positive parameter
|
||
|
y : array_like
|
||
|
Parameter between 0 and 1, inclusive
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Values of the inverse of the lower incomplete gamma function
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
gammainc : regularized lower incomplete gamma function
|
||
|
gammaincc : regularized upper incomplete gamma function
|
||
|
gammainccinv : inverse of the regularized upper incomplete gamma function
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [dlmf] NIST Digital Library of Mathematical Functions
|
||
|
https://dlmf.nist.gov/8.2#E4
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import scipy.special as sc
|
||
|
|
||
|
It starts at 0 and monotonically increases to infinity.
|
||
|
|
||
|
>>> sc.gammaincinv(0.5, [0, 0.1 ,0.5, 1])
|
||
|
array([0. , 0.00789539, 0.22746821, inf])
|
||
|
|
||
|
It inverts the lower incomplete gamma function.
|
||
|
|
||
|
>>> a, x = 0.5, [0, 0.1, 0.5, 1]
|
||
|
>>> sc.gammainc(a, sc.gammaincinv(a, x))
|
||
|
array([0. , 0.1, 0.5, 1. ])
|
||
|
|
||
|
>>> a, x = 0.5, [0, 10, 25]
|
||
|
>>> sc.gammaincinv(a, sc.gammainc(a, x))
|
||
|
array([ 0. , 10. , 25.00001465])
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("gammaln",
|
||
|
r"""
|
||
|
gammaln(x, out=None)
|
||
|
|
||
|
Logarithm of the absolute value of the gamma function.
|
||
|
|
||
|
Defined as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\ln(\lvert\Gamma(x)\rvert)
|
||
|
|
||
|
where :math:`\Gamma` is the gamma function. For more details on
|
||
|
the gamma function, see [dlmf]_.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Real argument
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Values of the log of the absolute value of gamma
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
gammasgn : sign of the gamma function
|
||
|
loggamma : principal branch of the logarithm of the gamma function
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
It is the same function as the Python standard library function
|
||
|
:func:`math.lgamma`.
|
||
|
|
||
|
When used in conjunction with `gammasgn`, this function is useful
|
||
|
for working in logspace on the real axis without having to deal
|
||
|
with complex numbers via the relation ``exp(gammaln(x)) =
|
||
|
gammasgn(x) * gamma(x)``.
|
||
|
|
||
|
For complex-valued log-gamma, use `loggamma` instead of `gammaln`.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [dlmf] NIST Digital Library of Mathematical Functions
|
||
|
https://dlmf.nist.gov/5
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> import scipy.special as sc
|
||
|
|
||
|
It has two positive zeros.
|
||
|
|
||
|
>>> sc.gammaln([1, 2])
|
||
|
array([0., 0.])
|
||
|
|
||
|
It has poles at nonpositive integers.
|
||
|
|
||
|
>>> sc.gammaln([0, -1, -2, -3, -4])
|
||
|
array([inf, inf, inf, inf, inf])
|
||
|
|
||
|
It asymptotically approaches ``x * log(x)`` (Stirling's formula).
|
||
|
|
||
|
>>> x = np.array([1e10, 1e20, 1e40, 1e80])
|
||
|
>>> sc.gammaln(x)
|
||
|
array([2.20258509e+11, 4.50517019e+21, 9.11034037e+41, 1.83206807e+82])
|
||
|
>>> x * np.log(x)
|
||
|
array([2.30258509e+11, 4.60517019e+21, 9.21034037e+41, 1.84206807e+82])
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("gammasgn",
|
||
|
r"""
|
||
|
gammasgn(x, out=None)
|
||
|
|
||
|
Sign of the gamma function.
|
||
|
|
||
|
It is defined as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\text{gammasgn}(x) =
|
||
|
\begin{cases}
|
||
|
+1 & \Gamma(x) > 0 \\
|
||
|
-1 & \Gamma(x) < 0
|
||
|
\end{cases}
|
||
|
|
||
|
where :math:`\Gamma` is the gamma function; see `gamma`. This
|
||
|
definition is complete since the gamma function is never zero;
|
||
|
see the discussion after [dlmf]_.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Real argument
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Sign of the gamma function
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
gamma : the gamma function
|
||
|
gammaln : log of the absolute value of the gamma function
|
||
|
loggamma : analytic continuation of the log of the gamma function
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The gamma function can be computed as ``gammasgn(x) *
|
||
|
np.exp(gammaln(x))``.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [dlmf] NIST Digital Library of Mathematical Functions
|
||
|
https://dlmf.nist.gov/5.2#E1
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> import scipy.special as sc
|
||
|
|
||
|
It is 1 for `x > 0`.
|
||
|
|
||
|
>>> sc.gammasgn([1, 2, 3, 4])
|
||
|
array([1., 1., 1., 1.])
|
||
|
|
||
|
It alternates between -1 and 1 for negative integers.
|
||
|
|
||
|
>>> sc.gammasgn([-0.5, -1.5, -2.5, -3.5])
|
||
|
array([-1., 1., -1., 1.])
|
||
|
|
||
|
It can be used to compute the gamma function.
|
||
|
|
||
|
>>> x = [1.5, 0.5, -0.5, -1.5]
|
||
|
>>> sc.gammasgn(x) * np.exp(sc.gammaln(x))
|
||
|
array([ 0.88622693, 1.77245385, -3.5449077 , 2.3632718 ])
|
||
|
>>> sc.gamma(x)
|
||
|
array([ 0.88622693, 1.77245385, -3.5449077 , 2.3632718 ])
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("gdtr",
|
||
|
r"""
|
||
|
gdtr(a, b, x, out=None)
|
||
|
|
||
|
Gamma distribution cumulative distribution function.
|
||
|
|
||
|
Returns the integral from zero to `x` of the gamma probability density
|
||
|
function,
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
F = \int_0^x \frac{a^b}{\Gamma(b)} t^{b-1} e^{-at}\,dt,
|
||
|
|
||
|
where :math:`\Gamma` is the gamma function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
a : array_like
|
||
|
The rate parameter of the gamma distribution, sometimes denoted
|
||
|
:math:`\beta` (float). It is also the reciprocal of the scale
|
||
|
parameter :math:`\theta`.
|
||
|
b : array_like
|
||
|
The shape parameter of the gamma distribution, sometimes denoted
|
||
|
:math:`\alpha` (float).
|
||
|
x : array_like
|
||
|
The quantile (upper limit of integration; float).
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
F : scalar or ndarray
|
||
|
The CDF of the gamma distribution with parameters `a` and `b`
|
||
|
evaluated at `x`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
gdtrc : 1 - CDF of the gamma distribution.
|
||
|
scipy.stats.gamma: Gamma distribution
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The evaluation is carried out using the relation to the incomplete gamma
|
||
|
integral (regularized gamma function).
|
||
|
|
||
|
Wrapper for the Cephes [1]_ routine `gdtr`. Calling `gdtr` directly can
|
||
|
improve performance compared to the ``cdf`` method of `scipy.stats.gamma`
|
||
|
(see last example below).
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Cephes Mathematical Functions Library,
|
||
|
http://www.netlib.org/cephes/
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Compute the function for ``a=1``, ``b=2`` at ``x=5``.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import gdtr
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> gdtr(1., 2., 5.)
|
||
|
0.9595723180054873
|
||
|
|
||
|
Compute the function for ``a=1`` and ``b=2`` at several points by
|
||
|
providing a NumPy array for `x`.
|
||
|
|
||
|
>>> xvalues = np.array([1., 2., 3., 4])
|
||
|
>>> gdtr(1., 1., xvalues)
|
||
|
array([0.63212056, 0.86466472, 0.95021293, 0.98168436])
|
||
|
|
||
|
`gdtr` can evaluate different parameter sets by providing arrays with
|
||
|
broadcasting compatible shapes for `a`, `b` and `x`. Here we compute the
|
||
|
function for three different `a` at four positions `x` and ``b=3``,
|
||
|
resulting in a 3x4 array.
|
||
|
|
||
|
>>> a = np.array([[0.5], [1.5], [2.5]])
|
||
|
>>> x = np.array([1., 2., 3., 4])
|
||
|
>>> a.shape, x.shape
|
||
|
((3, 1), (4,))
|
||
|
|
||
|
>>> gdtr(a, 3., x)
|
||
|
array([[0.01438768, 0.0803014 , 0.19115317, 0.32332358],
|
||
|
[0.19115317, 0.57680992, 0.82642193, 0.9380312 ],
|
||
|
[0.45618688, 0.87534798, 0.97974328, 0.9972306 ]])
|
||
|
|
||
|
Plot the function for four different parameter sets.
|
||
|
|
||
|
>>> a_parameters = [0.3, 1, 2, 6]
|
||
|
>>> b_parameters = [2, 10, 15, 20]
|
||
|
>>> linestyles = ['solid', 'dashed', 'dotted', 'dashdot']
|
||
|
>>> parameters_list = list(zip(a_parameters, b_parameters, linestyles))
|
||
|
>>> x = np.linspace(0, 30, 1000)
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> for parameter_set in parameters_list:
|
||
|
... a, b, style = parameter_set
|
||
|
... gdtr_vals = gdtr(a, b, x)
|
||
|
... ax.plot(x, gdtr_vals, label=fr"$a= {a},\, b={b}$", ls=style)
|
||
|
>>> ax.legend()
|
||
|
>>> ax.set_xlabel("$x$")
|
||
|
>>> ax.set_title("Gamma distribution cumulative distribution function")
|
||
|
>>> plt.show()
|
||
|
|
||
|
The gamma distribution is also available as `scipy.stats.gamma`. Using
|
||
|
`gdtr` directly can be much faster than calling the ``cdf`` method of
|
||
|
`scipy.stats.gamma`, especially for small arrays or individual values.
|
||
|
To get the same results one must use the following parametrization:
|
||
|
``stats.gamma(b, scale=1/a).cdf(x)=gdtr(a, b, x)``.
|
||
|
|
||
|
>>> from scipy.stats import gamma
|
||
|
>>> a = 2.
|
||
|
>>> b = 3
|
||
|
>>> x = 1.
|
||
|
>>> gdtr_result = gdtr(a, b, x) # this will often be faster than below
|
||
|
>>> gamma_dist_result = gamma(b, scale=1/a).cdf(x)
|
||
|
>>> gdtr_result == gamma_dist_result # test that results are equal
|
||
|
True
|
||
|
""")
|
||
|
|
||
|
add_newdoc("gdtrc",
|
||
|
r"""
|
||
|
gdtrc(a, b, x, out=None)
|
||
|
|
||
|
Gamma distribution survival function.
|
||
|
|
||
|
Integral from `x` to infinity of the gamma probability density function,
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
F = \int_x^\infty \frac{a^b}{\Gamma(b)} t^{b-1} e^{-at}\,dt,
|
||
|
|
||
|
where :math:`\Gamma` is the gamma function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
a : array_like
|
||
|
The rate parameter of the gamma distribution, sometimes denoted
|
||
|
:math:`\beta` (float). It is also the reciprocal of the scale
|
||
|
parameter :math:`\theta`.
|
||
|
b : array_like
|
||
|
The shape parameter of the gamma distribution, sometimes denoted
|
||
|
:math:`\alpha` (float).
|
||
|
x : array_like
|
||
|
The quantile (lower limit of integration; float).
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
F : scalar or ndarray
|
||
|
The survival function of the gamma distribution with parameters `a`
|
||
|
and `b` evaluated at `x`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
gdtr: Gamma distribution cumulative distribution function
|
||
|
scipy.stats.gamma: Gamma distribution
|
||
|
gdtrix
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The evaluation is carried out using the relation to the incomplete gamma
|
||
|
integral (regularized gamma function).
|
||
|
|
||
|
Wrapper for the Cephes [1]_ routine `gdtrc`. Calling `gdtrc` directly can
|
||
|
improve performance compared to the ``sf`` method of `scipy.stats.gamma`
|
||
|
(see last example below).
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Cephes Mathematical Functions Library,
|
||
|
http://www.netlib.org/cephes/
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Compute the function for ``a=1`` and ``b=2`` at ``x=5``.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import gdtrc
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> gdtrc(1., 2., 5.)
|
||
|
0.04042768199451279
|
||
|
|
||
|
Compute the function for ``a=1``, ``b=2`` at several points by providing
|
||
|
a NumPy array for `x`.
|
||
|
|
||
|
>>> xvalues = np.array([1., 2., 3., 4])
|
||
|
>>> gdtrc(1., 1., xvalues)
|
||
|
array([0.36787944, 0.13533528, 0.04978707, 0.01831564])
|
||
|
|
||
|
`gdtrc` can evaluate different parameter sets by providing arrays with
|
||
|
broadcasting compatible shapes for `a`, `b` and `x`. Here we compute the
|
||
|
function for three different `a` at four positions `x` and ``b=3``,
|
||
|
resulting in a 3x4 array.
|
||
|
|
||
|
>>> a = np.array([[0.5], [1.5], [2.5]])
|
||
|
>>> x = np.array([1., 2., 3., 4])
|
||
|
>>> a.shape, x.shape
|
||
|
((3, 1), (4,))
|
||
|
|
||
|
>>> gdtrc(a, 3., x)
|
||
|
array([[0.98561232, 0.9196986 , 0.80884683, 0.67667642],
|
||
|
[0.80884683, 0.42319008, 0.17357807, 0.0619688 ],
|
||
|
[0.54381312, 0.12465202, 0.02025672, 0.0027694 ]])
|
||
|
|
||
|
Plot the function for four different parameter sets.
|
||
|
|
||
|
>>> a_parameters = [0.3, 1, 2, 6]
|
||
|
>>> b_parameters = [2, 10, 15, 20]
|
||
|
>>> linestyles = ['solid', 'dashed', 'dotted', 'dashdot']
|
||
|
>>> parameters_list = list(zip(a_parameters, b_parameters, linestyles))
|
||
|
>>> x = np.linspace(0, 30, 1000)
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> for parameter_set in parameters_list:
|
||
|
... a, b, style = parameter_set
|
||
|
... gdtrc_vals = gdtrc(a, b, x)
|
||
|
... ax.plot(x, gdtrc_vals, label=fr"$a= {a},\, b={b}$", ls=style)
|
||
|
>>> ax.legend()
|
||
|
>>> ax.set_xlabel("$x$")
|
||
|
>>> ax.set_title("Gamma distribution survival function")
|
||
|
>>> plt.show()
|
||
|
|
||
|
The gamma distribution is also available as `scipy.stats.gamma`.
|
||
|
Using `gdtrc` directly can be much faster than calling the ``sf`` method
|
||
|
of `scipy.stats.gamma`, especially for small arrays or individual
|
||
|
values. To get the same results one must use the following parametrization:
|
||
|
``stats.gamma(b, scale=1/a).sf(x)=gdtrc(a, b, x)``.
|
||
|
|
||
|
>>> from scipy.stats import gamma
|
||
|
>>> a = 2
|
||
|
>>> b = 3
|
||
|
>>> x = 1.
|
||
|
>>> gdtrc_result = gdtrc(a, b, x) # this will often be faster than below
|
||
|
>>> gamma_dist_result = gamma(b, scale=1/a).sf(x)
|
||
|
>>> gdtrc_result == gamma_dist_result # test that results are equal
|
||
|
True
|
||
|
""")
|
||
|
|
||
|
add_newdoc("gdtria",
|
||
|
"""
|
||
|
gdtria(p, b, x, out=None)
|
||
|
|
||
|
Inverse of `gdtr` vs a.
|
||
|
|
||
|
Returns the inverse with respect to the parameter `a` of ``p =
|
||
|
gdtr(a, b, x)``, the cumulative distribution function of the gamma
|
||
|
distribution.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
p : array_like
|
||
|
Probability values.
|
||
|
b : array_like
|
||
|
`b` parameter values of `gdtr(a, b, x)`. `b` is the "shape" parameter
|
||
|
of the gamma distribution.
|
||
|
x : array_like
|
||
|
Nonnegative real values, from the domain of the gamma distribution.
|
||
|
out : ndarray, optional
|
||
|
If a fourth argument is given, it must be a numpy.ndarray whose size
|
||
|
matches the broadcast result of `a`, `b` and `x`. `out` is then the
|
||
|
array returned by the function.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
a : scalar or ndarray
|
||
|
Values of the `a` parameter such that `p = gdtr(a, b, x)`. `1/a`
|
||
|
is the "scale" parameter of the gamma distribution.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
gdtr : CDF of the gamma distribution.
|
||
|
gdtrib : Inverse with respect to `b` of `gdtr(a, b, x)`.
|
||
|
gdtrix : Inverse with respect to `x` of `gdtr(a, b, x)`.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Wrapper for the CDFLIB [1]_ Fortran routine `cdfgam`.
|
||
|
|
||
|
The cumulative distribution function `p` is computed using a routine by
|
||
|
DiDinato and Morris [2]_. Computation of `a` involves a search for a value
|
||
|
that produces the desired value of `p`. The search relies on the
|
||
|
monotonicity of `p` with `a`.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Barry Brown, James Lovato, and Kathy Russell,
|
||
|
CDFLIB: Library of Fortran Routines for Cumulative Distribution
|
||
|
Functions, Inverses, and Other Parameters.
|
||
|
.. [2] DiDinato, A. R. and Morris, A. H.,
|
||
|
Computation of the incomplete gamma function ratios and their
|
||
|
inverse. ACM Trans. Math. Softw. 12 (1986), 377-393.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
First evaluate `gdtr`.
|
||
|
|
||
|
>>> from scipy.special import gdtr, gdtria
|
||
|
>>> p = gdtr(1.2, 3.4, 5.6)
|
||
|
>>> print(p)
|
||
|
0.94378087442
|
||
|
|
||
|
Verify the inverse.
|
||
|
|
||
|
>>> gdtria(p, 3.4, 5.6)
|
||
|
1.2
|
||
|
""")
|
||
|
|
||
|
add_newdoc("gdtrib",
|
||
|
"""
|
||
|
gdtrib(a, p, x, out=None)
|
||
|
|
||
|
Inverse of `gdtr` vs b.
|
||
|
|
||
|
Returns the inverse with respect to the parameter `b` of ``p =
|
||
|
gdtr(a, b, x)``, the cumulative distribution function of the gamma
|
||
|
distribution.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
a : array_like
|
||
|
`a` parameter values of `gdtr(a, b, x)`. `1/a` is the "scale"
|
||
|
parameter of the gamma distribution.
|
||
|
p : array_like
|
||
|
Probability values.
|
||
|
x : array_like
|
||
|
Nonnegative real values, from the domain of the gamma distribution.
|
||
|
out : ndarray, optional
|
||
|
If a fourth argument is given, it must be a numpy.ndarray whose size
|
||
|
matches the broadcast result of `a`, `b` and `x`. `out` is then the
|
||
|
array returned by the function.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
b : scalar or ndarray
|
||
|
Values of the `b` parameter such that `p = gdtr(a, b, x)`. `b` is
|
||
|
the "shape" parameter of the gamma distribution.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
gdtr : CDF of the gamma distribution.
|
||
|
gdtria : Inverse with respect to `a` of `gdtr(a, b, x)`.
|
||
|
gdtrix : Inverse with respect to `x` of `gdtr(a, b, x)`.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Wrapper for the CDFLIB [1]_ Fortran routine `cdfgam`.
|
||
|
|
||
|
The cumulative distribution function `p` is computed using a routine by
|
||
|
DiDinato and Morris [2]_. Computation of `b` involves a search for a value
|
||
|
that produces the desired value of `p`. The search relies on the
|
||
|
monotonicity of `p` with `b`.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Barry Brown, James Lovato, and Kathy Russell,
|
||
|
CDFLIB: Library of Fortran Routines for Cumulative Distribution
|
||
|
Functions, Inverses, and Other Parameters.
|
||
|
.. [2] DiDinato, A. R. and Morris, A. H.,
|
||
|
Computation of the incomplete gamma function ratios and their
|
||
|
inverse. ACM Trans. Math. Softw. 12 (1986), 377-393.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
First evaluate `gdtr`.
|
||
|
|
||
|
>>> from scipy.special import gdtr, gdtrib
|
||
|
>>> p = gdtr(1.2, 3.4, 5.6)
|
||
|
>>> print(p)
|
||
|
0.94378087442
|
||
|
|
||
|
Verify the inverse.
|
||
|
|
||
|
>>> gdtrib(1.2, p, 5.6)
|
||
|
3.3999999999723882
|
||
|
""")
|
||
|
|
||
|
add_newdoc("gdtrix",
|
||
|
"""
|
||
|
gdtrix(a, b, p, out=None)
|
||
|
|
||
|
Inverse of `gdtr` vs x.
|
||
|
|
||
|
Returns the inverse with respect to the parameter `x` of ``p =
|
||
|
gdtr(a, b, x)``, the cumulative distribution function of the gamma
|
||
|
distribution. This is also known as the pth quantile of the
|
||
|
distribution.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
a : array_like
|
||
|
`a` parameter values of `gdtr(a, b, x)`. `1/a` is the "scale"
|
||
|
parameter of the gamma distribution.
|
||
|
b : array_like
|
||
|
`b` parameter values of `gdtr(a, b, x)`. `b` is the "shape" parameter
|
||
|
of the gamma distribution.
|
||
|
p : array_like
|
||
|
Probability values.
|
||
|
out : ndarray, optional
|
||
|
If a fourth argument is given, it must be a numpy.ndarray whose size
|
||
|
matches the broadcast result of `a`, `b` and `x`. `out` is then the
|
||
|
array returned by the function.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
x : scalar or ndarray
|
||
|
Values of the `x` parameter such that `p = gdtr(a, b, x)`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
gdtr : CDF of the gamma distribution.
|
||
|
gdtria : Inverse with respect to `a` of `gdtr(a, b, x)`.
|
||
|
gdtrib : Inverse with respect to `b` of `gdtr(a, b, x)`.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Wrapper for the CDFLIB [1]_ Fortran routine `cdfgam`.
|
||
|
|
||
|
The cumulative distribution function `p` is computed using a routine by
|
||
|
DiDinato and Morris [2]_. Computation of `x` involves a search for a value
|
||
|
that produces the desired value of `p`. The search relies on the
|
||
|
monotonicity of `p` with `x`.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Barry Brown, James Lovato, and Kathy Russell,
|
||
|
CDFLIB: Library of Fortran Routines for Cumulative Distribution
|
||
|
Functions, Inverses, and Other Parameters.
|
||
|
.. [2] DiDinato, A. R. and Morris, A. H.,
|
||
|
Computation of the incomplete gamma function ratios and their
|
||
|
inverse. ACM Trans. Math. Softw. 12 (1986), 377-393.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
First evaluate `gdtr`.
|
||
|
|
||
|
>>> from scipy.special import gdtr, gdtrix
|
||
|
>>> p = gdtr(1.2, 3.4, 5.6)
|
||
|
>>> print(p)
|
||
|
0.94378087442
|
||
|
|
||
|
Verify the inverse.
|
||
|
|
||
|
>>> gdtrix(1.2, 3.4, p)
|
||
|
5.5999999999999996
|
||
|
""")
|
||
|
|
||
|
add_newdoc("hankel1",
|
||
|
r"""
|
||
|
hankel1(v, z, out=None)
|
||
|
|
||
|
Hankel function of the first kind
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
v : array_like
|
||
|
Order (float).
|
||
|
z : array_like
|
||
|
Argument (float or complex).
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Values of the Hankel function of the first kind.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
hankel1e : ndarray
|
||
|
This function with leading exponential behavior stripped off.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
A wrapper for the AMOS [1]_ routine `zbesh`, which carries out the
|
||
|
computation using the relation,
|
||
|
|
||
|
.. math:: H^{(1)}_v(z) =
|
||
|
\frac{2}{\imath\pi} \exp(-\imath \pi v/2) K_v(z \exp(-\imath\pi/2))
|
||
|
|
||
|
where :math:`K_v` is the modified Bessel function of the second kind.
|
||
|
For negative orders, the relation
|
||
|
|
||
|
.. math:: H^{(1)}_{-v}(z) = H^{(1)}_v(z) \exp(\imath\pi v)
|
||
|
|
||
|
is used.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Donald E. Amos, "AMOS, A Portable Package for Bessel Functions
|
||
|
of a Complex Argument and Nonnegative Order",
|
||
|
http://netlib.org/amos/
|
||
|
""")
|
||
|
|
||
|
add_newdoc("hankel1e",
|
||
|
r"""
|
||
|
hankel1e(v, z, out=None)
|
||
|
|
||
|
Exponentially scaled Hankel function of the first kind
|
||
|
|
||
|
Defined as::
|
||
|
|
||
|
hankel1e(v, z) = hankel1(v, z) * exp(-1j * z)
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
v : array_like
|
||
|
Order (float).
|
||
|
z : array_like
|
||
|
Argument (float or complex).
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Values of the exponentially scaled Hankel function.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
A wrapper for the AMOS [1]_ routine `zbesh`, which carries out the
|
||
|
computation using the relation,
|
||
|
|
||
|
.. math:: H^{(1)}_v(z) =
|
||
|
\frac{2}{\imath\pi} \exp(-\imath \pi v/2) K_v(z \exp(-\imath\pi/2))
|
||
|
|
||
|
where :math:`K_v` is the modified Bessel function of the second kind.
|
||
|
For negative orders, the relation
|
||
|
|
||
|
.. math:: H^{(1)}_{-v}(z) = H^{(1)}_v(z) \exp(\imath\pi v)
|
||
|
|
||
|
is used.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Donald E. Amos, "AMOS, A Portable Package for Bessel Functions
|
||
|
of a Complex Argument and Nonnegative Order",
|
||
|
http://netlib.org/amos/
|
||
|
""")
|
||
|
|
||
|
add_newdoc("hankel2",
|
||
|
r"""
|
||
|
hankel2(v, z, out=None)
|
||
|
|
||
|
Hankel function of the second kind
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
v : array_like
|
||
|
Order (float).
|
||
|
z : array_like
|
||
|
Argument (float or complex).
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Values of the Hankel function of the second kind.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
hankel2e : this function with leading exponential behavior stripped off.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
A wrapper for the AMOS [1]_ routine `zbesh`, which carries out the
|
||
|
computation using the relation,
|
||
|
|
||
|
.. math:: H^{(2)}_v(z) =
|
||
|
-\frac{2}{\imath\pi} \exp(\imath \pi v/2) K_v(z \exp(\imath\pi/2))
|
||
|
|
||
|
where :math:`K_v` is the modified Bessel function of the second kind.
|
||
|
For negative orders, the relation
|
||
|
|
||
|
.. math:: H^{(2)}_{-v}(z) = H^{(2)}_v(z) \exp(-\imath\pi v)
|
||
|
|
||
|
is used.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Donald E. Amos, "AMOS, A Portable Package for Bessel Functions
|
||
|
of a Complex Argument and Nonnegative Order",
|
||
|
http://netlib.org/amos/
|
||
|
""")
|
||
|
|
||
|
add_newdoc("hankel2e",
|
||
|
r"""
|
||
|
hankel2e(v, z, out=None)
|
||
|
|
||
|
Exponentially scaled Hankel function of the second kind
|
||
|
|
||
|
Defined as::
|
||
|
|
||
|
hankel2e(v, z) = hankel2(v, z) * exp(1j * z)
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
v : array_like
|
||
|
Order (float).
|
||
|
z : array_like
|
||
|
Argument (float or complex).
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Values of the exponentially scaled Hankel function of the second kind.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
A wrapper for the AMOS [1]_ routine `zbesh`, which carries out the
|
||
|
computation using the relation,
|
||
|
|
||
|
.. math:: H^{(2)}_v(z) = -\frac{2}{\imath\pi}
|
||
|
\exp(\frac{\imath \pi v}{2}) K_v(z exp(\frac{\imath\pi}{2}))
|
||
|
|
||
|
where :math:`K_v` is the modified Bessel function of the second kind.
|
||
|
For negative orders, the relation
|
||
|
|
||
|
.. math:: H^{(2)}_{-v}(z) = H^{(2)}_v(z) \exp(-\imath\pi v)
|
||
|
|
||
|
is used.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Donald E. Amos, "AMOS, A Portable Package for Bessel Functions
|
||
|
of a Complex Argument and Nonnegative Order",
|
||
|
http://netlib.org/amos/
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("huber",
|
||
|
r"""
|
||
|
huber(delta, r, out=None)
|
||
|
|
||
|
Huber loss function.
|
||
|
|
||
|
.. math:: \text{huber}(\delta, r) = \begin{cases} \infty & \delta < 0 \\
|
||
|
\frac{1}{2}r^2 & 0 \le \delta, | r | \le \delta \\
|
||
|
\delta ( |r| - \frac{1}{2}\delta ) & \text{otherwise} \end{cases}
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
delta : ndarray
|
||
|
Input array, indicating the quadratic vs. linear loss changepoint.
|
||
|
r : ndarray
|
||
|
Input array, possibly representing residuals.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
The computed Huber loss function values.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
pseudo_huber : smooth approximation of this function
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
`huber` is useful as a loss function in robust statistics or machine
|
||
|
learning to reduce the influence of outliers as compared to the common
|
||
|
squared error loss, residuals with a magnitude higher than `delta` are
|
||
|
not squared [1]_.
|
||
|
|
||
|
Typically, `r` represents residuals, the difference
|
||
|
between a model prediction and data. Then, for :math:`|r|\leq\delta`,
|
||
|
`huber` resembles the squared error and for :math:`|r|>\delta` the
|
||
|
absolute error. This way, the Huber loss often achieves
|
||
|
a fast convergence in model fitting for small residuals like the squared
|
||
|
error loss function and still reduces the influence of outliers
|
||
|
(:math:`|r|>\delta`) like the absolute error loss. As :math:`\delta` is
|
||
|
the cutoff between squared and absolute error regimes, it has
|
||
|
to be tuned carefully for each problem. `huber` is also
|
||
|
convex, making it suitable for gradient based optimization.
|
||
|
|
||
|
.. versionadded:: 0.15.0
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Peter Huber. "Robust Estimation of a Location Parameter",
|
||
|
1964. Annals of Statistics. 53 (1): 73 - 101.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Import all necessary modules.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import huber
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
|
||
|
Compute the function for ``delta=1`` at ``r=2``
|
||
|
|
||
|
>>> huber(1., 2.)
|
||
|
1.5
|
||
|
|
||
|
Compute the function for different `delta` by providing a NumPy array or
|
||
|
list for `delta`.
|
||
|
|
||
|
>>> huber([1., 3., 5.], 4.)
|
||
|
array([3.5, 7.5, 8. ])
|
||
|
|
||
|
Compute the function at different points by providing a NumPy array or
|
||
|
list for `r`.
|
||
|
|
||
|
>>> huber(2., np.array([1., 1.5, 3.]))
|
||
|
array([0.5 , 1.125, 4. ])
|
||
|
|
||
|
The function can be calculated for different `delta` and `r` by
|
||
|
providing arrays for both with compatible shapes for broadcasting.
|
||
|
|
||
|
>>> r = np.array([1., 2.5, 8., 10.])
|
||
|
>>> deltas = np.array([[1.], [5.], [9.]])
|
||
|
>>> print(r.shape, deltas.shape)
|
||
|
(4,) (3, 1)
|
||
|
|
||
|
>>> huber(deltas, r)
|
||
|
array([[ 0.5 , 2. , 7.5 , 9.5 ],
|
||
|
[ 0.5 , 3.125, 27.5 , 37.5 ],
|
||
|
[ 0.5 , 3.125, 32. , 49.5 ]])
|
||
|
|
||
|
Plot the function for different `delta`.
|
||
|
|
||
|
>>> x = np.linspace(-4, 4, 500)
|
||
|
>>> deltas = [1, 2, 3]
|
||
|
>>> linestyles = ["dashed", "dotted", "dashdot"]
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> combined_plot_parameters = list(zip(deltas, linestyles))
|
||
|
>>> for delta, style in combined_plot_parameters:
|
||
|
... ax.plot(x, huber(delta, x), label=fr"$\delta={delta}$", ls=style)
|
||
|
>>> ax.legend(loc="upper center")
|
||
|
>>> ax.set_xlabel("$x$")
|
||
|
>>> ax.set_title(r"Huber loss function $h_{\delta}(x)$")
|
||
|
>>> ax.set_xlim(-4, 4)
|
||
|
>>> ax.set_ylim(0, 8)
|
||
|
>>> plt.show()
|
||
|
""")
|
||
|
|
||
|
add_newdoc("hyp0f1",
|
||
|
r"""
|
||
|
hyp0f1(v, z, out=None)
|
||
|
|
||
|
Confluent hypergeometric limit function 0F1.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
v : array_like
|
||
|
Real-valued parameter
|
||
|
z : array_like
|
||
|
Real- or complex-valued argument
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
The confluent hypergeometric limit function
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This function is defined as:
|
||
|
|
||
|
.. math:: _0F_1(v, z) = \sum_{k=0}^{\infty}\frac{z^k}{(v)_k k!}.
|
||
|
|
||
|
It's also the limit as :math:`q \to \infty` of :math:`_1F_1(q; v; z/q)`,
|
||
|
and satisfies the differential equation :math:`f''(z) + vf'(z) =
|
||
|
f(z)`. See [1]_ for more information.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Wolfram MathWorld, "Confluent Hypergeometric Limit Function",
|
||
|
http://mathworld.wolfram.com/ConfluentHypergeometricLimitFunction.html
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> import scipy.special as sc
|
||
|
|
||
|
It is one when `z` is zero.
|
||
|
|
||
|
>>> sc.hyp0f1(1, 0)
|
||
|
1.0
|
||
|
|
||
|
It is the limit of the confluent hypergeometric function as `q`
|
||
|
goes to infinity.
|
||
|
|
||
|
>>> q = np.array([1, 10, 100, 1000])
|
||
|
>>> v = 1
|
||
|
>>> z = 1
|
||
|
>>> sc.hyp1f1(q, v, z / q)
|
||
|
array([2.71828183, 2.31481985, 2.28303778, 2.27992985])
|
||
|
>>> sc.hyp0f1(v, z)
|
||
|
2.2795853023360673
|
||
|
|
||
|
It is related to Bessel functions.
|
||
|
|
||
|
>>> n = 1
|
||
|
>>> x = np.linspace(0, 1, 5)
|
||
|
>>> sc.jv(n, x)
|
||
|
array([0. , 0.12402598, 0.24226846, 0.3492436 , 0.44005059])
|
||
|
>>> (0.5 * x)**n / sc.factorial(n) * sc.hyp0f1(n + 1, -0.25 * x**2)
|
||
|
array([0. , 0.12402598, 0.24226846, 0.3492436 , 0.44005059])
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("hyp1f1",
|
||
|
r"""
|
||
|
hyp1f1(a, b, x, out=None)
|
||
|
|
||
|
Confluent hypergeometric function 1F1.
|
||
|
|
||
|
The confluent hypergeometric function is defined by the series
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
{}_1F_1(a; b; x) = \sum_{k = 0}^\infty \frac{(a)_k}{(b)_k k!} x^k.
|
||
|
|
||
|
See [dlmf]_ for more details. Here :math:`(\cdot)_k` is the
|
||
|
Pochhammer symbol; see `poch`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
a, b : array_like
|
||
|
Real parameters
|
||
|
x : array_like
|
||
|
Real or complex argument
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Values of the confluent hypergeometric function
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
hyperu : another confluent hypergeometric function
|
||
|
hyp0f1 : confluent hypergeometric limit function
|
||
|
hyp2f1 : Gaussian hypergeometric function
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [dlmf] NIST Digital Library of Mathematical Functions
|
||
|
https://dlmf.nist.gov/13.2#E2
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> import scipy.special as sc
|
||
|
|
||
|
It is one when `x` is zero:
|
||
|
|
||
|
>>> sc.hyp1f1(0.5, 0.5, 0)
|
||
|
1.0
|
||
|
|
||
|
It is singular when `b` is a nonpositive integer.
|
||
|
|
||
|
>>> sc.hyp1f1(0.5, -1, 0)
|
||
|
inf
|
||
|
|
||
|
It is a polynomial when `a` is a nonpositive integer.
|
||
|
|
||
|
>>> a, b, x = -1, 0.5, np.array([1.0, 2.0, 3.0, 4.0])
|
||
|
>>> sc.hyp1f1(a, b, x)
|
||
|
array([-1., -3., -5., -7.])
|
||
|
>>> 1 + (a / b) * x
|
||
|
array([-1., -3., -5., -7.])
|
||
|
|
||
|
It reduces to the exponential function when `a = b`.
|
||
|
|
||
|
>>> sc.hyp1f1(2, 2, [1, 2, 3, 4])
|
||
|
array([ 2.71828183, 7.3890561 , 20.08553692, 54.59815003])
|
||
|
>>> np.exp([1, 2, 3, 4])
|
||
|
array([ 2.71828183, 7.3890561 , 20.08553692, 54.59815003])
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("hyp2f1",
|
||
|
r"""
|
||
|
hyp2f1(a, b, c, z, out=None)
|
||
|
|
||
|
Gauss hypergeometric function 2F1(a, b; c; z)
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
a, b, c : array_like
|
||
|
Arguments, should be real-valued.
|
||
|
z : array_like
|
||
|
Argument, real or complex.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
hyp2f1 : scalar or ndarray
|
||
|
The values of the gaussian hypergeometric function.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
hyp0f1 : confluent hypergeometric limit function.
|
||
|
hyp1f1 : Kummer's (confluent hypergeometric) function.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This function is defined for :math:`|z| < 1` as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\mathrm{hyp2f1}(a, b, c, z) = \sum_{n=0}^\infty
|
||
|
\frac{(a)_n (b)_n}{(c)_n}\frac{z^n}{n!},
|
||
|
|
||
|
and defined on the rest of the complex z-plane by analytic
|
||
|
continuation [1]_.
|
||
|
Here :math:`(\cdot)_n` is the Pochhammer symbol; see `poch`. When
|
||
|
:math:`n` is an integer the result is a polynomial of degree :math:`n`.
|
||
|
|
||
|
The implementation for complex values of ``z`` is described in [2]_,
|
||
|
except for ``z`` in the region defined by
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
0.9 <= \left|z\right| < 1.1,
|
||
|
\left|1 - z\right| >= 0.9,
|
||
|
\mathrm{real}(z) >= 0
|
||
|
|
||
|
in which the implementation follows [4]_.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] NIST Digital Library of Mathematical Functions
|
||
|
https://dlmf.nist.gov/15.2
|
||
|
.. [2] S. Zhang and J.M. Jin, "Computation of Special Functions", Wiley 1996
|
||
|
.. [3] Cephes Mathematical Functions Library,
|
||
|
http://www.netlib.org/cephes/
|
||
|
.. [4] J.L. Lopez and N.M. Temme, "New series expansions of the Gauss
|
||
|
hypergeometric function", Adv Comput Math 39, 349-365 (2013).
|
||
|
https://doi.org/10.1007/s10444-012-9283-y
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> import scipy.special as sc
|
||
|
|
||
|
It has poles when `c` is a negative integer.
|
||
|
|
||
|
>>> sc.hyp2f1(1, 1, -2, 1)
|
||
|
inf
|
||
|
|
||
|
It is a polynomial when `a` or `b` is a negative integer.
|
||
|
|
||
|
>>> a, b, c = -1, 1, 1.5
|
||
|
>>> z = np.linspace(0, 1, 5)
|
||
|
>>> sc.hyp2f1(a, b, c, z)
|
||
|
array([1. , 0.83333333, 0.66666667, 0.5 , 0.33333333])
|
||
|
>>> 1 + a * b * z / c
|
||
|
array([1. , 0.83333333, 0.66666667, 0.5 , 0.33333333])
|
||
|
|
||
|
It is symmetric in `a` and `b`.
|
||
|
|
||
|
>>> a = np.linspace(0, 1, 5)
|
||
|
>>> b = np.linspace(0, 1, 5)
|
||
|
>>> sc.hyp2f1(a, b, 1, 0.5)
|
||
|
array([1. , 1.03997334, 1.1803406 , 1.47074441, 2. ])
|
||
|
>>> sc.hyp2f1(b, a, 1, 0.5)
|
||
|
array([1. , 1.03997334, 1.1803406 , 1.47074441, 2. ])
|
||
|
|
||
|
It contains many other functions as special cases.
|
||
|
|
||
|
>>> z = 0.5
|
||
|
>>> sc.hyp2f1(1, 1, 2, z)
|
||
|
1.3862943611198901
|
||
|
>>> -np.log(1 - z) / z
|
||
|
1.3862943611198906
|
||
|
|
||
|
>>> sc.hyp2f1(0.5, 1, 1.5, z**2)
|
||
|
1.098612288668109
|
||
|
>>> np.log((1 + z) / (1 - z)) / (2 * z)
|
||
|
1.0986122886681098
|
||
|
|
||
|
>>> sc.hyp2f1(0.5, 1, 1.5, -z**2)
|
||
|
0.9272952180016117
|
||
|
>>> np.arctan(z) / z
|
||
|
0.9272952180016122
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("hyperu",
|
||
|
r"""
|
||
|
hyperu(a, b, x, out=None)
|
||
|
|
||
|
Confluent hypergeometric function U
|
||
|
|
||
|
It is defined as the solution to the equation
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
x \frac{d^2w}{dx^2} + (b - x) \frac{dw}{dx} - aw = 0
|
||
|
|
||
|
which satisfies the property
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
U(a, b, x) \sim x^{-a}
|
||
|
|
||
|
as :math:`x \to \infty`. See [dlmf]_ for more details.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
a, b : array_like
|
||
|
Real-valued parameters
|
||
|
x : array_like
|
||
|
Real-valued argument
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Values of `U`
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [dlmf] NIST Digital Library of Mathematics Functions
|
||
|
https://dlmf.nist.gov/13.2#E6
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> import scipy.special as sc
|
||
|
|
||
|
It has a branch cut along the negative `x` axis.
|
||
|
|
||
|
>>> x = np.linspace(-0.1, -10, 5)
|
||
|
>>> sc.hyperu(1, 1, x)
|
||
|
array([nan, nan, nan, nan, nan])
|
||
|
|
||
|
It approaches zero as `x` goes to infinity.
|
||
|
|
||
|
>>> x = np.array([1, 10, 100])
|
||
|
>>> sc.hyperu(1, 1, x)
|
||
|
array([0.59634736, 0.09156333, 0.00990194])
|
||
|
|
||
|
It satisfies Kummer's transformation.
|
||
|
|
||
|
>>> a, b, x = 2, 1, 1
|
||
|
>>> sc.hyperu(a, b, x)
|
||
|
0.1926947246463881
|
||
|
>>> x**(1 - b) * sc.hyperu(a - b + 1, 2 - b, x)
|
||
|
0.1926947246463881
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("i0",
|
||
|
r"""
|
||
|
i0(x, out=None)
|
||
|
|
||
|
Modified Bessel function of order 0.
|
||
|
|
||
|
Defined as,
|
||
|
|
||
|
.. math::
|
||
|
I_0(x) = \sum_{k=0}^\infty \frac{(x^2/4)^k}{(k!)^2} = J_0(\imath x),
|
||
|
|
||
|
where :math:`J_0` is the Bessel function of the first kind of order 0.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Argument (float)
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
I : scalar or ndarray
|
||
|
Value of the modified Bessel function of order 0 at `x`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
iv: Modified Bessel function of any order
|
||
|
i0e: Exponentially scaled modified Bessel function of order 0
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The range is partitioned into the two intervals [0, 8] and (8, infinity).
|
||
|
Chebyshev polynomial expansions are employed in each interval.
|
||
|
|
||
|
This function is a wrapper for the Cephes [1]_ routine `i0`.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Cephes Mathematical Functions Library,
|
||
|
http://www.netlib.org/cephes/
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Calculate the function at one point:
|
||
|
|
||
|
>>> from scipy.special import i0
|
||
|
>>> i0(1.)
|
||
|
1.2660658777520082
|
||
|
|
||
|
Calculate at several points:
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> i0(np.array([-2., 0., 3.5]))
|
||
|
array([2.2795853 , 1. , 7.37820343])
|
||
|
|
||
|
Plot the function from -10 to 10.
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> x = np.linspace(-10., 10., 1000)
|
||
|
>>> y = i0(x)
|
||
|
>>> ax.plot(x, y)
|
||
|
>>> plt.show()
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("i0e",
|
||
|
"""
|
||
|
i0e(x, out=None)
|
||
|
|
||
|
Exponentially scaled modified Bessel function of order 0.
|
||
|
|
||
|
Defined as::
|
||
|
|
||
|
i0e(x) = exp(-abs(x)) * i0(x).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Argument (float)
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
I : scalar or ndarray
|
||
|
Value of the exponentially scaled modified Bessel function of order 0
|
||
|
at `x`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
iv: Modified Bessel function of the first kind
|
||
|
i0: Modified Bessel function of order 0
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The range is partitioned into the two intervals [0, 8] and (8, infinity).
|
||
|
Chebyshev polynomial expansions are employed in each interval. The
|
||
|
polynomial expansions used are the same as those in `i0`, but
|
||
|
they are not multiplied by the dominant exponential factor.
|
||
|
|
||
|
This function is a wrapper for the Cephes [1]_ routine `i0e`. `i0e`
|
||
|
is useful for large arguments `x`: for these, `i0` quickly overflows.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Cephes Mathematical Functions Library,
|
||
|
http://www.netlib.org/cephes/
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
In the following example `i0` returns infinity whereas `i0e` still returns
|
||
|
a finite number.
|
||
|
|
||
|
>>> from scipy.special import i0, i0e
|
||
|
>>> i0(1000.), i0e(1000.)
|
||
|
(inf, 0.012617240455891257)
|
||
|
|
||
|
Calculate the function at several points by providing a NumPy array or
|
||
|
list for `x`:
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> i0e(np.array([-2., 0., 3.]))
|
||
|
array([0.30850832, 1. , 0.24300035])
|
||
|
|
||
|
Plot the function from -10 to 10.
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> x = np.linspace(-10., 10., 1000)
|
||
|
>>> y = i0e(x)
|
||
|
>>> ax.plot(x, y)
|
||
|
>>> plt.show()
|
||
|
""")
|
||
|
|
||
|
add_newdoc("i1",
|
||
|
r"""
|
||
|
i1(x, out=None)
|
||
|
|
||
|
Modified Bessel function of order 1.
|
||
|
|
||
|
Defined as,
|
||
|
|
||
|
.. math::
|
||
|
I_1(x) = \frac{1}{2}x \sum_{k=0}^\infty \frac{(x^2/4)^k}{k! (k + 1)!}
|
||
|
= -\imath J_1(\imath x),
|
||
|
|
||
|
where :math:`J_1` is the Bessel function of the first kind of order 1.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Argument (float)
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
I : scalar or ndarray
|
||
|
Value of the modified Bessel function of order 1 at `x`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
iv: Modified Bessel function of the first kind
|
||
|
i1e: Exponentially scaled modified Bessel function of order 1
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The range is partitioned into the two intervals [0, 8] and (8, infinity).
|
||
|
Chebyshev polynomial expansions are employed in each interval.
|
||
|
|
||
|
This function is a wrapper for the Cephes [1]_ routine `i1`.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Cephes Mathematical Functions Library,
|
||
|
http://www.netlib.org/cephes/
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Calculate the function at one point:
|
||
|
|
||
|
>>> from scipy.special import i1
|
||
|
>>> i1(1.)
|
||
|
0.5651591039924851
|
||
|
|
||
|
Calculate the function at several points:
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> i1(np.array([-2., 0., 6.]))
|
||
|
array([-1.59063685, 0. , 61.34193678])
|
||
|
|
||
|
Plot the function between -10 and 10.
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> x = np.linspace(-10., 10., 1000)
|
||
|
>>> y = i1(x)
|
||
|
>>> ax.plot(x, y)
|
||
|
>>> plt.show()
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("i1e",
|
||
|
"""
|
||
|
i1e(x, out=None)
|
||
|
|
||
|
Exponentially scaled modified Bessel function of order 1.
|
||
|
|
||
|
Defined as::
|
||
|
|
||
|
i1e(x) = exp(-abs(x)) * i1(x)
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Argument (float)
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
I : scalar or ndarray
|
||
|
Value of the exponentially scaled modified Bessel function of order 1
|
||
|
at `x`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
iv: Modified Bessel function of the first kind
|
||
|
i1: Modified Bessel function of order 1
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The range is partitioned into the two intervals [0, 8] and (8, infinity).
|
||
|
Chebyshev polynomial expansions are employed in each interval. The
|
||
|
polynomial expansions used are the same as those in `i1`, but
|
||
|
they are not multiplied by the dominant exponential factor.
|
||
|
|
||
|
This function is a wrapper for the Cephes [1]_ routine `i1e`. `i1e`
|
||
|
is useful for large arguments `x`: for these, `i1` quickly overflows.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Cephes Mathematical Functions Library,
|
||
|
http://www.netlib.org/cephes/
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
In the following example `i1` returns infinity whereas `i1e` still returns
|
||
|
a finite number.
|
||
|
|
||
|
>>> from scipy.special import i1, i1e
|
||
|
>>> i1(1000.), i1e(1000.)
|
||
|
(inf, 0.01261093025692863)
|
||
|
|
||
|
Calculate the function at several points by providing a NumPy array or
|
||
|
list for `x`:
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> i1e(np.array([-2., 0., 6.]))
|
||
|
array([-0.21526929, 0. , 0.15205146])
|
||
|
|
||
|
Plot the function between -10 and 10.
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> x = np.linspace(-10., 10., 1000)
|
||
|
>>> y = i1e(x)
|
||
|
>>> ax.plot(x, y)
|
||
|
>>> plt.show()
|
||
|
""")
|
||
|
|
||
|
add_newdoc("_igam_fac",
|
||
|
"""
|
||
|
Internal function, do not use.
|
||
|
""")
|
||
|
|
||
|
add_newdoc("it2i0k0",
|
||
|
r"""
|
||
|
it2i0k0(x, out=None)
|
||
|
|
||
|
Integrals related to modified Bessel functions of order 0.
|
||
|
|
||
|
Computes the integrals
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\int_0^x \frac{I_0(t) - 1}{t} dt \\
|
||
|
\int_x^\infty \frac{K_0(t)}{t} dt.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Values at which to evaluate the integrals.
|
||
|
out : tuple of ndarrays, optional
|
||
|
Optional output arrays for the function results.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ii0 : scalar or ndarray
|
||
|
The integral for `i0`
|
||
|
ik0 : scalar or ndarray
|
||
|
The integral for `k0`
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] S. Zhang and J.M. Jin, "Computation of Special Functions",
|
||
|
Wiley 1996
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Evaluate the functions at one point.
|
||
|
|
||
|
>>> from scipy.special import it2i0k0
|
||
|
>>> int_i, int_k = it2i0k0(1.)
|
||
|
>>> int_i, int_k
|
||
|
(0.12897944249456852, 0.2085182909001295)
|
||
|
|
||
|
Evaluate the functions at several points.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> points = np.array([0.5, 1.5, 3.])
|
||
|
>>> int_i, int_k = it2i0k0(points)
|
||
|
>>> int_i, int_k
|
||
|
(array([0.03149527, 0.30187149, 1.50012461]),
|
||
|
array([0.66575102, 0.0823715 , 0.00823631]))
|
||
|
|
||
|
Plot the functions from 0 to 5.
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> x = np.linspace(0., 5., 1000)
|
||
|
>>> int_i, int_k = it2i0k0(x)
|
||
|
>>> ax.plot(x, int_i, label=r"$\int_0^x \frac{I_0(t)-1}{t}\,dt$")
|
||
|
>>> ax.plot(x, int_k, label=r"$\int_x^{\infty} \frac{K_0(t)}{t}\,dt$")
|
||
|
>>> ax.legend()
|
||
|
>>> ax.set_ylim(0, 10)
|
||
|
>>> plt.show()
|
||
|
""")
|
||
|
|
||
|
add_newdoc("it2j0y0",
|
||
|
r"""
|
||
|
it2j0y0(x, out=None)
|
||
|
|
||
|
Integrals related to Bessel functions of the first kind of order 0.
|
||
|
|
||
|
Computes the integrals
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\int_0^x \frac{1 - J_0(t)}{t} dt \\
|
||
|
\int_x^\infty \frac{Y_0(t)}{t} dt.
|
||
|
|
||
|
For more on :math:`J_0` and :math:`Y_0` see `j0` and `y0`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Values at which to evaluate the integrals.
|
||
|
out : tuple of ndarrays, optional
|
||
|
Optional output arrays for the function results.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ij0 : scalar or ndarray
|
||
|
The integral for `j0`
|
||
|
iy0 : scalar or ndarray
|
||
|
The integral for `y0`
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] S. Zhang and J.M. Jin, "Computation of Special Functions",
|
||
|
Wiley 1996
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Evaluate the functions at one point.
|
||
|
|
||
|
>>> from scipy.special import it2j0y0
|
||
|
>>> int_j, int_y = it2j0y0(1.)
|
||
|
>>> int_j, int_y
|
||
|
(0.12116524699506871, 0.39527290169929336)
|
||
|
|
||
|
Evaluate the functions at several points.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> points = np.array([0.5, 1.5, 3.])
|
||
|
>>> int_j, int_y = it2j0y0(points)
|
||
|
>>> int_j, int_y
|
||
|
(array([0.03100699, 0.26227724, 0.85614669]),
|
||
|
array([ 0.26968854, 0.29769696, -0.02987272]))
|
||
|
|
||
|
Plot the functions from 0 to 10.
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> x = np.linspace(0., 10., 1000)
|
||
|
>>> int_j, int_y = it2j0y0(x)
|
||
|
>>> ax.plot(x, int_j, label=r"$\int_0^x \frac{1-J_0(t)}{t}\,dt$")
|
||
|
>>> ax.plot(x, int_y, label=r"$\int_x^{\infty} \frac{Y_0(t)}{t}\,dt$")
|
||
|
>>> ax.legend()
|
||
|
>>> ax.set_ylim(-2.5, 2.5)
|
||
|
>>> plt.show()
|
||
|
""")
|
||
|
|
||
|
add_newdoc("it2struve0",
|
||
|
r"""
|
||
|
it2struve0(x, out=None)
|
||
|
|
||
|
Integral related to the Struve function of order 0.
|
||
|
|
||
|
Returns the integral,
|
||
|
|
||
|
.. math::
|
||
|
\int_x^\infty \frac{H_0(t)}{t}\,dt
|
||
|
|
||
|
where :math:`H_0` is the Struve function of order 0.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Lower limit of integration.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
I : scalar or ndarray
|
||
|
The value of the integral.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
struve
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Wrapper for a Fortran routine created by Shanjie Zhang and Jianming
|
||
|
Jin [1]_.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Evaluate the function at one point.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import it2struve0
|
||
|
>>> it2struve0(1.)
|
||
|
0.9571973506383524
|
||
|
|
||
|
Evaluate the function at several points by supplying
|
||
|
an array for `x`.
|
||
|
|
||
|
>>> points = np.array([1., 2., 3.5])
|
||
|
>>> it2struve0(points)
|
||
|
array([0.95719735, 0.46909296, 0.10366042])
|
||
|
|
||
|
Plot the function from -10 to 10.
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> x = np.linspace(-10., 10., 1000)
|
||
|
>>> it2struve0_values = it2struve0(x)
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> ax.plot(x, it2struve0_values)
|
||
|
>>> ax.set_xlabel(r'$x$')
|
||
|
>>> ax.set_ylabel(r'$\int_x^{\infty}\frac{H_0(t)}{t}\,dt$')
|
||
|
>>> plt.show()
|
||
|
""")
|
||
|
|
||
|
add_newdoc(
|
||
|
"itairy",
|
||
|
r"""
|
||
|
itairy(x, out=None)
|
||
|
|
||
|
Integrals of Airy functions
|
||
|
|
||
|
Calculates the integrals of Airy functions from 0 to `x`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
|
||
|
x : array_like
|
||
|
Upper limit of integration (float).
|
||
|
out : tuple of ndarray, optional
|
||
|
Optional output arrays for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Apt : scalar or ndarray
|
||
|
Integral of Ai(t) from 0 to x.
|
||
|
Bpt : scalar or ndarray
|
||
|
Integral of Bi(t) from 0 to x.
|
||
|
Ant : scalar or ndarray
|
||
|
Integral of Ai(-t) from 0 to x.
|
||
|
Bnt : scalar or ndarray
|
||
|
Integral of Bi(-t) from 0 to x.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
|
||
|
Wrapper for a Fortran routine created by Shanjie Zhang and Jianming
|
||
|
Jin [1]_.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Compute the functions at ``x=1.``.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import itairy
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> apt, bpt, ant, bnt = itairy(1.)
|
||
|
>>> apt, bpt, ant, bnt
|
||
|
(0.23631734191710949,
|
||
|
0.8727691167380077,
|
||
|
0.46567398346706845,
|
||
|
0.3730050096342943)
|
||
|
|
||
|
Compute the functions at several points by providing a NumPy array for `x`.
|
||
|
|
||
|
>>> x = np.array([1., 1.5, 2.5, 5])
|
||
|
>>> apt, bpt, ant, bnt = itairy(x)
|
||
|
>>> apt, bpt, ant, bnt
|
||
|
(array([0.23631734, 0.28678675, 0.324638 , 0.33328759]),
|
||
|
array([ 0.87276912, 1.62470809, 5.20906691, 321.47831857]),
|
||
|
array([0.46567398, 0.72232876, 0.93187776, 0.7178822 ]),
|
||
|
array([ 0.37300501, 0.35038814, -0.02812939, 0.15873094]))
|
||
|
|
||
|
Plot the functions from -10 to 10.
|
||
|
|
||
|
>>> x = np.linspace(-10, 10, 500)
|
||
|
>>> apt, bpt, ant, bnt = itairy(x)
|
||
|
>>> fig, ax = plt.subplots(figsize=(6, 5))
|
||
|
>>> ax.plot(x, apt, label=r"$\int_0^x\, Ai(t)\, dt$")
|
||
|
>>> ax.plot(x, bpt, ls="dashed", label=r"$\int_0^x\, Bi(t)\, dt$")
|
||
|
>>> ax.plot(x, ant, ls="dashdot", label=r"$\int_0^x\, Ai(-t)\, dt$")
|
||
|
>>> ax.plot(x, bnt, ls="dotted", label=r"$\int_0^x\, Bi(-t)\, dt$")
|
||
|
>>> ax.set_ylim(-2, 1.5)
|
||
|
>>> ax.legend(loc="lower right")
|
||
|
>>> plt.show()
|
||
|
""")
|
||
|
|
||
|
add_newdoc("iti0k0",
|
||
|
r"""
|
||
|
iti0k0(x, out=None)
|
||
|
|
||
|
Integrals of modified Bessel functions of order 0.
|
||
|
|
||
|
Computes the integrals
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\int_0^x I_0(t) dt \\
|
||
|
\int_0^x K_0(t) dt.
|
||
|
|
||
|
For more on :math:`I_0` and :math:`K_0` see `i0` and `k0`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Values at which to evaluate the integrals.
|
||
|
out : tuple of ndarrays, optional
|
||
|
Optional output arrays for the function results.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ii0 : scalar or ndarray
|
||
|
The integral for `i0`
|
||
|
ik0 : scalar or ndarray
|
||
|
The integral for `k0`
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] S. Zhang and J.M. Jin, "Computation of Special Functions",
|
||
|
Wiley 1996
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Evaluate the functions at one point.
|
||
|
|
||
|
>>> from scipy.special import iti0k0
|
||
|
>>> int_i, int_k = iti0k0(1.)
|
||
|
>>> int_i, int_k
|
||
|
(1.0865210970235892, 1.2425098486237771)
|
||
|
|
||
|
Evaluate the functions at several points.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> points = np.array([0., 1.5, 3.])
|
||
|
>>> int_i, int_k = iti0k0(points)
|
||
|
>>> int_i, int_k
|
||
|
(array([0. , 1.80606937, 6.16096149]),
|
||
|
array([0. , 1.39458246, 1.53994809]))
|
||
|
|
||
|
Plot the functions from 0 to 5.
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> x = np.linspace(0., 5., 1000)
|
||
|
>>> int_i, int_k = iti0k0(x)
|
||
|
>>> ax.plot(x, int_i, label=r"$\int_0^x I_0(t)\,dt$")
|
||
|
>>> ax.plot(x, int_k, label=r"$\int_0^x K_0(t)\,dt$")
|
||
|
>>> ax.legend()
|
||
|
>>> plt.show()
|
||
|
""")
|
||
|
|
||
|
add_newdoc("itj0y0",
|
||
|
r"""
|
||
|
itj0y0(x, out=None)
|
||
|
|
||
|
Integrals of Bessel functions of the first kind of order 0.
|
||
|
|
||
|
Computes the integrals
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\int_0^x J_0(t) dt \\
|
||
|
\int_0^x Y_0(t) dt.
|
||
|
|
||
|
For more on :math:`J_0` and :math:`Y_0` see `j0` and `y0`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Values at which to evaluate the integrals.
|
||
|
out : tuple of ndarrays, optional
|
||
|
Optional output arrays for the function results.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ij0 : scalar or ndarray
|
||
|
The integral of `j0`
|
||
|
iy0 : scalar or ndarray
|
||
|
The integral of `y0`
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] S. Zhang and J.M. Jin, "Computation of Special Functions",
|
||
|
Wiley 1996
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Evaluate the functions at one point.
|
||
|
|
||
|
>>> from scipy.special import itj0y0
|
||
|
>>> int_j, int_y = itj0y0(1.)
|
||
|
>>> int_j, int_y
|
||
|
(0.9197304100897596, -0.637069376607422)
|
||
|
|
||
|
Evaluate the functions at several points.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> points = np.array([0., 1.5, 3.])
|
||
|
>>> int_j, int_y = itj0y0(points)
|
||
|
>>> int_j, int_y
|
||
|
(array([0. , 1.24144951, 1.38756725]),
|
||
|
array([ 0. , -0.51175903, 0.19765826]))
|
||
|
|
||
|
Plot the functions from 0 to 10.
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> x = np.linspace(0., 10., 1000)
|
||
|
>>> int_j, int_y = itj0y0(x)
|
||
|
>>> ax.plot(x, int_j, label=r"$\int_0^x J_0(t)\,dt$")
|
||
|
>>> ax.plot(x, int_y, label=r"$\int_0^x Y_0(t)\,dt$")
|
||
|
>>> ax.legend()
|
||
|
>>> plt.show()
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("itmodstruve0",
|
||
|
r"""
|
||
|
itmodstruve0(x, out=None)
|
||
|
|
||
|
Integral of the modified Struve function of order 0.
|
||
|
|
||
|
.. math::
|
||
|
I = \int_0^x L_0(t)\,dt
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Upper limit of integration (float).
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
I : scalar or ndarray
|
||
|
The integral of :math:`L_0` from 0 to `x`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
modstruve: Modified Struve function which is integrated by this function
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Wrapper for a Fortran routine created by Shanjie Zhang and Jianming
|
||
|
Jin [1]_.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Evaluate the function at one point.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import itmodstruve0
|
||
|
>>> itmodstruve0(1.)
|
||
|
0.3364726286440384
|
||
|
|
||
|
Evaluate the function at several points by supplying
|
||
|
an array for `x`.
|
||
|
|
||
|
>>> points = np.array([1., 2., 3.5])
|
||
|
>>> itmodstruve0(points)
|
||
|
array([0.33647263, 1.588285 , 7.60382578])
|
||
|
|
||
|
Plot the function from -10 to 10.
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> x = np.linspace(-10., 10., 1000)
|
||
|
>>> itmodstruve0_values = itmodstruve0(x)
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> ax.plot(x, itmodstruve0_values)
|
||
|
>>> ax.set_xlabel(r'$x$')
|
||
|
>>> ax.set_ylabel(r'$\int_0^xL_0(t)\,dt$')
|
||
|
>>> plt.show()
|
||
|
""")
|
||
|
|
||
|
add_newdoc("itstruve0",
|
||
|
r"""
|
||
|
itstruve0(x, out=None)
|
||
|
|
||
|
Integral of the Struve function of order 0.
|
||
|
|
||
|
.. math::
|
||
|
I = \int_0^x H_0(t)\,dt
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Upper limit of integration (float).
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
I : scalar or ndarray
|
||
|
The integral of :math:`H_0` from 0 to `x`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
struve: Function which is integrated by this function
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Wrapper for a Fortran routine created by Shanjie Zhang and Jianming
|
||
|
Jin [1]_.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Evaluate the function at one point.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import itstruve0
|
||
|
>>> itstruve0(1.)
|
||
|
0.30109042670805547
|
||
|
|
||
|
Evaluate the function at several points by supplying
|
||
|
an array for `x`.
|
||
|
|
||
|
>>> points = np.array([1., 2., 3.5])
|
||
|
>>> itstruve0(points)
|
||
|
array([0.30109043, 1.01870116, 1.96804581])
|
||
|
|
||
|
Plot the function from -20 to 20.
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> x = np.linspace(-20., 20., 1000)
|
||
|
>>> istruve0_values = itstruve0(x)
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> ax.plot(x, istruve0_values)
|
||
|
>>> ax.set_xlabel(r'$x$')
|
||
|
>>> ax.set_ylabel(r'$\int_0^{x}H_0(t)\,dt$')
|
||
|
>>> plt.show()
|
||
|
""")
|
||
|
|
||
|
add_newdoc("iv",
|
||
|
r"""
|
||
|
iv(v, z, out=None)
|
||
|
|
||
|
Modified Bessel function of the first kind of real order.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
v : array_like
|
||
|
Order. If `z` is of real type and negative, `v` must be integer
|
||
|
valued.
|
||
|
z : array_like of float or complex
|
||
|
Argument.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Values of the modified Bessel function.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
ive : This function with leading exponential behavior stripped off.
|
||
|
i0 : Faster version of this function for order 0.
|
||
|
i1 : Faster version of this function for order 1.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For real `z` and :math:`v \in [-50, 50]`, the evaluation is carried out
|
||
|
using Temme's method [1]_. For larger orders, uniform asymptotic
|
||
|
expansions are applied.
|
||
|
|
||
|
For complex `z` and positive `v`, the AMOS [2]_ `zbesi` routine is
|
||
|
called. It uses a power series for small `z`, the asymptotic expansion
|
||
|
for large `abs(z)`, the Miller algorithm normalized by the Wronskian
|
||
|
and a Neumann series for intermediate magnitudes, and the uniform
|
||
|
asymptotic expansions for :math:`I_v(z)` and :math:`J_v(z)` for large
|
||
|
orders. Backward recurrence is used to generate sequences or reduce
|
||
|
orders when necessary.
|
||
|
|
||
|
The calculations above are done in the right half plane and continued
|
||
|
into the left half plane by the formula,
|
||
|
|
||
|
.. math:: I_v(z \exp(\pm\imath\pi)) = \exp(\pm\pi v) I_v(z)
|
||
|
|
||
|
(valid when the real part of `z` is positive). For negative `v`, the
|
||
|
formula
|
||
|
|
||
|
.. math:: I_{-v}(z) = I_v(z) + \frac{2}{\pi} \sin(\pi v) K_v(z)
|
||
|
|
||
|
is used, where :math:`K_v(z)` is the modified Bessel function of the
|
||
|
second kind, evaluated using the AMOS routine `zbesk`.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Temme, Journal of Computational Physics, vol 21, 343 (1976)
|
||
|
.. [2] Donald E. Amos, "AMOS, A Portable Package for Bessel Functions
|
||
|
of a Complex Argument and Nonnegative Order",
|
||
|
http://netlib.org/amos/
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Evaluate the function of order 0 at one point.
|
||
|
|
||
|
>>> from scipy.special import iv
|
||
|
>>> iv(0, 1.)
|
||
|
1.2660658777520084
|
||
|
|
||
|
Evaluate the function at one point for different orders.
|
||
|
|
||
|
>>> iv(0, 1.), iv(1, 1.), iv(1.5, 1.)
|
||
|
(1.2660658777520084, 0.565159103992485, 0.2935253263474798)
|
||
|
|
||
|
The evaluation for different orders can be carried out in one call by
|
||
|
providing a list or NumPy array as argument for the `v` parameter:
|
||
|
|
||
|
>>> iv([0, 1, 1.5], 1.)
|
||
|
array([1.26606588, 0.5651591 , 0.29352533])
|
||
|
|
||
|
Evaluate the function at several points for order 0 by providing an
|
||
|
array for `z`.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> points = np.array([-2., 0., 3.])
|
||
|
>>> iv(0, points)
|
||
|
array([2.2795853 , 1. , 4.88079259])
|
||
|
|
||
|
If `z` is an array, the order parameter `v` must be broadcastable to
|
||
|
the correct shape if different orders shall be computed in one call.
|
||
|
To calculate the orders 0 and 1 for an 1D array:
|
||
|
|
||
|
>>> orders = np.array([[0], [1]])
|
||
|
>>> orders.shape
|
||
|
(2, 1)
|
||
|
|
||
|
>>> iv(orders, points)
|
||
|
array([[ 2.2795853 , 1. , 4.88079259],
|
||
|
[-1.59063685, 0. , 3.95337022]])
|
||
|
|
||
|
Plot the functions of order 0 to 3 from -5 to 5.
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> x = np.linspace(-5., 5., 1000)
|
||
|
>>> for i in range(4):
|
||
|
... ax.plot(x, iv(i, x), label=f'$I_{i!r}$')
|
||
|
>>> ax.legend()
|
||
|
>>> plt.show()
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("ive",
|
||
|
r"""
|
||
|
ive(v, z, out=None)
|
||
|
|
||
|
Exponentially scaled modified Bessel function of the first kind.
|
||
|
|
||
|
Defined as::
|
||
|
|
||
|
ive(v, z) = iv(v, z) * exp(-abs(z.real))
|
||
|
|
||
|
For imaginary numbers without a real part, returns the unscaled
|
||
|
Bessel function of the first kind `iv`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
v : array_like of float
|
||
|
Order.
|
||
|
z : array_like of float or complex
|
||
|
Argument.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Values of the exponentially scaled modified Bessel function.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
iv: Modified Bessel function of the first kind
|
||
|
i0e: Faster implementation of this function for order 0
|
||
|
i1e: Faster implementation of this function for order 1
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For positive `v`, the AMOS [1]_ `zbesi` routine is called. It uses a
|
||
|
power series for small `z`, the asymptotic expansion for large
|
||
|
`abs(z)`, the Miller algorithm normalized by the Wronskian and a
|
||
|
Neumann series for intermediate magnitudes, and the uniform asymptotic
|
||
|
expansions for :math:`I_v(z)` and :math:`J_v(z)` for large orders.
|
||
|
Backward recurrence is used to generate sequences or reduce orders when
|
||
|
necessary.
|
||
|
|
||
|
The calculations above are done in the right half plane and continued
|
||
|
into the left half plane by the formula,
|
||
|
|
||
|
.. math:: I_v(z \exp(\pm\imath\pi)) = \exp(\pm\pi v) I_v(z)
|
||
|
|
||
|
(valid when the real part of `z` is positive). For negative `v`, the
|
||
|
formula
|
||
|
|
||
|
.. math:: I_{-v}(z) = I_v(z) + \frac{2}{\pi} \sin(\pi v) K_v(z)
|
||
|
|
||
|
is used, where :math:`K_v(z)` is the modified Bessel function of the
|
||
|
second kind, evaluated using the AMOS routine `zbesk`.
|
||
|
|
||
|
`ive` is useful for large arguments `z`: for these, `iv` easily overflows,
|
||
|
while `ive` does not due to the exponential scaling.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Donald E. Amos, "AMOS, A Portable Package for Bessel Functions
|
||
|
of a Complex Argument and Nonnegative Order",
|
||
|
http://netlib.org/amos/
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
In the following example `iv` returns infinity whereas `ive` still returns
|
||
|
a finite number.
|
||
|
|
||
|
>>> from scipy.special import iv, ive
|
||
|
>>> import numpy as np
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> iv(3, 1000.), ive(3, 1000.)
|
||
|
(inf, 0.01256056218254712)
|
||
|
|
||
|
Evaluate the function at one point for different orders by
|
||
|
providing a list or NumPy array as argument for the `v` parameter:
|
||
|
|
||
|
>>> ive([0, 1, 1.5], 1.)
|
||
|
array([0.46575961, 0.20791042, 0.10798193])
|
||
|
|
||
|
Evaluate the function at several points for order 0 by providing an
|
||
|
array for `z`.
|
||
|
|
||
|
>>> points = np.array([-2., 0., 3.])
|
||
|
>>> ive(0, points)
|
||
|
array([0.30850832, 1. , 0.24300035])
|
||
|
|
||
|
Evaluate the function at several points for different orders by
|
||
|
providing arrays for both `v` for `z`. Both arrays have to be
|
||
|
broadcastable to the correct shape. To calculate the orders 0, 1
|
||
|
and 2 for a 1D array of points:
|
||
|
|
||
|
>>> ive([[0], [1], [2]], points)
|
||
|
array([[ 0.30850832, 1. , 0.24300035],
|
||
|
[-0.21526929, 0. , 0.19682671],
|
||
|
[ 0.09323903, 0. , 0.11178255]])
|
||
|
|
||
|
Plot the functions of order 0 to 3 from -5 to 5.
|
||
|
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> x = np.linspace(-5., 5., 1000)
|
||
|
>>> for i in range(4):
|
||
|
... ax.plot(x, ive(i, x), label=fr'$I_{i!r}(z)\cdot e^{{-|z|}}$')
|
||
|
>>> ax.legend()
|
||
|
>>> ax.set_xlabel(r"$z$")
|
||
|
>>> plt.show()
|
||
|
""")
|
||
|
|
||
|
add_newdoc("j0",
|
||
|
r"""
|
||
|
j0(x, out=None)
|
||
|
|
||
|
Bessel function of the first kind of order 0.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Argument (float).
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
J : scalar or ndarray
|
||
|
Value of the Bessel function of the first kind of order 0 at `x`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
jv : Bessel function of real order and complex argument.
|
||
|
spherical_jn : spherical Bessel functions.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The domain is divided into the intervals [0, 5] and (5, infinity). In the
|
||
|
first interval the following rational approximation is used:
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
J_0(x) \approx (w - r_1^2)(w - r_2^2) \frac{P_3(w)}{Q_8(w)},
|
||
|
|
||
|
where :math:`w = x^2` and :math:`r_1`, :math:`r_2` are the zeros of
|
||
|
:math:`J_0`, and :math:`P_3` and :math:`Q_8` are polynomials of degrees 3
|
||
|
and 8, respectively.
|
||
|
|
||
|
In the second interval, the Hankel asymptotic expansion is employed with
|
||
|
two rational functions of degree 6/6 and 7/7.
|
||
|
|
||
|
This function is a wrapper for the Cephes [1]_ routine `j0`.
|
||
|
It should not be confused with the spherical Bessel functions (see
|
||
|
`spherical_jn`).
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Cephes Mathematical Functions Library,
|
||
|
http://www.netlib.org/cephes/
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Calculate the function at one point:
|
||
|
|
||
|
>>> from scipy.special import j0
|
||
|
>>> j0(1.)
|
||
|
0.7651976865579665
|
||
|
|
||
|
Calculate the function at several points:
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> j0(np.array([-2., 0., 4.]))
|
||
|
array([ 0.22389078, 1. , -0.39714981])
|
||
|
|
||
|
Plot the function from -20 to 20.
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> x = np.linspace(-20., 20., 1000)
|
||
|
>>> y = j0(x)
|
||
|
>>> ax.plot(x, y)
|
||
|
>>> plt.show()
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("j1",
|
||
|
"""
|
||
|
j1(x, out=None)
|
||
|
|
||
|
Bessel function of the first kind of order 1.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Argument (float).
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
J : scalar or ndarray
|
||
|
Value of the Bessel function of the first kind of order 1 at `x`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
jv: Bessel function of the first kind
|
||
|
spherical_jn: spherical Bessel functions.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The domain is divided into the intervals [0, 8] and (8, infinity). In the
|
||
|
first interval a 24 term Chebyshev expansion is used. In the second, the
|
||
|
asymptotic trigonometric representation is employed using two rational
|
||
|
functions of degree 5/5.
|
||
|
|
||
|
This function is a wrapper for the Cephes [1]_ routine `j1`.
|
||
|
It should not be confused with the spherical Bessel functions (see
|
||
|
`spherical_jn`).
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Cephes Mathematical Functions Library,
|
||
|
http://www.netlib.org/cephes/
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Calculate the function at one point:
|
||
|
|
||
|
>>> from scipy.special import j1
|
||
|
>>> j1(1.)
|
||
|
0.44005058574493355
|
||
|
|
||
|
Calculate the function at several points:
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> j1(np.array([-2., 0., 4.]))
|
||
|
array([-0.57672481, 0. , -0.06604333])
|
||
|
|
||
|
Plot the function from -20 to 20.
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> x = np.linspace(-20., 20., 1000)
|
||
|
>>> y = j1(x)
|
||
|
>>> ax.plot(x, y)
|
||
|
>>> plt.show()
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("jn",
|
||
|
"""
|
||
|
jn(n, x, out=None)
|
||
|
|
||
|
Bessel function of the first kind of integer order and real argument.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : array_like
|
||
|
order of the Bessel function
|
||
|
x : array_like
|
||
|
argument of the Bessel function
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
The value of the bessel function
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
jv
|
||
|
spherical_jn : spherical Bessel functions.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
`jn` is an alias of `jv`.
|
||
|
Not to be confused with the spherical Bessel functions (see
|
||
|
`spherical_jn`).
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("jv",
|
||
|
r"""
|
||
|
jv(v, z, out=None)
|
||
|
|
||
|
Bessel function of the first kind of real order and complex argument.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
v : array_like
|
||
|
Order (float).
|
||
|
z : array_like
|
||
|
Argument (float or complex).
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
J : scalar or ndarray
|
||
|
Value of the Bessel function, :math:`J_v(z)`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
jve : :math:`J_v` with leading exponential behavior stripped off.
|
||
|
spherical_jn : spherical Bessel functions.
|
||
|
j0 : faster version of this function for order 0.
|
||
|
j1 : faster version of this function for order 1.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For positive `v` values, the computation is carried out using the AMOS
|
||
|
[1]_ `zbesj` routine, which exploits the connection to the modified
|
||
|
Bessel function :math:`I_v`,
|
||
|
|
||
|
.. math::
|
||
|
J_v(z) = \exp(v\pi\imath/2) I_v(-\imath z)\qquad (\Im z > 0)
|
||
|
|
||
|
J_v(z) = \exp(-v\pi\imath/2) I_v(\imath z)\qquad (\Im z < 0)
|
||
|
|
||
|
For negative `v` values the formula,
|
||
|
|
||
|
.. math:: J_{-v}(z) = J_v(z) \cos(\pi v) - Y_v(z) \sin(\pi v)
|
||
|
|
||
|
is used, where :math:`Y_v(z)` is the Bessel function of the second
|
||
|
kind, computed using the AMOS routine `zbesy`. Note that the second
|
||
|
term is exactly zero for integer `v`; to improve accuracy the second
|
||
|
term is explicitly omitted for `v` values such that `v = floor(v)`.
|
||
|
|
||
|
Not to be confused with the spherical Bessel functions (see `spherical_jn`).
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Donald E. Amos, "AMOS, A Portable Package for Bessel Functions
|
||
|
of a Complex Argument and Nonnegative Order",
|
||
|
http://netlib.org/amos/
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Evaluate the function of order 0 at one point.
|
||
|
|
||
|
>>> from scipy.special import jv
|
||
|
>>> jv(0, 1.)
|
||
|
0.7651976865579666
|
||
|
|
||
|
Evaluate the function at one point for different orders.
|
||
|
|
||
|
>>> jv(0, 1.), jv(1, 1.), jv(1.5, 1.)
|
||
|
(0.7651976865579666, 0.44005058574493355, 0.24029783912342725)
|
||
|
|
||
|
The evaluation for different orders can be carried out in one call by
|
||
|
providing a list or NumPy array as argument for the `v` parameter:
|
||
|
|
||
|
>>> jv([0, 1, 1.5], 1.)
|
||
|
array([0.76519769, 0.44005059, 0.24029784])
|
||
|
|
||
|
Evaluate the function at several points for order 0 by providing an
|
||
|
array for `z`.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> points = np.array([-2., 0., 3.])
|
||
|
>>> jv(0, points)
|
||
|
array([ 0.22389078, 1. , -0.26005195])
|
||
|
|
||
|
If `z` is an array, the order parameter `v` must be broadcastable to
|
||
|
the correct shape if different orders shall be computed in one call.
|
||
|
To calculate the orders 0 and 1 for an 1D array:
|
||
|
|
||
|
>>> orders = np.array([[0], [1]])
|
||
|
>>> orders.shape
|
||
|
(2, 1)
|
||
|
|
||
|
>>> jv(orders, points)
|
||
|
array([[ 0.22389078, 1. , -0.26005195],
|
||
|
[-0.57672481, 0. , 0.33905896]])
|
||
|
|
||
|
Plot the functions of order 0 to 3 from -10 to 10.
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> x = np.linspace(-10., 10., 1000)
|
||
|
>>> for i in range(4):
|
||
|
... ax.plot(x, jv(i, x), label=f'$J_{i!r}$')
|
||
|
>>> ax.legend()
|
||
|
>>> plt.show()
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("jve",
|
||
|
r"""
|
||
|
jve(v, z, out=None)
|
||
|
|
||
|
Exponentially scaled Bessel function of the first kind of order `v`.
|
||
|
|
||
|
Defined as::
|
||
|
|
||
|
jve(v, z) = jv(v, z) * exp(-abs(z.imag))
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
v : array_like
|
||
|
Order (float).
|
||
|
z : array_like
|
||
|
Argument (float or complex).
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
J : scalar or ndarray
|
||
|
Value of the exponentially scaled Bessel function.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
jv: Unscaled Bessel function of the first kind
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For positive `v` values, the computation is carried out using the AMOS
|
||
|
[1]_ `zbesj` routine, which exploits the connection to the modified
|
||
|
Bessel function :math:`I_v`,
|
||
|
|
||
|
.. math::
|
||
|
J_v(z) = \exp(v\pi\imath/2) I_v(-\imath z)\qquad (\Im z > 0)
|
||
|
|
||
|
J_v(z) = \exp(-v\pi\imath/2) I_v(\imath z)\qquad (\Im z < 0)
|
||
|
|
||
|
For negative `v` values the formula,
|
||
|
|
||
|
.. math:: J_{-v}(z) = J_v(z) \cos(\pi v) - Y_v(z) \sin(\pi v)
|
||
|
|
||
|
is used, where :math:`Y_v(z)` is the Bessel function of the second
|
||
|
kind, computed using the AMOS routine `zbesy`. Note that the second
|
||
|
term is exactly zero for integer `v`; to improve accuracy the second
|
||
|
term is explicitly omitted for `v` values such that `v = floor(v)`.
|
||
|
|
||
|
Exponentially scaled Bessel functions are useful for large arguments `z`:
|
||
|
for these, the unscaled Bessel functions can easily under-or overflow.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Donald E. Amos, "AMOS, A Portable Package for Bessel Functions
|
||
|
of a Complex Argument and Nonnegative Order",
|
||
|
http://netlib.org/amos/
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Compare the output of `jv` and `jve` for large complex arguments for `z`
|
||
|
by computing their values for order ``v=1`` at ``z=1000j``. We see that
|
||
|
`jv` overflows but `jve` returns a finite number:
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import jv, jve
|
||
|
>>> v = 1
|
||
|
>>> z = 1000j
|
||
|
>>> jv(v, z), jve(v, z)
|
||
|
((inf+infj), (7.721967686709077e-19+0.012610930256928629j))
|
||
|
|
||
|
For real arguments for `z`, `jve` returns the same as `jv`.
|
||
|
|
||
|
>>> v, z = 1, 1000
|
||
|
>>> jv(v, z), jve(v, z)
|
||
|
(0.004728311907089523, 0.004728311907089523)
|
||
|
|
||
|
The function can be evaluated for several orders at the same time by
|
||
|
providing a list or NumPy array for `v`:
|
||
|
|
||
|
>>> jve([1, 3, 5], 1j)
|
||
|
array([1.27304208e-17+2.07910415e-01j, -4.99352086e-19-8.15530777e-03j,
|
||
|
6.11480940e-21+9.98657141e-05j])
|
||
|
|
||
|
In the same way, the function can be evaluated at several points in one
|
||
|
call by providing a list or NumPy array for `z`:
|
||
|
|
||
|
>>> jve(1, np.array([1j, 2j, 3j]))
|
||
|
array([1.27308412e-17+0.20791042j, 1.31814423e-17+0.21526929j,
|
||
|
1.20521602e-17+0.19682671j])
|
||
|
|
||
|
It is also possible to evaluate several orders at several points
|
||
|
at the same time by providing arrays for `v` and `z` with
|
||
|
compatible shapes for broadcasting. Compute `jve` for two different orders
|
||
|
`v` and three points `z` resulting in a 2x3 array.
|
||
|
|
||
|
>>> v = np.array([[1], [3]])
|
||
|
>>> z = np.array([1j, 2j, 3j])
|
||
|
>>> v.shape, z.shape
|
||
|
((2, 1), (3,))
|
||
|
|
||
|
>>> jve(v, z)
|
||
|
array([[1.27304208e-17+0.20791042j, 1.31810070e-17+0.21526929j,
|
||
|
1.20517622e-17+0.19682671j],
|
||
|
[-4.99352086e-19-0.00815531j, -1.76289571e-18-0.02879122j,
|
||
|
-2.92578784e-18-0.04778332j]])
|
||
|
""")
|
||
|
|
||
|
add_newdoc("k0",
|
||
|
r"""
|
||
|
k0(x, out=None)
|
||
|
|
||
|
Modified Bessel function of the second kind of order 0, :math:`K_0`.
|
||
|
|
||
|
This function is also sometimes referred to as the modified Bessel
|
||
|
function of the third kind of order 0.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Argument (float).
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
K : scalar or ndarray
|
||
|
Value of the modified Bessel function :math:`K_0` at `x`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
kv: Modified Bessel function of the second kind of any order
|
||
|
k0e: Exponentially scaled modified Bessel function of the second kind
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The range is partitioned into the two intervals [0, 2] and (2, infinity).
|
||
|
Chebyshev polynomial expansions are employed in each interval.
|
||
|
|
||
|
This function is a wrapper for the Cephes [1]_ routine `k0`.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Cephes Mathematical Functions Library,
|
||
|
http://www.netlib.org/cephes/
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Calculate the function at one point:
|
||
|
|
||
|
>>> from scipy.special import k0
|
||
|
>>> k0(1.)
|
||
|
0.42102443824070823
|
||
|
|
||
|
Calculate the function at several points:
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> k0(np.array([0.5, 2., 3.]))
|
||
|
array([0.92441907, 0.11389387, 0.0347395 ])
|
||
|
|
||
|
Plot the function from 0 to 10.
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> x = np.linspace(0., 10., 1000)
|
||
|
>>> y = k0(x)
|
||
|
>>> ax.plot(x, y)
|
||
|
>>> plt.show()
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("k0e",
|
||
|
"""
|
||
|
k0e(x, out=None)
|
||
|
|
||
|
Exponentially scaled modified Bessel function K of order 0
|
||
|
|
||
|
Defined as::
|
||
|
|
||
|
k0e(x) = exp(x) * k0(x).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Argument (float)
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
K : scalar or ndarray
|
||
|
Value of the exponentially scaled modified Bessel function K of order
|
||
|
0 at `x`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
kv: Modified Bessel function of the second kind of any order
|
||
|
k0: Modified Bessel function of the second kind
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The range is partitioned into the two intervals [0, 2] and (2, infinity).
|
||
|
Chebyshev polynomial expansions are employed in each interval.
|
||
|
|
||
|
This function is a wrapper for the Cephes [1]_ routine `k0e`. `k0e` is
|
||
|
useful for large arguments: for these, `k0` easily underflows.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Cephes Mathematical Functions Library,
|
||
|
http://www.netlib.org/cephes/
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
In the following example `k0` returns 0 whereas `k0e` still returns a
|
||
|
useful finite number:
|
||
|
|
||
|
>>> from scipy.special import k0, k0e
|
||
|
>>> k0(1000.), k0e(1000)
|
||
|
(0., 0.03962832160075422)
|
||
|
|
||
|
Calculate the function at several points by providing a NumPy array or
|
||
|
list for `x`:
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> k0e(np.array([0.5, 2., 3.]))
|
||
|
array([1.52410939, 0.84156822, 0.6977616 ])
|
||
|
|
||
|
Plot the function from 0 to 10.
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> x = np.linspace(0., 10., 1000)
|
||
|
>>> y = k0e(x)
|
||
|
>>> ax.plot(x, y)
|
||
|
>>> plt.show()
|
||
|
""")
|
||
|
|
||
|
add_newdoc("k1",
|
||
|
"""
|
||
|
k1(x, out=None)
|
||
|
|
||
|
Modified Bessel function of the second kind of order 1, :math:`K_1(x)`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Argument (float)
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
K : scalar or ndarray
|
||
|
Value of the modified Bessel function K of order 1 at `x`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
kv: Modified Bessel function of the second kind of any order
|
||
|
k1e: Exponentially scaled modified Bessel function K of order 1
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The range is partitioned into the two intervals [0, 2] and (2, infinity).
|
||
|
Chebyshev polynomial expansions are employed in each interval.
|
||
|
|
||
|
This function is a wrapper for the Cephes [1]_ routine `k1`.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Cephes Mathematical Functions Library,
|
||
|
http://www.netlib.org/cephes/
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Calculate the function at one point:
|
||
|
|
||
|
>>> from scipy.special import k1
|
||
|
>>> k1(1.)
|
||
|
0.6019072301972346
|
||
|
|
||
|
Calculate the function at several points:
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> k1(np.array([0.5, 2., 3.]))
|
||
|
array([1.65644112, 0.13986588, 0.04015643])
|
||
|
|
||
|
Plot the function from 0 to 10.
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> x = np.linspace(0., 10., 1000)
|
||
|
>>> y = k1(x)
|
||
|
>>> ax.plot(x, y)
|
||
|
>>> plt.show()
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("k1e",
|
||
|
"""
|
||
|
k1e(x, out=None)
|
||
|
|
||
|
Exponentially scaled modified Bessel function K of order 1
|
||
|
|
||
|
Defined as::
|
||
|
|
||
|
k1e(x) = exp(x) * k1(x)
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Argument (float)
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
K : scalar or ndarray
|
||
|
Value of the exponentially scaled modified Bessel function K of order
|
||
|
1 at `x`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
kv: Modified Bessel function of the second kind of any order
|
||
|
k1: Modified Bessel function of the second kind of order 1
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The range is partitioned into the two intervals [0, 2] and (2, infinity).
|
||
|
Chebyshev polynomial expansions are employed in each interval.
|
||
|
|
||
|
This function is a wrapper for the Cephes [1]_ routine `k1e`.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Cephes Mathematical Functions Library,
|
||
|
http://www.netlib.org/cephes/
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
In the following example `k1` returns 0 whereas `k1e` still returns a
|
||
|
useful floating point number.
|
||
|
|
||
|
>>> from scipy.special import k1, k1e
|
||
|
>>> k1(1000.), k1e(1000.)
|
||
|
(0., 0.03964813081296021)
|
||
|
|
||
|
Calculate the function at several points by providing a NumPy array or
|
||
|
list for `x`:
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> k1e(np.array([0.5, 2., 3.]))
|
||
|
array([2.73100971, 1.03347685, 0.80656348])
|
||
|
|
||
|
Plot the function from 0 to 10.
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> x = np.linspace(0., 10., 1000)
|
||
|
>>> y = k1e(x)
|
||
|
>>> ax.plot(x, y)
|
||
|
>>> plt.show()
|
||
|
""")
|
||
|
|
||
|
add_newdoc("kei",
|
||
|
r"""
|
||
|
kei(x, out=None)
|
||
|
|
||
|
Kelvin function kei.
|
||
|
|
||
|
Defined as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\mathrm{kei}(x) = \Im[K_0(x e^{\pi i / 4})]
|
||
|
|
||
|
where :math:`K_0` is the modified Bessel function of the second
|
||
|
kind (see `kv`). See [dlmf]_ for more details.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Real argument.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Values of the Kelvin function.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
ker : the corresponding real part
|
||
|
keip : the derivative of kei
|
||
|
kv : modified Bessel function of the second kind
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [dlmf] NIST, Digital Library of Mathematical Functions,
|
||
|
https://dlmf.nist.gov/10.61
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
It can be expressed using the modified Bessel function of the
|
||
|
second kind.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> import scipy.special as sc
|
||
|
>>> x = np.array([1.0, 2.0, 3.0, 4.0])
|
||
|
>>> sc.kv(0, x * np.exp(np.pi * 1j / 4)).imag
|
||
|
array([-0.49499464, -0.20240007, -0.05112188, 0.0021984 ])
|
||
|
>>> sc.kei(x)
|
||
|
array([-0.49499464, -0.20240007, -0.05112188, 0.0021984 ])
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("keip",
|
||
|
r"""
|
||
|
keip(x, out=None)
|
||
|
|
||
|
Derivative of the Kelvin function kei.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Real argument.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
The values of the derivative of kei.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
kei
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [dlmf] NIST, Digital Library of Mathematical Functions,
|
||
|
https://dlmf.nist.gov/10#PT5
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("kelvin",
|
||
|
"""
|
||
|
kelvin(x, out=None)
|
||
|
|
||
|
Kelvin functions as complex numbers
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Argument
|
||
|
out : tuple of ndarray, optional
|
||
|
Optional output arrays for the function values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Be, Ke, Bep, Kep : 4-tuple of scalar or ndarray
|
||
|
The tuple (Be, Ke, Bep, Kep) contains complex numbers
|
||
|
representing the real and imaginary Kelvin functions and their
|
||
|
derivatives evaluated at `x`. For example, kelvin(x)[0].real =
|
||
|
ber x and kelvin(x)[0].imag = bei x with similar relationships
|
||
|
for ker and kei.
|
||
|
""")
|
||
|
|
||
|
add_newdoc("ker",
|
||
|
r"""
|
||
|
ker(x, out=None)
|
||
|
|
||
|
Kelvin function ker.
|
||
|
|
||
|
Defined as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\mathrm{ker}(x) = \Re[K_0(x e^{\pi i / 4})]
|
||
|
|
||
|
Where :math:`K_0` is the modified Bessel function of the second
|
||
|
kind (see `kv`). See [dlmf]_ for more details.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Real argument.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Values of the Kelvin function.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
kei : the corresponding imaginary part
|
||
|
kerp : the derivative of ker
|
||
|
kv : modified Bessel function of the second kind
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [dlmf] NIST, Digital Library of Mathematical Functions,
|
||
|
https://dlmf.nist.gov/10.61
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
It can be expressed using the modified Bessel function of the
|
||
|
second kind.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> import scipy.special as sc
|
||
|
>>> x = np.array([1.0, 2.0, 3.0, 4.0])
|
||
|
>>> sc.kv(0, x * np.exp(np.pi * 1j / 4)).real
|
||
|
array([ 0.28670621, -0.04166451, -0.06702923, -0.03617885])
|
||
|
>>> sc.ker(x)
|
||
|
array([ 0.28670621, -0.04166451, -0.06702923, -0.03617885])
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("kerp",
|
||
|
r"""
|
||
|
kerp(x, out=None)
|
||
|
|
||
|
Derivative of the Kelvin function ker.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Real argument.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Values of the derivative of ker.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
ker
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [dlmf] NIST, Digital Library of Mathematical Functions,
|
||
|
https://dlmf.nist.gov/10#PT5
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("kl_div",
|
||
|
r"""
|
||
|
kl_div(x, y, out=None)
|
||
|
|
||
|
Elementwise function for computing Kullback-Leibler divergence.
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\mathrm{kl\_div}(x, y) =
|
||
|
\begin{cases}
|
||
|
x \log(x / y) - x + y & x > 0, y > 0 \\
|
||
|
y & x = 0, y \ge 0 \\
|
||
|
\infty & \text{otherwise}
|
||
|
\end{cases}
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x, y : array_like
|
||
|
Real arguments
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Values of the Kullback-Liebler divergence.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
entr, rel_entr, scipy.stats.entropy
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
.. versionadded:: 0.15.0
|
||
|
|
||
|
This function is non-negative and is jointly convex in `x` and `y`.
|
||
|
|
||
|
The origin of this function is in convex programming; see [1]_ for
|
||
|
details. This is why the function contains the extra :math:`-x
|
||
|
+ y` terms over what might be expected from the Kullback-Leibler
|
||
|
divergence. For a version of the function without the extra terms,
|
||
|
see `rel_entr`.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Boyd, Stephen and Lieven Vandenberghe. *Convex optimization*.
|
||
|
Cambridge University Press, 2004.
|
||
|
:doi:`https://doi.org/10.1017/CBO9780511804441`
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("kn",
|
||
|
r"""
|
||
|
kn(n, x, out=None)
|
||
|
|
||
|
Modified Bessel function of the second kind of integer order `n`
|
||
|
|
||
|
Returns the modified Bessel function of the second kind for integer order
|
||
|
`n` at real `z`.
|
||
|
|
||
|
These are also sometimes called functions of the third kind, Basset
|
||
|
functions, or Macdonald functions.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : array_like of int
|
||
|
Order of Bessel functions (floats will truncate with a warning)
|
||
|
x : array_like of float
|
||
|
Argument at which to evaluate the Bessel functions
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Value of the Modified Bessel function of the second kind,
|
||
|
:math:`K_n(x)`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
kv : Same function, but accepts real order and complex argument
|
||
|
kvp : Derivative of this function
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Wrapper for AMOS [1]_ routine `zbesk`. For a discussion of the
|
||
|
algorithm used, see [2]_ and the references therein.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Donald E. Amos, "AMOS, A Portable Package for Bessel Functions
|
||
|
of a Complex Argument and Nonnegative Order",
|
||
|
http://netlib.org/amos/
|
||
|
.. [2] Donald E. Amos, "Algorithm 644: A portable package for Bessel
|
||
|
functions of a complex argument and nonnegative order", ACM
|
||
|
TOMS Vol. 12 Issue 3, Sept. 1986, p. 265
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Plot the function of several orders for real input:
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import kn
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> x = np.linspace(0, 5, 1000)
|
||
|
>>> for N in range(6):
|
||
|
... plt.plot(x, kn(N, x), label='$K_{}(x)$'.format(N))
|
||
|
>>> plt.ylim(0, 10)
|
||
|
>>> plt.legend()
|
||
|
>>> plt.title(r'Modified Bessel function of the second kind $K_n(x)$')
|
||
|
>>> plt.show()
|
||
|
|
||
|
Calculate for a single value at multiple orders:
|
||
|
|
||
|
>>> kn([4, 5, 6], 1)
|
||
|
array([ 44.23241585, 360.9605896 , 3653.83831186])
|
||
|
""")
|
||
|
|
||
|
add_newdoc("kolmogi",
|
||
|
"""
|
||
|
kolmogi(p, out=None)
|
||
|
|
||
|
Inverse Survival Function of Kolmogorov distribution
|
||
|
|
||
|
It is the inverse function to `kolmogorov`.
|
||
|
Returns y such that ``kolmogorov(y) == p``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
p : float array_like
|
||
|
Probability
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
The value(s) of kolmogi(p)
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
kolmogorov : The Survival Function for the distribution
|
||
|
scipy.stats.kstwobign : Provides the functionality as a continuous distribution
|
||
|
smirnov, smirnovi : Functions for the one-sided distribution
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
`kolmogorov` is used by `stats.kstest` in the application of the
|
||
|
Kolmogorov-Smirnov Goodness of Fit test. For historical reasons this
|
||
|
function is exposed in `scpy.special`, but the recommended way to achieve
|
||
|
the most accurate CDF/SF/PDF/PPF/ISF computations is to use the
|
||
|
`stats.kstwobign` distribution.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.special import kolmogi
|
||
|
>>> kolmogi([0, 0.1, 0.25, 0.5, 0.75, 0.9, 1.0])
|
||
|
array([ inf, 1.22384787, 1.01918472, 0.82757356, 0.67644769,
|
||
|
0.57117327, 0. ])
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("kolmogorov",
|
||
|
r"""
|
||
|
kolmogorov(y, out=None)
|
||
|
|
||
|
Complementary cumulative distribution (Survival Function) function of
|
||
|
Kolmogorov distribution.
|
||
|
|
||
|
Returns the complementary cumulative distribution function of
|
||
|
Kolmogorov's limiting distribution (``D_n*\sqrt(n)`` as n goes to infinity)
|
||
|
of a two-sided test for equality between an empirical and a theoretical
|
||
|
distribution. It is equal to the (limit as n->infinity of the)
|
||
|
probability that ``sqrt(n) * max absolute deviation > y``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
y : float array_like
|
||
|
Absolute deviation between the Empirical CDF (ECDF) and the target CDF,
|
||
|
multiplied by sqrt(n).
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
The value(s) of kolmogorov(y)
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
kolmogi : The Inverse Survival Function for the distribution
|
||
|
scipy.stats.kstwobign : Provides the functionality as a continuous distribution
|
||
|
smirnov, smirnovi : Functions for the one-sided distribution
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
`kolmogorov` is used by `stats.kstest` in the application of the
|
||
|
Kolmogorov-Smirnov Goodness of Fit test. For historical reasons this
|
||
|
function is exposed in `scpy.special`, but the recommended way to achieve
|
||
|
the most accurate CDF/SF/PDF/PPF/ISF computations is to use the
|
||
|
`stats.kstwobign` distribution.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Show the probability of a gap at least as big as 0, 0.5 and 1.0.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import kolmogorov
|
||
|
>>> from scipy.stats import kstwobign
|
||
|
>>> kolmogorov([0, 0.5, 1.0])
|
||
|
array([ 1. , 0.96394524, 0.26999967])
|
||
|
|
||
|
Compare a sample of size 1000 drawn from a Laplace(0, 1) distribution against
|
||
|
the target distribution, a Normal(0, 1) distribution.
|
||
|
|
||
|
>>> from scipy.stats import norm, laplace
|
||
|
>>> rng = np.random.default_rng()
|
||
|
>>> n = 1000
|
||
|
>>> lap01 = laplace(0, 1)
|
||
|
>>> x = np.sort(lap01.rvs(n, random_state=rng))
|
||
|
>>> np.mean(x), np.std(x)
|
||
|
(-0.05841730131499543, 1.3968109101997568)
|
||
|
|
||
|
Construct the Empirical CDF and the K-S statistic Dn.
|
||
|
|
||
|
>>> target = norm(0,1) # Normal mean 0, stddev 1
|
||
|
>>> cdfs = target.cdf(x)
|
||
|
>>> ecdfs = np.arange(n+1, dtype=float)/n
|
||
|
>>> gaps = np.column_stack([cdfs - ecdfs[:n], ecdfs[1:] - cdfs])
|
||
|
>>> Dn = np.max(gaps)
|
||
|
>>> Kn = np.sqrt(n) * Dn
|
||
|
>>> print('Dn=%f, sqrt(n)*Dn=%f' % (Dn, Kn))
|
||
|
Dn=0.043363, sqrt(n)*Dn=1.371265
|
||
|
>>> print(chr(10).join(['For a sample of size n drawn from a N(0, 1) distribution:',
|
||
|
... ' the approximate Kolmogorov probability that sqrt(n)*Dn>=%f is %f' %
|
||
|
... (Kn, kolmogorov(Kn)),
|
||
|
... ' the approximate Kolmogorov probability that sqrt(n)*Dn<=%f is %f' %
|
||
|
... (Kn, kstwobign.cdf(Kn))]))
|
||
|
For a sample of size n drawn from a N(0, 1) distribution:
|
||
|
the approximate Kolmogorov probability that sqrt(n)*Dn>=1.371265 is 0.046533
|
||
|
the approximate Kolmogorov probability that sqrt(n)*Dn<=1.371265 is 0.953467
|
||
|
|
||
|
Plot the Empirical CDF against the target N(0, 1) CDF.
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> plt.step(np.concatenate([[-3], x]), ecdfs, where='post', label='Empirical CDF')
|
||
|
>>> x3 = np.linspace(-3, 3, 100)
|
||
|
>>> plt.plot(x3, target.cdf(x3), label='CDF for N(0, 1)')
|
||
|
>>> plt.ylim([0, 1]); plt.grid(True); plt.legend();
|
||
|
>>> # Add vertical lines marking Dn+ and Dn-
|
||
|
>>> iminus, iplus = np.argmax(gaps, axis=0)
|
||
|
>>> plt.vlines([x[iminus]], ecdfs[iminus], cdfs[iminus],
|
||
|
... color='r', linestyle='dashed', lw=4)
|
||
|
>>> plt.vlines([x[iplus]], cdfs[iplus], ecdfs[iplus+1],
|
||
|
... color='r', linestyle='dashed', lw=4)
|
||
|
>>> plt.show()
|
||
|
""")
|
||
|
|
||
|
add_newdoc("_kolmogc",
|
||
|
r"""
|
||
|
Internal function, do not use.
|
||
|
""")
|
||
|
|
||
|
add_newdoc("_kolmogci",
|
||
|
r"""
|
||
|
Internal function, do not use.
|
||
|
""")
|
||
|
|
||
|
add_newdoc("_kolmogp",
|
||
|
r"""
|
||
|
Internal function, do not use.
|
||
|
""")
|
||
|
|
||
|
add_newdoc("kv",
|
||
|
r"""
|
||
|
kv(v, z, out=None)
|
||
|
|
||
|
Modified Bessel function of the second kind of real order `v`
|
||
|
|
||
|
Returns the modified Bessel function of the second kind for real order
|
||
|
`v` at complex `z`.
|
||
|
|
||
|
These are also sometimes called functions of the third kind, Basset
|
||
|
functions, or Macdonald functions. They are defined as those solutions
|
||
|
of the modified Bessel equation for which,
|
||
|
|
||
|
.. math::
|
||
|
K_v(x) \sim \sqrt{\pi/(2x)} \exp(-x)
|
||
|
|
||
|
as :math:`x \to \infty` [3]_.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
v : array_like of float
|
||
|
Order of Bessel functions
|
||
|
z : array_like of complex
|
||
|
Argument at which to evaluate the Bessel functions
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
The results. Note that input must be of complex type to get complex
|
||
|
output, e.g. ``kv(3, -2+0j)`` instead of ``kv(3, -2)``.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
kve : This function with leading exponential behavior stripped off.
|
||
|
kvp : Derivative of this function
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Wrapper for AMOS [1]_ routine `zbesk`. For a discussion of the
|
||
|
algorithm used, see [2]_ and the references therein.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Donald E. Amos, "AMOS, A Portable Package for Bessel Functions
|
||
|
of a Complex Argument and Nonnegative Order",
|
||
|
http://netlib.org/amos/
|
||
|
.. [2] Donald E. Amos, "Algorithm 644: A portable package for Bessel
|
||
|
functions of a complex argument and nonnegative order", ACM
|
||
|
TOMS Vol. 12 Issue 3, Sept. 1986, p. 265
|
||
|
.. [3] NIST Digital Library of Mathematical Functions,
|
||
|
Eq. 10.25.E3. https://dlmf.nist.gov/10.25.E3
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Plot the function of several orders for real input:
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import kv
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> x = np.linspace(0, 5, 1000)
|
||
|
>>> for N in np.linspace(0, 6, 5):
|
||
|
... plt.plot(x, kv(N, x), label='$K_{{{}}}(x)$'.format(N))
|
||
|
>>> plt.ylim(0, 10)
|
||
|
>>> plt.legend()
|
||
|
>>> plt.title(r'Modified Bessel function of the second kind $K_\nu(x)$')
|
||
|
>>> plt.show()
|
||
|
|
||
|
Calculate for a single value at multiple orders:
|
||
|
|
||
|
>>> kv([4, 4.5, 5], 1+2j)
|
||
|
array([ 0.1992+2.3892j, 2.3493+3.6j , 7.2827+3.8104j])
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("kve",
|
||
|
r"""
|
||
|
kve(v, z, out=None)
|
||
|
|
||
|
Exponentially scaled modified Bessel function of the second kind.
|
||
|
|
||
|
Returns the exponentially scaled, modified Bessel function of the
|
||
|
second kind (sometimes called the third kind) for real order `v` at
|
||
|
complex `z`::
|
||
|
|
||
|
kve(v, z) = kv(v, z) * exp(z)
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
v : array_like of float
|
||
|
Order of Bessel functions
|
||
|
z : array_like of complex
|
||
|
Argument at which to evaluate the Bessel functions
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
The exponentially scaled modified Bessel function of the second kind.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
kv : This function without exponential scaling.
|
||
|
k0e : Faster version of this function for order 0.
|
||
|
k1e : Faster version of this function for order 1.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Wrapper for AMOS [1]_ routine `zbesk`. For a discussion of the
|
||
|
algorithm used, see [2]_ and the references therein.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Donald E. Amos, "AMOS, A Portable Package for Bessel Functions
|
||
|
of a Complex Argument and Nonnegative Order",
|
||
|
http://netlib.org/amos/
|
||
|
.. [2] Donald E. Amos, "Algorithm 644: A portable package for Bessel
|
||
|
functions of a complex argument and nonnegative order", ACM
|
||
|
TOMS Vol. 12 Issue 3, Sept. 1986, p. 265
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
In the following example `kv` returns 0 whereas `kve` still returns
|
||
|
a useful finite number.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import kv, kve
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> kv(3, 1000.), kve(3, 1000.)
|
||
|
(0.0, 0.03980696128440973)
|
||
|
|
||
|
Evaluate the function at one point for different orders by
|
||
|
providing a list or NumPy array as argument for the `v` parameter:
|
||
|
|
||
|
>>> kve([0, 1, 1.5], 1.)
|
||
|
array([1.14446308, 1.63615349, 2.50662827])
|
||
|
|
||
|
Evaluate the function at several points for order 0 by providing an
|
||
|
array for `z`.
|
||
|
|
||
|
>>> points = np.array([1., 3., 10.])
|
||
|
>>> kve(0, points)
|
||
|
array([1.14446308, 0.6977616 , 0.39163193])
|
||
|
|
||
|
Evaluate the function at several points for different orders by
|
||
|
providing arrays for both `v` for `z`. Both arrays have to be
|
||
|
broadcastable to the correct shape. To calculate the orders 0, 1
|
||
|
and 2 for a 1D array of points:
|
||
|
|
||
|
>>> kve([[0], [1], [2]], points)
|
||
|
array([[1.14446308, 0.6977616 , 0.39163193],
|
||
|
[1.63615349, 0.80656348, 0.41076657],
|
||
|
[4.41677005, 1.23547058, 0.47378525]])
|
||
|
|
||
|
Plot the functions of order 0 to 3 from 0 to 5.
|
||
|
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> x = np.linspace(0., 5., 1000)
|
||
|
>>> for i in range(4):
|
||
|
... ax.plot(x, kve(i, x), label=fr'$K_{i!r}(z)\cdot e^z$')
|
||
|
>>> ax.legend()
|
||
|
>>> ax.set_xlabel(r"$z$")
|
||
|
>>> ax.set_ylim(0, 4)
|
||
|
>>> ax.set_xlim(0, 5)
|
||
|
>>> plt.show()
|
||
|
""")
|
||
|
|
||
|
add_newdoc("_lanczos_sum_expg_scaled",
|
||
|
"""
|
||
|
Internal function, do not use.
|
||
|
""")
|
||
|
|
||
|
add_newdoc("_lgam1p",
|
||
|
"""
|
||
|
Internal function, do not use.
|
||
|
""")
|
||
|
|
||
|
add_newdoc("log1p",
|
||
|
"""
|
||
|
log1p(x, out=None)
|
||
|
|
||
|
Calculates log(1 + x) for use when `x` is near zero.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Real or complex valued input.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Values of ``log(1 + x)``.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
expm1, cosm1
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> import scipy.special as sc
|
||
|
|
||
|
It is more accurate than using ``log(1 + x)`` directly for ``x``
|
||
|
near 0. Note that in the below example ``1 + 1e-17 == 1`` to
|
||
|
double precision.
|
||
|
|
||
|
>>> sc.log1p(1e-17)
|
||
|
1e-17
|
||
|
>>> np.log(1 + 1e-17)
|
||
|
0.0
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("_log1pmx",
|
||
|
"""
|
||
|
Internal function, do not use.
|
||
|
""")
|
||
|
|
||
|
add_newdoc('log_expit',
|
||
|
"""
|
||
|
log_expit(x, out=None)
|
||
|
|
||
|
Logarithm of the logistic sigmoid function.
|
||
|
|
||
|
The SciPy implementation of the logistic sigmoid function is
|
||
|
`scipy.special.expit`, so this function is called ``log_expit``.
|
||
|
|
||
|
The function is mathematically equivalent to ``log(expit(x))``, but
|
||
|
is formulated to avoid loss of precision for inputs with large
|
||
|
(positive or negative) magnitude.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
The values to apply ``log_expit`` to element-wise.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
out : scalar or ndarray
|
||
|
The computed values, an ndarray of the same shape as ``x``.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
expit
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
As a ufunc, ``log_expit`` takes a number of optional keyword arguments.
|
||
|
For more information see
|
||
|
`ufuncs <https://docs.scipy.org/doc/numpy/reference/ufuncs.html>`_
|
||
|
|
||
|
.. versionadded:: 1.8.0
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import log_expit, expit
|
||
|
|
||
|
>>> log_expit([-3.0, 0.25, 2.5, 5.0])
|
||
|
array([-3.04858735, -0.57593942, -0.07888973, -0.00671535])
|
||
|
|
||
|
Large negative values:
|
||
|
|
||
|
>>> log_expit([-100, -500, -1000])
|
||
|
array([ -100., -500., -1000.])
|
||
|
|
||
|
Note that ``expit(-1000)`` returns 0, so the naive implementation
|
||
|
``log(expit(-1000))`` return ``-inf``.
|
||
|
|
||
|
Large positive values:
|
||
|
|
||
|
>>> log_expit([29, 120, 400])
|
||
|
array([-2.54366565e-013, -7.66764807e-053, -1.91516960e-174])
|
||
|
|
||
|
Compare that to the naive implementation:
|
||
|
|
||
|
>>> np.log(expit([29, 120, 400]))
|
||
|
array([-2.54463117e-13, 0.00000000e+00, 0.00000000e+00])
|
||
|
|
||
|
The first value is accurate to only 3 digits, and the larger inputs
|
||
|
lose all precision and return 0.
|
||
|
""")
|
||
|
|
||
|
add_newdoc('logit',
|
||
|
"""
|
||
|
logit(x, out=None)
|
||
|
|
||
|
Logit ufunc for ndarrays.
|
||
|
|
||
|
The logit function is defined as logit(p) = log(p/(1-p)).
|
||
|
Note that logit(0) = -inf, logit(1) = inf, and logit(p)
|
||
|
for p<0 or p>1 yields nan.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : ndarray
|
||
|
The ndarray to apply logit to element-wise.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
An ndarray of the same shape as x. Its entries
|
||
|
are logit of the corresponding entry of x.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
expit
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
As a ufunc logit takes a number of optional
|
||
|
keyword arguments. For more information
|
||
|
see `ufuncs <https://docs.scipy.org/doc/numpy/reference/ufuncs.html>`_
|
||
|
|
||
|
.. versionadded:: 0.10.0
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import logit, expit
|
||
|
|
||
|
>>> logit([0, 0.25, 0.5, 0.75, 1])
|
||
|
array([ -inf, -1.09861229, 0. , 1.09861229, inf])
|
||
|
|
||
|
`expit` is the inverse of `logit`:
|
||
|
|
||
|
>>> expit(logit([0.1, 0.75, 0.999]))
|
||
|
array([ 0.1 , 0.75 , 0.999])
|
||
|
|
||
|
Plot logit(x) for x in [0, 1]:
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> x = np.linspace(0, 1, 501)
|
||
|
>>> y = logit(x)
|
||
|
>>> plt.plot(x, y)
|
||
|
>>> plt.grid()
|
||
|
>>> plt.ylim(-6, 6)
|
||
|
>>> plt.xlabel('x')
|
||
|
>>> plt.title('logit(x)')
|
||
|
>>> plt.show()
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("lpmv",
|
||
|
r"""
|
||
|
lpmv(m, v, x, out=None)
|
||
|
|
||
|
Associated Legendre function of integer order and real degree.
|
||
|
|
||
|
Defined as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
P_v^m = (-1)^m (1 - x^2)^{m/2} \frac{d^m}{dx^m} P_v(x)
|
||
|
|
||
|
where
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
P_v = \sum_{k = 0}^\infty \frac{(-v)_k (v + 1)_k}{(k!)^2}
|
||
|
\left(\frac{1 - x}{2}\right)^k
|
||
|
|
||
|
is the Legendre function of the first kind. Here :math:`(\cdot)_k`
|
||
|
is the Pochhammer symbol; see `poch`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
m : array_like
|
||
|
Order (int or float). If passed a float not equal to an
|
||
|
integer the function returns NaN.
|
||
|
v : array_like
|
||
|
Degree (float).
|
||
|
x : array_like
|
||
|
Argument (float). Must have ``|x| <= 1``.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
pmv : scalar or ndarray
|
||
|
Value of the associated Legendre function.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
lpmn : Compute the associated Legendre function for all orders
|
||
|
``0, ..., m`` and degrees ``0, ..., n``.
|
||
|
clpmn : Compute the associated Legendre function at complex
|
||
|
arguments.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Note that this implementation includes the Condon-Shortley phase.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Jin, "Computation of Special Functions", John Wiley
|
||
|
and Sons, Inc, 1996.
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("mathieu_a",
|
||
|
"""
|
||
|
mathieu_a(m, q, out=None)
|
||
|
|
||
|
Characteristic value of even Mathieu functions
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
m : array_like
|
||
|
Order of the function
|
||
|
q : array_like
|
||
|
Parameter of the function
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Characteristic value for the even solution, ``ce_m(z, q)``, of
|
||
|
Mathieu's equation.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
mathieu_b, mathieu_cem, mathieu_sem
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("mathieu_b",
|
||
|
"""
|
||
|
mathieu_b(m, q, out=None)
|
||
|
|
||
|
Characteristic value of odd Mathieu functions
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
m : array_like
|
||
|
Order of the function
|
||
|
q : array_like
|
||
|
Parameter of the function
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Characteristic value for the odd solution, ``se_m(z, q)``, of Mathieu's
|
||
|
equation.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
mathieu_a, mathieu_cem, mathieu_sem
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("mathieu_cem",
|
||
|
"""
|
||
|
mathieu_cem(m, q, x, out=None)
|
||
|
|
||
|
Even Mathieu function and its derivative
|
||
|
|
||
|
Returns the even Mathieu function, ``ce_m(x, q)``, of order `m` and
|
||
|
parameter `q` evaluated at `x` (given in degrees). Also returns the
|
||
|
derivative with respect to `x` of ce_m(x, q)
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
m : array_like
|
||
|
Order of the function
|
||
|
q : array_like
|
||
|
Parameter of the function
|
||
|
x : array_like
|
||
|
Argument of the function, *given in degrees, not radians*
|
||
|
out : tuple of ndarray, optional
|
||
|
Optional output arrays for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
y : scalar or ndarray
|
||
|
Value of the function
|
||
|
yp : scalar or ndarray
|
||
|
Value of the derivative vs x
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
mathieu_a, mathieu_b, mathieu_sem
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("mathieu_modcem1",
|
||
|
"""
|
||
|
mathieu_modcem1(m, q, x, out=None)
|
||
|
|
||
|
Even modified Mathieu function of the first kind and its derivative
|
||
|
|
||
|
Evaluates the even modified Mathieu function of the first kind,
|
||
|
``Mc1m(x, q)``, and its derivative at `x` for order `m` and parameter
|
||
|
`q`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
m : array_like
|
||
|
Order of the function
|
||
|
q : array_like
|
||
|
Parameter of the function
|
||
|
x : array_like
|
||
|
Argument of the function, *given in degrees, not radians*
|
||
|
out : tuple of ndarray, optional
|
||
|
Optional output arrays for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
y : scalar or ndarray
|
||
|
Value of the function
|
||
|
yp : scalar or ndarray
|
||
|
Value of the derivative vs x
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
mathieu_modsem1
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("mathieu_modcem2",
|
||
|
"""
|
||
|
mathieu_modcem2(m, q, x, out=None)
|
||
|
|
||
|
Even modified Mathieu function of the second kind and its derivative
|
||
|
|
||
|
Evaluates the even modified Mathieu function of the second kind,
|
||
|
Mc2m(x, q), and its derivative at `x` (given in degrees) for order `m`
|
||
|
and parameter `q`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
m : array_like
|
||
|
Order of the function
|
||
|
q : array_like
|
||
|
Parameter of the function
|
||
|
x : array_like
|
||
|
Argument of the function, *given in degrees, not radians*
|
||
|
out : tuple of ndarray, optional
|
||
|
Optional output arrays for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
y : scalar or ndarray
|
||
|
Value of the function
|
||
|
yp : scalar or ndarray
|
||
|
Value of the derivative vs x
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
mathieu_modsem2
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("mathieu_modsem1",
|
||
|
"""
|
||
|
mathieu_modsem1(m, q, x, out=None)
|
||
|
|
||
|
Odd modified Mathieu function of the first kind and its derivative
|
||
|
|
||
|
Evaluates the odd modified Mathieu function of the first kind,
|
||
|
Ms1m(x, q), and its derivative at `x` (given in degrees) for order `m`
|
||
|
and parameter `q`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
m : array_like
|
||
|
Order of the function
|
||
|
q : array_like
|
||
|
Parameter of the function
|
||
|
x : array_like
|
||
|
Argument of the function, *given in degrees, not radians*
|
||
|
out : tuple of ndarray, optional
|
||
|
Optional output arrays for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
y : scalar or ndarray
|
||
|
Value of the function
|
||
|
yp : scalar or ndarray
|
||
|
Value of the derivative vs x
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
mathieu_modcem1
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("mathieu_modsem2",
|
||
|
"""
|
||
|
mathieu_modsem2(m, q, x, out=None)
|
||
|
|
||
|
Odd modified Mathieu function of the second kind and its derivative
|
||
|
|
||
|
Evaluates the odd modified Mathieu function of the second kind,
|
||
|
Ms2m(x, q), and its derivative at `x` (given in degrees) for order `m`
|
||
|
and parameter q.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
m : array_like
|
||
|
Order of the function
|
||
|
q : array_like
|
||
|
Parameter of the function
|
||
|
x : array_like
|
||
|
Argument of the function, *given in degrees, not radians*
|
||
|
out : tuple of ndarray, optional
|
||
|
Optional output arrays for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
y : scalar or ndarray
|
||
|
Value of the function
|
||
|
yp : scalar or ndarray
|
||
|
Value of the derivative vs x
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
mathieu_modcem2
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc(
|
||
|
"mathieu_sem",
|
||
|
"""
|
||
|
mathieu_sem(m, q, x, out=None)
|
||
|
|
||
|
Odd Mathieu function and its derivative
|
||
|
|
||
|
Returns the odd Mathieu function, se_m(x, q), of order `m` and
|
||
|
parameter `q` evaluated at `x` (given in degrees). Also returns the
|
||
|
derivative with respect to `x` of se_m(x, q).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
m : array_like
|
||
|
Order of the function
|
||
|
q : array_like
|
||
|
Parameter of the function
|
||
|
x : array_like
|
||
|
Argument of the function, *given in degrees, not radians*.
|
||
|
out : tuple of ndarray, optional
|
||
|
Optional output arrays for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
y : scalar or ndarray
|
||
|
Value of the function
|
||
|
yp : scalar or ndarray
|
||
|
Value of the derivative vs x
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
mathieu_a, mathieu_b, mathieu_cem
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("modfresnelm",
|
||
|
"""
|
||
|
modfresnelm(x, out=None)
|
||
|
|
||
|
Modified Fresnel negative integrals
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Function argument
|
||
|
out : tuple of ndarray, optional
|
||
|
Optional output arrays for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
fm : scalar or ndarray
|
||
|
Integral ``F_-(x)``: ``integral(exp(-1j*t*t), t=x..inf)``
|
||
|
km : scalar or ndarray
|
||
|
Integral ``K_-(x)``: ``1/sqrt(pi)*exp(1j*(x*x+pi/4))*fp``
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
modfresnelp
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("modfresnelp",
|
||
|
"""
|
||
|
modfresnelp(x, out=None)
|
||
|
|
||
|
Modified Fresnel positive integrals
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Function argument
|
||
|
out : tuple of ndarray, optional
|
||
|
Optional output arrays for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
fp : scalar or ndarray
|
||
|
Integral ``F_+(x)``: ``integral(exp(1j*t*t), t=x..inf)``
|
||
|
kp : scalar or ndarray
|
||
|
Integral ``K_+(x)``: ``1/sqrt(pi)*exp(-1j*(x*x+pi/4))*fp``
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
modfresnelm
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("modstruve",
|
||
|
r"""
|
||
|
modstruve(v, x, out=None)
|
||
|
|
||
|
Modified Struve function.
|
||
|
|
||
|
Return the value of the modified Struve function of order `v` at `x`. The
|
||
|
modified Struve function is defined as,
|
||
|
|
||
|
.. math::
|
||
|
L_v(x) = -\imath \exp(-\pi\imath v/2) H_v(\imath x),
|
||
|
|
||
|
where :math:`H_v` is the Struve function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
v : array_like
|
||
|
Order of the modified Struve function (float).
|
||
|
x : array_like
|
||
|
Argument of the Struve function (float; must be positive unless `v` is
|
||
|
an integer).
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
L : scalar or ndarray
|
||
|
Value of the modified Struve function of order `v` at `x`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
struve
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Three methods discussed in [1]_ are used to evaluate the function:
|
||
|
|
||
|
- power series
|
||
|
- expansion in Bessel functions (if :math:`|x| < |v| + 20`)
|
||
|
- asymptotic large-x expansion (if :math:`x \geq 0.7v + 12`)
|
||
|
|
||
|
Rounding errors are estimated based on the largest terms in the sums, and
|
||
|
the result associated with the smallest error is returned.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] NIST Digital Library of Mathematical Functions
|
||
|
https://dlmf.nist.gov/11
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Calculate the modified Struve function of order 1 at 2.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import modstruve
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> modstruve(1, 2.)
|
||
|
1.102759787367716
|
||
|
|
||
|
Calculate the modified Struve function at 2 for orders 1, 2 and 3 by
|
||
|
providing a list for the order parameter `v`.
|
||
|
|
||
|
>>> modstruve([1, 2, 3], 2.)
|
||
|
array([1.10275979, 0.41026079, 0.11247294])
|
||
|
|
||
|
Calculate the modified Struve function of order 1 for several points
|
||
|
by providing an array for `x`.
|
||
|
|
||
|
>>> points = np.array([2., 5., 8.])
|
||
|
>>> modstruve(1, points)
|
||
|
array([ 1.10275979, 23.72821578, 399.24709139])
|
||
|
|
||
|
Compute the modified Struve function for several orders at several
|
||
|
points by providing arrays for `v` and `z`. The arrays have to be
|
||
|
broadcastable to the correct shapes.
|
||
|
|
||
|
>>> orders = np.array([[1], [2], [3]])
|
||
|
>>> points.shape, orders.shape
|
||
|
((3,), (3, 1))
|
||
|
|
||
|
>>> modstruve(orders, points)
|
||
|
array([[1.10275979e+00, 2.37282158e+01, 3.99247091e+02],
|
||
|
[4.10260789e-01, 1.65535979e+01, 3.25973609e+02],
|
||
|
[1.12472937e-01, 9.42430454e+00, 2.33544042e+02]])
|
||
|
|
||
|
Plot the modified Struve functions of order 0 to 3 from -5 to 5.
|
||
|
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> x = np.linspace(-5., 5., 1000)
|
||
|
>>> for i in range(4):
|
||
|
... ax.plot(x, modstruve(i, x), label=f'$L_{i!r}$')
|
||
|
>>> ax.legend(ncol=2)
|
||
|
>>> ax.set_xlim(-5, 5)
|
||
|
>>> ax.set_title(r"Modified Struve functions $L_{\nu}$")
|
||
|
>>> plt.show()
|
||
|
""")
|
||
|
|
||
|
add_newdoc("nbdtr",
|
||
|
r"""
|
||
|
nbdtr(k, n, p, out=None)
|
||
|
|
||
|
Negative binomial cumulative distribution function.
|
||
|
|
||
|
Returns the sum of the terms 0 through `k` of the negative binomial
|
||
|
distribution probability mass function,
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
F = \sum_{j=0}^k {{n + j - 1}\choose{j}} p^n (1 - p)^j.
|
||
|
|
||
|
In a sequence of Bernoulli trials with individual success probabilities
|
||
|
`p`, this is the probability that `k` or fewer failures precede the nth
|
||
|
success.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
k : array_like
|
||
|
The maximum number of allowed failures (nonnegative int).
|
||
|
n : array_like
|
||
|
The target number of successes (positive int).
|
||
|
p : array_like
|
||
|
Probability of success in a single event (float).
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
F : scalar or ndarray
|
||
|
The probability of `k` or fewer failures before `n` successes in a
|
||
|
sequence of events with individual success probability `p`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
nbdtrc : Negative binomial survival function
|
||
|
nbdtrik : Negative binomial quantile function
|
||
|
scipy.stats.nbinom : Negative binomial distribution
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
If floating point values are passed for `k` or `n`, they will be truncated
|
||
|
to integers.
|
||
|
|
||
|
The terms are not summed directly; instead the regularized incomplete beta
|
||
|
function is employed, according to the formula,
|
||
|
|
||
|
.. math::
|
||
|
\mathrm{nbdtr}(k, n, p) = I_{p}(n, k + 1).
|
||
|
|
||
|
Wrapper for the Cephes [1]_ routine `nbdtr`.
|
||
|
|
||
|
The negative binomial distribution is also available as
|
||
|
`scipy.stats.nbinom`. Using `nbdtr` directly can improve performance
|
||
|
compared to the ``cdf`` method of `scipy.stats.nbinom` (see last example).
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Cephes Mathematical Functions Library,
|
||
|
http://www.netlib.org/cephes/
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Compute the function for ``k=10`` and ``n=5`` at ``p=0.5``.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import nbdtr
|
||
|
>>> nbdtr(10, 5, 0.5)
|
||
|
0.940765380859375
|
||
|
|
||
|
Compute the function for ``n=10`` and ``p=0.5`` at several points by
|
||
|
providing a NumPy array or list for `k`.
|
||
|
|
||
|
>>> nbdtr([5, 10, 15], 10, 0.5)
|
||
|
array([0.15087891, 0.58809853, 0.88523853])
|
||
|
|
||
|
Plot the function for four different parameter sets.
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> k = np.arange(130)
|
||
|
>>> n_parameters = [20, 20, 20, 80]
|
||
|
>>> p_parameters = [0.2, 0.5, 0.8, 0.5]
|
||
|
>>> linestyles = ['solid', 'dashed', 'dotted', 'dashdot']
|
||
|
>>> parameters_list = list(zip(p_parameters, n_parameters,
|
||
|
... linestyles))
|
||
|
>>> fig, ax = plt.subplots(figsize=(8, 8))
|
||
|
>>> for parameter_set in parameters_list:
|
||
|
... p, n, style = parameter_set
|
||
|
... nbdtr_vals = nbdtr(k, n, p)
|
||
|
... ax.plot(k, nbdtr_vals, label=rf"$n={n},\, p={p}$",
|
||
|
... ls=style)
|
||
|
>>> ax.legend()
|
||
|
>>> ax.set_xlabel("$k$")
|
||
|
>>> ax.set_title("Negative binomial cumulative distribution function")
|
||
|
>>> plt.show()
|
||
|
|
||
|
The negative binomial distribution is also available as
|
||
|
`scipy.stats.nbinom`. Using `nbdtr` directly can be much faster than
|
||
|
calling the ``cdf`` method of `scipy.stats.nbinom`, especially for small
|
||
|
arrays or individual values. To get the same results one must use the
|
||
|
following parametrization: ``nbinom(n, p).cdf(k)=nbdtr(k, n, p)``.
|
||
|
|
||
|
>>> from scipy.stats import nbinom
|
||
|
>>> k, n, p = 5, 3, 0.5
|
||
|
>>> nbdtr_res = nbdtr(k, n, p) # this will often be faster than below
|
||
|
>>> stats_res = nbinom(n, p).cdf(k)
|
||
|
>>> stats_res, nbdtr_res # test that results are equal
|
||
|
(0.85546875, 0.85546875)
|
||
|
|
||
|
`nbdtr` can evaluate different parameter sets by providing arrays with
|
||
|
shapes compatible for broadcasting for `k`, `n` and `p`. Here we compute
|
||
|
the function for three different `k` at four locations `p`, resulting in
|
||
|
a 3x4 array.
|
||
|
|
||
|
>>> k = np.array([[5], [10], [15]])
|
||
|
>>> p = np.array([0.3, 0.5, 0.7, 0.9])
|
||
|
>>> k.shape, p.shape
|
||
|
((3, 1), (4,))
|
||
|
|
||
|
>>> nbdtr(k, 5, p)
|
||
|
array([[0.15026833, 0.62304687, 0.95265101, 0.9998531 ],
|
||
|
[0.48450894, 0.94076538, 0.99932777, 0.99999999],
|
||
|
[0.76249222, 0.99409103, 0.99999445, 1. ]])
|
||
|
""")
|
||
|
|
||
|
add_newdoc("nbdtrc",
|
||
|
r"""
|
||
|
nbdtrc(k, n, p, out=None)
|
||
|
|
||
|
Negative binomial survival function.
|
||
|
|
||
|
Returns the sum of the terms `k + 1` to infinity of the negative binomial
|
||
|
distribution probability mass function,
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
F = \sum_{j=k + 1}^\infty {{n + j - 1}\choose{j}} p^n (1 - p)^j.
|
||
|
|
||
|
In a sequence of Bernoulli trials with individual success probabilities
|
||
|
`p`, this is the probability that more than `k` failures precede the nth
|
||
|
success.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
k : array_like
|
||
|
The maximum number of allowed failures (nonnegative int).
|
||
|
n : array_like
|
||
|
The target number of successes (positive int).
|
||
|
p : array_like
|
||
|
Probability of success in a single event (float).
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
F : scalar or ndarray
|
||
|
The probability of `k + 1` or more failures before `n` successes in a
|
||
|
sequence of events with individual success probability `p`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
nbdtr : Negative binomial cumulative distribution function
|
||
|
nbdtrik : Negative binomial percentile function
|
||
|
scipy.stats.nbinom : Negative binomial distribution
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
If floating point values are passed for `k` or `n`, they will be truncated
|
||
|
to integers.
|
||
|
|
||
|
The terms are not summed directly; instead the regularized incomplete beta
|
||
|
function is employed, according to the formula,
|
||
|
|
||
|
.. math::
|
||
|
\mathrm{nbdtrc}(k, n, p) = I_{1 - p}(k + 1, n).
|
||
|
|
||
|
Wrapper for the Cephes [1]_ routine `nbdtrc`.
|
||
|
|
||
|
The negative binomial distribution is also available as
|
||
|
`scipy.stats.nbinom`. Using `nbdtrc` directly can improve performance
|
||
|
compared to the ``sf`` method of `scipy.stats.nbinom` (see last example).
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Cephes Mathematical Functions Library,
|
||
|
http://www.netlib.org/cephes/
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Compute the function for ``k=10`` and ``n=5`` at ``p=0.5``.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import nbdtrc
|
||
|
>>> nbdtrc(10, 5, 0.5)
|
||
|
0.059234619140624986
|
||
|
|
||
|
Compute the function for ``n=10`` and ``p=0.5`` at several points by
|
||
|
providing a NumPy array or list for `k`.
|
||
|
|
||
|
>>> nbdtrc([5, 10, 15], 10, 0.5)
|
||
|
array([0.84912109, 0.41190147, 0.11476147])
|
||
|
|
||
|
Plot the function for four different parameter sets.
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> k = np.arange(130)
|
||
|
>>> n_parameters = [20, 20, 20, 80]
|
||
|
>>> p_parameters = [0.2, 0.5, 0.8, 0.5]
|
||
|
>>> linestyles = ['solid', 'dashed', 'dotted', 'dashdot']
|
||
|
>>> parameters_list = list(zip(p_parameters, n_parameters,
|
||
|
... linestyles))
|
||
|
>>> fig, ax = plt.subplots(figsize=(8, 8))
|
||
|
>>> for parameter_set in parameters_list:
|
||
|
... p, n, style = parameter_set
|
||
|
... nbdtrc_vals = nbdtrc(k, n, p)
|
||
|
... ax.plot(k, nbdtrc_vals, label=rf"$n={n},\, p={p}$",
|
||
|
... ls=style)
|
||
|
>>> ax.legend()
|
||
|
>>> ax.set_xlabel("$k$")
|
||
|
>>> ax.set_title("Negative binomial distribution survival function")
|
||
|
>>> plt.show()
|
||
|
|
||
|
The negative binomial distribution is also available as
|
||
|
`scipy.stats.nbinom`. Using `nbdtrc` directly can be much faster than
|
||
|
calling the ``sf`` method of `scipy.stats.nbinom`, especially for small
|
||
|
arrays or individual values. To get the same results one must use the
|
||
|
following parametrization: ``nbinom(n, p).sf(k)=nbdtrc(k, n, p)``.
|
||
|
|
||
|
>>> from scipy.stats import nbinom
|
||
|
>>> k, n, p = 3, 5, 0.5
|
||
|
>>> nbdtr_res = nbdtrc(k, n, p) # this will often be faster than below
|
||
|
>>> stats_res = nbinom(n, p).sf(k)
|
||
|
>>> stats_res, nbdtr_res # test that results are equal
|
||
|
(0.6367187499999999, 0.6367187499999999)
|
||
|
|
||
|
`nbdtrc` can evaluate different parameter sets by providing arrays with
|
||
|
shapes compatible for broadcasting for `k`, `n` and `p`. Here we compute
|
||
|
the function for three different `k` at four locations `p`, resulting in
|
||
|
a 3x4 array.
|
||
|
|
||
|
>>> k = np.array([[5], [10], [15]])
|
||
|
>>> p = np.array([0.3, 0.5, 0.7, 0.9])
|
||
|
>>> k.shape, p.shape
|
||
|
((3, 1), (4,))
|
||
|
|
||
|
>>> nbdtrc(k, 5, p)
|
||
|
array([[8.49731667e-01, 3.76953125e-01, 4.73489874e-02, 1.46902600e-04],
|
||
|
[5.15491059e-01, 5.92346191e-02, 6.72234070e-04, 9.29610100e-09],
|
||
|
[2.37507779e-01, 5.90896606e-03, 5.55025308e-06, 3.26346760e-13]])
|
||
|
""")
|
||
|
|
||
|
add_newdoc(
|
||
|
"nbdtri",
|
||
|
r"""
|
||
|
nbdtri(k, n, y, out=None)
|
||
|
|
||
|
Returns the inverse with respect to the parameter `p` of
|
||
|
`y = nbdtr(k, n, p)`, the negative binomial cumulative distribution
|
||
|
function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
k : array_like
|
||
|
The maximum number of allowed failures (nonnegative int).
|
||
|
n : array_like
|
||
|
The target number of successes (positive int).
|
||
|
y : array_like
|
||
|
The probability of `k` or fewer failures before `n` successes (float).
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
p : scalar or ndarray
|
||
|
Probability of success in a single event (float) such that
|
||
|
`nbdtr(k, n, p) = y`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
nbdtr : Cumulative distribution function of the negative binomial.
|
||
|
nbdtrc : Negative binomial survival function.
|
||
|
scipy.stats.nbinom : negative binomial distribution.
|
||
|
nbdtrik : Inverse with respect to `k` of `nbdtr(k, n, p)`.
|
||
|
nbdtrin : Inverse with respect to `n` of `nbdtr(k, n, p)`.
|
||
|
scipy.stats.nbinom : Negative binomial distribution
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Wrapper for the Cephes [1]_ routine `nbdtri`.
|
||
|
|
||
|
The negative binomial distribution is also available as
|
||
|
`scipy.stats.nbinom`. Using `nbdtri` directly can improve performance
|
||
|
compared to the ``ppf`` method of `scipy.stats.nbinom`.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Cephes Mathematical Functions Library,
|
||
|
http://www.netlib.org/cephes/
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
`nbdtri` is the inverse of `nbdtr` with respect to `p`.
|
||
|
Up to floating point errors the following holds:
|
||
|
``nbdtri(k, n, nbdtr(k, n, p))=p``.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import nbdtri, nbdtr
|
||
|
>>> k, n, y = 5, 10, 0.2
|
||
|
>>> cdf_val = nbdtr(k, n, y)
|
||
|
>>> nbdtri(k, n, cdf_val)
|
||
|
0.20000000000000004
|
||
|
|
||
|
Compute the function for ``k=10`` and ``n=5`` at several points by
|
||
|
providing a NumPy array or list for `y`.
|
||
|
|
||
|
>>> y = np.array([0.1, 0.4, 0.8])
|
||
|
>>> nbdtri(3, 5, y)
|
||
|
array([0.34462319, 0.51653095, 0.69677416])
|
||
|
|
||
|
Plot the function for three different parameter sets.
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> n_parameters = [5, 20, 30, 30]
|
||
|
>>> k_parameters = [20, 20, 60, 80]
|
||
|
>>> linestyles = ['solid', 'dashed', 'dotted', 'dashdot']
|
||
|
>>> parameters_list = list(zip(n_parameters, k_parameters, linestyles))
|
||
|
>>> cdf_vals = np.linspace(0, 1, 1000)
|
||
|
>>> fig, ax = plt.subplots(figsize=(8, 8))
|
||
|
>>> for parameter_set in parameters_list:
|
||
|
... n, k, style = parameter_set
|
||
|
... nbdtri_vals = nbdtri(k, n, cdf_vals)
|
||
|
... ax.plot(cdf_vals, nbdtri_vals, label=rf"$k={k},\ n={n}$",
|
||
|
... ls=style)
|
||
|
>>> ax.legend()
|
||
|
>>> ax.set_ylabel("$p$")
|
||
|
>>> ax.set_xlabel("$CDF$")
|
||
|
>>> title = "nbdtri: inverse of negative binomial CDF with respect to $p$"
|
||
|
>>> ax.set_title(title)
|
||
|
>>> plt.show()
|
||
|
|
||
|
`nbdtri` can evaluate different parameter sets by providing arrays with
|
||
|
shapes compatible for broadcasting for `k`, `n` and `p`. Here we compute
|
||
|
the function for three different `k` at four locations `p`, resulting in
|
||
|
a 3x4 array.
|
||
|
|
||
|
>>> k = np.array([[5], [10], [15]])
|
||
|
>>> y = np.array([0.3, 0.5, 0.7, 0.9])
|
||
|
>>> k.shape, y.shape
|
||
|
((3, 1), (4,))
|
||
|
|
||
|
>>> nbdtri(k, 5, y)
|
||
|
array([[0.37258157, 0.45169416, 0.53249956, 0.64578407],
|
||
|
[0.24588501, 0.30451981, 0.36778453, 0.46397088],
|
||
|
[0.18362101, 0.22966758, 0.28054743, 0.36066188]])
|
||
|
""")
|
||
|
|
||
|
add_newdoc("nbdtrik",
|
||
|
r"""
|
||
|
nbdtrik(y, n, p, out=None)
|
||
|
|
||
|
Negative binomial percentile function.
|
||
|
|
||
|
Returns the inverse with respect to the parameter `k` of
|
||
|
`y = nbdtr(k, n, p)`, the negative binomial cumulative distribution
|
||
|
function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
y : array_like
|
||
|
The probability of `k` or fewer failures before `n` successes (float).
|
||
|
n : array_like
|
||
|
The target number of successes (positive int).
|
||
|
p : array_like
|
||
|
Probability of success in a single event (float).
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
k : scalar or ndarray
|
||
|
The maximum number of allowed failures such that `nbdtr(k, n, p) = y`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
nbdtr : Cumulative distribution function of the negative binomial.
|
||
|
nbdtrc : Survival function of the negative binomial.
|
||
|
nbdtri : Inverse with respect to `p` of `nbdtr(k, n, p)`.
|
||
|
nbdtrin : Inverse with respect to `n` of `nbdtr(k, n, p)`.
|
||
|
scipy.stats.nbinom : Negative binomial distribution
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Wrapper for the CDFLIB [1]_ Fortran routine `cdfnbn`.
|
||
|
|
||
|
Formula 26.5.26 of [2]_,
|
||
|
|
||
|
.. math::
|
||
|
\sum_{j=k + 1}^\infty {{n + j - 1}
|
||
|
\choose{j}} p^n (1 - p)^j = I_{1 - p}(k + 1, n),
|
||
|
|
||
|
is used to reduce calculation of the cumulative distribution function to
|
||
|
that of a regularized incomplete beta :math:`I`.
|
||
|
|
||
|
Computation of `k` involves a search for a value that produces the desired
|
||
|
value of `y`. The search relies on the monotonicity of `y` with `k`.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Barry Brown, James Lovato, and Kathy Russell,
|
||
|
CDFLIB: Library of Fortran Routines for Cumulative Distribution
|
||
|
Functions, Inverses, and Other Parameters.
|
||
|
.. [2] Milton Abramowitz and Irene A. Stegun, eds.
|
||
|
Handbook of Mathematical Functions with Formulas,
|
||
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Compute the negative binomial cumulative distribution function for an
|
||
|
exemplary parameter set.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import nbdtr, nbdtrik
|
||
|
>>> k, n, p = 5, 2, 0.5
|
||
|
>>> cdf_value = nbdtr(k, n, p)
|
||
|
>>> cdf_value
|
||
|
0.9375
|
||
|
|
||
|
Verify that `nbdtrik` recovers the original value for `k`.
|
||
|
|
||
|
>>> nbdtrik(cdf_value, n, p)
|
||
|
5.0
|
||
|
|
||
|
Plot the function for different parameter sets.
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> p_parameters = [0.2, 0.5, 0.7, 0.5]
|
||
|
>>> n_parameters = [30, 30, 30, 80]
|
||
|
>>> linestyles = ['solid', 'dashed', 'dotted', 'dashdot']
|
||
|
>>> parameters_list = list(zip(p_parameters, n_parameters, linestyles))
|
||
|
>>> cdf_vals = np.linspace(0, 1, 1000)
|
||
|
>>> fig, ax = plt.subplots(figsize=(8, 8))
|
||
|
>>> for parameter_set in parameters_list:
|
||
|
... p, n, style = parameter_set
|
||
|
... nbdtrik_vals = nbdtrik(cdf_vals, n, p)
|
||
|
... ax.plot(cdf_vals, nbdtrik_vals, label=rf"$n={n},\ p={p}$",
|
||
|
... ls=style)
|
||
|
>>> ax.legend()
|
||
|
>>> ax.set_ylabel("$k$")
|
||
|
>>> ax.set_xlabel("$CDF$")
|
||
|
>>> ax.set_title("Negative binomial percentile function")
|
||
|
>>> plt.show()
|
||
|
|
||
|
The negative binomial distribution is also available as
|
||
|
`scipy.stats.nbinom`. The percentile function method ``ppf``
|
||
|
returns the result of `nbdtrik` rounded up to integers:
|
||
|
|
||
|
>>> from scipy.stats import nbinom
|
||
|
>>> q, n, p = 0.6, 5, 0.5
|
||
|
>>> nbinom.ppf(q, n, p), nbdtrik(q, n, p)
|
||
|
(5.0, 4.800428460273882)
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("nbdtrin",
|
||
|
r"""
|
||
|
nbdtrin(k, y, p, out=None)
|
||
|
|
||
|
Inverse of `nbdtr` vs `n`.
|
||
|
|
||
|
Returns the inverse with respect to the parameter `n` of
|
||
|
`y = nbdtr(k, n, p)`, the negative binomial cumulative distribution
|
||
|
function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
k : array_like
|
||
|
The maximum number of allowed failures (nonnegative int).
|
||
|
y : array_like
|
||
|
The probability of `k` or fewer failures before `n` successes (float).
|
||
|
p : array_like
|
||
|
Probability of success in a single event (float).
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
n : scalar or ndarray
|
||
|
The number of successes `n` such that `nbdtr(k, n, p) = y`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
nbdtr : Cumulative distribution function of the negative binomial.
|
||
|
nbdtri : Inverse with respect to `p` of `nbdtr(k, n, p)`.
|
||
|
nbdtrik : Inverse with respect to `k` of `nbdtr(k, n, p)`.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Wrapper for the CDFLIB [1]_ Fortran routine `cdfnbn`.
|
||
|
|
||
|
Formula 26.5.26 of [2]_,
|
||
|
|
||
|
.. math::
|
||
|
\sum_{j=k + 1}^\infty {{n + j - 1}
|
||
|
\choose{j}} p^n (1 - p)^j = I_{1 - p}(k + 1, n),
|
||
|
|
||
|
is used to reduce calculation of the cumulative distribution function to
|
||
|
that of a regularized incomplete beta :math:`I`.
|
||
|
|
||
|
Computation of `n` involves a search for a value that produces the desired
|
||
|
value of `y`. The search relies on the monotonicity of `y` with `n`.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Barry Brown, James Lovato, and Kathy Russell,
|
||
|
CDFLIB: Library of Fortran Routines for Cumulative Distribution
|
||
|
Functions, Inverses, and Other Parameters.
|
||
|
.. [2] Milton Abramowitz and Irene A. Stegun, eds.
|
||
|
Handbook of Mathematical Functions with Formulas,
|
||
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Compute the negative binomial cumulative distribution function for an
|
||
|
exemplary parameter set.
|
||
|
|
||
|
>>> from scipy.special import nbdtr, nbdtrin
|
||
|
>>> k, n, p = 5, 2, 0.5
|
||
|
>>> cdf_value = nbdtr(k, n, p)
|
||
|
>>> cdf_value
|
||
|
0.9375
|
||
|
|
||
|
Verify that `nbdtrin` recovers the original value for `n` up to floating
|
||
|
point accuracy.
|
||
|
|
||
|
>>> nbdtrin(k, cdf_value, p)
|
||
|
1.999999999998137
|
||
|
""")
|
||
|
|
||
|
add_newdoc("ncfdtr",
|
||
|
r"""
|
||
|
ncfdtr(dfn, dfd, nc, f, out=None)
|
||
|
|
||
|
Cumulative distribution function of the non-central F distribution.
|
||
|
|
||
|
The non-central F describes the distribution of,
|
||
|
|
||
|
.. math::
|
||
|
Z = \frac{X/d_n}{Y/d_d}
|
||
|
|
||
|
where :math:`X` and :math:`Y` are independently distributed, with
|
||
|
:math:`X` distributed non-central :math:`\chi^2` with noncentrality
|
||
|
parameter `nc` and :math:`d_n` degrees of freedom, and :math:`Y`
|
||
|
distributed :math:`\chi^2` with :math:`d_d` degrees of freedom.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
dfn : array_like
|
||
|
Degrees of freedom of the numerator sum of squares. Range (0, inf).
|
||
|
dfd : array_like
|
||
|
Degrees of freedom of the denominator sum of squares. Range (0, inf).
|
||
|
nc : array_like
|
||
|
Noncentrality parameter. Should be in range (0, 1e4).
|
||
|
f : array_like
|
||
|
Quantiles, i.e. the upper limit of integration.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
cdf : scalar or ndarray
|
||
|
The calculated CDF. If all inputs are scalar, the return will be a
|
||
|
float. Otherwise it will be an array.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
ncfdtri : Quantile function; inverse of `ncfdtr` with respect to `f`.
|
||
|
ncfdtridfd : Inverse of `ncfdtr` with respect to `dfd`.
|
||
|
ncfdtridfn : Inverse of `ncfdtr` with respect to `dfn`.
|
||
|
ncfdtrinc : Inverse of `ncfdtr` with respect to `nc`.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Wrapper for the CDFLIB [1]_ Fortran routine `cdffnc`.
|
||
|
|
||
|
The cumulative distribution function is computed using Formula 26.6.20 of
|
||
|
[2]_:
|
||
|
|
||
|
.. math::
|
||
|
F(d_n, d_d, n_c, f) = \sum_{j=0}^\infty e^{-n_c/2}
|
||
|
\frac{(n_c/2)^j}{j!} I_{x}(\frac{d_n}{2} + j, \frac{d_d}{2}),
|
||
|
|
||
|
where :math:`I` is the regularized incomplete beta function, and
|
||
|
:math:`x = f d_n/(f d_n + d_d)`.
|
||
|
|
||
|
The computation time required for this routine is proportional to the
|
||
|
noncentrality parameter `nc`. Very large values of this parameter can
|
||
|
consume immense computer resources. This is why the search range is
|
||
|
bounded by 10,000.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Barry Brown, James Lovato, and Kathy Russell,
|
||
|
CDFLIB: Library of Fortran Routines for Cumulative Distribution
|
||
|
Functions, Inverses, and Other Parameters.
|
||
|
.. [2] Milton Abramowitz and Irene A. Stegun, eds.
|
||
|
Handbook of Mathematical Functions with Formulas,
|
||
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy import special
|
||
|
>>> from scipy import stats
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
|
||
|
Plot the CDF of the non-central F distribution, for nc=0. Compare with the
|
||
|
F-distribution from scipy.stats:
|
||
|
|
||
|
>>> x = np.linspace(-1, 8, num=500)
|
||
|
>>> dfn = 3
|
||
|
>>> dfd = 2
|
||
|
>>> ncf_stats = stats.f.cdf(x, dfn, dfd)
|
||
|
>>> ncf_special = special.ncfdtr(dfn, dfd, 0, x)
|
||
|
|
||
|
>>> fig = plt.figure()
|
||
|
>>> ax = fig.add_subplot(111)
|
||
|
>>> ax.plot(x, ncf_stats, 'b-', lw=3)
|
||
|
>>> ax.plot(x, ncf_special, 'r-')
|
||
|
>>> plt.show()
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("ncfdtri",
|
||
|
"""
|
||
|
ncfdtri(dfn, dfd, nc, p, out=None)
|
||
|
|
||
|
Inverse with respect to `f` of the CDF of the non-central F distribution.
|
||
|
|
||
|
See `ncfdtr` for more details.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
dfn : array_like
|
||
|
Degrees of freedom of the numerator sum of squares. Range (0, inf).
|
||
|
dfd : array_like
|
||
|
Degrees of freedom of the denominator sum of squares. Range (0, inf).
|
||
|
nc : array_like
|
||
|
Noncentrality parameter. Should be in range (0, 1e4).
|
||
|
p : array_like
|
||
|
Value of the cumulative distribution function. Must be in the
|
||
|
range [0, 1].
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
f : scalar or ndarray
|
||
|
Quantiles, i.e., the upper limit of integration.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
ncfdtr : CDF of the non-central F distribution.
|
||
|
ncfdtridfd : Inverse of `ncfdtr` with respect to `dfd`.
|
||
|
ncfdtridfn : Inverse of `ncfdtr` with respect to `dfn`.
|
||
|
ncfdtrinc : Inverse of `ncfdtr` with respect to `nc`.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.special import ncfdtr, ncfdtri
|
||
|
|
||
|
Compute the CDF for several values of `f`:
|
||
|
|
||
|
>>> f = [0.5, 1, 1.5]
|
||
|
>>> p = ncfdtr(2, 3, 1.5, f)
|
||
|
>>> p
|
||
|
array([ 0.20782291, 0.36107392, 0.47345752])
|
||
|
|
||
|
Compute the inverse. We recover the values of `f`, as expected:
|
||
|
|
||
|
>>> ncfdtri(2, 3, 1.5, p)
|
||
|
array([ 0.5, 1. , 1.5])
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("ncfdtridfd",
|
||
|
"""
|
||
|
ncfdtridfd(dfn, p, nc, f, out=None)
|
||
|
|
||
|
Calculate degrees of freedom (denominator) for the noncentral F-distribution.
|
||
|
|
||
|
This is the inverse with respect to `dfd` of `ncfdtr`.
|
||
|
See `ncfdtr` for more details.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
dfn : array_like
|
||
|
Degrees of freedom of the numerator sum of squares. Range (0, inf).
|
||
|
p : array_like
|
||
|
Value of the cumulative distribution function. Must be in the
|
||
|
range [0, 1].
|
||
|
nc : array_like
|
||
|
Noncentrality parameter. Should be in range (0, 1e4).
|
||
|
f : array_like
|
||
|
Quantiles, i.e., the upper limit of integration.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
dfd : scalar or ndarray
|
||
|
Degrees of freedom of the denominator sum of squares.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
ncfdtr : CDF of the non-central F distribution.
|
||
|
ncfdtri : Quantile function; inverse of `ncfdtr` with respect to `f`.
|
||
|
ncfdtridfn : Inverse of `ncfdtr` with respect to `dfn`.
|
||
|
ncfdtrinc : Inverse of `ncfdtr` with respect to `nc`.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The value of the cumulative noncentral F distribution is not necessarily
|
||
|
monotone in either degrees of freedom. There thus may be two values that
|
||
|
provide a given CDF value. This routine assumes monotonicity and will
|
||
|
find an arbitrary one of the two values.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.special import ncfdtr, ncfdtridfd
|
||
|
|
||
|
Compute the CDF for several values of `dfd`:
|
||
|
|
||
|
>>> dfd = [1, 2, 3]
|
||
|
>>> p = ncfdtr(2, dfd, 0.25, 15)
|
||
|
>>> p
|
||
|
array([ 0.8097138 , 0.93020416, 0.96787852])
|
||
|
|
||
|
Compute the inverse. We recover the values of `dfd`, as expected:
|
||
|
|
||
|
>>> ncfdtridfd(2, p, 0.25, 15)
|
||
|
array([ 1., 2., 3.])
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("ncfdtridfn",
|
||
|
"""
|
||
|
ncfdtridfn(p, dfd, nc, f, out=None)
|
||
|
|
||
|
Calculate degrees of freedom (numerator) for the noncentral F-distribution.
|
||
|
|
||
|
This is the inverse with respect to `dfn` of `ncfdtr`.
|
||
|
See `ncfdtr` for more details.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
p : array_like
|
||
|
Value of the cumulative distribution function. Must be in the
|
||
|
range [0, 1].
|
||
|
dfd : array_like
|
||
|
Degrees of freedom of the denominator sum of squares. Range (0, inf).
|
||
|
nc : array_like
|
||
|
Noncentrality parameter. Should be in range (0, 1e4).
|
||
|
f : float
|
||
|
Quantiles, i.e., the upper limit of integration.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
dfn : scalar or ndarray
|
||
|
Degrees of freedom of the numerator sum of squares.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
ncfdtr : CDF of the non-central F distribution.
|
||
|
ncfdtri : Quantile function; inverse of `ncfdtr` with respect to `f`.
|
||
|
ncfdtridfd : Inverse of `ncfdtr` with respect to `dfd`.
|
||
|
ncfdtrinc : Inverse of `ncfdtr` with respect to `nc`.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The value of the cumulative noncentral F distribution is not necessarily
|
||
|
monotone in either degrees of freedom. There thus may be two values that
|
||
|
provide a given CDF value. This routine assumes monotonicity and will
|
||
|
find an arbitrary one of the two values.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.special import ncfdtr, ncfdtridfn
|
||
|
|
||
|
Compute the CDF for several values of `dfn`:
|
||
|
|
||
|
>>> dfn = [1, 2, 3]
|
||
|
>>> p = ncfdtr(dfn, 2, 0.25, 15)
|
||
|
>>> p
|
||
|
array([ 0.92562363, 0.93020416, 0.93188394])
|
||
|
|
||
|
Compute the inverse. We recover the values of `dfn`, as expected:
|
||
|
|
||
|
>>> ncfdtridfn(p, 2, 0.25, 15)
|
||
|
array([ 1., 2., 3.])
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("ncfdtrinc",
|
||
|
"""
|
||
|
ncfdtrinc(dfn, dfd, p, f, out=None)
|
||
|
|
||
|
Calculate non-centrality parameter for non-central F distribution.
|
||
|
|
||
|
This is the inverse with respect to `nc` of `ncfdtr`.
|
||
|
See `ncfdtr` for more details.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
dfn : array_like
|
||
|
Degrees of freedom of the numerator sum of squares. Range (0, inf).
|
||
|
dfd : array_like
|
||
|
Degrees of freedom of the denominator sum of squares. Range (0, inf).
|
||
|
p : array_like
|
||
|
Value of the cumulative distribution function. Must be in the
|
||
|
range [0, 1].
|
||
|
f : array_like
|
||
|
Quantiles, i.e., the upper limit of integration.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
nc : scalar or ndarray
|
||
|
Noncentrality parameter.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
ncfdtr : CDF of the non-central F distribution.
|
||
|
ncfdtri : Quantile function; inverse of `ncfdtr` with respect to `f`.
|
||
|
ncfdtridfd : Inverse of `ncfdtr` with respect to `dfd`.
|
||
|
ncfdtridfn : Inverse of `ncfdtr` with respect to `dfn`.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.special import ncfdtr, ncfdtrinc
|
||
|
|
||
|
Compute the CDF for several values of `nc`:
|
||
|
|
||
|
>>> nc = [0.5, 1.5, 2.0]
|
||
|
>>> p = ncfdtr(2, 3, nc, 15)
|
||
|
>>> p
|
||
|
array([ 0.96309246, 0.94327955, 0.93304098])
|
||
|
|
||
|
Compute the inverse. We recover the values of `nc`, as expected:
|
||
|
|
||
|
>>> ncfdtrinc(2, 3, p, 15)
|
||
|
array([ 0.5, 1.5, 2. ])
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("nctdtr",
|
||
|
"""
|
||
|
nctdtr(df, nc, t, out=None)
|
||
|
|
||
|
Cumulative distribution function of the non-central `t` distribution.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
df : array_like
|
||
|
Degrees of freedom of the distribution. Should be in range (0, inf).
|
||
|
nc : array_like
|
||
|
Noncentrality parameter. Should be in range (-1e6, 1e6).
|
||
|
t : array_like
|
||
|
Quantiles, i.e., the upper limit of integration.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
cdf : scalar or ndarray
|
||
|
The calculated CDF. If all inputs are scalar, the return will be a
|
||
|
float. Otherwise, it will be an array.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
nctdtrit : Inverse CDF (iCDF) of the non-central t distribution.
|
||
|
nctdtridf : Calculate degrees of freedom, given CDF and iCDF values.
|
||
|
nctdtrinc : Calculate non-centrality parameter, given CDF iCDF values.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy import special
|
||
|
>>> from scipy import stats
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
|
||
|
Plot the CDF of the non-central t distribution, for nc=0. Compare with the
|
||
|
t-distribution from scipy.stats:
|
||
|
|
||
|
>>> x = np.linspace(-5, 5, num=500)
|
||
|
>>> df = 3
|
||
|
>>> nct_stats = stats.t.cdf(x, df)
|
||
|
>>> nct_special = special.nctdtr(df, 0, x)
|
||
|
|
||
|
>>> fig = plt.figure()
|
||
|
>>> ax = fig.add_subplot(111)
|
||
|
>>> ax.plot(x, nct_stats, 'b-', lw=3)
|
||
|
>>> ax.plot(x, nct_special, 'r-')
|
||
|
>>> plt.show()
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("nctdtridf",
|
||
|
"""
|
||
|
nctdtridf(p, nc, t, out=None)
|
||
|
|
||
|
Calculate degrees of freedom for non-central t distribution.
|
||
|
|
||
|
See `nctdtr` for more details.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
p : array_like
|
||
|
CDF values, in range (0, 1].
|
||
|
nc : array_like
|
||
|
Noncentrality parameter. Should be in range (-1e6, 1e6).
|
||
|
t : array_like
|
||
|
Quantiles, i.e., the upper limit of integration.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
df : scalar or ndarray
|
||
|
The degrees of freedom. If all inputs are scalar, the return will be a
|
||
|
float. Otherwise, it will be an array.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
nctdtr : CDF of the non-central `t` distribution.
|
||
|
nctdtrit : Inverse CDF (iCDF) of the non-central t distribution.
|
||
|
nctdtrinc : Calculate non-centrality parameter, given CDF iCDF values.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.special import nctdtr, nctdtridf
|
||
|
|
||
|
Compute the CDF for several values of `df`:
|
||
|
|
||
|
>>> df = [1, 2, 3]
|
||
|
>>> p = nctdtr(df, 0.25, 1)
|
||
|
>>> p
|
||
|
array([0.67491974, 0.716464 , 0.73349456])
|
||
|
|
||
|
Compute the inverse. We recover the values of `df`, as expected:
|
||
|
|
||
|
>>> nctdtridf(p, 0.25, 1)
|
||
|
array([1., 2., 3.])
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("nctdtrinc",
|
||
|
"""
|
||
|
nctdtrinc(df, p, t, out=None)
|
||
|
|
||
|
Calculate non-centrality parameter for non-central t distribution.
|
||
|
|
||
|
See `nctdtr` for more details.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
df : array_like
|
||
|
Degrees of freedom of the distribution. Should be in range (0, inf).
|
||
|
p : array_like
|
||
|
CDF values, in range (0, 1].
|
||
|
t : array_like
|
||
|
Quantiles, i.e., the upper limit of integration.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
nc : scalar or ndarray
|
||
|
Noncentrality parameter
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
nctdtr : CDF of the non-central `t` distribution.
|
||
|
nctdtrit : Inverse CDF (iCDF) of the non-central t distribution.
|
||
|
nctdtridf : Calculate degrees of freedom, given CDF and iCDF values.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.special import nctdtr, nctdtrinc
|
||
|
|
||
|
Compute the CDF for several values of `nc`:
|
||
|
|
||
|
>>> nc = [0.5, 1.5, 2.5]
|
||
|
>>> p = nctdtr(3, nc, 1.5)
|
||
|
>>> p
|
||
|
array([0.77569497, 0.45524533, 0.1668691 ])
|
||
|
|
||
|
Compute the inverse. We recover the values of `nc`, as expected:
|
||
|
|
||
|
>>> nctdtrinc(3, p, 1.5)
|
||
|
array([0.5, 1.5, 2.5])
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("nctdtrit",
|
||
|
"""
|
||
|
nctdtrit(df, nc, p, out=None)
|
||
|
|
||
|
Inverse cumulative distribution function of the non-central t distribution.
|
||
|
|
||
|
See `nctdtr` for more details.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
df : array_like
|
||
|
Degrees of freedom of the distribution. Should be in range (0, inf).
|
||
|
nc : array_like
|
||
|
Noncentrality parameter. Should be in range (-1e6, 1e6).
|
||
|
p : array_like
|
||
|
CDF values, in range (0, 1].
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
t : scalar or ndarray
|
||
|
Quantiles
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
nctdtr : CDF of the non-central `t` distribution.
|
||
|
nctdtridf : Calculate degrees of freedom, given CDF and iCDF values.
|
||
|
nctdtrinc : Calculate non-centrality parameter, given CDF iCDF values.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.special import nctdtr, nctdtrit
|
||
|
|
||
|
Compute the CDF for several values of `t`:
|
||
|
|
||
|
>>> t = [0.5, 1, 1.5]
|
||
|
>>> p = nctdtr(3, 1, t)
|
||
|
>>> p
|
||
|
array([0.29811049, 0.46922687, 0.6257559 ])
|
||
|
|
||
|
Compute the inverse. We recover the values of `t`, as expected:
|
||
|
|
||
|
>>> nctdtrit(3, 1, p)
|
||
|
array([0.5, 1. , 1.5])
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("ndtr",
|
||
|
r"""
|
||
|
ndtr(x, out=None)
|
||
|
|
||
|
Cumulative distribution of the standard normal distribution.
|
||
|
|
||
|
Returns the area under the standard Gaussian probability
|
||
|
density function, integrated from minus infinity to `x`
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\frac{1}{\sqrt{2\pi}} \int_{-\infty}^x \exp(-t^2/2) dt
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like, real or complex
|
||
|
Argument
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
The value of the normal CDF evaluated at `x`
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
log_ndtr : Logarithm of ndtr
|
||
|
ndtri : Inverse of ndtr, standard normal percentile function
|
||
|
erf : Error function
|
||
|
erfc : 1 - erf
|
||
|
scipy.stats.norm : Normal distribution
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Evaluate `ndtr` at one point.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import ndtr
|
||
|
>>> ndtr(0.5)
|
||
|
0.6914624612740131
|
||
|
|
||
|
Evaluate the function at several points by providing a NumPy array
|
||
|
or list for `x`.
|
||
|
|
||
|
>>> ndtr([0, 0.5, 2])
|
||
|
array([0.5 , 0.69146246, 0.97724987])
|
||
|
|
||
|
Plot the function.
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> x = np.linspace(-5, 5, 100)
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> ax.plot(x, ndtr(x))
|
||
|
>>> ax.set_title(r"Standard normal cumulative distribution function $\Phi$")
|
||
|
>>> plt.show()
|
||
|
""")
|
||
|
|
||
|
|
||
|
add_newdoc("nrdtrimn",
|
||
|
"""
|
||
|
nrdtrimn(p, std, x, out=None)
|
||
|
|
||
|
Calculate mean of normal distribution given other params.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
p : array_like
|
||
|
CDF values, in range (0, 1].
|
||
|
std : array_like
|
||
|
Standard deviation.
|
||
|
x : array_like
|
||
|
Quantiles, i.e. the upper limit of integration.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
mn : scalar or ndarray
|
||
|
The mean of the normal distribution.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
scipy.stats.norm : Normal distribution
|
||
|
ndtr : Standard normal cumulative probability distribution
|
||
|
ndtri : Inverse of standard normal CDF with respect to quantile
|
||
|
nrdtrisd : Inverse of normal distribution CDF with respect to
|
||
|
standard deviation
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
`nrdtrimn` can be used to recover the mean of a normal distribution
|
||
|
if we know the CDF value `p` for a given quantile `x` and the
|
||
|
standard deviation `std`. First, we calculate
|
||
|
the normal distribution CDF for an exemplary parameter set.
|
||
|
|
||
|
>>> from scipy.stats import norm
|
||
|
>>> mean = 3.
|
||
|
>>> std = 2.
|
||
|
>>> x = 6.
|
||
|
>>> p = norm.cdf(x, loc=mean, scale=std)
|
||
|
>>> p
|
||
|
0.9331927987311419
|
||
|
|
||
|
Verify that `nrdtrimn` returns the original value for `mean`.
|
||
|
|
||
|
>>> from scipy.special import nrdtrimn
|
||
|
>>> nrdtrimn(p, std, x)
|
||
|
3.0000000000000004
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("nrdtrisd",
|
||
|
"""
|
||
|
nrdtrisd(mn, p, x, out=None)
|
||
|
|
||
|
Calculate standard deviation of normal distribution given other params.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
mn : scalar or ndarray
|
||
|
The mean of the normal distribution.
|
||
|
p : array_like
|
||
|
CDF values, in range (0, 1].
|
||
|
x : array_like
|
||
|
Quantiles, i.e. the upper limit of integration.
|
||
|
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
std : scalar or ndarray
|
||
|
Standard deviation.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
scipy.stats.norm : Normal distribution
|
||
|
ndtr : Standard normal cumulative probability distribution
|
||
|
ndtri : Inverse of standard normal CDF with respect to quantile
|
||
|
nrdtrimn : Inverse of normal distribution CDF with respect to
|
||
|
mean
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
`nrdtrisd` can be used to recover the standard deviation of a normal
|
||
|
distribution if we know the CDF value `p` for a given quantile `x` and
|
||
|
the mean `mn`. First, we calculate the normal distribution CDF for an
|
||
|
exemplary parameter set.
|
||
|
|
||
|
>>> from scipy.stats import norm
|
||
|
>>> mean = 3.
|
||
|
>>> std = 2.
|
||
|
>>> x = 6.
|
||
|
>>> p = norm.cdf(x, loc=mean, scale=std)
|
||
|
>>> p
|
||
|
0.9331927987311419
|
||
|
|
||
|
Verify that `nrdtrisd` returns the original value for `std`.
|
||
|
|
||
|
>>> from scipy.special import nrdtrisd
|
||
|
>>> nrdtrisd(mean, p, x)
|
||
|
2.0000000000000004
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("log_ndtr",
|
||
|
"""
|
||
|
log_ndtr(x, out=None)
|
||
|
|
||
|
Logarithm of Gaussian cumulative distribution function.
|
||
|
|
||
|
Returns the log of the area under the standard Gaussian probability
|
||
|
density function, integrated from minus infinity to `x`::
|
||
|
|
||
|
log(1/sqrt(2*pi) * integral(exp(-t**2 / 2), t=-inf..x))
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like, real or complex
|
||
|
Argument
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
The value of the log of the normal CDF evaluated at `x`
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
erf
|
||
|
erfc
|
||
|
scipy.stats.norm
|
||
|
ndtr
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import log_ndtr, ndtr
|
||
|
|
||
|
The benefit of ``log_ndtr(x)`` over the naive implementation
|
||
|
``np.log(ndtr(x))`` is most evident with moderate to large positive
|
||
|
values of ``x``:
|
||
|
|
||
|
>>> x = np.array([6, 7, 9, 12, 15, 25])
|
||
|
>>> log_ndtr(x)
|
||
|
array([-9.86587646e-010, -1.27981254e-012, -1.12858841e-019,
|
||
|
-1.77648211e-033, -3.67096620e-051, -3.05669671e-138])
|
||
|
|
||
|
The results of the naive calculation for the moderate ``x`` values
|
||
|
have only 5 or 6 correct significant digits. For values of ``x``
|
||
|
greater than approximately 8.3, the naive expression returns 0:
|
||
|
|
||
|
>>> np.log(ndtr(x))
|
||
|
array([-9.86587701e-10, -1.27986510e-12, 0.00000000e+00,
|
||
|
0.00000000e+00, 0.00000000e+00, 0.00000000e+00])
|
||
|
""")
|
||
|
|
||
|
add_newdoc("ndtri",
|
||
|
"""
|
||
|
ndtri(y, out=None)
|
||
|
|
||
|
Inverse of `ndtr` vs x
|
||
|
|
||
|
Returns the argument x for which the area under the standard normal
|
||
|
probability density function (integrated from minus infinity to `x`)
|
||
|
is equal to y.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
p : array_like
|
||
|
Probability
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
x : scalar or ndarray
|
||
|
Value of x such that ``ndtr(x) == p``.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
ndtr : Standard normal cumulative probability distribution
|
||
|
ndtri_exp : Inverse of log_ndtr
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
`ndtri` is the percentile function of the standard normal distribution.
|
||
|
This means it returns the inverse of the cumulative density `ndtr`. First,
|
||
|
let us compute a cumulative density value.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import ndtri, ndtr
|
||
|
>>> cdf_val = ndtr(2)
|
||
|
>>> cdf_val
|
||
|
0.9772498680518208
|
||
|
|
||
|
Verify that `ndtri` yields the original value for `x` up to floating point
|
||
|
errors.
|
||
|
|
||
|
>>> ndtri(cdf_val)
|
||
|
2.0000000000000004
|
||
|
|
||
|
Plot the function. For that purpose, we provide a NumPy array as argument.
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> x = np.linspace(0.01, 1, 200)
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> ax.plot(x, ndtri(x))
|
||
|
>>> ax.set_title("Standard normal percentile function")
|
||
|
>>> plt.show()
|
||
|
""")
|
||
|
|
||
|
add_newdoc("obl_ang1",
|
||
|
"""
|
||
|
obl_ang1(m, n, c, x, out=None)
|
||
|
|
||
|
Oblate spheroidal angular function of the first kind and its derivative
|
||
|
|
||
|
Computes the oblate spheroidal angular function of the first kind
|
||
|
and its derivative (with respect to `x`) for mode parameters m>=0
|
||
|
and n>=m, spheroidal parameter `c` and ``|x| < 1.0``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
m : array_like
|
||
|
Mode parameter m (nonnegative)
|
||
|
n : array_like
|
||
|
Mode parameter n (>= m)
|
||
|
c : array_like
|
||
|
Spheroidal parameter
|
||
|
x : array_like
|
||
|
Parameter x (``|x| < 1.0``)
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
s : scalar or ndarray
|
||
|
Value of the function
|
||
|
sp : scalar or ndarray
|
||
|
Value of the derivative vs x
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
obl_ang1_cv
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("obl_ang1_cv",
|
||
|
"""
|
||
|
obl_ang1_cv(m, n, c, cv, x, out=None)
|
||
|
|
||
|
Oblate spheroidal angular function obl_ang1 for precomputed characteristic value
|
||
|
|
||
|
Computes the oblate spheroidal angular function of the first kind
|
||
|
and its derivative (with respect to `x`) for mode parameters m>=0
|
||
|
and n>=m, spheroidal parameter `c` and ``|x| < 1.0``. Requires
|
||
|
pre-computed characteristic value.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
m : array_like
|
||
|
Mode parameter m (nonnegative)
|
||
|
n : array_like
|
||
|
Mode parameter n (>= m)
|
||
|
c : array_like
|
||
|
Spheroidal parameter
|
||
|
cv : array_like
|
||
|
Characteristic value
|
||
|
x : array_like
|
||
|
Parameter x (``|x| < 1.0``)
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
s : scalar or ndarray
|
||
|
Value of the function
|
||
|
sp : scalar or ndarray
|
||
|
Value of the derivative vs x
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
obl_ang1
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("obl_cv",
|
||
|
"""
|
||
|
obl_cv(m, n, c, out=None)
|
||
|
|
||
|
Characteristic value of oblate spheroidal function
|
||
|
|
||
|
Computes the characteristic value of oblate spheroidal wave
|
||
|
functions of order `m`, `n` (n>=m) and spheroidal parameter `c`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
m : array_like
|
||
|
Mode parameter m (nonnegative)
|
||
|
n : array_like
|
||
|
Mode parameter n (>= m)
|
||
|
c : array_like
|
||
|
Spheroidal parameter
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
cv : scalar or ndarray
|
||
|
Characteristic value
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("obl_rad1",
|
||
|
"""
|
||
|
obl_rad1(m, n, c, x, out=None)
|
||
|
|
||
|
Oblate spheroidal radial function of the first kind and its derivative
|
||
|
|
||
|
Computes the oblate spheroidal radial function of the first kind
|
||
|
and its derivative (with respect to `x`) for mode parameters m>=0
|
||
|
and n>=m, spheroidal parameter `c` and ``|x| < 1.0``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
m : array_like
|
||
|
Mode parameter m (nonnegative)
|
||
|
n : array_like
|
||
|
Mode parameter n (>= m)
|
||
|
c : array_like
|
||
|
Spheroidal parameter
|
||
|
x : array_like
|
||
|
Parameter x (``|x| < 1.0``)
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
s : scalar or ndarray
|
||
|
Value of the function
|
||
|
sp : scalar or ndarray
|
||
|
Value of the derivative vs x
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
obl_rad1_cv
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("obl_rad1_cv",
|
||
|
"""
|
||
|
obl_rad1_cv(m, n, c, cv, x, out=None)
|
||
|
|
||
|
Oblate spheroidal radial function obl_rad1 for precomputed characteristic value
|
||
|
|
||
|
Computes the oblate spheroidal radial function of the first kind
|
||
|
and its derivative (with respect to `x`) for mode parameters m>=0
|
||
|
and n>=m, spheroidal parameter `c` and ``|x| < 1.0``. Requires
|
||
|
pre-computed characteristic value.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
m : array_like
|
||
|
Mode parameter m (nonnegative)
|
||
|
n : array_like
|
||
|
Mode parameter n (>= m)
|
||
|
c : array_like
|
||
|
Spheroidal parameter
|
||
|
cv : array_like
|
||
|
Characteristic value
|
||
|
x : array_like
|
||
|
Parameter x (``|x| < 1.0``)
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
s : scalar or ndarray
|
||
|
Value of the function
|
||
|
sp : scalar or ndarray
|
||
|
Value of the derivative vs x
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
obl_rad1
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("obl_rad2",
|
||
|
"""
|
||
|
obl_rad2(m, n, c, x, out=None)
|
||
|
|
||
|
Oblate spheroidal radial function of the second kind and its derivative.
|
||
|
|
||
|
Computes the oblate spheroidal radial function of the second kind
|
||
|
and its derivative (with respect to `x`) for mode parameters m>=0
|
||
|
and n>=m, spheroidal parameter `c` and ``|x| < 1.0``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
m : array_like
|
||
|
Mode parameter m (nonnegative)
|
||
|
n : array_like
|
||
|
Mode parameter n (>= m)
|
||
|
c : array_like
|
||
|
Spheroidal parameter
|
||
|
x : array_like
|
||
|
Parameter x (``|x| < 1.0``)
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
s : scalar or ndarray
|
||
|
Value of the function
|
||
|
sp : scalar or ndarray
|
||
|
Value of the derivative vs x
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
obl_rad2_cv
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("obl_rad2_cv",
|
||
|
"""
|
||
|
obl_rad2_cv(m, n, c, cv, x, out=None)
|
||
|
|
||
|
Oblate spheroidal radial function obl_rad2 for precomputed characteristic value
|
||
|
|
||
|
Computes the oblate spheroidal radial function of the second kind
|
||
|
and its derivative (with respect to `x`) for mode parameters m>=0
|
||
|
and n>=m, spheroidal parameter `c` and ``|x| < 1.0``. Requires
|
||
|
pre-computed characteristic value.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
m : array_like
|
||
|
Mode parameter m (nonnegative)
|
||
|
n : array_like
|
||
|
Mode parameter n (>= m)
|
||
|
c : array_like
|
||
|
Spheroidal parameter
|
||
|
cv : array_like
|
||
|
Characteristic value
|
||
|
x : array_like
|
||
|
Parameter x (``|x| < 1.0``)
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
s : scalar or ndarray
|
||
|
Value of the function
|
||
|
sp : scalar or ndarray
|
||
|
Value of the derivative vs x
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
obl_rad2
|
||
|
""")
|
||
|
|
||
|
add_newdoc("pbdv",
|
||
|
"""
|
||
|
pbdv(v, x, out=None)
|
||
|
|
||
|
Parabolic cylinder function D
|
||
|
|
||
|
Returns (d, dp) the parabolic cylinder function Dv(x) in d and the
|
||
|
derivative, Dv'(x) in dp.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
v : array_like
|
||
|
Real parameter
|
||
|
x : array_like
|
||
|
Real argument
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
d : scalar or ndarray
|
||
|
Value of the function
|
||
|
dp : scalar or ndarray
|
||
|
Value of the derivative vs x
|
||
|
""")
|
||
|
|
||
|
add_newdoc("pbvv",
|
||
|
"""
|
||
|
pbvv(v, x, out=None)
|
||
|
|
||
|
Parabolic cylinder function V
|
||
|
|
||
|
Returns the parabolic cylinder function Vv(x) in v and the
|
||
|
derivative, Vv'(x) in vp.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
v : array_like
|
||
|
Real parameter
|
||
|
x : array_like
|
||
|
Real argument
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
v : scalar or ndarray
|
||
|
Value of the function
|
||
|
vp : scalar or ndarray
|
||
|
Value of the derivative vs x
|
||
|
""")
|
||
|
|
||
|
add_newdoc("pbwa",
|
||
|
r"""
|
||
|
pbwa(a, x, out=None)
|
||
|
|
||
|
Parabolic cylinder function W.
|
||
|
|
||
|
The function is a particular solution to the differential equation
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
y'' + \left(\frac{1}{4}x^2 - a\right)y = 0,
|
||
|
|
||
|
for a full definition see section 12.14 in [1]_.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
a : array_like
|
||
|
Real parameter
|
||
|
x : array_like
|
||
|
Real argument
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
w : scalar or ndarray
|
||
|
Value of the function
|
||
|
wp : scalar or ndarray
|
||
|
Value of the derivative in x
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The function is a wrapper for a Fortran routine by Zhang and Jin
|
||
|
[2]_. The implementation is accurate only for ``|a|, |x| < 5`` and
|
||
|
returns NaN outside that range.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Digital Library of Mathematical Functions, 14.30.
|
||
|
https://dlmf.nist.gov/14.30
|
||
|
.. [2] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html
|
||
|
""")
|
||
|
|
||
|
add_newdoc("pdtr",
|
||
|
r"""
|
||
|
pdtr(k, m, out=None)
|
||
|
|
||
|
Poisson cumulative distribution function.
|
||
|
|
||
|
Defined as the probability that a Poisson-distributed random
|
||
|
variable with event rate :math:`m` is less than or equal to
|
||
|
:math:`k`. More concretely, this works out to be [1]_
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\exp(-m) \sum_{j = 0}^{\lfloor{k}\rfloor} \frac{m^j}{j!}.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
k : array_like
|
||
|
Number of occurrences (nonnegative, real)
|
||
|
m : array_like
|
||
|
Shape parameter (nonnegative, real)
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Values of the Poisson cumulative distribution function
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
pdtrc : Poisson survival function
|
||
|
pdtrik : inverse of `pdtr` with respect to `k`
|
||
|
pdtri : inverse of `pdtr` with respect to `m`
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] https://en.wikipedia.org/wiki/Poisson_distribution
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> import scipy.special as sc
|
||
|
|
||
|
It is a cumulative distribution function, so it converges to 1
|
||
|
monotonically as `k` goes to infinity.
|
||
|
|
||
|
>>> sc.pdtr([1, 10, 100, np.inf], 1)
|
||
|
array([0.73575888, 0.99999999, 1. , 1. ])
|
||
|
|
||
|
It is discontinuous at integers and constant between integers.
|
||
|
|
||
|
>>> sc.pdtr([1, 1.5, 1.9, 2], 1)
|
||
|
array([0.73575888, 0.73575888, 0.73575888, 0.9196986 ])
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("pdtrc",
|
||
|
"""
|
||
|
pdtrc(k, m, out=None)
|
||
|
|
||
|
Poisson survival function
|
||
|
|
||
|
Returns the sum of the terms from k+1 to infinity of the Poisson
|
||
|
distribution: sum(exp(-m) * m**j / j!, j=k+1..inf) = gammainc(
|
||
|
k+1, m). Arguments must both be non-negative doubles.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
k : array_like
|
||
|
Number of occurrences (nonnegative, real)
|
||
|
m : array_like
|
||
|
Shape parameter (nonnegative, real)
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Values of the Poisson survival function
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
pdtr : Poisson cumulative distribution function
|
||
|
pdtrik : inverse of `pdtr` with respect to `k`
|
||
|
pdtri : inverse of `pdtr` with respect to `m`
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("pdtri",
|
||
|
"""
|
||
|
pdtri(k, y, out=None)
|
||
|
|
||
|
Inverse to `pdtr` vs m
|
||
|
|
||
|
Returns the Poisson variable `m` such that the sum from 0 to `k` of
|
||
|
the Poisson density is equal to the given probability `y`:
|
||
|
calculated by ``gammaincinv(k + 1, y)``. `k` must be a nonnegative
|
||
|
integer and `y` between 0 and 1.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
k : array_like
|
||
|
Number of occurrences (nonnegative, real)
|
||
|
y : array_like
|
||
|
Probability
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Values of the shape parameter `m` such that ``pdtr(k, m) = p``
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
pdtr : Poisson cumulative distribution function
|
||
|
pdtrc : Poisson survival function
|
||
|
pdtrik : inverse of `pdtr` with respect to `k`
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("pdtrik",
|
||
|
"""
|
||
|
pdtrik(p, m, out=None)
|
||
|
|
||
|
Inverse to `pdtr` vs `m`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
m : array_like
|
||
|
Shape parameter (nonnegative, real)
|
||
|
p : array_like
|
||
|
Probability
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
The number of occurrences `k` such that ``pdtr(k, m) = p``
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
pdtr : Poisson cumulative distribution function
|
||
|
pdtrc : Poisson survival function
|
||
|
pdtri : inverse of `pdtr` with respect to `m`
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("poch",
|
||
|
r"""
|
||
|
poch(z, m, out=None)
|
||
|
|
||
|
Pochhammer symbol.
|
||
|
|
||
|
The Pochhammer symbol (rising factorial) is defined as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
(z)_m = \frac{\Gamma(z + m)}{\Gamma(z)}
|
||
|
|
||
|
For positive integer `m` it reads
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
(z)_m = z (z + 1) ... (z + m - 1)
|
||
|
|
||
|
See [dlmf]_ for more details.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
z, m : array_like
|
||
|
Real-valued arguments.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
The value of the function.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [dlmf] Nist, Digital Library of Mathematical Functions
|
||
|
https://dlmf.nist.gov/5.2#iii
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import scipy.special as sc
|
||
|
|
||
|
It is 1 when m is 0.
|
||
|
|
||
|
>>> sc.poch([1, 2, 3, 4], 0)
|
||
|
array([1., 1., 1., 1.])
|
||
|
|
||
|
For z equal to 1 it reduces to the factorial function.
|
||
|
|
||
|
>>> sc.poch(1, 5)
|
||
|
120.0
|
||
|
>>> 1 * 2 * 3 * 4 * 5
|
||
|
120
|
||
|
|
||
|
It can be expressed in terms of the gamma function.
|
||
|
|
||
|
>>> z, m = 3.7, 2.1
|
||
|
>>> sc.poch(z, m)
|
||
|
20.529581933776953
|
||
|
>>> sc.gamma(z + m) / sc.gamma(z)
|
||
|
20.52958193377696
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("powm1", """
|
||
|
powm1(x, y, out=None)
|
||
|
|
||
|
Computes ``x**y - 1``.
|
||
|
|
||
|
This function is useful when `y` is near 0, or when `x` is near 1.
|
||
|
|
||
|
The function is implemented for real types only (unlike ``numpy.power``,
|
||
|
which accepts complex inputs).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
The base. Must be a real type (i.e. integer or float, not complex).
|
||
|
y : array_like
|
||
|
The exponent. Must be a real type (i.e. integer or float, not complex).
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
array_like
|
||
|
Result of the calculation
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
.. versionadded:: 1.10.0
|
||
|
|
||
|
The underlying code is implemented for single precision and double
|
||
|
precision floats only. Unlike `numpy.power`, integer inputs to
|
||
|
`powm1` are converted to floating point, and complex inputs are
|
||
|
not accepted.
|
||
|
|
||
|
Note the following edge cases:
|
||
|
|
||
|
* ``powm1(x, 0)`` returns 0 for any ``x``, including 0, ``inf``
|
||
|
and ``nan``.
|
||
|
* ``powm1(1, y)`` returns 0 for any ``y``, including ``nan``
|
||
|
and ``inf``.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import powm1
|
||
|
|
||
|
>>> x = np.array([1.2, 10.0, 0.9999999975])
|
||
|
>>> y = np.array([1e-9, 1e-11, 0.1875])
|
||
|
>>> powm1(x, y)
|
||
|
array([ 1.82321557e-10, 2.30258509e-11, -4.68749998e-10])
|
||
|
|
||
|
It can be verified that the relative errors in those results
|
||
|
are less than 2.5e-16.
|
||
|
|
||
|
Compare that to the result of ``x**y - 1``, where the
|
||
|
relative errors are all larger than 8e-8:
|
||
|
|
||
|
>>> x**y - 1
|
||
|
array([ 1.82321491e-10, 2.30258035e-11, -4.68750039e-10])
|
||
|
|
||
|
""")
|
||
|
|
||
|
|
||
|
add_newdoc("pro_ang1",
|
||
|
"""
|
||
|
pro_ang1(m, n, c, x, out=None)
|
||
|
|
||
|
Prolate spheroidal angular function of the first kind and its derivative
|
||
|
|
||
|
Computes the prolate spheroidal angular function of the first kind
|
||
|
and its derivative (with respect to `x`) for mode parameters m>=0
|
||
|
and n>=m, spheroidal parameter `c` and ``|x| < 1.0``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
m : array_like
|
||
|
Nonnegative mode parameter m
|
||
|
n : array_like
|
||
|
Mode parameter n (>= m)
|
||
|
c : array_like
|
||
|
Spheroidal parameter
|
||
|
x : array_like
|
||
|
Real parameter (``|x| < 1.0``)
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
s : scalar or ndarray
|
||
|
Value of the function
|
||
|
sp : scalar or ndarray
|
||
|
Value of the derivative vs x
|
||
|
""")
|
||
|
|
||
|
add_newdoc("pro_ang1_cv",
|
||
|
"""
|
||
|
pro_ang1_cv(m, n, c, cv, x, out=None)
|
||
|
|
||
|
Prolate spheroidal angular function pro_ang1 for precomputed characteristic value
|
||
|
|
||
|
Computes the prolate spheroidal angular function of the first kind
|
||
|
and its derivative (with respect to `x`) for mode parameters m>=0
|
||
|
and n>=m, spheroidal parameter `c` and ``|x| < 1.0``. Requires
|
||
|
pre-computed characteristic value.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
m : array_like
|
||
|
Nonnegative mode parameter m
|
||
|
n : array_like
|
||
|
Mode parameter n (>= m)
|
||
|
c : array_like
|
||
|
Spheroidal parameter
|
||
|
cv : array_like
|
||
|
Characteristic value
|
||
|
x : array_like
|
||
|
Real parameter (``|x| < 1.0``)
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
s : scalar or ndarray
|
||
|
Value of the function
|
||
|
sp : scalar or ndarray
|
||
|
Value of the derivative vs x
|
||
|
""")
|
||
|
|
||
|
add_newdoc("pro_cv",
|
||
|
"""
|
||
|
pro_cv(m, n, c, out=None)
|
||
|
|
||
|
Characteristic value of prolate spheroidal function
|
||
|
|
||
|
Computes the characteristic value of prolate spheroidal wave
|
||
|
functions of order `m`, `n` (n>=m) and spheroidal parameter `c`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
m : array_like
|
||
|
Nonnegative mode parameter m
|
||
|
n : array_like
|
||
|
Mode parameter n (>= m)
|
||
|
c : array_like
|
||
|
Spheroidal parameter
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
cv : scalar or ndarray
|
||
|
Characteristic value
|
||
|
""")
|
||
|
|
||
|
add_newdoc("pro_rad1",
|
||
|
"""
|
||
|
pro_rad1(m, n, c, x, out=None)
|
||
|
|
||
|
Prolate spheroidal radial function of the first kind and its derivative
|
||
|
|
||
|
Computes the prolate spheroidal radial function of the first kind
|
||
|
and its derivative (with respect to `x`) for mode parameters m>=0
|
||
|
and n>=m, spheroidal parameter `c` and ``|x| < 1.0``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
m : array_like
|
||
|
Nonnegative mode parameter m
|
||
|
n : array_like
|
||
|
Mode parameter n (>= m)
|
||
|
c : array_like
|
||
|
Spheroidal parameter
|
||
|
x : array_like
|
||
|
Real parameter (``|x| < 1.0``)
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
s : scalar or ndarray
|
||
|
Value of the function
|
||
|
sp : scalar or ndarray
|
||
|
Value of the derivative vs x
|
||
|
""")
|
||
|
|
||
|
add_newdoc("pro_rad1_cv",
|
||
|
"""
|
||
|
pro_rad1_cv(m, n, c, cv, x, out=None)
|
||
|
|
||
|
Prolate spheroidal radial function pro_rad1 for precomputed characteristic value
|
||
|
|
||
|
Computes the prolate spheroidal radial function of the first kind
|
||
|
and its derivative (with respect to `x`) for mode parameters m>=0
|
||
|
and n>=m, spheroidal parameter `c` and ``|x| < 1.0``. Requires
|
||
|
pre-computed characteristic value.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
m : array_like
|
||
|
Nonnegative mode parameter m
|
||
|
n : array_like
|
||
|
Mode parameter n (>= m)
|
||
|
c : array_like
|
||
|
Spheroidal parameter
|
||
|
cv : array_like
|
||
|
Characteristic value
|
||
|
x : array_like
|
||
|
Real parameter (``|x| < 1.0``)
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
s : scalar or ndarray
|
||
|
Value of the function
|
||
|
sp : scalar or ndarray
|
||
|
Value of the derivative vs x
|
||
|
""")
|
||
|
|
||
|
add_newdoc("pro_rad2",
|
||
|
"""
|
||
|
pro_rad2(m, n, c, x, out=None)
|
||
|
|
||
|
Prolate spheroidal radial function of the second kind and its derivative
|
||
|
|
||
|
Computes the prolate spheroidal radial function of the second kind
|
||
|
and its derivative (with respect to `x`) for mode parameters m>=0
|
||
|
and n>=m, spheroidal parameter `c` and ``|x| < 1.0``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
m : array_like
|
||
|
Nonnegative mode parameter m
|
||
|
n : array_like
|
||
|
Mode parameter n (>= m)
|
||
|
c : array_like
|
||
|
Spheroidal parameter
|
||
|
cv : array_like
|
||
|
Characteristic value
|
||
|
x : array_like
|
||
|
Real parameter (``|x| < 1.0``)
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
s : scalar or ndarray
|
||
|
Value of the function
|
||
|
sp : scalar or ndarray
|
||
|
Value of the derivative vs x
|
||
|
""")
|
||
|
|
||
|
add_newdoc("pro_rad2_cv",
|
||
|
"""
|
||
|
pro_rad2_cv(m, n, c, cv, x, out=None)
|
||
|
|
||
|
Prolate spheroidal radial function pro_rad2 for precomputed characteristic value
|
||
|
|
||
|
Computes the prolate spheroidal radial function of the second kind
|
||
|
and its derivative (with respect to `x`) for mode parameters m>=0
|
||
|
and n>=m, spheroidal parameter `c` and ``|x| < 1.0``. Requires
|
||
|
pre-computed characteristic value.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
m : array_like
|
||
|
Nonnegative mode parameter m
|
||
|
n : array_like
|
||
|
Mode parameter n (>= m)
|
||
|
c : array_like
|
||
|
Spheroidal parameter
|
||
|
cv : array_like
|
||
|
Characteristic value
|
||
|
x : array_like
|
||
|
Real parameter (``|x| < 1.0``)
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
s : scalar or ndarray
|
||
|
Value of the function
|
||
|
sp : scalar or ndarray
|
||
|
Value of the derivative vs x
|
||
|
""")
|
||
|
|
||
|
add_newdoc("pseudo_huber",
|
||
|
r"""
|
||
|
pseudo_huber(delta, r, out=None)
|
||
|
|
||
|
Pseudo-Huber loss function.
|
||
|
|
||
|
.. math:: \mathrm{pseudo\_huber}(\delta, r) =
|
||
|
\delta^2 \left( \sqrt{ 1 + \left( \frac{r}{\delta} \right)^2 } - 1 \right)
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
delta : array_like
|
||
|
Input array, indicating the soft quadratic vs. linear loss changepoint.
|
||
|
r : array_like
|
||
|
Input array, possibly representing residuals.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
res : scalar or ndarray
|
||
|
The computed Pseudo-Huber loss function values.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
huber: Similar function which this function approximates
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Like `huber`, `pseudo_huber` often serves as a robust loss function
|
||
|
in statistics or machine learning to reduce the influence of outliers.
|
||
|
Unlike `huber`, `pseudo_huber` is smooth.
|
||
|
|
||
|
Typically, `r` represents residuals, the difference
|
||
|
between a model prediction and data. Then, for :math:`|r|\leq\delta`,
|
||
|
`pseudo_huber` resembles the squared error and for :math:`|r|>\delta` the
|
||
|
absolute error. This way, the Pseudo-Huber loss often achieves
|
||
|
a fast convergence in model fitting for small residuals like the squared
|
||
|
error loss function and still reduces the influence of outliers
|
||
|
(:math:`|r|>\delta`) like the absolute error loss. As :math:`\delta` is
|
||
|
the cutoff between squared and absolute error regimes, it has
|
||
|
to be tuned carefully for each problem. `pseudo_huber` is also
|
||
|
convex, making it suitable for gradient based optimization. [1]_ [2]_
|
||
|
|
||
|
.. versionadded:: 0.15.0
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Hartley, Zisserman, "Multiple View Geometry in Computer Vision".
|
||
|
2003. Cambridge University Press. p. 619
|
||
|
.. [2] Charbonnier et al. "Deterministic edge-preserving regularization
|
||
|
in computed imaging". 1997. IEEE Trans. Image Processing.
|
||
|
6 (2): 298 - 311.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Import all necessary modules.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import pseudo_huber, huber
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
|
||
|
Calculate the function for ``delta=1`` at ``r=2``.
|
||
|
|
||
|
>>> pseudo_huber(1., 2.)
|
||
|
1.2360679774997898
|
||
|
|
||
|
Calculate the function at ``r=2`` for different `delta` by providing
|
||
|
a list or NumPy array for `delta`.
|
||
|
|
||
|
>>> pseudo_huber([1., 2., 4.], 3.)
|
||
|
array([2.16227766, 3.21110255, 4. ])
|
||
|
|
||
|
Calculate the function for ``delta=1`` at several points by providing
|
||
|
a list or NumPy array for `r`.
|
||
|
|
||
|
>>> pseudo_huber(2., np.array([1., 1.5, 3., 4.]))
|
||
|
array([0.47213595, 1. , 3.21110255, 4.94427191])
|
||
|
|
||
|
The function can be calculated for different `delta` and `r` by
|
||
|
providing arrays for both with compatible shapes for broadcasting.
|
||
|
|
||
|
>>> r = np.array([1., 2.5, 8., 10.])
|
||
|
>>> deltas = np.array([[1.], [5.], [9.]])
|
||
|
>>> print(r.shape, deltas.shape)
|
||
|
(4,) (3, 1)
|
||
|
|
||
|
>>> pseudo_huber(deltas, r)
|
||
|
array([[ 0.41421356, 1.6925824 , 7.06225775, 9.04987562],
|
||
|
[ 0.49509757, 2.95084972, 22.16990566, 30.90169944],
|
||
|
[ 0.49846624, 3.06693762, 27.37435121, 40.08261642]])
|
||
|
|
||
|
Plot the function for different `delta`.
|
||
|
|
||
|
>>> x = np.linspace(-4, 4, 500)
|
||
|
>>> deltas = [1, 2, 3]
|
||
|
>>> linestyles = ["dashed", "dotted", "dashdot"]
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> combined_plot_parameters = list(zip(deltas, linestyles))
|
||
|
>>> for delta, style in combined_plot_parameters:
|
||
|
... ax.plot(x, pseudo_huber(delta, x), label=rf"$\delta={delta}$",
|
||
|
... ls=style)
|
||
|
>>> ax.legend(loc="upper center")
|
||
|
>>> ax.set_xlabel("$x$")
|
||
|
>>> ax.set_title(r"Pseudo-Huber loss function $h_{\delta}(x)$")
|
||
|
>>> ax.set_xlim(-4, 4)
|
||
|
>>> ax.set_ylim(0, 8)
|
||
|
>>> plt.show()
|
||
|
|
||
|
Finally, illustrate the difference between `huber` and `pseudo_huber` by
|
||
|
plotting them and their gradients with respect to `r`. The plot shows
|
||
|
that `pseudo_huber` is continuously differentiable while `huber` is not
|
||
|
at the points :math:`\pm\delta`.
|
||
|
|
||
|
>>> def huber_grad(delta, x):
|
||
|
... grad = np.copy(x)
|
||
|
... linear_area = np.argwhere(np.abs(x) > delta)
|
||
|
... grad[linear_area]=delta*np.sign(x[linear_area])
|
||
|
... return grad
|
||
|
>>> def pseudo_huber_grad(delta, x):
|
||
|
... return x* (1+(x/delta)**2)**(-0.5)
|
||
|
>>> x=np.linspace(-3, 3, 500)
|
||
|
>>> delta = 1.
|
||
|
>>> fig, ax = plt.subplots(figsize=(7, 7))
|
||
|
>>> ax.plot(x, huber(delta, x), label="Huber", ls="dashed")
|
||
|
>>> ax.plot(x, huber_grad(delta, x), label="Huber Gradient", ls="dashdot")
|
||
|
>>> ax.plot(x, pseudo_huber(delta, x), label="Pseudo-Huber", ls="dotted")
|
||
|
>>> ax.plot(x, pseudo_huber_grad(delta, x), label="Pseudo-Huber Gradient",
|
||
|
... ls="solid")
|
||
|
>>> ax.legend(loc="upper center")
|
||
|
>>> plt.show()
|
||
|
""")
|
||
|
|
||
|
add_newdoc("psi",
|
||
|
"""
|
||
|
psi(z, out=None)
|
||
|
|
||
|
The digamma function.
|
||
|
|
||
|
The logarithmic derivative of the gamma function evaluated at ``z``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
z : array_like
|
||
|
Real or complex argument.
|
||
|
out : ndarray, optional
|
||
|
Array for the computed values of ``psi``.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
digamma : scalar or ndarray
|
||
|
Computed values of ``psi``.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For large values not close to the negative real axis, ``psi`` is
|
||
|
computed using the asymptotic series (5.11.2) from [1]_. For small
|
||
|
arguments not close to the negative real axis, the recurrence
|
||
|
relation (5.5.2) from [1]_ is used until the argument is large
|
||
|
enough to use the asymptotic series. For values close to the
|
||
|
negative real axis, the reflection formula (5.5.4) from [1]_ is
|
||
|
used first. Note that ``psi`` has a family of zeros on the
|
||
|
negative real axis which occur between the poles at nonpositive
|
||
|
integers. Around the zeros the reflection formula suffers from
|
||
|
cancellation and the implementation loses precision. The sole
|
||
|
positive zero and the first negative zero, however, are handled
|
||
|
separately by precomputing series expansions using [2]_, so the
|
||
|
function should maintain full accuracy around the origin.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] NIST Digital Library of Mathematical Functions
|
||
|
https://dlmf.nist.gov/5
|
||
|
.. [2] Fredrik Johansson and others.
|
||
|
"mpmath: a Python library for arbitrary-precision floating-point arithmetic"
|
||
|
(Version 0.19) http://mpmath.org/
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.special import psi
|
||
|
>>> z = 3 + 4j
|
||
|
>>> psi(z)
|
||
|
(1.55035981733341+1.0105022091860445j)
|
||
|
|
||
|
Verify psi(z) = psi(z + 1) - 1/z:
|
||
|
|
||
|
>>> psi(z + 1) - 1/z
|
||
|
(1.55035981733341+1.0105022091860445j)
|
||
|
""")
|
||
|
|
||
|
add_newdoc("radian",
|
||
|
"""
|
||
|
radian(d, m, s, out=None)
|
||
|
|
||
|
Convert from degrees to radians.
|
||
|
|
||
|
Returns the angle given in (d)egrees, (m)inutes, and (s)econds in
|
||
|
radians.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
d : array_like
|
||
|
Degrees, can be real-valued.
|
||
|
m : array_like
|
||
|
Minutes, can be real-valued.
|
||
|
s : array_like
|
||
|
Seconds, can be real-valued.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Values of the inputs in radians.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import scipy.special as sc
|
||
|
|
||
|
There are many ways to specify an angle.
|
||
|
|
||
|
>>> sc.radian(90, 0, 0)
|
||
|
1.5707963267948966
|
||
|
>>> sc.radian(0, 60 * 90, 0)
|
||
|
1.5707963267948966
|
||
|
>>> sc.radian(0, 0, 60**2 * 90)
|
||
|
1.5707963267948966
|
||
|
|
||
|
The inputs can be real-valued.
|
||
|
|
||
|
>>> sc.radian(1.5, 0, 0)
|
||
|
0.02617993877991494
|
||
|
>>> sc.radian(1, 30, 0)
|
||
|
0.02617993877991494
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("rel_entr",
|
||
|
r"""
|
||
|
rel_entr(x, y, out=None)
|
||
|
|
||
|
Elementwise function for computing relative entropy.
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\mathrm{rel\_entr}(x, y) =
|
||
|
\begin{cases}
|
||
|
x \log(x / y) & x > 0, y > 0 \\
|
||
|
0 & x = 0, y \ge 0 \\
|
||
|
\infty & \text{otherwise}
|
||
|
\end{cases}
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x, y : array_like
|
||
|
Input arrays
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Relative entropy of the inputs
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
entr, kl_div, scipy.stats.entropy
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
.. versionadded:: 0.15.0
|
||
|
|
||
|
This function is jointly convex in x and y.
|
||
|
|
||
|
The origin of this function is in convex programming; see
|
||
|
[1]_. Given two discrete probability distributions :math:`p_1,
|
||
|
\ldots, p_n` and :math:`q_1, \ldots, q_n`, the definition of relative
|
||
|
entropy in the context of *information theory* is
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\sum_{i = 1}^n \mathrm{rel\_entr}(p_i, q_i).
|
||
|
|
||
|
To compute the latter quantity, use `scipy.stats.entropy`.
|
||
|
|
||
|
See [2]_ for details.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Boyd, Stephen and Lieven Vandenberghe. *Convex optimization*.
|
||
|
Cambridge University Press, 2004.
|
||
|
:doi:`https://doi.org/10.1017/CBO9780511804441`
|
||
|
.. [2] Kullback-Leibler divergence,
|
||
|
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("rgamma",
|
||
|
r"""
|
||
|
rgamma(z, out=None)
|
||
|
|
||
|
Reciprocal of the gamma function.
|
||
|
|
||
|
Defined as :math:`1 / \Gamma(z)`, where :math:`\Gamma` is the
|
||
|
gamma function. For more on the gamma function see `gamma`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
z : array_like
|
||
|
Real or complex valued input
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Function results
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
gamma, gammaln, loggamma
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The gamma function has no zeros and has simple poles at
|
||
|
nonpositive integers, so `rgamma` is an entire function with zeros
|
||
|
at the nonpositive integers. See the discussion in [dlmf]_ for
|
||
|
more details.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [dlmf] Nist, Digital Library of Mathematical functions,
|
||
|
https://dlmf.nist.gov/5.2#i
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import scipy.special as sc
|
||
|
|
||
|
It is the reciprocal of the gamma function.
|
||
|
|
||
|
>>> sc.rgamma([1, 2, 3, 4])
|
||
|
array([1. , 1. , 0.5 , 0.16666667])
|
||
|
>>> 1 / sc.gamma([1, 2, 3, 4])
|
||
|
array([1. , 1. , 0.5 , 0.16666667])
|
||
|
|
||
|
It is zero at nonpositive integers.
|
||
|
|
||
|
>>> sc.rgamma([0, -1, -2, -3])
|
||
|
array([0., 0., 0., 0.])
|
||
|
|
||
|
It rapidly underflows to zero along the positive real axis.
|
||
|
|
||
|
>>> sc.rgamma([10, 100, 179])
|
||
|
array([2.75573192e-006, 1.07151029e-156, 0.00000000e+000])
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("round",
|
||
|
"""
|
||
|
round(x, out=None)
|
||
|
|
||
|
Round to the nearest integer.
|
||
|
|
||
|
Returns the nearest integer to `x`. If `x` ends in 0.5 exactly,
|
||
|
the nearest even integer is chosen.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Real valued input.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
The nearest integers to the elements of `x`. The result is of
|
||
|
floating type, not integer type.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import scipy.special as sc
|
||
|
|
||
|
It rounds to even.
|
||
|
|
||
|
>>> sc.round([0.5, 1.5])
|
||
|
array([0., 2.])
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("shichi",
|
||
|
r"""
|
||
|
shichi(x, out=None)
|
||
|
|
||
|
Hyperbolic sine and cosine integrals.
|
||
|
|
||
|
The hyperbolic sine integral is
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\int_0^x \frac{\sinh{t}}{t}dt
|
||
|
|
||
|
and the hyperbolic cosine integral is
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\gamma + \log(x) + \int_0^x \frac{\cosh{t} - 1}{t} dt
|
||
|
|
||
|
where :math:`\gamma` is Euler's constant and :math:`\log` is the
|
||
|
principal branch of the logarithm [1]_.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Real or complex points at which to compute the hyperbolic sine
|
||
|
and cosine integrals.
|
||
|
out : tuple of ndarray, optional
|
||
|
Optional output arrays for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
si : scalar or ndarray
|
||
|
Hyperbolic sine integral at ``x``
|
||
|
ci : scalar or ndarray
|
||
|
Hyperbolic cosine integral at ``x``
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
sici : Sine and cosine integrals.
|
||
|
exp1 : Exponential integral E1.
|
||
|
expi : Exponential integral Ei.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For real arguments with ``x < 0``, ``chi`` is the real part of the
|
||
|
hyperbolic cosine integral. For such points ``chi(x)`` and ``chi(x
|
||
|
+ 0j)`` differ by a factor of ``1j*pi``.
|
||
|
|
||
|
For real arguments the function is computed by calling Cephes'
|
||
|
[2]_ *shichi* routine. For complex arguments the algorithm is based
|
||
|
on Mpmath's [3]_ *shi* and *chi* routines.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Milton Abramowitz and Irene A. Stegun, eds.
|
||
|
Handbook of Mathematical Functions with Formulas,
|
||
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
||
|
(See Section 5.2.)
|
||
|
.. [2] Cephes Mathematical Functions Library,
|
||
|
http://www.netlib.org/cephes/
|
||
|
.. [3] Fredrik Johansson and others.
|
||
|
"mpmath: a Python library for arbitrary-precision floating-point
|
||
|
arithmetic" (Version 0.19) http://mpmath.org/
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> from scipy.special import shichi, sici
|
||
|
|
||
|
`shichi` accepts real or complex input:
|
||
|
|
||
|
>>> shichi(0.5)
|
||
|
(0.5069967498196671, -0.05277684495649357)
|
||
|
>>> shichi(0.5 + 2.5j)
|
||
|
((0.11772029666668238+1.831091777729851j),
|
||
|
(0.29912435887648825+1.7395351121166562j))
|
||
|
|
||
|
The hyperbolic sine and cosine integrals Shi(z) and Chi(z) are
|
||
|
related to the sine and cosine integrals Si(z) and Ci(z) by
|
||
|
|
||
|
* Shi(z) = -i*Si(i*z)
|
||
|
* Chi(z) = Ci(-i*z) + i*pi/2
|
||
|
|
||
|
>>> z = 0.25 + 5j
|
||
|
>>> shi, chi = shichi(z)
|
||
|
>>> shi, -1j*sici(1j*z)[0] # Should be the same.
|
||
|
((-0.04834719325101729+1.5469354086921228j),
|
||
|
(-0.04834719325101729+1.5469354086921228j))
|
||
|
>>> chi, sici(-1j*z)[1] + 1j*np.pi/2 # Should be the same.
|
||
|
((-0.19568708973868087+1.556276312103824j),
|
||
|
(-0.19568708973868087+1.556276312103824j))
|
||
|
|
||
|
Plot the functions evaluated on the real axis:
|
||
|
|
||
|
>>> xp = np.geomspace(1e-8, 4.0, 250)
|
||
|
>>> x = np.concatenate((-xp[::-1], xp))
|
||
|
>>> shi, chi = shichi(x)
|
||
|
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> ax.plot(x, shi, label='Shi(x)')
|
||
|
>>> ax.plot(x, chi, '--', label='Chi(x)')
|
||
|
>>> ax.set_xlabel('x')
|
||
|
>>> ax.set_title('Hyperbolic Sine and Cosine Integrals')
|
||
|
>>> ax.legend(shadow=True, framealpha=1, loc='lower right')
|
||
|
>>> ax.grid(True)
|
||
|
>>> plt.show()
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("sici",
|
||
|
r"""
|
||
|
sici(x, out=None)
|
||
|
|
||
|
Sine and cosine integrals.
|
||
|
|
||
|
The sine integral is
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\int_0^x \frac{\sin{t}}{t}dt
|
||
|
|
||
|
and the cosine integral is
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\gamma + \log(x) + \int_0^x \frac{\cos{t} - 1}{t}dt
|
||
|
|
||
|
where :math:`\gamma` is Euler's constant and :math:`\log` is the
|
||
|
principal branch of the logarithm [1]_.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Real or complex points at which to compute the sine and cosine
|
||
|
integrals.
|
||
|
out : tuple of ndarray, optional
|
||
|
Optional output arrays for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
si : scalar or ndarray
|
||
|
Sine integral at ``x``
|
||
|
ci : scalar or ndarray
|
||
|
Cosine integral at ``x``
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
shichi : Hyperbolic sine and cosine integrals.
|
||
|
exp1 : Exponential integral E1.
|
||
|
expi : Exponential integral Ei.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For real arguments with ``x < 0``, ``ci`` is the real part of the
|
||
|
cosine integral. For such points ``ci(x)`` and ``ci(x + 0j)``
|
||
|
differ by a factor of ``1j*pi``.
|
||
|
|
||
|
For real arguments the function is computed by calling Cephes'
|
||
|
[2]_ *sici* routine. For complex arguments the algorithm is based
|
||
|
on Mpmath's [3]_ *si* and *ci* routines.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Milton Abramowitz and Irene A. Stegun, eds.
|
||
|
Handbook of Mathematical Functions with Formulas,
|
||
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
||
|
(See Section 5.2.)
|
||
|
.. [2] Cephes Mathematical Functions Library,
|
||
|
http://www.netlib.org/cephes/
|
||
|
.. [3] Fredrik Johansson and others.
|
||
|
"mpmath: a Python library for arbitrary-precision floating-point
|
||
|
arithmetic" (Version 0.19) http://mpmath.org/
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> from scipy.special import sici, exp1
|
||
|
|
||
|
`sici` accepts real or complex input:
|
||
|
|
||
|
>>> sici(2.5)
|
||
|
(1.7785201734438267, 0.2858711963653835)
|
||
|
>>> sici(2.5 + 3j)
|
||
|
((4.505735874563953+0.06863305018999577j),
|
||
|
(0.0793644206906966-2.935510262937543j))
|
||
|
|
||
|
For z in the right half plane, the sine and cosine integrals are
|
||
|
related to the exponential integral E1 (implemented in SciPy as
|
||
|
`scipy.special.exp1`) by
|
||
|
|
||
|
* Si(z) = (E1(i*z) - E1(-i*z))/2i + pi/2
|
||
|
* Ci(z) = -(E1(i*z) + E1(-i*z))/2
|
||
|
|
||
|
See [1]_ (equations 5.2.21 and 5.2.23).
|
||
|
|
||
|
We can verify these relations:
|
||
|
|
||
|
>>> z = 2 - 3j
|
||
|
>>> sici(z)
|
||
|
((4.54751388956229-1.3991965806460565j),
|
||
|
(1.408292501520851+2.9836177420296055j))
|
||
|
|
||
|
>>> (exp1(1j*z) - exp1(-1j*z))/2j + np.pi/2 # Same as sine integral
|
||
|
(4.54751388956229-1.3991965806460565j)
|
||
|
|
||
|
>>> -(exp1(1j*z) + exp1(-1j*z))/2 # Same as cosine integral
|
||
|
(1.408292501520851+2.9836177420296055j)
|
||
|
|
||
|
Plot the functions evaluated on the real axis; the dotted horizontal
|
||
|
lines are at pi/2 and -pi/2:
|
||
|
|
||
|
>>> x = np.linspace(-16, 16, 150)
|
||
|
>>> si, ci = sici(x)
|
||
|
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> ax.plot(x, si, label='Si(x)')
|
||
|
>>> ax.plot(x, ci, '--', label='Ci(x)')
|
||
|
>>> ax.legend(shadow=True, framealpha=1, loc='upper left')
|
||
|
>>> ax.set_xlabel('x')
|
||
|
>>> ax.set_title('Sine and Cosine Integrals')
|
||
|
>>> ax.axhline(np.pi/2, linestyle=':', alpha=0.5, color='k')
|
||
|
>>> ax.axhline(-np.pi/2, linestyle=':', alpha=0.5, color='k')
|
||
|
>>> ax.grid(True)
|
||
|
>>> plt.show()
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("sindg",
|
||
|
"""
|
||
|
sindg(x, out=None)
|
||
|
|
||
|
Sine of the angle `x` given in degrees.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Angle, given in degrees.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Sine at the input.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
cosdg, tandg, cotdg
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> import scipy.special as sc
|
||
|
|
||
|
It is more accurate than using sine directly.
|
||
|
|
||
|
>>> x = 180 * np.arange(3)
|
||
|
>>> sc.sindg(x)
|
||
|
array([ 0., -0., 0.])
|
||
|
>>> np.sin(x * np.pi / 180)
|
||
|
array([ 0.0000000e+00, 1.2246468e-16, -2.4492936e-16])
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("smirnov",
|
||
|
r"""
|
||
|
smirnov(n, d, out=None)
|
||
|
|
||
|
Kolmogorov-Smirnov complementary cumulative distribution function
|
||
|
|
||
|
Returns the exact Kolmogorov-Smirnov complementary cumulative
|
||
|
distribution function,(aka the Survival Function) of Dn+ (or Dn-)
|
||
|
for a one-sided test of equality between an empirical and a
|
||
|
theoretical distribution. It is equal to the probability that the
|
||
|
maximum difference between a theoretical distribution and an empirical
|
||
|
one based on `n` samples is greater than d.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : int
|
||
|
Number of samples
|
||
|
d : float array_like
|
||
|
Deviation between the Empirical CDF (ECDF) and the target CDF.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
The value(s) of smirnov(n, d), Prob(Dn+ >= d) (Also Prob(Dn- >= d))
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
smirnovi : The Inverse Survival Function for the distribution
|
||
|
scipy.stats.ksone : Provides the functionality as a continuous distribution
|
||
|
kolmogorov, kolmogi : Functions for the two-sided distribution
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
`smirnov` is used by `stats.kstest` in the application of the
|
||
|
Kolmogorov-Smirnov Goodness of Fit test. For historical reasons this
|
||
|
function is exposed in `scpy.special`, but the recommended way to achieve
|
||
|
the most accurate CDF/SF/PDF/PPF/ISF computations is to use the
|
||
|
`stats.ksone` distribution.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import smirnov
|
||
|
>>> from scipy.stats import norm
|
||
|
|
||
|
Show the probability of a gap at least as big as 0, 0.5 and 1.0 for a
|
||
|
sample of size 5.
|
||
|
|
||
|
>>> smirnov(5, [0, 0.5, 1.0])
|
||
|
array([ 1. , 0.056, 0. ])
|
||
|
|
||
|
Compare a sample of size 5 against N(0, 1), the standard normal
|
||
|
distribution with mean 0 and standard deviation 1.
|
||
|
|
||
|
`x` is the sample.
|
||
|
|
||
|
>>> x = np.array([-1.392, -0.135, 0.114, 0.190, 1.82])
|
||
|
|
||
|
>>> target = norm(0, 1)
|
||
|
>>> cdfs = target.cdf(x)
|
||
|
>>> cdfs
|
||
|
array([0.0819612 , 0.44630594, 0.5453811 , 0.57534543, 0.9656205 ])
|
||
|
|
||
|
Construct the empirical CDF and the K-S statistics (Dn+, Dn-, Dn).
|
||
|
|
||
|
>>> n = len(x)
|
||
|
>>> ecdfs = np.arange(n+1, dtype=float)/n
|
||
|
>>> cols = np.column_stack([x, ecdfs[1:], cdfs, cdfs - ecdfs[:n],
|
||
|
... ecdfs[1:] - cdfs])
|
||
|
>>> with np.printoptions(precision=3):
|
||
|
... print(cols)
|
||
|
[[-1.392 0.2 0.082 0.082 0.118]
|
||
|
[-0.135 0.4 0.446 0.246 -0.046]
|
||
|
[ 0.114 0.6 0.545 0.145 0.055]
|
||
|
[ 0.19 0.8 0.575 -0.025 0.225]
|
||
|
[ 1.82 1. 0.966 0.166 0.034]]
|
||
|
>>> gaps = cols[:, -2:]
|
||
|
>>> Dnpm = np.max(gaps, axis=0)
|
||
|
>>> print(f'Dn-={Dnpm[0]:f}, Dn+={Dnpm[1]:f}')
|
||
|
Dn-=0.246306, Dn+=0.224655
|
||
|
>>> probs = smirnov(n, Dnpm)
|
||
|
>>> print(f'For a sample of size {n} drawn from N(0, 1):',
|
||
|
... f' Smirnov n={n}: Prob(Dn- >= {Dnpm[0]:f}) = {probs[0]:.4f}',
|
||
|
... f' Smirnov n={n}: Prob(Dn+ >= {Dnpm[1]:f}) = {probs[1]:.4f}',
|
||
|
... sep='\n')
|
||
|
For a sample of size 5 drawn from N(0, 1):
|
||
|
Smirnov n=5: Prob(Dn- >= 0.246306) = 0.4711
|
||
|
Smirnov n=5: Prob(Dn+ >= 0.224655) = 0.5245
|
||
|
|
||
|
Plot the empirical CDF and the standard normal CDF.
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> plt.step(np.concatenate(([-2.5], x, [2.5])),
|
||
|
... np.concatenate((ecdfs, [1])),
|
||
|
... where='post', label='Empirical CDF')
|
||
|
>>> xx = np.linspace(-2.5, 2.5, 100)
|
||
|
>>> plt.plot(xx, target.cdf(xx), '--', label='CDF for N(0, 1)')
|
||
|
|
||
|
Add vertical lines marking Dn+ and Dn-.
|
||
|
|
||
|
>>> iminus, iplus = np.argmax(gaps, axis=0)
|
||
|
>>> plt.vlines([x[iminus]], ecdfs[iminus], cdfs[iminus], color='r',
|
||
|
... alpha=0.5, lw=4)
|
||
|
>>> plt.vlines([x[iplus]], cdfs[iplus], ecdfs[iplus+1], color='m',
|
||
|
... alpha=0.5, lw=4)
|
||
|
|
||
|
>>> plt.grid(True)
|
||
|
>>> plt.legend(framealpha=1, shadow=True)
|
||
|
>>> plt.show()
|
||
|
""")
|
||
|
|
||
|
add_newdoc("smirnovi",
|
||
|
"""
|
||
|
smirnovi(n, p, out=None)
|
||
|
|
||
|
Inverse to `smirnov`
|
||
|
|
||
|
Returns `d` such that ``smirnov(n, d) == p``, the critical value
|
||
|
corresponding to `p`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : int
|
||
|
Number of samples
|
||
|
p : float array_like
|
||
|
Probability
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
The value(s) of smirnovi(n, p), the critical values.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
smirnov : The Survival Function (SF) for the distribution
|
||
|
scipy.stats.ksone : Provides the functionality as a continuous distribution
|
||
|
kolmogorov, kolmogi : Functions for the two-sided distribution
|
||
|
scipy.stats.kstwobign : Two-sided Kolmogorov-Smirnov distribution, large n
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
`smirnov` is used by `stats.kstest` in the application of the
|
||
|
Kolmogorov-Smirnov Goodness of Fit test. For historical reasons this
|
||
|
function is exposed in `scpy.special`, but the recommended way to achieve
|
||
|
the most accurate CDF/SF/PDF/PPF/ISF computations is to use the
|
||
|
`stats.ksone` distribution.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.special import smirnovi, smirnov
|
||
|
|
||
|
>>> n = 24
|
||
|
>>> deviations = [0.1, 0.2, 0.3]
|
||
|
|
||
|
Use `smirnov` to compute the complementary CDF of the Smirnov
|
||
|
distribution for the given number of samples and deviations.
|
||
|
|
||
|
>>> p = smirnov(n, deviations)
|
||
|
>>> p
|
||
|
array([0.58105083, 0.12826832, 0.01032231])
|
||
|
|
||
|
The inverse function ``smirnovi(n, p)`` returns ``deviations``.
|
||
|
|
||
|
>>> smirnovi(n, p)
|
||
|
array([0.1, 0.2, 0.3])
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("_smirnovc",
|
||
|
"""
|
||
|
_smirnovc(n, d)
|
||
|
Internal function, do not use.
|
||
|
""")
|
||
|
|
||
|
add_newdoc("_smirnovci",
|
||
|
"""
|
||
|
Internal function, do not use.
|
||
|
""")
|
||
|
|
||
|
add_newdoc("_smirnovp",
|
||
|
"""
|
||
|
_smirnovp(n, p)
|
||
|
Internal function, do not use.
|
||
|
""")
|
||
|
|
||
|
add_newdoc("spence",
|
||
|
r"""
|
||
|
spence(z, out=None)
|
||
|
|
||
|
Spence's function, also known as the dilogarithm.
|
||
|
|
||
|
It is defined to be
|
||
|
|
||
|
.. math::
|
||
|
\int_1^z \frac{\log(t)}{1 - t}dt
|
||
|
|
||
|
for complex :math:`z`, where the contour of integration is taken
|
||
|
to avoid the branch cut of the logarithm. Spence's function is
|
||
|
analytic everywhere except the negative real axis where it has a
|
||
|
branch cut.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
z : array_like
|
||
|
Points at which to evaluate Spence's function
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
s : scalar or ndarray
|
||
|
Computed values of Spence's function
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
There is a different convention which defines Spence's function by
|
||
|
the integral
|
||
|
|
||
|
.. math::
|
||
|
-\int_0^z \frac{\log(1 - t)}{t}dt;
|
||
|
|
||
|
this is our ``spence(1 - z)``.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import spence
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
|
||
|
The function is defined for complex inputs:
|
||
|
|
||
|
>>> spence([1-1j, 1.5+2j, 3j, -10-5j])
|
||
|
array([-0.20561676+0.91596559j, -0.86766909-1.39560134j,
|
||
|
-0.59422064-2.49129918j, -1.14044398+6.80075924j])
|
||
|
|
||
|
For complex inputs on the branch cut, which is the negative real axis,
|
||
|
the function returns the limit for ``z`` with positive imaginary part.
|
||
|
For example, in the following, note the sign change of the imaginary
|
||
|
part of the output for ``z = -2`` and ``z = -2 - 1e-8j``:
|
||
|
|
||
|
>>> spence([-2 + 1e-8j, -2, -2 - 1e-8j])
|
||
|
array([2.32018041-3.45139229j, 2.32018042-3.4513923j ,
|
||
|
2.32018041+3.45139229j])
|
||
|
|
||
|
The function returns ``nan`` for real inputs on the branch cut:
|
||
|
|
||
|
>>> spence(-1.5)
|
||
|
nan
|
||
|
|
||
|
Verify some particular values: ``spence(0) = pi**2/6``,
|
||
|
``spence(1) = 0`` and ``spence(2) = -pi**2/12``.
|
||
|
|
||
|
>>> spence([0, 1, 2])
|
||
|
array([ 1.64493407, 0. , -0.82246703])
|
||
|
>>> np.pi**2/6, -np.pi**2/12
|
||
|
(1.6449340668482264, -0.8224670334241132)
|
||
|
|
||
|
Verify the identity::
|
||
|
|
||
|
spence(z) + spence(1 - z) = pi**2/6 - log(z)*log(1 - z)
|
||
|
|
||
|
>>> z = 3 + 4j
|
||
|
>>> spence(z) + spence(1 - z)
|
||
|
(-2.6523186143876067+1.8853470951513935j)
|
||
|
>>> np.pi**2/6 - np.log(z)*np.log(1 - z)
|
||
|
(-2.652318614387606+1.885347095151394j)
|
||
|
|
||
|
Plot the function for positive real input.
|
||
|
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> x = np.linspace(0, 6, 400)
|
||
|
>>> ax.plot(x, spence(x))
|
||
|
>>> ax.grid()
|
||
|
>>> ax.set_xlabel('x')
|
||
|
>>> ax.set_title('spence(x)')
|
||
|
>>> plt.show()
|
||
|
""")
|
||
|
|
||
|
add_newdoc(
|
||
|
"stdtr",
|
||
|
r"""
|
||
|
stdtr(df, t, out=None)
|
||
|
|
||
|
Student t distribution cumulative distribution function
|
||
|
|
||
|
Returns the integral:
|
||
|
|
||
|
.. math::
|
||
|
\frac{\Gamma((df+1)/2)}{\sqrt{\pi df} \Gamma(df/2)}
|
||
|
\int_{-\infty}^t (1+x^2/df)^{-(df+1)/2}\, dx
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
df : array_like
|
||
|
Degrees of freedom
|
||
|
t : array_like
|
||
|
Upper bound of the integral
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Value of the Student t CDF at t
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
stdtridf : inverse of stdtr with respect to `df`
|
||
|
stdtrit : inverse of stdtr with respect to `t`
|
||
|
scipy.stats.t : student t distribution
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The student t distribution is also available as `scipy.stats.t`.
|
||
|
Calling `stdtr` directly can improve performance compared to the
|
||
|
``cdf`` method of `scipy.stats.t` (see last example below).
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Calculate the function for ``df=3`` at ``t=1``.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import stdtr
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> stdtr(3, 1)
|
||
|
0.8044988905221148
|
||
|
|
||
|
Plot the function for three different degrees of freedom.
|
||
|
|
||
|
>>> x = np.linspace(-10, 10, 1000)
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> parameters = [(1, "solid"), (3, "dashed"), (10, "dotted")]
|
||
|
>>> for (df, linestyle) in parameters:
|
||
|
... ax.plot(x, stdtr(df, x), ls=linestyle, label=f"$df={df}$")
|
||
|
>>> ax.legend()
|
||
|
>>> ax.set_title("Student t distribution cumulative distribution function")
|
||
|
>>> plt.show()
|
||
|
|
||
|
The function can be computed for several degrees of freedom at the same
|
||
|
time by providing a NumPy array or list for `df`:
|
||
|
|
||
|
>>> stdtr([1, 2, 3], 1)
|
||
|
array([0.75 , 0.78867513, 0.80449889])
|
||
|
|
||
|
It is possible to calculate the function at several points for several
|
||
|
different degrees of freedom simultaneously by providing arrays for `df`
|
||
|
and `t` with shapes compatible for broadcasting. Compute `stdtr` at
|
||
|
4 points for 3 degrees of freedom resulting in an array of shape 3x4.
|
||
|
|
||
|
>>> dfs = np.array([[1], [2], [3]])
|
||
|
>>> t = np.array([2, 4, 6, 8])
|
||
|
>>> dfs.shape, t.shape
|
||
|
((3, 1), (4,))
|
||
|
|
||
|
>>> stdtr(dfs, t)
|
||
|
array([[0.85241638, 0.92202087, 0.94743154, 0.96041658],
|
||
|
[0.90824829, 0.97140452, 0.98666426, 0.99236596],
|
||
|
[0.93033702, 0.98599577, 0.99536364, 0.99796171]])
|
||
|
|
||
|
The t distribution is also available as `scipy.stats.t`. Calling `stdtr`
|
||
|
directly can be much faster than calling the ``cdf`` method of
|
||
|
`scipy.stats.t`. To get the same results, one must use the following
|
||
|
parametrization: ``scipy.stats.t(df).cdf(x) = stdtr(df, x)``.
|
||
|
|
||
|
>>> from scipy.stats import t
|
||
|
>>> df, x = 3, 1
|
||
|
>>> stdtr_result = stdtr(df, x) # this can be faster than below
|
||
|
>>> stats_result = t(df).cdf(x)
|
||
|
>>> stats_result == stdtr_result # test that results are equal
|
||
|
True
|
||
|
""")
|
||
|
|
||
|
add_newdoc("stdtridf",
|
||
|
"""
|
||
|
stdtridf(p, t, out=None)
|
||
|
|
||
|
Inverse of `stdtr` vs df
|
||
|
|
||
|
Returns the argument df such that stdtr(df, t) is equal to `p`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
p : array_like
|
||
|
Probability
|
||
|
t : array_like
|
||
|
Upper bound of the integral
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
df : scalar or ndarray
|
||
|
Value of `df` such that ``stdtr(df, t) == p``
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
stdtr : Student t CDF
|
||
|
stdtrit : inverse of stdtr with respect to `t`
|
||
|
scipy.stats.t : Student t distribution
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Compute the student t cumulative distribution function for one
|
||
|
parameter set.
|
||
|
|
||
|
>>> from scipy.special import stdtr, stdtridf
|
||
|
>>> df, x = 5, 2
|
||
|
>>> cdf_value = stdtr(df, x)
|
||
|
>>> cdf_value
|
||
|
0.9490302605850709
|
||
|
|
||
|
Verify that `stdtridf` recovers the original value for `df` given
|
||
|
the CDF value and `x`.
|
||
|
|
||
|
>>> stdtridf(cdf_value, x)
|
||
|
5.0
|
||
|
""")
|
||
|
|
||
|
add_newdoc("stdtrit",
|
||
|
"""
|
||
|
stdtrit(df, p, out=None)
|
||
|
|
||
|
The `p`-th quantile of the student t distribution.
|
||
|
|
||
|
This function is the inverse of the student t distribution cumulative
|
||
|
distribution function (CDF), returning `t` such that `stdtr(df, t) = p`.
|
||
|
|
||
|
Returns the argument `t` such that stdtr(df, t) is equal to `p`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
df : array_like
|
||
|
Degrees of freedom
|
||
|
p : array_like
|
||
|
Probability
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
t : scalar or ndarray
|
||
|
Value of `t` such that ``stdtr(df, t) == p``
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
stdtr : Student t CDF
|
||
|
stdtridf : inverse of stdtr with respect to `df`
|
||
|
scipy.stats.t : Student t distribution
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The student t distribution is also available as `scipy.stats.t`. Calling
|
||
|
`stdtrit` directly can improve performance compared to the ``ppf``
|
||
|
method of `scipy.stats.t` (see last example below).
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
`stdtrit` represents the inverse of the student t distribution CDF which
|
||
|
is available as `stdtr`. Here, we calculate the CDF for ``df`` at
|
||
|
``x=1``. `stdtrit` then returns ``1`` up to floating point errors
|
||
|
given the same value for `df` and the computed CDF value.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import stdtr, stdtrit
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> df = 3
|
||
|
>>> x = 1
|
||
|
>>> cdf_value = stdtr(df, x)
|
||
|
>>> stdtrit(df, cdf_value)
|
||
|
0.9999999994418539
|
||
|
|
||
|
Plot the function for three different degrees of freedom.
|
||
|
|
||
|
>>> x = np.linspace(0, 1, 1000)
|
||
|
>>> parameters = [(1, "solid"), (2, "dashed"), (5, "dotted")]
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> for (df, linestyle) in parameters:
|
||
|
... ax.plot(x, stdtrit(df, x), ls=linestyle, label=f"$df={df}$")
|
||
|
>>> ax.legend()
|
||
|
>>> ax.set_ylim(-10, 10)
|
||
|
>>> ax.set_title("Student t distribution quantile function")
|
||
|
>>> plt.show()
|
||
|
|
||
|
The function can be computed for several degrees of freedom at the same
|
||
|
time by providing a NumPy array or list for `df`:
|
||
|
|
||
|
>>> stdtrit([1, 2, 3], 0.7)
|
||
|
array([0.72654253, 0.6172134 , 0.58438973])
|
||
|
|
||
|
It is possible to calculate the function at several points for several
|
||
|
different degrees of freedom simultaneously by providing arrays for `df`
|
||
|
and `p` with shapes compatible for broadcasting. Compute `stdtrit` at
|
||
|
4 points for 3 degrees of freedom resulting in an array of shape 3x4.
|
||
|
|
||
|
>>> dfs = np.array([[1], [2], [3]])
|
||
|
>>> p = np.array([0.2, 0.4, 0.7, 0.8])
|
||
|
>>> dfs.shape, p.shape
|
||
|
((3, 1), (4,))
|
||
|
|
||
|
>>> stdtrit(dfs, p)
|
||
|
array([[-1.37638192, -0.3249197 , 0.72654253, 1.37638192],
|
||
|
[-1.06066017, -0.28867513, 0.6172134 , 1.06066017],
|
||
|
[-0.97847231, -0.27667066, 0.58438973, 0.97847231]])
|
||
|
|
||
|
The t distribution is also available as `scipy.stats.t`. Calling `stdtrit`
|
||
|
directly can be much faster than calling the ``ppf`` method of
|
||
|
`scipy.stats.t`. To get the same results, one must use the following
|
||
|
parametrization: ``scipy.stats.t(df).ppf(x) = stdtrit(df, x)``.
|
||
|
|
||
|
>>> from scipy.stats import t
|
||
|
>>> df, x = 3, 0.5
|
||
|
>>> stdtrit_result = stdtrit(df, x) # this can be faster than below
|
||
|
>>> stats_result = t(df).ppf(x)
|
||
|
>>> stats_result == stdtrit_result # test that results are equal
|
||
|
True
|
||
|
""")
|
||
|
|
||
|
add_newdoc("struve",
|
||
|
r"""
|
||
|
struve(v, x, out=None)
|
||
|
|
||
|
Struve function.
|
||
|
|
||
|
Return the value of the Struve function of order `v` at `x`. The Struve
|
||
|
function is defined as,
|
||
|
|
||
|
.. math::
|
||
|
H_v(x) = (z/2)^{v + 1} \sum_{n=0}^\infty
|
||
|
\frac{(-1)^n (z/2)^{2n}}{\Gamma(n + \frac{3}{2}) \Gamma(n + v + \frac{3}{2})},
|
||
|
|
||
|
where :math:`\Gamma` is the gamma function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
v : array_like
|
||
|
Order of the Struve function (float).
|
||
|
x : array_like
|
||
|
Argument of the Struve function (float; must be positive unless `v` is
|
||
|
an integer).
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
H : scalar or ndarray
|
||
|
Value of the Struve function of order `v` at `x`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
modstruve: Modified Struve function
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Three methods discussed in [1]_ are used to evaluate the Struve function:
|
||
|
|
||
|
- power series
|
||
|
- expansion in Bessel functions (if :math:`|z| < |v| + 20`)
|
||
|
- asymptotic large-z expansion (if :math:`z \geq 0.7v + 12`)
|
||
|
|
||
|
Rounding errors are estimated based on the largest terms in the sums, and
|
||
|
the result associated with the smallest error is returned.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] NIST Digital Library of Mathematical Functions
|
||
|
https://dlmf.nist.gov/11
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Calculate the Struve function of order 1 at 2.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import struve
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> struve(1, 2.)
|
||
|
0.6467637282835622
|
||
|
|
||
|
Calculate the Struve function at 2 for orders 1, 2 and 3 by providing
|
||
|
a list for the order parameter `v`.
|
||
|
|
||
|
>>> struve([1, 2, 3], 2.)
|
||
|
array([0.64676373, 0.28031806, 0.08363767])
|
||
|
|
||
|
Calculate the Struve function of order 1 for several points by providing
|
||
|
an array for `x`.
|
||
|
|
||
|
>>> points = np.array([2., 5., 8.])
|
||
|
>>> struve(1, points)
|
||
|
array([0.64676373, 0.80781195, 0.48811605])
|
||
|
|
||
|
Compute the Struve function for several orders at several points by
|
||
|
providing arrays for `v` and `z`. The arrays have to be broadcastable
|
||
|
to the correct shapes.
|
||
|
|
||
|
>>> orders = np.array([[1], [2], [3]])
|
||
|
>>> points.shape, orders.shape
|
||
|
((3,), (3, 1))
|
||
|
|
||
|
>>> struve(orders, points)
|
||
|
array([[0.64676373, 0.80781195, 0.48811605],
|
||
|
[0.28031806, 1.56937455, 1.51769363],
|
||
|
[0.08363767, 1.50872065, 2.98697513]])
|
||
|
|
||
|
Plot the Struve functions of order 0 to 3 from -10 to 10.
|
||
|
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> x = np.linspace(-10., 10., 1000)
|
||
|
>>> for i in range(4):
|
||
|
... ax.plot(x, struve(i, x), label=f'$H_{i!r}$')
|
||
|
>>> ax.legend(ncol=2)
|
||
|
>>> ax.set_xlim(-10, 10)
|
||
|
>>> ax.set_title(r"Struve functions $H_{\nu}$")
|
||
|
>>> plt.show()
|
||
|
""")
|
||
|
|
||
|
add_newdoc("tandg",
|
||
|
"""
|
||
|
tandg(x, out=None)
|
||
|
|
||
|
Tangent of angle `x` given in degrees.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Angle, given in degrees.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Tangent at the input.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
sindg, cosdg, cotdg
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> import scipy.special as sc
|
||
|
|
||
|
It is more accurate than using tangent directly.
|
||
|
|
||
|
>>> x = 180 * np.arange(3)
|
||
|
>>> sc.tandg(x)
|
||
|
array([0., 0., 0.])
|
||
|
>>> np.tan(x * np.pi / 180)
|
||
|
array([ 0.0000000e+00, -1.2246468e-16, -2.4492936e-16])
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc(
|
||
|
"tklmbda",
|
||
|
r"""
|
||
|
tklmbda(x, lmbda, out=None)
|
||
|
|
||
|
Cumulative distribution function of the Tukey lambda distribution.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x, lmbda : array_like
|
||
|
Parameters
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
cdf : scalar or ndarray
|
||
|
Value of the Tukey lambda CDF
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
scipy.stats.tukeylambda : Tukey lambda distribution
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> from scipy.special import tklmbda, expit
|
||
|
|
||
|
Compute the cumulative distribution function (CDF) of the Tukey lambda
|
||
|
distribution at several ``x`` values for `lmbda` = -1.5.
|
||
|
|
||
|
>>> x = np.linspace(-2, 2, 9)
|
||
|
>>> x
|
||
|
array([-2. , -1.5, -1. , -0.5, 0. , 0.5, 1. , 1.5, 2. ])
|
||
|
>>> tklmbda(x, -1.5)
|
||
|
array([0.34688734, 0.3786554 , 0.41528805, 0.45629737, 0.5 ,
|
||
|
0.54370263, 0.58471195, 0.6213446 , 0.65311266])
|
||
|
|
||
|
When `lmbda` is 0, the function is the logistic sigmoid function,
|
||
|
which is implemented in `scipy.special` as `expit`.
|
||
|
|
||
|
>>> tklmbda(x, 0)
|
||
|
array([0.11920292, 0.18242552, 0.26894142, 0.37754067, 0.5 ,
|
||
|
0.62245933, 0.73105858, 0.81757448, 0.88079708])
|
||
|
>>> expit(x)
|
||
|
array([0.11920292, 0.18242552, 0.26894142, 0.37754067, 0.5 ,
|
||
|
0.62245933, 0.73105858, 0.81757448, 0.88079708])
|
||
|
|
||
|
When `lmbda` is 1, the Tukey lambda distribution is uniform on the
|
||
|
interval [-1, 1], so the CDF increases linearly.
|
||
|
|
||
|
>>> t = np.linspace(-1, 1, 9)
|
||
|
>>> tklmbda(t, 1)
|
||
|
array([0. , 0.125, 0.25 , 0.375, 0.5 , 0.625, 0.75 , 0.875, 1. ])
|
||
|
|
||
|
In the following, we generate plots for several values of `lmbda`.
|
||
|
|
||
|
The first figure shows graphs for `lmbda` <= 0.
|
||
|
|
||
|
>>> styles = ['-', '-.', '--', ':']
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> x = np.linspace(-12, 12, 500)
|
||
|
>>> for k, lmbda in enumerate([-1.0, -0.5, 0.0]):
|
||
|
... y = tklmbda(x, lmbda)
|
||
|
... ax.plot(x, y, styles[k], label=rf'$\lambda$ = {lmbda:-4.1f}')
|
||
|
|
||
|
>>> ax.set_title(r'tklmbda(x, $\lambda$)')
|
||
|
>>> ax.set_label('x')
|
||
|
>>> ax.legend(framealpha=1, shadow=True)
|
||
|
>>> ax.grid(True)
|
||
|
|
||
|
The second figure shows graphs for `lmbda` > 0. The dots in the
|
||
|
graphs show the bounds of the support of the distribution.
|
||
|
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> x = np.linspace(-4.2, 4.2, 500)
|
||
|
>>> lmbdas = [0.25, 0.5, 1.0, 1.5]
|
||
|
>>> for k, lmbda in enumerate(lmbdas):
|
||
|
... y = tklmbda(x, lmbda)
|
||
|
... ax.plot(x, y, styles[k], label=fr'$\lambda$ = {lmbda}')
|
||
|
|
||
|
>>> ax.set_prop_cycle(None)
|
||
|
>>> for lmbda in lmbdas:
|
||
|
... ax.plot([-1/lmbda, 1/lmbda], [0, 1], '.', ms=8)
|
||
|
|
||
|
>>> ax.set_title(r'tklmbda(x, $\lambda$)')
|
||
|
>>> ax.set_xlabel('x')
|
||
|
>>> ax.legend(framealpha=1, shadow=True)
|
||
|
>>> ax.grid(True)
|
||
|
|
||
|
>>> plt.tight_layout()
|
||
|
>>> plt.show()
|
||
|
|
||
|
The CDF of the Tukey lambda distribution is also implemented as the
|
||
|
``cdf`` method of `scipy.stats.tukeylambda`. In the following,
|
||
|
``tukeylambda.cdf(x, -0.5)`` and ``tklmbda(x, -0.5)`` compute the
|
||
|
same values:
|
||
|
|
||
|
>>> from scipy.stats import tukeylambda
|
||
|
>>> x = np.linspace(-2, 2, 9)
|
||
|
|
||
|
>>> tukeylambda.cdf(x, -0.5)
|
||
|
array([0.21995157, 0.27093858, 0.33541677, 0.41328161, 0.5 ,
|
||
|
0.58671839, 0.66458323, 0.72906142, 0.78004843])
|
||
|
|
||
|
>>> tklmbda(x, -0.5)
|
||
|
array([0.21995157, 0.27093858, 0.33541677, 0.41328161, 0.5 ,
|
||
|
0.58671839, 0.66458323, 0.72906142, 0.78004843])
|
||
|
|
||
|
The implementation in ``tukeylambda`` also provides location and scale
|
||
|
parameters, and other methods such as ``pdf()`` (the probability
|
||
|
density function) and ``ppf()`` (the inverse of the CDF), so for
|
||
|
working with the Tukey lambda distribution, ``tukeylambda`` is more
|
||
|
generally useful. The primary advantage of ``tklmbda`` is that it is
|
||
|
significantly faster than ``tukeylambda.cdf``.
|
||
|
""")
|
||
|
|
||
|
add_newdoc("wofz",
|
||
|
"""
|
||
|
wofz(z, out=None)
|
||
|
|
||
|
Faddeeva function
|
||
|
|
||
|
Returns the value of the Faddeeva function for complex argument::
|
||
|
|
||
|
exp(-z**2) * erfc(-i*z)
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
z : array_like
|
||
|
complex argument
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Value of the Faddeeva function
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
dawsn, erf, erfc, erfcx, erfi
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Steven G. Johnson, Faddeeva W function implementation.
|
||
|
http://ab-initio.mit.edu/Faddeeva
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy import special
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
|
||
|
>>> x = np.linspace(-3, 3)
|
||
|
>>> z = special.wofz(x)
|
||
|
|
||
|
>>> plt.plot(x, z.real, label='wofz(x).real')
|
||
|
>>> plt.plot(x, z.imag, label='wofz(x).imag')
|
||
|
>>> plt.xlabel('$x$')
|
||
|
>>> plt.legend(framealpha=1, shadow=True)
|
||
|
>>> plt.grid(alpha=0.25)
|
||
|
>>> plt.show()
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("xlogy",
|
||
|
"""
|
||
|
xlogy(x, y, out=None)
|
||
|
|
||
|
Compute ``x*log(y)`` so that the result is 0 if ``x = 0``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Multiplier
|
||
|
y : array_like
|
||
|
Argument
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
z : scalar or ndarray
|
||
|
Computed x*log(y)
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The log function used in the computation is the natural log.
|
||
|
|
||
|
.. versionadded:: 0.13.0
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
We can use this function to calculate the binary logistic loss also
|
||
|
known as the binary cross entropy. This loss function is used for
|
||
|
binary classification problems and is defined as:
|
||
|
|
||
|
.. math::
|
||
|
L = 1/n * \\sum_{i=0}^n -(y_i*log(y\\_pred_i) + (1-y_i)*log(1-y\\_pred_i))
|
||
|
|
||
|
We can define the parameters `x` and `y` as y and y_pred respectively.
|
||
|
y is the array of the actual labels which over here can be either 0 or 1.
|
||
|
y_pred is the array of the predicted probabilities with respect to
|
||
|
the positive class (1).
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import xlogy
|
||
|
>>> y = np.array([0, 1, 0, 1, 1, 0])
|
||
|
>>> y_pred = np.array([0.3, 0.8, 0.4, 0.7, 0.9, 0.2])
|
||
|
>>> n = len(y)
|
||
|
>>> loss = -(xlogy(y, y_pred) + xlogy(1 - y, 1 - y_pred)).sum()
|
||
|
>>> loss /= n
|
||
|
>>> loss
|
||
|
0.29597052165495025
|
||
|
|
||
|
A lower loss is usually better as it indicates that the predictions are
|
||
|
similar to the actual labels. In this example since our predicted
|
||
|
probabilities are close to the actual labels, we get an overall loss
|
||
|
that is reasonably low and appropriate.
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("xlog1py",
|
||
|
"""
|
||
|
xlog1py(x, y, out=None)
|
||
|
|
||
|
Compute ``x*log1p(y)`` so that the result is 0 if ``x = 0``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Multiplier
|
||
|
y : array_like
|
||
|
Argument
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
z : scalar or ndarray
|
||
|
Computed x*log1p(y)
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
|
||
|
.. versionadded:: 0.13.0
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
This example shows how the function can be used to calculate the log of
|
||
|
the probability mass function for a geometric discrete random variable.
|
||
|
The probability mass function of the geometric distribution is defined
|
||
|
as follows:
|
||
|
|
||
|
.. math:: f(k) = (1-p)^{k-1} p
|
||
|
|
||
|
where :math:`p` is the probability of a single success
|
||
|
and :math:`1-p` is the probability of a single failure
|
||
|
and :math:`k` is the number of trials to get the first success.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import xlog1py
|
||
|
>>> p = 0.5
|
||
|
>>> k = 100
|
||
|
>>> _pmf = np.power(1 - p, k - 1) * p
|
||
|
>>> _pmf
|
||
|
7.888609052210118e-31
|
||
|
|
||
|
If we take k as a relatively large number the value of the probability
|
||
|
mass function can become very low. In such cases taking the log of the
|
||
|
pmf would be more suitable as the log function can change the values
|
||
|
to a scale that is more appropriate to work with.
|
||
|
|
||
|
>>> _log_pmf = xlog1py(k - 1, -p) + np.log(p)
|
||
|
>>> _log_pmf
|
||
|
-69.31471805599453
|
||
|
|
||
|
We can confirm that we get a value close to the original pmf value by
|
||
|
taking the exponential of the log pmf.
|
||
|
|
||
|
>>> _orig_pmf = np.exp(_log_pmf)
|
||
|
>>> np.isclose(_pmf, _orig_pmf)
|
||
|
True
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("y0",
|
||
|
r"""
|
||
|
y0(x, out=None)
|
||
|
|
||
|
Bessel function of the second kind of order 0.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Argument (float).
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Y : scalar or ndarray
|
||
|
Value of the Bessel function of the second kind of order 0 at `x`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
j0: Bessel function of the first kind of order 0
|
||
|
yv: Bessel function of the first kind
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The domain is divided into the intervals [0, 5] and (5, infinity). In the
|
||
|
first interval a rational approximation :math:`R(x)` is employed to
|
||
|
compute,
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
Y_0(x) = R(x) + \frac{2 \log(x) J_0(x)}{\pi},
|
||
|
|
||
|
where :math:`J_0` is the Bessel function of the first kind of order 0.
|
||
|
|
||
|
In the second interval, the Hankel asymptotic expansion is employed with
|
||
|
two rational functions of degree 6/6 and 7/7.
|
||
|
|
||
|
This function is a wrapper for the Cephes [1]_ routine `y0`.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Cephes Mathematical Functions Library,
|
||
|
http://www.netlib.org/cephes/
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Calculate the function at one point:
|
||
|
|
||
|
>>> from scipy.special import y0
|
||
|
>>> y0(1.)
|
||
|
0.08825696421567697
|
||
|
|
||
|
Calculate at several points:
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> y0(np.array([0.5, 2., 3.]))
|
||
|
array([-0.44451873, 0.51037567, 0.37685001])
|
||
|
|
||
|
Plot the function from 0 to 10.
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> x = np.linspace(0., 10., 1000)
|
||
|
>>> y = y0(x)
|
||
|
>>> ax.plot(x, y)
|
||
|
>>> plt.show()
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("y1",
|
||
|
"""
|
||
|
y1(x, out=None)
|
||
|
|
||
|
Bessel function of the second kind of order 1.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Argument (float).
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Y : scalar or ndarray
|
||
|
Value of the Bessel function of the second kind of order 1 at `x`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
j1: Bessel function of the first kind of order 1
|
||
|
yn: Bessel function of the second kind
|
||
|
yv: Bessel function of the second kind
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The domain is divided into the intervals [0, 8] and (8, infinity). In the
|
||
|
first interval a 25 term Chebyshev expansion is used, and computing
|
||
|
:math:`J_1` (the Bessel function of the first kind) is required. In the
|
||
|
second, the asymptotic trigonometric representation is employed using two
|
||
|
rational functions of degree 5/5.
|
||
|
|
||
|
This function is a wrapper for the Cephes [1]_ routine `y1`.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Cephes Mathematical Functions Library,
|
||
|
http://www.netlib.org/cephes/
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Calculate the function at one point:
|
||
|
|
||
|
>>> from scipy.special import y1
|
||
|
>>> y1(1.)
|
||
|
-0.7812128213002888
|
||
|
|
||
|
Calculate at several points:
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> y1(np.array([0.5, 2., 3.]))
|
||
|
array([-1.47147239, -0.10703243, 0.32467442])
|
||
|
|
||
|
Plot the function from 0 to 10.
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> x = np.linspace(0., 10., 1000)
|
||
|
>>> y = y1(x)
|
||
|
>>> ax.plot(x, y)
|
||
|
>>> plt.show()
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("yn",
|
||
|
r"""
|
||
|
yn(n, x, out=None)
|
||
|
|
||
|
Bessel function of the second kind of integer order and real argument.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : array_like
|
||
|
Order (integer).
|
||
|
x : array_like
|
||
|
Argument (float).
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Y : scalar or ndarray
|
||
|
Value of the Bessel function, :math:`Y_n(x)`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
yv : For real order and real or complex argument.
|
||
|
y0: faster implementation of this function for order 0
|
||
|
y1: faster implementation of this function for order 1
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Wrapper for the Cephes [1]_ routine `yn`.
|
||
|
|
||
|
The function is evaluated by forward recurrence on `n`, starting with
|
||
|
values computed by the Cephes routines `y0` and `y1`. If `n = 0` or 1,
|
||
|
the routine for `y0` or `y1` is called directly.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Cephes Mathematical Functions Library,
|
||
|
http://www.netlib.org/cephes/
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Evaluate the function of order 0 at one point.
|
||
|
|
||
|
>>> from scipy.special import yn
|
||
|
>>> yn(0, 1.)
|
||
|
0.08825696421567697
|
||
|
|
||
|
Evaluate the function at one point for different orders.
|
||
|
|
||
|
>>> yn(0, 1.), yn(1, 1.), yn(2, 1.)
|
||
|
(0.08825696421567697, -0.7812128213002888, -1.6506826068162546)
|
||
|
|
||
|
The evaluation for different orders can be carried out in one call by
|
||
|
providing a list or NumPy array as argument for the `v` parameter:
|
||
|
|
||
|
>>> yn([0, 1, 2], 1.)
|
||
|
array([ 0.08825696, -0.78121282, -1.65068261])
|
||
|
|
||
|
Evaluate the function at several points for order 0 by providing an
|
||
|
array for `z`.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> points = np.array([0.5, 3., 8.])
|
||
|
>>> yn(0, points)
|
||
|
array([-0.44451873, 0.37685001, 0.22352149])
|
||
|
|
||
|
If `z` is an array, the order parameter `v` must be broadcastable to
|
||
|
the correct shape if different orders shall be computed in one call.
|
||
|
To calculate the orders 0 and 1 for an 1D array:
|
||
|
|
||
|
>>> orders = np.array([[0], [1]])
|
||
|
>>> orders.shape
|
||
|
(2, 1)
|
||
|
|
||
|
>>> yn(orders, points)
|
||
|
array([[-0.44451873, 0.37685001, 0.22352149],
|
||
|
[-1.47147239, 0.32467442, -0.15806046]])
|
||
|
|
||
|
Plot the functions of order 0 to 3 from 0 to 10.
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> x = np.linspace(0., 10., 1000)
|
||
|
>>> for i in range(4):
|
||
|
... ax.plot(x, yn(i, x), label=f'$Y_{i!r}$')
|
||
|
>>> ax.set_ylim(-3, 1)
|
||
|
>>> ax.legend()
|
||
|
>>> plt.show()
|
||
|
""")
|
||
|
|
||
|
add_newdoc("yv",
|
||
|
r"""
|
||
|
yv(v, z, out=None)
|
||
|
|
||
|
Bessel function of the second kind of real order and complex argument.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
v : array_like
|
||
|
Order (float).
|
||
|
z : array_like
|
||
|
Argument (float or complex).
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Y : scalar or ndarray
|
||
|
Value of the Bessel function of the second kind, :math:`Y_v(x)`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
yve : :math:`Y_v` with leading exponential behavior stripped off.
|
||
|
y0: faster implementation of this function for order 0
|
||
|
y1: faster implementation of this function for order 1
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For positive `v` values, the computation is carried out using the
|
||
|
AMOS [1]_ `zbesy` routine, which exploits the connection to the Hankel
|
||
|
Bessel functions :math:`H_v^{(1)}` and :math:`H_v^{(2)}`,
|
||
|
|
||
|
.. math:: Y_v(z) = \frac{1}{2\imath} (H_v^{(1)} - H_v^{(2)}).
|
||
|
|
||
|
For negative `v` values the formula,
|
||
|
|
||
|
.. math:: Y_{-v}(z) = Y_v(z) \cos(\pi v) + J_v(z) \sin(\pi v)
|
||
|
|
||
|
is used, where :math:`J_v(z)` is the Bessel function of the first kind,
|
||
|
computed using the AMOS routine `zbesj`. Note that the second term is
|
||
|
exactly zero for integer `v`; to improve accuracy the second term is
|
||
|
explicitly omitted for `v` values such that `v = floor(v)`.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Donald E. Amos, "AMOS, A Portable Package for Bessel Functions
|
||
|
of a Complex Argument and Nonnegative Order",
|
||
|
http://netlib.org/amos/
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Evaluate the function of order 0 at one point.
|
||
|
|
||
|
>>> from scipy.special import yv
|
||
|
>>> yv(0, 1.)
|
||
|
0.088256964215677
|
||
|
|
||
|
Evaluate the function at one point for different orders.
|
||
|
|
||
|
>>> yv(0, 1.), yv(1, 1.), yv(1.5, 1.)
|
||
|
(0.088256964215677, -0.7812128213002889, -1.102495575160179)
|
||
|
|
||
|
The evaluation for different orders can be carried out in one call by
|
||
|
providing a list or NumPy array as argument for the `v` parameter:
|
||
|
|
||
|
>>> yv([0, 1, 1.5], 1.)
|
||
|
array([ 0.08825696, -0.78121282, -1.10249558])
|
||
|
|
||
|
Evaluate the function at several points for order 0 by providing an
|
||
|
array for `z`.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> points = np.array([0.5, 3., 8.])
|
||
|
>>> yv(0, points)
|
||
|
array([-0.44451873, 0.37685001, 0.22352149])
|
||
|
|
||
|
If `z` is an array, the order parameter `v` must be broadcastable to
|
||
|
the correct shape if different orders shall be computed in one call.
|
||
|
To calculate the orders 0 and 1 for an 1D array:
|
||
|
|
||
|
>>> orders = np.array([[0], [1]])
|
||
|
>>> orders.shape
|
||
|
(2, 1)
|
||
|
|
||
|
>>> yv(orders, points)
|
||
|
array([[-0.44451873, 0.37685001, 0.22352149],
|
||
|
[-1.47147239, 0.32467442, -0.15806046]])
|
||
|
|
||
|
Plot the functions of order 0 to 3 from 0 to 10.
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> x = np.linspace(0., 10., 1000)
|
||
|
>>> for i in range(4):
|
||
|
... ax.plot(x, yv(i, x), label=f'$Y_{i!r}$')
|
||
|
>>> ax.set_ylim(-3, 1)
|
||
|
>>> ax.legend()
|
||
|
>>> plt.show()
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("yve",
|
||
|
r"""
|
||
|
yve(v, z, out=None)
|
||
|
|
||
|
Exponentially scaled Bessel function of the second kind of real order.
|
||
|
|
||
|
Returns the exponentially scaled Bessel function of the second
|
||
|
kind of real order `v` at complex `z`::
|
||
|
|
||
|
yve(v, z) = yv(v, z) * exp(-abs(z.imag))
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
v : array_like
|
||
|
Order (float).
|
||
|
z : array_like
|
||
|
Argument (float or complex).
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Y : scalar or ndarray
|
||
|
Value of the exponentially scaled Bessel function.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
yv: Unscaled Bessel function of the second kind of real order.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For positive `v` values, the computation is carried out using the
|
||
|
AMOS [1]_ `zbesy` routine, which exploits the connection to the Hankel
|
||
|
Bessel functions :math:`H_v^{(1)}` and :math:`H_v^{(2)}`,
|
||
|
|
||
|
.. math:: Y_v(z) = \frac{1}{2\imath} (H_v^{(1)} - H_v^{(2)}).
|
||
|
|
||
|
For negative `v` values the formula,
|
||
|
|
||
|
.. math:: Y_{-v}(z) = Y_v(z) \cos(\pi v) + J_v(z) \sin(\pi v)
|
||
|
|
||
|
is used, where :math:`J_v(z)` is the Bessel function of the first kind,
|
||
|
computed using the AMOS routine `zbesj`. Note that the second term is
|
||
|
exactly zero for integer `v`; to improve accuracy the second term is
|
||
|
explicitly omitted for `v` values such that `v = floor(v)`.
|
||
|
|
||
|
Exponentially scaled Bessel functions are useful for large `z`:
|
||
|
for these, the unscaled Bessel functions can easily under-or overflow.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Donald E. Amos, "AMOS, A Portable Package for Bessel Functions
|
||
|
of a Complex Argument and Nonnegative Order",
|
||
|
http://netlib.org/amos/
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Compare the output of `yv` and `yve` for large complex arguments for `z`
|
||
|
by computing their values for order ``v=1`` at ``z=1000j``. We see that
|
||
|
`yv` returns nan but `yve` returns a finite number:
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import yv, yve
|
||
|
>>> v = 1
|
||
|
>>> z = 1000j
|
||
|
>>> yv(v, z), yve(v, z)
|
||
|
((nan+nanj), (-0.012610930256928629+7.721967686709076e-19j))
|
||
|
|
||
|
For real arguments for `z`, `yve` returns the same as `yv` up to
|
||
|
floating point errors.
|
||
|
|
||
|
>>> v, z = 1, 1000
|
||
|
>>> yv(v, z), yve(v, z)
|
||
|
(-0.02478433129235178, -0.02478433129235179)
|
||
|
|
||
|
The function can be evaluated for several orders at the same time by
|
||
|
providing a list or NumPy array for `v`:
|
||
|
|
||
|
>>> yve([1, 2, 3], 1j)
|
||
|
array([-0.20791042+0.14096627j, 0.38053618-0.04993878j,
|
||
|
0.00815531-1.66311097j])
|
||
|
|
||
|
In the same way, the function can be evaluated at several points in one
|
||
|
call by providing a list or NumPy array for `z`:
|
||
|
|
||
|
>>> yve(1, np.array([1j, 2j, 3j]))
|
||
|
array([-0.20791042+0.14096627j, -0.21526929+0.01205044j,
|
||
|
-0.19682671+0.00127278j])
|
||
|
|
||
|
It is also possible to evaluate several orders at several points
|
||
|
at the same time by providing arrays for `v` and `z` with
|
||
|
broadcasting compatible shapes. Compute `yve` for two different orders
|
||
|
`v` and three points `z` resulting in a 2x3 array.
|
||
|
|
||
|
>>> v = np.array([[1], [2]])
|
||
|
>>> z = np.array([3j, 4j, 5j])
|
||
|
>>> v.shape, z.shape
|
||
|
((2, 1), (3,))
|
||
|
|
||
|
>>> yve(v, z)
|
||
|
array([[-1.96826713e-01+1.27277544e-03j, -1.78750840e-01+1.45558819e-04j,
|
||
|
-1.63972267e-01+1.73494110e-05j],
|
||
|
[1.94960056e-03-1.11782545e-01j, 2.02902325e-04-1.17626501e-01j,
|
||
|
2.27727687e-05-1.17951906e-01j]])
|
||
|
""")
|
||
|
|
||
|
add_newdoc("_zeta",
|
||
|
"""
|
||
|
_zeta(x, q)
|
||
|
|
||
|
Internal function, Hurwitz zeta.
|
||
|
|
||
|
""")
|
||
|
|
||
|
add_newdoc("zetac",
|
||
|
"""
|
||
|
zetac(x, out=None)
|
||
|
|
||
|
Riemann zeta function minus 1.
|
||
|
|
||
|
This function is defined as
|
||
|
|
||
|
.. math:: \\zeta(x) = \\sum_{k=2}^{\\infty} 1 / k^x,
|
||
|
|
||
|
where ``x > 1``. For ``x < 1`` the analytic continuation is
|
||
|
computed. For more information on the Riemann zeta function, see
|
||
|
[dlmf]_.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like of float
|
||
|
Values at which to compute zeta(x) - 1 (must be real).
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Values of zeta(x) - 1.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
zeta
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [dlmf] NIST Digital Library of Mathematical Functions
|
||
|
https://dlmf.nist.gov/25
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import zetac, zeta
|
||
|
|
||
|
Some special values:
|
||
|
|
||
|
>>> zetac(2), np.pi**2/6 - 1
|
||
|
(0.64493406684822641, 0.6449340668482264)
|
||
|
|
||
|
>>> zetac(-1), -1.0/12 - 1
|
||
|
(-1.0833333333333333, -1.0833333333333333)
|
||
|
|
||
|
Compare ``zetac(x)`` to ``zeta(x) - 1`` for large `x`:
|
||
|
|
||
|
>>> zetac(60), zeta(60) - 1
|
||
|
(8.673617380119933e-19, 0.0)
|
||
|
""")
|
||
|
|
||
|
add_newdoc("_riemann_zeta",
|
||
|
"""
|
||
|
Internal function, use `zeta` instead.
|
||
|
""")
|
||
|
|
||
|
add_newdoc("_struve_asymp_large_z",
|
||
|
"""
|
||
|
_struve_asymp_large_z(v, z, is_h)
|
||
|
|
||
|
Internal function for testing `struve` & `modstruve`
|
||
|
|
||
|
Evaluates using asymptotic expansion
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
v, err
|
||
|
""")
|
||
|
|
||
|
add_newdoc("_struve_power_series",
|
||
|
"""
|
||
|
_struve_power_series(v, z, is_h)
|
||
|
|
||
|
Internal function for testing `struve` & `modstruve`
|
||
|
|
||
|
Evaluates using power series
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
v, err
|
||
|
""")
|
||
|
|
||
|
add_newdoc("_struve_bessel_series",
|
||
|
"""
|
||
|
_struve_bessel_series(v, z, is_h)
|
||
|
|
||
|
Internal function for testing `struve` & `modstruve`
|
||
|
|
||
|
Evaluates using Bessel function series
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
v, err
|
||
|
""")
|
||
|
|
||
|
add_newdoc("_spherical_jn",
|
||
|
"""
|
||
|
Internal function, use `spherical_jn` instead.
|
||
|
""")
|
||
|
|
||
|
add_newdoc("_spherical_jn_d",
|
||
|
"""
|
||
|
Internal function, use `spherical_jn` instead.
|
||
|
""")
|
||
|
|
||
|
add_newdoc("_spherical_yn",
|
||
|
"""
|
||
|
Internal function, use `spherical_yn` instead.
|
||
|
""")
|
||
|
|
||
|
add_newdoc("_spherical_yn_d",
|
||
|
"""
|
||
|
Internal function, use `spherical_yn` instead.
|
||
|
""")
|
||
|
|
||
|
add_newdoc("_spherical_in",
|
||
|
"""
|
||
|
Internal function, use `spherical_in` instead.
|
||
|
""")
|
||
|
|
||
|
add_newdoc("_spherical_in_d",
|
||
|
"""
|
||
|
Internal function, use `spherical_in` instead.
|
||
|
""")
|
||
|
|
||
|
add_newdoc("_spherical_kn",
|
||
|
"""
|
||
|
Internal function, use `spherical_kn` instead.
|
||
|
""")
|
||
|
|
||
|
add_newdoc("_spherical_kn_d",
|
||
|
"""
|
||
|
Internal function, use `spherical_kn` instead.
|
||
|
""")
|
||
|
|
||
|
add_newdoc("loggamma",
|
||
|
r"""
|
||
|
loggamma(z, out=None)
|
||
|
|
||
|
Principal branch of the logarithm of the gamma function.
|
||
|
|
||
|
Defined to be :math:`\log(\Gamma(x))` for :math:`x > 0` and
|
||
|
extended to the complex plane by analytic continuation. The
|
||
|
function has a single branch cut on the negative real axis.
|
||
|
|
||
|
.. versionadded:: 0.18.0
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
z : array_like
|
||
|
Values in the complex plane at which to compute ``loggamma``
|
||
|
out : ndarray, optional
|
||
|
Output array for computed values of ``loggamma``
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
loggamma : scalar or ndarray
|
||
|
Values of ``loggamma`` at z.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
gammaln : logarithm of the absolute value of the gamma function
|
||
|
gammasgn : sign of the gamma function
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
It is not generally true that :math:`\log\Gamma(z) =
|
||
|
\log(\Gamma(z))`, though the real parts of the functions do
|
||
|
agree. The benefit of not defining `loggamma` as
|
||
|
:math:`\log(\Gamma(z))` is that the latter function has a
|
||
|
complicated branch cut structure whereas `loggamma` is analytic
|
||
|
except for on the negative real axis.
|
||
|
|
||
|
The identities
|
||
|
|
||
|
.. math::
|
||
|
\exp(\log\Gamma(z)) &= \Gamma(z) \\
|
||
|
\log\Gamma(z + 1) &= \log(z) + \log\Gamma(z)
|
||
|
|
||
|
make `loggamma` useful for working in complex logspace.
|
||
|
|
||
|
On the real line `loggamma` is related to `gammaln` via
|
||
|
``exp(loggamma(x + 0j)) = gammasgn(x)*exp(gammaln(x))``, up to
|
||
|
rounding error.
|
||
|
|
||
|
The implementation here is based on [hare1997]_.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [hare1997] D.E.G. Hare,
|
||
|
*Computing the Principal Branch of log-Gamma*,
|
||
|
Journal of Algorithms, Volume 25, Issue 2, November 1997, pages 221-236.
|
||
|
""")
|
||
|
|
||
|
add_newdoc("_sinpi",
|
||
|
"""
|
||
|
Internal function, do not use.
|
||
|
""")
|
||
|
|
||
|
add_newdoc("_cospi",
|
||
|
"""
|
||
|
Internal function, do not use.
|
||
|
""")
|
||
|
|
||
|
add_newdoc("owens_t",
|
||
|
"""
|
||
|
owens_t(h, a, out=None)
|
||
|
|
||
|
Owen's T Function.
|
||
|
|
||
|
The function T(h, a) gives the probability of the event
|
||
|
(X > h and 0 < Y < a * X) where X and Y are independent
|
||
|
standard normal random variables.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
h: array_like
|
||
|
Input value.
|
||
|
a: array_like
|
||
|
Input value.
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
t: scalar or ndarray
|
||
|
Probability of the event (X > h and 0 < Y < a * X),
|
||
|
where X and Y are independent standard normal random variables.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] M. Patefield and D. Tandy, "Fast and accurate calculation of
|
||
|
Owen's T Function", Statistical Software vol. 5, pp. 1-25, 2000.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy import special
|
||
|
>>> a = 3.5
|
||
|
>>> h = 0.78
|
||
|
>>> special.owens_t(h, a)
|
||
|
0.10877216734852274
|
||
|
""")
|
||
|
|
||
|
add_newdoc("_factorial",
|
||
|
"""
|
||
|
Internal function, do not use.
|
||
|
""")
|
||
|
|
||
|
add_newdoc("wright_bessel",
|
||
|
r"""
|
||
|
wright_bessel(a, b, x, out=None)
|
||
|
|
||
|
Wright's generalized Bessel function.
|
||
|
|
||
|
Wright's generalized Bessel function is an entire function and defined as
|
||
|
|
||
|
.. math:: \Phi(a, b; x) = \sum_{k=0}^\infty \frac{x^k}{k! \Gamma(a k + b)}
|
||
|
|
||
|
See Also [1].
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
a : array_like of float
|
||
|
a >= 0
|
||
|
b : array_like of float
|
||
|
b >= 0
|
||
|
x : array_like of float
|
||
|
x >= 0
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Value of the Wright's generalized Bessel function
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Due to the complexity of the function with its three parameters, only
|
||
|
non-negative arguments are implemented.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Digital Library of Mathematical Functions, 10.46.
|
||
|
https://dlmf.nist.gov/10.46.E1
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.special import wright_bessel
|
||
|
>>> a, b, x = 1.5, 1.1, 2.5
|
||
|
>>> wright_bessel(a, b-1, x)
|
||
|
4.5314465939443025
|
||
|
|
||
|
Now, let us verify the relation
|
||
|
|
||
|
.. math:: \Phi(a, b-1; x) = a x \Phi(a, b+a; x) + (b-1) \Phi(a, b; x)
|
||
|
|
||
|
>>> a * x * wright_bessel(a, b+a, x) + (b-1) * wright_bessel(a, b, x)
|
||
|
4.5314465939443025
|
||
|
|
||
|
|
||
|
""")
|
||
|
|
||
|
|
||
|
add_newdoc("ndtri_exp",
|
||
|
r"""
|
||
|
ndtri_exp(y, out=None)
|
||
|
|
||
|
Inverse of `log_ndtr` vs x. Allows for greater precision than
|
||
|
`ndtri` composed with `numpy.exp` for very small values of y and for
|
||
|
y close to 0.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
y : array_like of float
|
||
|
Function argument
|
||
|
out : ndarray, optional
|
||
|
Optional output array for the function results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Inverse of the log CDF of the standard normal distribution, evaluated
|
||
|
at y.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
log_ndtr : log of the standard normal cumulative distribution function
|
||
|
ndtr : standard normal cumulative distribution function
|
||
|
ndtri : standard normal percentile function
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> import scipy.special as sc
|
||
|
|
||
|
`ndtri_exp` agrees with the naive implementation when the latter does
|
||
|
not suffer from underflow.
|
||
|
|
||
|
>>> sc.ndtri_exp(-1)
|
||
|
-0.33747496376420244
|
||
|
>>> sc.ndtri(np.exp(-1))
|
||
|
-0.33747496376420244
|
||
|
|
||
|
For extreme values of y, the naive approach fails
|
||
|
|
||
|
>>> sc.ndtri(np.exp(-800))
|
||
|
-inf
|
||
|
>>> sc.ndtri(np.exp(-1e-20))
|
||
|
inf
|
||
|
|
||
|
whereas `ndtri_exp` is still able to compute the result to high precision.
|
||
|
|
||
|
>>> sc.ndtri_exp(-800)
|
||
|
-39.88469483825668
|
||
|
>>> sc.ndtri_exp(-1e-20)
|
||
|
9.262340089798409
|
||
|
""")
|
||
|
|
||
|
add_newdoc("_stirling2_inexact",
|
||
|
r"""
|
||
|
Internal function, do not use.
|
||
|
""")
|