ai-content-maker/.venv/Lib/site-packages/scipy/special/_precompute/struve_convergence.py

132 lines
3.5 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
"""
Convergence regions of the expansions used in ``struve.c``
Note that for v >> z both functions tend rapidly to 0,
and for v << -z, they tend to infinity.
The floating-point functions over/underflow in the lower left and right
corners of the figure.
Figure legend
=============
Red region
Power series is close (1e-12) to the mpmath result
Blue region
Asymptotic series is close to the mpmath result
Green region
Bessel series is close to the mpmath result
Dotted colored lines
Boundaries of the regions
Solid colored lines
Boundaries estimated by the routine itself. These will be used
for determining which of the results to use.
Black dashed line
The line z = 0.7*|v| + 12
"""
import numpy as np
import matplotlib.pyplot as plt
import mpmath
def err_metric(a, b, atol=1e-290):
m = abs(a - b) / (atol + abs(b))
m[np.isinf(b) & (a == b)] = 0
return m
def do_plot(is_h=True):
from scipy.special._ufuncs import (_struve_power_series,
_struve_asymp_large_z,
_struve_bessel_series)
vs = np.linspace(-1000, 1000, 91)
zs = np.sort(np.r_[1e-5, 1.0, np.linspace(0, 700, 91)[1:]])
rp = _struve_power_series(vs[:,None], zs[None,:], is_h)
ra = _struve_asymp_large_z(vs[:,None], zs[None,:], is_h)
rb = _struve_bessel_series(vs[:,None], zs[None,:], is_h)
mpmath.mp.dps = 50
if is_h:
def sh(v, z):
return float(mpmath.struveh(mpmath.mpf(v), mpmath.mpf(z)))
else:
def sh(v, z):
return float(mpmath.struvel(mpmath.mpf(v), mpmath.mpf(z)))
ex = np.vectorize(sh, otypes='d')(vs[:,None], zs[None,:])
err_a = err_metric(ra[0], ex) + 1e-300
err_p = err_metric(rp[0], ex) + 1e-300
err_b = err_metric(rb[0], ex) + 1e-300
err_est_a = abs(ra[1]/ra[0])
err_est_p = abs(rp[1]/rp[0])
err_est_b = abs(rb[1]/rb[0])
z_cutoff = 0.7*abs(vs) + 12
levels = [-1000, -12]
plt.cla()
plt.hold(1)
plt.contourf(vs, zs, np.log10(err_p).T,
levels=levels, colors=['r', 'r'], alpha=0.1)
plt.contourf(vs, zs, np.log10(err_a).T,
levels=levels, colors=['b', 'b'], alpha=0.1)
plt.contourf(vs, zs, np.log10(err_b).T,
levels=levels, colors=['g', 'g'], alpha=0.1)
plt.contour(vs, zs, np.log10(err_p).T,
levels=levels, colors=['r', 'r'], linestyles=[':', ':'])
plt.contour(vs, zs, np.log10(err_a).T,
levels=levels, colors=['b', 'b'], linestyles=[':', ':'])
plt.contour(vs, zs, np.log10(err_b).T,
levels=levels, colors=['g', 'g'], linestyles=[':', ':'])
lp = plt.contour(vs, zs, np.log10(err_est_p).T,
levels=levels, colors=['r', 'r'], linestyles=['-', '-'])
la = plt.contour(vs, zs, np.log10(err_est_a).T,
levels=levels, colors=['b', 'b'], linestyles=['-', '-'])
lb = plt.contour(vs, zs, np.log10(err_est_b).T,
levels=levels, colors=['g', 'g'], linestyles=['-', '-'])
plt.clabel(lp, fmt={-1000: 'P', -12: 'P'})
plt.clabel(la, fmt={-1000: 'A', -12: 'A'})
plt.clabel(lb, fmt={-1000: 'B', -12: 'B'})
plt.plot(vs, z_cutoff, 'k--')
plt.xlim(vs.min(), vs.max())
plt.ylim(zs.min(), zs.max())
plt.xlabel('v')
plt.ylabel('z')
def main():
plt.clf()
plt.subplot(121)
do_plot(True)
plt.title('Struve H')
plt.subplot(122)
do_plot(False)
plt.title('Struve L')
plt.savefig('struve_convergence.png')
plt.show()
if __name__ == "__main__":
main()