9677 lines
375 KiB
Python
9677 lines
375 KiB
Python
|
"""
|
||
|
Test functions for stats module
|
||
|
"""
|
||
|
import warnings
|
||
|
import re
|
||
|
import sys
|
||
|
import pickle
|
||
|
from pathlib import Path
|
||
|
import os
|
||
|
import json
|
||
|
import platform
|
||
|
|
||
|
from numpy.testing import (assert_equal, assert_array_equal,
|
||
|
assert_almost_equal, assert_array_almost_equal,
|
||
|
assert_allclose, assert_, assert_warns,
|
||
|
assert_array_less, suppress_warnings, IS_PYPY)
|
||
|
import pytest
|
||
|
from pytest import raises as assert_raises
|
||
|
|
||
|
import numpy
|
||
|
import numpy as np
|
||
|
from numpy import typecodes, array
|
||
|
from numpy.lib.recfunctions import rec_append_fields
|
||
|
from scipy import special
|
||
|
from scipy._lib._util import check_random_state
|
||
|
from scipy.integrate import (IntegrationWarning, quad, trapezoid,
|
||
|
cumulative_trapezoid)
|
||
|
import scipy.stats as stats
|
||
|
from scipy.stats._distn_infrastructure import argsreduce
|
||
|
import scipy.stats.distributions
|
||
|
|
||
|
from scipy.special import xlogy, polygamma, entr
|
||
|
from scipy.stats._distr_params import distcont, invdistcont
|
||
|
from .test_discrete_basic import distdiscrete, invdistdiscrete
|
||
|
from scipy.stats._continuous_distns import FitDataError, _argus_phi
|
||
|
from scipy.optimize import root, fmin, differential_evolution
|
||
|
from itertools import product
|
||
|
|
||
|
# python -OO strips docstrings
|
||
|
DOCSTRINGS_STRIPPED = sys.flags.optimize > 1
|
||
|
|
||
|
# Failing on macOS 11, Intel CPUs. See gh-14901
|
||
|
MACOS_INTEL = (sys.platform == 'darwin') and (platform.machine() == 'x86_64')
|
||
|
|
||
|
|
||
|
# distributions to skip while testing the fix for the support method
|
||
|
# introduced in gh-13294. These distributions are skipped as they
|
||
|
# always return a non-nan support for every parametrization.
|
||
|
skip_test_support_gh13294_regression = ['tukeylambda', 'pearson3']
|
||
|
|
||
|
|
||
|
def _assert_hasattr(a, b, msg=None):
|
||
|
if msg is None:
|
||
|
msg = f'{a} does not have attribute {b}'
|
||
|
assert_(hasattr(a, b), msg=msg)
|
||
|
|
||
|
|
||
|
def test_api_regression():
|
||
|
# https://github.com/scipy/scipy/issues/3802
|
||
|
_assert_hasattr(scipy.stats.distributions, 'f_gen')
|
||
|
|
||
|
|
||
|
def test_distributions_submodule():
|
||
|
actual = set(scipy.stats.distributions.__all__)
|
||
|
continuous = [dist[0] for dist in distcont] # continuous dist names
|
||
|
discrete = [dist[0] for dist in distdiscrete] # discrete dist names
|
||
|
other = ['rv_discrete', 'rv_continuous', 'rv_histogram',
|
||
|
'entropy', 'trapz']
|
||
|
expected = continuous + discrete + other
|
||
|
|
||
|
# need to remove, e.g.,
|
||
|
# <scipy.stats._continuous_distns.trapezoid_gen at 0x1df83bbc688>
|
||
|
expected = set(filter(lambda s: not str(s).startswith('<'), expected))
|
||
|
|
||
|
assert actual == expected
|
||
|
|
||
|
|
||
|
class TestVonMises:
|
||
|
@pytest.mark.parametrize('k', [0.1, 1, 101])
|
||
|
@pytest.mark.parametrize('x', [0, 1, np.pi, 10, 100])
|
||
|
def test_vonmises_periodic(self, k, x):
|
||
|
def check_vonmises_pdf_periodic(k, L, s, x):
|
||
|
vm = stats.vonmises(k, loc=L, scale=s)
|
||
|
assert_almost_equal(vm.pdf(x), vm.pdf(x % (2 * np.pi * s)))
|
||
|
|
||
|
def check_vonmises_cdf_periodic(k, L, s, x):
|
||
|
vm = stats.vonmises(k, loc=L, scale=s)
|
||
|
assert_almost_equal(vm.cdf(x) % 1,
|
||
|
vm.cdf(x % (2 * np.pi * s)) % 1)
|
||
|
|
||
|
check_vonmises_pdf_periodic(k, 0, 1, x)
|
||
|
check_vonmises_pdf_periodic(k, 1, 1, x)
|
||
|
check_vonmises_pdf_periodic(k, 0, 10, x)
|
||
|
|
||
|
check_vonmises_cdf_periodic(k, 0, 1, x)
|
||
|
check_vonmises_cdf_periodic(k, 1, 1, x)
|
||
|
check_vonmises_cdf_periodic(k, 0, 10, x)
|
||
|
|
||
|
def test_vonmises_line_support(self):
|
||
|
assert_equal(stats.vonmises_line.a, -np.pi)
|
||
|
assert_equal(stats.vonmises_line.b, np.pi)
|
||
|
|
||
|
def test_vonmises_numerical(self):
|
||
|
vm = stats.vonmises(800)
|
||
|
assert_almost_equal(vm.cdf(0), 0.5)
|
||
|
|
||
|
# Expected values of the vonmises PDF were computed using
|
||
|
# mpmath with 50 digits of precision:
|
||
|
#
|
||
|
# def vmpdf_mp(x, kappa):
|
||
|
# x = mpmath.mpf(x)
|
||
|
# kappa = mpmath.mpf(kappa)
|
||
|
# num = mpmath.exp(kappa*mpmath.cos(x))
|
||
|
# den = 2 * mpmath.pi * mpmath.besseli(0, kappa)
|
||
|
# return num/den
|
||
|
|
||
|
@pytest.mark.parametrize('x, kappa, expected_pdf',
|
||
|
[(0.1, 0.01, 0.16074242744907072),
|
||
|
(0.1, 25.0, 1.7515464099118245),
|
||
|
(0.1, 800, 0.2073272544458798),
|
||
|
(2.0, 0.01, 0.15849003875385817),
|
||
|
(2.0, 25.0, 8.356882934278192e-16),
|
||
|
(2.0, 800, 0.0)])
|
||
|
def test_vonmises_pdf(self, x, kappa, expected_pdf):
|
||
|
pdf = stats.vonmises.pdf(x, kappa)
|
||
|
assert_allclose(pdf, expected_pdf, rtol=1e-15)
|
||
|
|
||
|
# Expected values of the vonmises entropy were computed using
|
||
|
# mpmath with 50 digits of precision:
|
||
|
#
|
||
|
# def vonmises_entropy(kappa):
|
||
|
# kappa = mpmath.mpf(kappa)
|
||
|
# return (-kappa * mpmath.besseli(1, kappa) /
|
||
|
# mpmath.besseli(0, kappa) + mpmath.log(2 * mpmath.pi *
|
||
|
# mpmath.besseli(0, kappa)))
|
||
|
# >>> float(vonmises_entropy(kappa))
|
||
|
|
||
|
@pytest.mark.parametrize('kappa, expected_entropy',
|
||
|
[(1, 1.6274014590199897),
|
||
|
(5, 0.6756431570114528),
|
||
|
(100, -0.8811275441649473),
|
||
|
(1000, -2.03468891852547),
|
||
|
(2000, -2.3813876496587847)])
|
||
|
def test_vonmises_entropy(self, kappa, expected_entropy):
|
||
|
entropy = stats.vonmises.entropy(kappa)
|
||
|
assert_allclose(entropy, expected_entropy, rtol=1e-13)
|
||
|
|
||
|
def test_vonmises_rvs_gh4598(self):
|
||
|
# check that random variates wrap around as discussed in gh-4598
|
||
|
seed = 30899520
|
||
|
rng1 = np.random.default_rng(seed)
|
||
|
rng2 = np.random.default_rng(seed)
|
||
|
rng3 = np.random.default_rng(seed)
|
||
|
rvs1 = stats.vonmises(1, loc=0, scale=1).rvs(random_state=rng1)
|
||
|
rvs2 = stats.vonmises(1, loc=2*np.pi, scale=1).rvs(random_state=rng2)
|
||
|
rvs3 = stats.vonmises(1, loc=0,
|
||
|
scale=(2*np.pi/abs(rvs1)+1)).rvs(random_state=rng3)
|
||
|
assert_allclose(rvs1, rvs2, atol=1e-15)
|
||
|
assert_allclose(rvs1, rvs3, atol=1e-15)
|
||
|
|
||
|
# Expected values of the vonmises LOGPDF were computed
|
||
|
# using wolfram alpha:
|
||
|
# kappa * cos(x) - log(2*pi*I0(kappa))
|
||
|
@pytest.mark.parametrize('x, kappa, expected_logpdf',
|
||
|
[(0.1, 0.01, -1.8279520246003170),
|
||
|
(0.1, 25.0, 0.5604990605420549),
|
||
|
(0.1, 800, -1.5734567947337514),
|
||
|
(2.0, 0.01, -1.8420635346185686),
|
||
|
(2.0, 25.0, -34.7182759850871489),
|
||
|
(2.0, 800, -1130.4942582548682739)])
|
||
|
def test_vonmises_logpdf(self, x, kappa, expected_logpdf):
|
||
|
logpdf = stats.vonmises.logpdf(x, kappa)
|
||
|
assert_allclose(logpdf, expected_logpdf, rtol=1e-15)
|
||
|
|
||
|
def test_vonmises_expect(self):
|
||
|
"""
|
||
|
Test that the vonmises expectation values are
|
||
|
computed correctly. This test checks that the
|
||
|
numeric integration estimates the correct normalization
|
||
|
(1) and mean angle (loc). These expectations are
|
||
|
independent of the chosen 2pi interval.
|
||
|
"""
|
||
|
rng = np.random.default_rng(6762668991392531563)
|
||
|
|
||
|
loc, kappa, lb = rng.random(3) * 10
|
||
|
res = stats.vonmises(loc=loc, kappa=kappa).expect(lambda x: 1)
|
||
|
assert_allclose(res, 1)
|
||
|
assert np.issubdtype(res.dtype, np.floating)
|
||
|
|
||
|
bounds = lb, lb + 2 * np.pi
|
||
|
res = stats.vonmises(loc=loc, kappa=kappa).expect(lambda x: 1, *bounds)
|
||
|
assert_allclose(res, 1)
|
||
|
assert np.issubdtype(res.dtype, np.floating)
|
||
|
|
||
|
bounds = lb, lb + 2 * np.pi
|
||
|
res = stats.vonmises(loc=loc, kappa=kappa).expect(lambda x: np.exp(1j*x),
|
||
|
*bounds, complex_func=1)
|
||
|
assert_allclose(np.angle(res), loc % (2*np.pi))
|
||
|
assert np.issubdtype(res.dtype, np.complexfloating)
|
||
|
|
||
|
@pytest.mark.xslow
|
||
|
@pytest.mark.parametrize("rvs_loc", [0, 2])
|
||
|
@pytest.mark.parametrize("rvs_shape", [1, 100, 1e8])
|
||
|
@pytest.mark.parametrize('fix_loc', [True, False])
|
||
|
@pytest.mark.parametrize('fix_shape', [True, False])
|
||
|
def test_fit_MLE_comp_optimizer(self, rvs_loc, rvs_shape,
|
||
|
fix_loc, fix_shape):
|
||
|
if fix_shape and fix_loc:
|
||
|
pytest.skip("Nothing to fit.")
|
||
|
|
||
|
rng = np.random.default_rng(6762668991392531563)
|
||
|
data = stats.vonmises.rvs(rvs_shape, size=1000, loc=rvs_loc,
|
||
|
random_state=rng)
|
||
|
|
||
|
kwds = {'fscale': 1}
|
||
|
if fix_loc:
|
||
|
kwds['floc'] = rvs_loc
|
||
|
if fix_shape:
|
||
|
kwds['f0'] = rvs_shape
|
||
|
|
||
|
_assert_less_or_close_loglike(stats.vonmises, data,
|
||
|
stats.vonmises.nnlf, **kwds)
|
||
|
|
||
|
def test_vonmises_fit_bad_floc(self):
|
||
|
data = [-0.92923506, -0.32498224, 0.13054989, -0.97252014, 2.79658071,
|
||
|
-0.89110948, 1.22520295, 1.44398065, 2.49163859, 1.50315096,
|
||
|
3.05437696, -2.73126329, -3.06272048, 1.64647173, 1.94509247,
|
||
|
-1.14328023, 0.8499056, 2.36714682, -1.6823179, -0.88359996]
|
||
|
data = np.asarray(data)
|
||
|
loc = -0.5 * np.pi
|
||
|
kappa_fit, loc_fit, scale_fit = stats.vonmises.fit(data, floc=loc)
|
||
|
assert kappa_fit == np.finfo(float).tiny
|
||
|
_assert_less_or_close_loglike(stats.vonmises, data,
|
||
|
stats.vonmises.nnlf, fscale=1, floc=loc)
|
||
|
|
||
|
@pytest.mark.parametrize('sign', [-1, 1])
|
||
|
def test_vonmises_fit_unwrapped_data(self, sign):
|
||
|
rng = np.random.default_rng(6762668991392531563)
|
||
|
data = stats.vonmises(loc=sign*0.5*np.pi, kappa=10).rvs(100000,
|
||
|
random_state=rng)
|
||
|
shifted_data = data + 4*np.pi
|
||
|
kappa_fit, loc_fit, scale_fit = stats.vonmises.fit(data)
|
||
|
kappa_fit_shifted, loc_fit_shifted, _ = stats.vonmises.fit(shifted_data)
|
||
|
assert_allclose(loc_fit, loc_fit_shifted)
|
||
|
assert_allclose(kappa_fit, kappa_fit_shifted)
|
||
|
assert scale_fit == 1
|
||
|
assert -np.pi < loc_fit < np.pi
|
||
|
|
||
|
def test_vonmises_kappa_0_gh18166(self):
|
||
|
# Check that kappa = 0 is supported.
|
||
|
dist = stats.vonmises(0)
|
||
|
assert_allclose(dist.pdf(0), 1 / (2 * np.pi), rtol=1e-15)
|
||
|
assert_allclose(dist.cdf(np.pi/2), 0.75, rtol=1e-15)
|
||
|
assert_allclose(dist.sf(-np.pi/2), 0.75, rtol=1e-15)
|
||
|
assert_allclose(dist.ppf(0.9), np.pi*0.8, rtol=1e-15)
|
||
|
assert_allclose(dist.mean(), 0, atol=1e-15)
|
||
|
assert_allclose(dist.expect(), 0, atol=1e-15)
|
||
|
assert np.all(np.abs(dist.rvs(size=10, random_state=1234)) <= np.pi)
|
||
|
|
||
|
def test_vonmises_fit_equal_data(self):
|
||
|
# When all data are equal, expect kappa = 1e16.
|
||
|
kappa, loc, scale = stats.vonmises.fit([0])
|
||
|
assert kappa == 1e16 and loc == 0 and scale == 1
|
||
|
|
||
|
def test_vonmises_fit_bounds(self):
|
||
|
# For certain input data, the root bracket is violated numerically.
|
||
|
# Test that this situation is handled. The input data below are
|
||
|
# crafted to trigger the bound violation for the current choice of
|
||
|
# bounds and the specific way the bounds and the objective function
|
||
|
# are computed.
|
||
|
|
||
|
# Test that no exception is raised when the lower bound is violated.
|
||
|
scipy.stats.vonmises.fit([0, 3.7e-08], floc=0)
|
||
|
|
||
|
# Test that no exception is raised when the upper bound is violated.
|
||
|
scipy.stats.vonmises.fit([np.pi/2*(1-4.86e-9)], floc=0)
|
||
|
|
||
|
|
||
|
def _assert_less_or_close_loglike(dist, data, func=None, maybe_identical=False,
|
||
|
**kwds):
|
||
|
"""
|
||
|
This utility function checks that the negative log-likelihood function
|
||
|
(or `func`) of the result computed using dist.fit() is less than or equal
|
||
|
to the result computed using the generic fit method. Because of
|
||
|
normal numerical imprecision, the "equality" check is made using
|
||
|
`np.allclose` with a relative tolerance of 1e-15.
|
||
|
"""
|
||
|
if func is None:
|
||
|
func = dist.nnlf
|
||
|
|
||
|
mle_analytical = dist.fit(data, **kwds)
|
||
|
numerical_opt = super(type(dist), dist).fit(data, **kwds)
|
||
|
|
||
|
# Sanity check that the analytical MLE is actually executed.
|
||
|
# Due to floating point arithmetic, the generic MLE is unlikely
|
||
|
# to produce the exact same result as the analytical MLE.
|
||
|
if not maybe_identical:
|
||
|
assert np.any(mle_analytical != numerical_opt)
|
||
|
|
||
|
ll_mle_analytical = func(mle_analytical, data)
|
||
|
ll_numerical_opt = func(numerical_opt, data)
|
||
|
assert (ll_mle_analytical <= ll_numerical_opt or
|
||
|
np.allclose(ll_mle_analytical, ll_numerical_opt, rtol=1e-15))
|
||
|
|
||
|
# Ideally we'd check that shapes are correctly fixed, too, but that is
|
||
|
# complicated by the many ways of fixing them (e.g. f0, fix_a, fa).
|
||
|
if 'floc' in kwds:
|
||
|
assert mle_analytical[-2] == kwds['floc']
|
||
|
if 'fscale' in kwds:
|
||
|
assert mle_analytical[-1] == kwds['fscale']
|
||
|
|
||
|
|
||
|
def assert_fit_warnings(dist):
|
||
|
param = ['floc', 'fscale']
|
||
|
if dist.shapes:
|
||
|
nshapes = len(dist.shapes.split(","))
|
||
|
param += ['f0', 'f1', 'f2'][:nshapes]
|
||
|
all_fixed = dict(zip(param, np.arange(len(param))))
|
||
|
data = [1, 2, 3]
|
||
|
with pytest.raises(RuntimeError,
|
||
|
match="All parameters fixed. There is nothing "
|
||
|
"to optimize."):
|
||
|
dist.fit(data, **all_fixed)
|
||
|
with pytest.raises(ValueError,
|
||
|
match="The data contains non-finite values"):
|
||
|
dist.fit([np.nan])
|
||
|
with pytest.raises(ValueError,
|
||
|
match="The data contains non-finite values"):
|
||
|
dist.fit([np.inf])
|
||
|
with pytest.raises(TypeError, match="Unknown keyword arguments:"):
|
||
|
dist.fit(data, extra_keyword=2)
|
||
|
with pytest.raises(TypeError, match="Too many positional arguments."):
|
||
|
dist.fit(data, *[1]*(len(param) - 1))
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('dist',
|
||
|
['alpha', 'betaprime',
|
||
|
'fatiguelife', 'invgamma', 'invgauss', 'invweibull',
|
||
|
'johnsonsb', 'levy', 'levy_l', 'lognorm', 'gibrat',
|
||
|
'powerlognorm', 'rayleigh', 'wald'])
|
||
|
def test_support(dist):
|
||
|
"""gh-6235"""
|
||
|
dct = dict(distcont)
|
||
|
args = dct[dist]
|
||
|
|
||
|
dist = getattr(stats, dist)
|
||
|
|
||
|
assert_almost_equal(dist.pdf(dist.a, *args), 0)
|
||
|
assert_equal(dist.logpdf(dist.a, *args), -np.inf)
|
||
|
assert_almost_equal(dist.pdf(dist.b, *args), 0)
|
||
|
assert_equal(dist.logpdf(dist.b, *args), -np.inf)
|
||
|
|
||
|
|
||
|
class TestRandInt:
|
||
|
def setup_method(self):
|
||
|
np.random.seed(1234)
|
||
|
|
||
|
def test_rvs(self):
|
||
|
vals = stats.randint.rvs(5, 30, size=100)
|
||
|
assert_(numpy.all(vals < 30) & numpy.all(vals >= 5))
|
||
|
assert_(len(vals) == 100)
|
||
|
vals = stats.randint.rvs(5, 30, size=(2, 50))
|
||
|
assert_(numpy.shape(vals) == (2, 50))
|
||
|
assert_(vals.dtype.char in typecodes['AllInteger'])
|
||
|
val = stats.randint.rvs(15, 46)
|
||
|
assert_((val >= 15) & (val < 46))
|
||
|
assert_(isinstance(val, numpy.ScalarType), msg=repr(type(val)))
|
||
|
val = stats.randint(15, 46).rvs(3)
|
||
|
assert_(val.dtype.char in typecodes['AllInteger'])
|
||
|
|
||
|
def test_pdf(self):
|
||
|
k = numpy.r_[0:36]
|
||
|
out = numpy.where((k >= 5) & (k < 30), 1.0/(30-5), 0)
|
||
|
vals = stats.randint.pmf(k, 5, 30)
|
||
|
assert_array_almost_equal(vals, out)
|
||
|
|
||
|
def test_cdf(self):
|
||
|
x = np.linspace(0, 36, 100)
|
||
|
k = numpy.floor(x)
|
||
|
out = numpy.select([k >= 30, k >= 5], [1.0, (k-5.0+1)/(30-5.0)], 0)
|
||
|
vals = stats.randint.cdf(x, 5, 30)
|
||
|
assert_array_almost_equal(vals, out, decimal=12)
|
||
|
|
||
|
|
||
|
class TestBinom:
|
||
|
def setup_method(self):
|
||
|
np.random.seed(1234)
|
||
|
|
||
|
def test_rvs(self):
|
||
|
vals = stats.binom.rvs(10, 0.75, size=(2, 50))
|
||
|
assert_(numpy.all(vals >= 0) & numpy.all(vals <= 10))
|
||
|
assert_(numpy.shape(vals) == (2, 50))
|
||
|
assert_(vals.dtype.char in typecodes['AllInteger'])
|
||
|
val = stats.binom.rvs(10, 0.75)
|
||
|
assert_(isinstance(val, int))
|
||
|
val = stats.binom(10, 0.75).rvs(3)
|
||
|
assert_(isinstance(val, numpy.ndarray))
|
||
|
assert_(val.dtype.char in typecodes['AllInteger'])
|
||
|
|
||
|
def test_pmf(self):
|
||
|
# regression test for Ticket #1842
|
||
|
vals1 = stats.binom.pmf(100, 100, 1)
|
||
|
vals2 = stats.binom.pmf(0, 100, 0)
|
||
|
assert_allclose(vals1, 1.0, rtol=1e-15, atol=0)
|
||
|
assert_allclose(vals2, 1.0, rtol=1e-15, atol=0)
|
||
|
|
||
|
def test_entropy(self):
|
||
|
# Basic entropy tests.
|
||
|
b = stats.binom(2, 0.5)
|
||
|
expected_p = np.array([0.25, 0.5, 0.25])
|
||
|
expected_h = -sum(xlogy(expected_p, expected_p))
|
||
|
h = b.entropy()
|
||
|
assert_allclose(h, expected_h)
|
||
|
|
||
|
b = stats.binom(2, 0.0)
|
||
|
h = b.entropy()
|
||
|
assert_equal(h, 0.0)
|
||
|
|
||
|
b = stats.binom(2, 1.0)
|
||
|
h = b.entropy()
|
||
|
assert_equal(h, 0.0)
|
||
|
|
||
|
def test_warns_p0(self):
|
||
|
# no spurious warnings are generated for p=0; gh-3817
|
||
|
with warnings.catch_warnings():
|
||
|
warnings.simplefilter("error", RuntimeWarning)
|
||
|
assert_equal(stats.binom(n=2, p=0).mean(), 0)
|
||
|
assert_equal(stats.binom(n=2, p=0).std(), 0)
|
||
|
|
||
|
def test_ppf_p1(self):
|
||
|
# Check that gh-17388 is resolved: PPF == n when p = 1
|
||
|
n = 4
|
||
|
assert stats.binom.ppf(q=0.3, n=n, p=1.0) == n
|
||
|
|
||
|
def test_pmf_poisson(self):
|
||
|
# Check that gh-17146 is resolved: binom -> poisson
|
||
|
n = 1541096362225563.0
|
||
|
p = 1.0477878413173978e-18
|
||
|
x = np.arange(3)
|
||
|
res = stats.binom.pmf(x, n=n, p=p)
|
||
|
ref = stats.poisson.pmf(x, n * p)
|
||
|
assert_allclose(res, ref, atol=1e-16)
|
||
|
|
||
|
def test_pmf_cdf(self):
|
||
|
# Check that gh-17809 is resolved: binom.pmf(0) ~ binom.cdf(0)
|
||
|
n = 25.0 * 10 ** 21
|
||
|
p = 1.0 * 10 ** -21
|
||
|
r = 0
|
||
|
res = stats.binom.pmf(r, n, p)
|
||
|
ref = stats.binom.cdf(r, n, p)
|
||
|
assert_allclose(res, ref, atol=1e-16)
|
||
|
|
||
|
def test_pmf_gh15101(self):
|
||
|
# Check that gh-15101 is resolved (no divide warnings when p~1, n~oo)
|
||
|
res = stats.binom.pmf(3, 2000, 0.999)
|
||
|
assert_allclose(res, 0, atol=1e-16)
|
||
|
|
||
|
|
||
|
class TestArcsine:
|
||
|
|
||
|
def test_endpoints(self):
|
||
|
# Regression test for gh-13697. The following calculation
|
||
|
# should not generate a warning.
|
||
|
p = stats.arcsine.pdf([0, 1])
|
||
|
assert_equal(p, [np.inf, np.inf])
|
||
|
|
||
|
|
||
|
class TestBernoulli:
|
||
|
def setup_method(self):
|
||
|
np.random.seed(1234)
|
||
|
|
||
|
def test_rvs(self):
|
||
|
vals = stats.bernoulli.rvs(0.75, size=(2, 50))
|
||
|
assert_(numpy.all(vals >= 0) & numpy.all(vals <= 1))
|
||
|
assert_(numpy.shape(vals) == (2, 50))
|
||
|
assert_(vals.dtype.char in typecodes['AllInteger'])
|
||
|
val = stats.bernoulli.rvs(0.75)
|
||
|
assert_(isinstance(val, int))
|
||
|
val = stats.bernoulli(0.75).rvs(3)
|
||
|
assert_(isinstance(val, numpy.ndarray))
|
||
|
assert_(val.dtype.char in typecodes['AllInteger'])
|
||
|
|
||
|
def test_entropy(self):
|
||
|
# Simple tests of entropy.
|
||
|
b = stats.bernoulli(0.25)
|
||
|
expected_h = -0.25*np.log(0.25) - 0.75*np.log(0.75)
|
||
|
h = b.entropy()
|
||
|
assert_allclose(h, expected_h)
|
||
|
|
||
|
b = stats.bernoulli(0.0)
|
||
|
h = b.entropy()
|
||
|
assert_equal(h, 0.0)
|
||
|
|
||
|
b = stats.bernoulli(1.0)
|
||
|
h = b.entropy()
|
||
|
assert_equal(h, 0.0)
|
||
|
|
||
|
|
||
|
class TestBradford:
|
||
|
# gh-6216
|
||
|
def test_cdf_ppf(self):
|
||
|
c = 0.1
|
||
|
x = np.logspace(-20, -4)
|
||
|
q = stats.bradford.cdf(x, c)
|
||
|
xx = stats.bradford.ppf(q, c)
|
||
|
assert_allclose(x, xx)
|
||
|
|
||
|
|
||
|
class TestChi:
|
||
|
|
||
|
# "Exact" value of chi.sf(10, 4), as computed by Wolfram Alpha with
|
||
|
# 1 - CDF[ChiDistribution[4], 10]
|
||
|
CHI_SF_10_4 = 9.83662422461598e-21
|
||
|
# "Exact" value of chi.mean(df=1000) as computed by Wolfram Alpha with
|
||
|
# Mean[ChiDistribution[1000]]
|
||
|
CHI_MEAN_1000 = 31.614871896980
|
||
|
|
||
|
def test_sf(self):
|
||
|
s = stats.chi.sf(10, 4)
|
||
|
assert_allclose(s, self.CHI_SF_10_4, rtol=1e-15)
|
||
|
|
||
|
def test_isf(self):
|
||
|
x = stats.chi.isf(self.CHI_SF_10_4, 4)
|
||
|
assert_allclose(x, 10, rtol=1e-15)
|
||
|
|
||
|
# reference value for 1e14 was computed via mpmath
|
||
|
# from mpmath import mp
|
||
|
# mp.dps = 500
|
||
|
# df = mp.mpf(1e14)
|
||
|
# float(mp.rf(mp.mpf(0.5) * df, mp.mpf(0.5)) * mp.sqrt(2.))
|
||
|
|
||
|
@pytest.mark.parametrize('df, ref',
|
||
|
[(1e3, CHI_MEAN_1000),
|
||
|
(1e14, 9999999.999999976)]
|
||
|
)
|
||
|
def test_mean(self, df, ref):
|
||
|
assert_allclose(stats.chi.mean(df), ref, rtol=1e-12)
|
||
|
|
||
|
# Entropy references values were computed with the following mpmath code
|
||
|
# from mpmath import mp
|
||
|
# mp.dps = 50
|
||
|
# def chi_entropy_mpmath(df):
|
||
|
# df = mp.mpf(df)
|
||
|
# half_df = 0.5 * df
|
||
|
# entropy = mp.log(mp.gamma(half_df)) + 0.5 * \
|
||
|
# (df - mp.log(2) - (df - mp.one) * mp.digamma(half_df))
|
||
|
# return float(entropy)
|
||
|
|
||
|
@pytest.mark.parametrize('df, ref',
|
||
|
[(1e-4, -9989.7316027504),
|
||
|
(1, 0.7257913526447274),
|
||
|
(1e3, 1.0721981095025448),
|
||
|
(1e10, 1.0723649429080335),
|
||
|
(1e100, 1.0723649429247002)])
|
||
|
def test_entropy(self, df, ref):
|
||
|
assert_allclose(stats.chi(df).entropy(), ref, rtol=1e-15)
|
||
|
|
||
|
|
||
|
class TestNBinom:
|
||
|
def setup_method(self):
|
||
|
np.random.seed(1234)
|
||
|
|
||
|
def test_rvs(self):
|
||
|
vals = stats.nbinom.rvs(10, 0.75, size=(2, 50))
|
||
|
assert_(numpy.all(vals >= 0))
|
||
|
assert_(numpy.shape(vals) == (2, 50))
|
||
|
assert_(vals.dtype.char in typecodes['AllInteger'])
|
||
|
val = stats.nbinom.rvs(10, 0.75)
|
||
|
assert_(isinstance(val, int))
|
||
|
val = stats.nbinom(10, 0.75).rvs(3)
|
||
|
assert_(isinstance(val, numpy.ndarray))
|
||
|
assert_(val.dtype.char in typecodes['AllInteger'])
|
||
|
|
||
|
def test_pmf(self):
|
||
|
# regression test for ticket 1779
|
||
|
assert_allclose(np.exp(stats.nbinom.logpmf(700, 721, 0.52)),
|
||
|
stats.nbinom.pmf(700, 721, 0.52))
|
||
|
# logpmf(0,1,1) shouldn't return nan (regression test for gh-4029)
|
||
|
val = scipy.stats.nbinom.logpmf(0, 1, 1)
|
||
|
assert_equal(val, 0)
|
||
|
|
||
|
def test_logcdf_gh16159(self):
|
||
|
# check that gh16159 is resolved.
|
||
|
vals = stats.nbinom.logcdf([0, 5, 0, 5], n=4.8, p=0.45)
|
||
|
ref = np.log(stats.nbinom.cdf([0, 5, 0, 5], n=4.8, p=0.45))
|
||
|
assert_allclose(vals, ref)
|
||
|
|
||
|
|
||
|
class TestGenInvGauss:
|
||
|
def setup_method(self):
|
||
|
np.random.seed(1234)
|
||
|
|
||
|
@pytest.mark.slow
|
||
|
def test_rvs_with_mode_shift(self):
|
||
|
# ratio_unif w/ mode shift
|
||
|
gig = stats.geninvgauss(2.3, 1.5)
|
||
|
_, p = stats.kstest(gig.rvs(size=1500, random_state=1234), gig.cdf)
|
||
|
assert_equal(p > 0.05, True)
|
||
|
|
||
|
@pytest.mark.slow
|
||
|
def test_rvs_without_mode_shift(self):
|
||
|
# ratio_unif w/o mode shift
|
||
|
gig = stats.geninvgauss(0.9, 0.75)
|
||
|
_, p = stats.kstest(gig.rvs(size=1500, random_state=1234), gig.cdf)
|
||
|
assert_equal(p > 0.05, True)
|
||
|
|
||
|
@pytest.mark.slow
|
||
|
def test_rvs_new_method(self):
|
||
|
# new algorithm of Hoermann / Leydold
|
||
|
gig = stats.geninvgauss(0.1, 0.2)
|
||
|
_, p = stats.kstest(gig.rvs(size=1500, random_state=1234), gig.cdf)
|
||
|
assert_equal(p > 0.05, True)
|
||
|
|
||
|
@pytest.mark.slow
|
||
|
def test_rvs_p_zero(self):
|
||
|
def my_ks_check(p, b):
|
||
|
gig = stats.geninvgauss(p, b)
|
||
|
rvs = gig.rvs(size=1500, random_state=1234)
|
||
|
return stats.kstest(rvs, gig.cdf)[1] > 0.05
|
||
|
# boundary cases when p = 0
|
||
|
assert_equal(my_ks_check(0, 0.2), True) # new algo
|
||
|
assert_equal(my_ks_check(0, 0.9), True) # ratio_unif w/o shift
|
||
|
assert_equal(my_ks_check(0, 1.5), True) # ratio_unif with shift
|
||
|
|
||
|
def test_rvs_negative_p(self):
|
||
|
# if p negative, return inverse
|
||
|
assert_equal(
|
||
|
stats.geninvgauss(-1.5, 2).rvs(size=10, random_state=1234),
|
||
|
1 / stats.geninvgauss(1.5, 2).rvs(size=10, random_state=1234))
|
||
|
|
||
|
def test_invgauss(self):
|
||
|
# test that invgauss is special case
|
||
|
ig = stats.geninvgauss.rvs(size=1500, p=-0.5, b=1, random_state=1234)
|
||
|
assert_equal(stats.kstest(ig, 'invgauss', args=[1])[1] > 0.15, True)
|
||
|
# test pdf and cdf
|
||
|
mu, x = 100, np.linspace(0.01, 1, 10)
|
||
|
pdf_ig = stats.geninvgauss.pdf(x, p=-0.5, b=1 / mu, scale=mu)
|
||
|
assert_allclose(pdf_ig, stats.invgauss(mu).pdf(x))
|
||
|
cdf_ig = stats.geninvgauss.cdf(x, p=-0.5, b=1 / mu, scale=mu)
|
||
|
assert_allclose(cdf_ig, stats.invgauss(mu).cdf(x))
|
||
|
|
||
|
def test_pdf_R(self):
|
||
|
# test against R package GIGrvg
|
||
|
# x <- seq(0.01, 5, length.out = 10)
|
||
|
# GIGrvg::dgig(x, 0.5, 1, 1)
|
||
|
vals_R = np.array([2.081176820e-21, 4.488660034e-01, 3.747774338e-01,
|
||
|
2.693297528e-01, 1.905637275e-01, 1.351476913e-01,
|
||
|
9.636538981e-02, 6.909040154e-02, 4.978006801e-02,
|
||
|
3.602084467e-02])
|
||
|
x = np.linspace(0.01, 5, 10)
|
||
|
assert_allclose(vals_R, stats.geninvgauss.pdf(x, 0.5, 1))
|
||
|
|
||
|
def test_pdf_zero(self):
|
||
|
# pdf at 0 is 0, needs special treatment to avoid 1/x in pdf
|
||
|
assert_equal(stats.geninvgauss.pdf(0, 0.5, 0.5), 0)
|
||
|
# if x is large and p is moderate, make sure that pdf does not
|
||
|
# overflow because of x**(p-1); exp(-b*x) forces pdf to zero
|
||
|
assert_equal(stats.geninvgauss.pdf(2e6, 50, 2), 0)
|
||
|
|
||
|
|
||
|
class TestGenHyperbolic:
|
||
|
def setup_method(self):
|
||
|
np.random.seed(1234)
|
||
|
|
||
|
def test_pdf_r(self):
|
||
|
# test against R package GeneralizedHyperbolic
|
||
|
# x <- seq(-10, 10, length.out = 10)
|
||
|
# GeneralizedHyperbolic::dghyp(
|
||
|
# x = x, lambda = 2, alpha = 2, beta = 1, delta = 1.5, mu = 0.5
|
||
|
# )
|
||
|
vals_R = np.array([
|
||
|
2.94895678275316e-13, 1.75746848647696e-10, 9.48149804073045e-08,
|
||
|
4.17862521692026e-05, 0.0103947630463822, 0.240864958986839,
|
||
|
0.162833527161649, 0.0374609592899472, 0.00634894847327781,
|
||
|
0.000941920705790324
|
||
|
])
|
||
|
|
||
|
lmbda, alpha, beta = 2, 2, 1
|
||
|
mu, delta = 0.5, 1.5
|
||
|
args = (lmbda, alpha*delta, beta*delta)
|
||
|
|
||
|
gh = stats.genhyperbolic(*args, loc=mu, scale=delta)
|
||
|
x = np.linspace(-10, 10, 10)
|
||
|
|
||
|
assert_allclose(gh.pdf(x), vals_R, atol=0, rtol=1e-13)
|
||
|
|
||
|
def test_cdf_r(self):
|
||
|
# test against R package GeneralizedHyperbolic
|
||
|
# q <- seq(-10, 10, length.out = 10)
|
||
|
# GeneralizedHyperbolic::pghyp(
|
||
|
# q = q, lambda = 2, alpha = 2, beta = 1, delta = 1.5, mu = 0.5
|
||
|
# )
|
||
|
vals_R = np.array([
|
||
|
1.01881590921421e-13, 6.13697274983578e-11, 3.37504977637992e-08,
|
||
|
1.55258698166181e-05, 0.00447005453832497, 0.228935323956347,
|
||
|
0.755759458895243, 0.953061062884484, 0.992598013917513,
|
||
|
0.998942646586662
|
||
|
])
|
||
|
|
||
|
lmbda, alpha, beta = 2, 2, 1
|
||
|
mu, delta = 0.5, 1.5
|
||
|
args = (lmbda, alpha*delta, beta*delta)
|
||
|
|
||
|
gh = stats.genhyperbolic(*args, loc=mu, scale=delta)
|
||
|
x = np.linspace(-10, 10, 10)
|
||
|
|
||
|
assert_allclose(gh.cdf(x), vals_R, atol=0, rtol=1e-6)
|
||
|
|
||
|
# The reference values were computed by implementing the PDF with mpmath
|
||
|
# and integrating it with mp.quad. The values were computed with
|
||
|
# mp.dps=250, and then again with mp.dps=400 to ensure the full 64 bit
|
||
|
# precision was computed.
|
||
|
@pytest.mark.parametrize(
|
||
|
'x, p, a, b, loc, scale, ref',
|
||
|
[(-15, 2, 3, 1.5, 0.5, 1.5, 4.770036428808252e-20),
|
||
|
(-15, 10, 1.5, 0.25, 1, 5, 0.03282964575089294),
|
||
|
(-15, 10, 1.5, 1.375, 0, 1, 3.3711159600215594e-23),
|
||
|
(-15, 0.125, 1.5, 1.49995, 0, 1, 4.729401428898605e-23),
|
||
|
(-1, 0.125, 1.5, 1.49995, 0, 1, 0.0003565725914786859),
|
||
|
(5, -0.125, 1.5, 1.49995, 0, 1, 0.2600651974023352),
|
||
|
(5, -0.125, 1000, 999, 0, 1, 5.923270556517253e-28),
|
||
|
(20, -0.125, 1000, 999, 0, 1, 0.23452293711665634),
|
||
|
(40, -0.125, 1000, 999, 0, 1, 0.9999648749561968),
|
||
|
(60, -0.125, 1000, 999, 0, 1, 0.9999999999975475)]
|
||
|
)
|
||
|
def test_cdf_mpmath(self, x, p, a, b, loc, scale, ref):
|
||
|
cdf = stats.genhyperbolic.cdf(x, p, a, b, loc=loc, scale=scale)
|
||
|
assert_allclose(cdf, ref, rtol=5e-12)
|
||
|
|
||
|
# The reference values were computed by implementing the PDF with mpmath
|
||
|
# and integrating it with mp.quad. The values were computed with
|
||
|
# mp.dps=250, and then again with mp.dps=400 to ensure the full 64 bit
|
||
|
# precision was computed.
|
||
|
@pytest.mark.parametrize(
|
||
|
'x, p, a, b, loc, scale, ref',
|
||
|
[(0, 1e-6, 12, -1, 0, 1, 0.38520358671350524),
|
||
|
(-1, 3, 2.5, 2.375, 1, 3, 0.9999901774267577),
|
||
|
(-20, 3, 2.5, 2.375, 1, 3, 1.0),
|
||
|
(25, 2, 3, 1.5, 0.5, 1.5, 8.593419916523976e-10),
|
||
|
(300, 10, 1.5, 0.25, 1, 5, 6.137415609872158e-24),
|
||
|
(60, -0.125, 1000, 999, 0, 1, 2.4524915075944173e-12),
|
||
|
(75, -0.125, 1000, 999, 0, 1, 2.9435194886214633e-18)]
|
||
|
)
|
||
|
def test_sf_mpmath(self, x, p, a, b, loc, scale, ref):
|
||
|
sf = stats.genhyperbolic.sf(x, p, a, b, loc=loc, scale=scale)
|
||
|
assert_allclose(sf, ref, rtol=5e-12)
|
||
|
|
||
|
def test_moments_r(self):
|
||
|
# test against R package GeneralizedHyperbolic
|
||
|
# sapply(1:4,
|
||
|
# function(x) GeneralizedHyperbolic::ghypMom(
|
||
|
# order = x, lambda = 2, alpha = 2,
|
||
|
# beta = 1, delta = 1.5, mu = 0.5,
|
||
|
# momType = 'raw')
|
||
|
# )
|
||
|
|
||
|
vals_R = [2.36848366948115, 8.4739346779246,
|
||
|
37.8870502710066, 205.76608511485]
|
||
|
|
||
|
lmbda, alpha, beta = 2, 2, 1
|
||
|
mu, delta = 0.5, 1.5
|
||
|
args = (lmbda, alpha*delta, beta*delta)
|
||
|
|
||
|
vals_us = [
|
||
|
stats.genhyperbolic(*args, loc=mu, scale=delta).moment(i)
|
||
|
for i in range(1, 5)
|
||
|
]
|
||
|
|
||
|
assert_allclose(vals_us, vals_R, atol=0, rtol=1e-13)
|
||
|
|
||
|
def test_rvs(self):
|
||
|
# Kolmogorov-Smirnov test to ensure alignment
|
||
|
# of analytical and empirical cdfs
|
||
|
|
||
|
lmbda, alpha, beta = 2, 2, 1
|
||
|
mu, delta = 0.5, 1.5
|
||
|
args = (lmbda, alpha*delta, beta*delta)
|
||
|
|
||
|
gh = stats.genhyperbolic(*args, loc=mu, scale=delta)
|
||
|
_, p = stats.kstest(gh.rvs(size=1500, random_state=1234), gh.cdf)
|
||
|
|
||
|
assert_equal(p > 0.05, True)
|
||
|
|
||
|
def test_pdf_t(self):
|
||
|
# Test Against T-Student with 1 - 30 df
|
||
|
df = np.linspace(1, 30, 10)
|
||
|
|
||
|
# in principle alpha should be zero in practice for big lmbdas
|
||
|
# alpha cannot be too small else pdf does not integrate
|
||
|
alpha, beta = np.float_power(df, 2)*np.finfo(np.float32).eps, 0
|
||
|
mu, delta = 0, np.sqrt(df)
|
||
|
args = (-df/2, alpha, beta)
|
||
|
|
||
|
gh = stats.genhyperbolic(*args, loc=mu, scale=delta)
|
||
|
x = np.linspace(gh.ppf(0.01), gh.ppf(0.99), 50)[:, np.newaxis]
|
||
|
|
||
|
assert_allclose(
|
||
|
gh.pdf(x), stats.t.pdf(x, df),
|
||
|
atol=0, rtol=1e-6
|
||
|
)
|
||
|
|
||
|
def test_pdf_cauchy(self):
|
||
|
# Test Against Cauchy distribution
|
||
|
|
||
|
# in principle alpha should be zero in practice for big lmbdas
|
||
|
# alpha cannot be too small else pdf does not integrate
|
||
|
lmbda, alpha, beta = -0.5, np.finfo(np.float32).eps, 0
|
||
|
mu, delta = 0, 1
|
||
|
args = (lmbda, alpha, beta)
|
||
|
|
||
|
gh = stats.genhyperbolic(*args, loc=mu, scale=delta)
|
||
|
x = np.linspace(gh.ppf(0.01), gh.ppf(0.99), 50)[:, np.newaxis]
|
||
|
|
||
|
assert_allclose(
|
||
|
gh.pdf(x), stats.cauchy.pdf(x),
|
||
|
atol=0, rtol=1e-6
|
||
|
)
|
||
|
|
||
|
def test_pdf_laplace(self):
|
||
|
# Test Against Laplace with location param [-10, 10]
|
||
|
loc = np.linspace(-10, 10, 10)
|
||
|
|
||
|
# in principle delta should be zero in practice for big loc delta
|
||
|
# cannot be too small else pdf does not integrate
|
||
|
delta = np.finfo(np.float32).eps
|
||
|
|
||
|
lmbda, alpha, beta = 1, 1, 0
|
||
|
args = (lmbda, alpha*delta, beta*delta)
|
||
|
|
||
|
# ppf does not integrate for scale < 5e-4
|
||
|
# therefore using simple linspace to define the support
|
||
|
gh = stats.genhyperbolic(*args, loc=loc, scale=delta)
|
||
|
x = np.linspace(-20, 20, 50)[:, np.newaxis]
|
||
|
|
||
|
assert_allclose(
|
||
|
gh.pdf(x), stats.laplace.pdf(x, loc=loc, scale=1),
|
||
|
atol=0, rtol=1e-11
|
||
|
)
|
||
|
|
||
|
def test_pdf_norminvgauss(self):
|
||
|
# Test Against NIG with varying alpha/beta/delta/mu
|
||
|
|
||
|
alpha, beta, delta, mu = (
|
||
|
np.linspace(1, 20, 10),
|
||
|
np.linspace(0, 19, 10)*np.float_power(-1, range(10)),
|
||
|
np.linspace(1, 1, 10),
|
||
|
np.linspace(-100, 100, 10)
|
||
|
)
|
||
|
|
||
|
lmbda = - 0.5
|
||
|
args = (lmbda, alpha * delta, beta * delta)
|
||
|
|
||
|
gh = stats.genhyperbolic(*args, loc=mu, scale=delta)
|
||
|
x = np.linspace(gh.ppf(0.01), gh.ppf(0.99), 50)[:, np.newaxis]
|
||
|
|
||
|
assert_allclose(
|
||
|
gh.pdf(x), stats.norminvgauss.pdf(
|
||
|
x, a=alpha, b=beta, loc=mu, scale=delta),
|
||
|
atol=0, rtol=1e-13
|
||
|
)
|
||
|
|
||
|
|
||
|
class TestHypSecant:
|
||
|
|
||
|
# Reference values were computed with the mpmath expression
|
||
|
# float((2/mp.pi)*mp.atan(mp.exp(-x)))
|
||
|
# and mp.dps = 50.
|
||
|
@pytest.mark.parametrize('x, reference',
|
||
|
[(30, 5.957247804324683e-14),
|
||
|
(50, 1.2278802891647964e-22)])
|
||
|
def test_sf(self, x, reference):
|
||
|
sf = stats.hypsecant.sf(x)
|
||
|
assert_allclose(sf, reference, rtol=5e-15)
|
||
|
|
||
|
# Reference values were computed with the mpmath expression
|
||
|
# float(-mp.log(mp.tan((mp.pi/2)*p)))
|
||
|
# and mp.dps = 50.
|
||
|
@pytest.mark.parametrize('p, reference',
|
||
|
[(1e-6, 13.363927852673998),
|
||
|
(1e-12, 27.179438410639094)])
|
||
|
def test_isf(self, p, reference):
|
||
|
x = stats.hypsecant.isf(p)
|
||
|
assert_allclose(x, reference, rtol=5e-15)
|
||
|
|
||
|
|
||
|
class TestNormInvGauss:
|
||
|
def setup_method(self):
|
||
|
np.random.seed(1234)
|
||
|
|
||
|
def test_cdf_R(self):
|
||
|
# test pdf and cdf vals against R
|
||
|
# require("GeneralizedHyperbolic")
|
||
|
# x_test <- c(-7, -5, 0, 8, 15)
|
||
|
# r_cdf <- GeneralizedHyperbolic::pnig(x_test, mu = 0, a = 1, b = 0.5)
|
||
|
# r_pdf <- GeneralizedHyperbolic::dnig(x_test, mu = 0, a = 1, b = 0.5)
|
||
|
r_cdf = np.array([8.034920282e-07, 2.512671945e-05, 3.186661051e-01,
|
||
|
9.988650664e-01, 9.999848769e-01])
|
||
|
x_test = np.array([-7, -5, 0, 8, 15])
|
||
|
vals_cdf = stats.norminvgauss.cdf(x_test, a=1, b=0.5)
|
||
|
assert_allclose(vals_cdf, r_cdf, atol=1e-9)
|
||
|
|
||
|
def test_pdf_R(self):
|
||
|
# values from R as defined in test_cdf_R
|
||
|
r_pdf = np.array([1.359600783e-06, 4.413878805e-05, 4.555014266e-01,
|
||
|
7.450485342e-04, 8.917889931e-06])
|
||
|
x_test = np.array([-7, -5, 0, 8, 15])
|
||
|
vals_pdf = stats.norminvgauss.pdf(x_test, a=1, b=0.5)
|
||
|
assert_allclose(vals_pdf, r_pdf, atol=1e-9)
|
||
|
|
||
|
@pytest.mark.parametrize('x, a, b, sf, rtol',
|
||
|
[(-1, 1, 0, 0.8759652211005315, 1e-13),
|
||
|
(25, 1, 0, 1.1318690184042579e-13, 1e-4),
|
||
|
(1, 5, -1.5, 0.002066711134653577, 1e-12),
|
||
|
(10, 5, -1.5, 2.308435233930669e-29, 1e-9)])
|
||
|
def test_sf_isf_mpmath(self, x, a, b, sf, rtol):
|
||
|
# Reference data generated with `reference_distributions.NormInvGauss`,
|
||
|
# e.g. `NormInvGauss(alpha=1, beta=0).sf(-1)` with mp.dps = 50
|
||
|
s = stats.norminvgauss.sf(x, a, b)
|
||
|
assert_allclose(s, sf, rtol=rtol)
|
||
|
i = stats.norminvgauss.isf(sf, a, b)
|
||
|
assert_allclose(i, x, rtol=rtol)
|
||
|
|
||
|
def test_sf_isf_mpmath_vectorized(self):
|
||
|
x = [-1, 25]
|
||
|
a = [1, 1]
|
||
|
b = 0
|
||
|
sf = [0.8759652211005315, 1.1318690184042579e-13] # see previous test
|
||
|
s = stats.norminvgauss.sf(x, a, b)
|
||
|
assert_allclose(s, sf, rtol=1e-13, atol=1e-16)
|
||
|
i = stats.norminvgauss.isf(sf, a, b)
|
||
|
# Not perfect, but better than it was. See gh-13338.
|
||
|
assert_allclose(i, x, rtol=1e-6)
|
||
|
|
||
|
def test_gh8718(self):
|
||
|
# Add test that gh-13338 resolved gh-8718
|
||
|
dst = stats.norminvgauss(1, 0)
|
||
|
x = np.arange(0, 20, 2)
|
||
|
sf = dst.sf(x)
|
||
|
isf = dst.isf(sf)
|
||
|
assert_allclose(isf, x)
|
||
|
|
||
|
def test_stats(self):
|
||
|
a, b = 1, 0.5
|
||
|
gamma = np.sqrt(a**2 - b**2)
|
||
|
v_stats = (b / gamma, a**2 / gamma**3, 3.0 * b / (a * np.sqrt(gamma)),
|
||
|
3.0 * (1 + 4 * b**2 / a**2) / gamma)
|
||
|
assert_equal(v_stats, stats.norminvgauss.stats(a, b, moments='mvsk'))
|
||
|
|
||
|
def test_ppf(self):
|
||
|
a, b = 1, 0.5
|
||
|
x_test = np.array([0.001, 0.5, 0.999])
|
||
|
vals = stats.norminvgauss.ppf(x_test, a, b)
|
||
|
assert_allclose(x_test, stats.norminvgauss.cdf(vals, a, b))
|
||
|
|
||
|
|
||
|
class TestGeom:
|
||
|
def setup_method(self):
|
||
|
np.random.seed(1234)
|
||
|
|
||
|
def test_rvs(self):
|
||
|
vals = stats.geom.rvs(0.75, size=(2, 50))
|
||
|
assert_(numpy.all(vals >= 0))
|
||
|
assert_(numpy.shape(vals) == (2, 50))
|
||
|
assert_(vals.dtype.char in typecodes['AllInteger'])
|
||
|
val = stats.geom.rvs(0.75)
|
||
|
assert_(isinstance(val, int))
|
||
|
val = stats.geom(0.75).rvs(3)
|
||
|
assert_(isinstance(val, numpy.ndarray))
|
||
|
assert_(val.dtype.char in typecodes['AllInteger'])
|
||
|
|
||
|
def test_rvs_9313(self):
|
||
|
# previously, RVS were converted to `np.int32` on some platforms,
|
||
|
# causing overflow for moderately large integer output (gh-9313).
|
||
|
# Check that this is resolved to the extent possible w/ `np.int64`.
|
||
|
rng = np.random.default_rng(649496242618848)
|
||
|
rvs = stats.geom.rvs(np.exp(-35), size=5, random_state=rng)
|
||
|
assert rvs.dtype == np.int64
|
||
|
assert np.all(rvs > np.iinfo(np.int32).max)
|
||
|
|
||
|
def test_pmf(self):
|
||
|
vals = stats.geom.pmf([1, 2, 3], 0.5)
|
||
|
assert_array_almost_equal(vals, [0.5, 0.25, 0.125])
|
||
|
|
||
|
def test_logpmf(self):
|
||
|
# regression test for ticket 1793
|
||
|
vals1 = np.log(stats.geom.pmf([1, 2, 3], 0.5))
|
||
|
vals2 = stats.geom.logpmf([1, 2, 3], 0.5)
|
||
|
assert_allclose(vals1, vals2, rtol=1e-15, atol=0)
|
||
|
|
||
|
# regression test for gh-4028
|
||
|
val = stats.geom.logpmf(1, 1)
|
||
|
assert_equal(val, 0.0)
|
||
|
|
||
|
def test_cdf_sf(self):
|
||
|
vals = stats.geom.cdf([1, 2, 3], 0.5)
|
||
|
vals_sf = stats.geom.sf([1, 2, 3], 0.5)
|
||
|
expected = array([0.5, 0.75, 0.875])
|
||
|
assert_array_almost_equal(vals, expected)
|
||
|
assert_array_almost_equal(vals_sf, 1-expected)
|
||
|
|
||
|
def test_logcdf_logsf(self):
|
||
|
vals = stats.geom.logcdf([1, 2, 3], 0.5)
|
||
|
vals_sf = stats.geom.logsf([1, 2, 3], 0.5)
|
||
|
expected = array([0.5, 0.75, 0.875])
|
||
|
assert_array_almost_equal(vals, np.log(expected))
|
||
|
assert_array_almost_equal(vals_sf, np.log1p(-expected))
|
||
|
|
||
|
def test_ppf(self):
|
||
|
vals = stats.geom.ppf([0.5, 0.75, 0.875], 0.5)
|
||
|
expected = array([1.0, 2.0, 3.0])
|
||
|
assert_array_almost_equal(vals, expected)
|
||
|
|
||
|
def test_ppf_underflow(self):
|
||
|
# this should not underflow
|
||
|
assert_allclose(stats.geom.ppf(1e-20, 1e-20), 1.0, atol=1e-14)
|
||
|
|
||
|
def test_entropy_gh18226(self):
|
||
|
# gh-18226 reported that `geom.entropy` produced a warning and
|
||
|
# inaccurate output for small p. Check that this is resolved.
|
||
|
h = stats.geom(0.0146).entropy()
|
||
|
assert_allclose(h, 5.219397961962308, rtol=1e-15)
|
||
|
|
||
|
|
||
|
class TestPlanck:
|
||
|
def setup_method(self):
|
||
|
np.random.seed(1234)
|
||
|
|
||
|
def test_sf(self):
|
||
|
vals = stats.planck.sf([1, 2, 3], 5.)
|
||
|
expected = array([4.5399929762484854e-05,
|
||
|
3.0590232050182579e-07,
|
||
|
2.0611536224385579e-09])
|
||
|
assert_array_almost_equal(vals, expected)
|
||
|
|
||
|
def test_logsf(self):
|
||
|
vals = stats.planck.logsf([1000., 2000., 3000.], 1000.)
|
||
|
expected = array([-1001000., -2001000., -3001000.])
|
||
|
assert_array_almost_equal(vals, expected)
|
||
|
|
||
|
|
||
|
class TestGennorm:
|
||
|
def test_laplace(self):
|
||
|
# test against Laplace (special case for beta=1)
|
||
|
points = [1, 2, 3]
|
||
|
pdf1 = stats.gennorm.pdf(points, 1)
|
||
|
pdf2 = stats.laplace.pdf(points)
|
||
|
assert_almost_equal(pdf1, pdf2)
|
||
|
|
||
|
def test_norm(self):
|
||
|
# test against normal (special case for beta=2)
|
||
|
points = [1, 2, 3]
|
||
|
pdf1 = stats.gennorm.pdf(points, 2)
|
||
|
pdf2 = stats.norm.pdf(points, scale=2**-.5)
|
||
|
assert_almost_equal(pdf1, pdf2)
|
||
|
|
||
|
def test_rvs(self):
|
||
|
np.random.seed(0)
|
||
|
# 0 < beta < 1
|
||
|
dist = stats.gennorm(0.5)
|
||
|
rvs = dist.rvs(size=1000)
|
||
|
assert stats.kstest(rvs, dist.cdf).pvalue > 0.1
|
||
|
# beta = 1
|
||
|
dist = stats.gennorm(1)
|
||
|
rvs = dist.rvs(size=1000)
|
||
|
rvs_laplace = stats.laplace.rvs(size=1000)
|
||
|
assert stats.ks_2samp(rvs, rvs_laplace).pvalue > 0.1
|
||
|
# beta = 2
|
||
|
dist = stats.gennorm(2)
|
||
|
rvs = dist.rvs(size=1000)
|
||
|
rvs_norm = stats.norm.rvs(scale=1/2**0.5, size=1000)
|
||
|
assert stats.ks_2samp(rvs, rvs_norm).pvalue > 0.1
|
||
|
|
||
|
def test_rvs_broadcasting(self):
|
||
|
np.random.seed(0)
|
||
|
dist = stats.gennorm([[0.5, 1.], [2., 5.]])
|
||
|
rvs = dist.rvs(size=[1000, 2, 2])
|
||
|
assert stats.kstest(rvs[:, 0, 0], stats.gennorm(0.5).cdf)[1] > 0.1
|
||
|
assert stats.kstest(rvs[:, 0, 1], stats.gennorm(1.0).cdf)[1] > 0.1
|
||
|
assert stats.kstest(rvs[:, 1, 0], stats.gennorm(2.0).cdf)[1] > 0.1
|
||
|
assert stats.kstest(rvs[:, 1, 1], stats.gennorm(5.0).cdf)[1] > 0.1
|
||
|
|
||
|
|
||
|
class TestGibrat:
|
||
|
|
||
|
# sfx is sf(x). The values were computed with mpmath:
|
||
|
#
|
||
|
# from mpmath import mp
|
||
|
# mp.dps = 100
|
||
|
# def gibrat_sf(x):
|
||
|
# return 1 - mp.ncdf(mp.log(x))
|
||
|
#
|
||
|
# E.g.
|
||
|
#
|
||
|
# >>> float(gibrat_sf(1.5))
|
||
|
# 0.3425678305148459
|
||
|
#
|
||
|
@pytest.mark.parametrize('x, sfx', [(1.5, 0.3425678305148459),
|
||
|
(5000, 8.173334352522493e-18)])
|
||
|
def test_sf_isf(self, x, sfx):
|
||
|
assert_allclose(stats.gibrat.sf(x), sfx, rtol=2e-14)
|
||
|
assert_allclose(stats.gibrat.isf(sfx), x, rtol=2e-14)
|
||
|
|
||
|
|
||
|
class TestGompertz:
|
||
|
|
||
|
def test_gompertz_accuracy(self):
|
||
|
# Regression test for gh-4031
|
||
|
p = stats.gompertz.ppf(stats.gompertz.cdf(1e-100, 1), 1)
|
||
|
assert_allclose(p, 1e-100)
|
||
|
|
||
|
# sfx is sf(x). The values were computed with mpmath:
|
||
|
#
|
||
|
# from mpmath import mp
|
||
|
# mp.dps = 100
|
||
|
# def gompertz_sf(x, c):
|
||
|
# return mp.exp(-c*mp.expm1(x))
|
||
|
#
|
||
|
# E.g.
|
||
|
#
|
||
|
# >>> float(gompertz_sf(1, 2.5))
|
||
|
# 0.013626967146253437
|
||
|
#
|
||
|
@pytest.mark.parametrize('x, c, sfx', [(1, 2.5, 0.013626967146253437),
|
||
|
(3, 2.5, 1.8973243273704087e-21),
|
||
|
(0.05, 5, 0.7738668242570479),
|
||
|
(2.25, 5, 3.707795833465481e-19)])
|
||
|
def test_sf_isf(self, x, c, sfx):
|
||
|
assert_allclose(stats.gompertz.sf(x, c), sfx, rtol=1e-14)
|
||
|
assert_allclose(stats.gompertz.isf(sfx, c), x, rtol=1e-14)
|
||
|
|
||
|
# reference values were computed with mpmath
|
||
|
# from mpmath import mp
|
||
|
# mp.dps = 100
|
||
|
# def gompertz_entropy(c):
|
||
|
# c = mp.mpf(c)
|
||
|
# return float(mp.one - mp.log(c) - mp.exp(c)*mp.e1(c))
|
||
|
|
||
|
@pytest.mark.parametrize('c, ref', [(1e-4, 1.5762523017634573),
|
||
|
(1, 0.4036526376768059),
|
||
|
(1000, -5.908754280976161),
|
||
|
(1e10, -22.025850930040455)])
|
||
|
def test_entropy(self, c, ref):
|
||
|
assert_allclose(stats.gompertz.entropy(c), ref, rtol=1e-14)
|
||
|
|
||
|
|
||
|
class TestFoldNorm:
|
||
|
|
||
|
# reference values were computed with mpmath with 50 digits of precision
|
||
|
# from mpmath import mp
|
||
|
# mp.dps = 50
|
||
|
# mp.mpf(0.5) * (mp.erf((x - c)/mp.sqrt(2)) + mp.erf((x + c)/mp.sqrt(2)))
|
||
|
|
||
|
@pytest.mark.parametrize('x, c, ref', [(1e-4, 1e-8, 7.978845594730578e-05),
|
||
|
(1e-4, 1e-4, 7.97884555483635e-05)])
|
||
|
def test_cdf(self, x, c, ref):
|
||
|
assert_allclose(stats.foldnorm.cdf(x, c), ref, rtol=1e-15)
|
||
|
|
||
|
|
||
|
class TestHalfNorm:
|
||
|
|
||
|
# sfx is sf(x). The values were computed with mpmath:
|
||
|
#
|
||
|
# from mpmath import mp
|
||
|
# mp.dps = 100
|
||
|
# def halfnorm_sf(x):
|
||
|
# return 2*(1 - mp.ncdf(x))
|
||
|
#
|
||
|
# E.g.
|
||
|
#
|
||
|
# >>> float(halfnorm_sf(1))
|
||
|
# 0.3173105078629141
|
||
|
#
|
||
|
@pytest.mark.parametrize('x, sfx', [(1, 0.3173105078629141),
|
||
|
(10, 1.523970604832105e-23)])
|
||
|
def test_sf_isf(self, x, sfx):
|
||
|
assert_allclose(stats.halfnorm.sf(x), sfx, rtol=1e-14)
|
||
|
assert_allclose(stats.halfnorm.isf(sfx), x, rtol=1e-14)
|
||
|
|
||
|
# reference values were computed via mpmath
|
||
|
# from mpmath import mp
|
||
|
# mp.dps = 100
|
||
|
# def halfnorm_cdf_mpmath(x):
|
||
|
# x = mp.mpf(x)
|
||
|
# return float(mp.erf(x/mp.sqrt(2.)))
|
||
|
|
||
|
@pytest.mark.parametrize('x, ref', [(1e-40, 7.978845608028653e-41),
|
||
|
(1e-18, 7.978845608028654e-19),
|
||
|
(8, 0.9999999999999988)])
|
||
|
def test_cdf(self, x, ref):
|
||
|
assert_allclose(stats.halfnorm.cdf(x), ref, rtol=1e-15)
|
||
|
|
||
|
@pytest.mark.parametrize("rvs_loc", [1e-5, 1e10])
|
||
|
@pytest.mark.parametrize("rvs_scale", [1e-2, 100, 1e8])
|
||
|
@pytest.mark.parametrize('fix_loc', [True, False])
|
||
|
@pytest.mark.parametrize('fix_scale', [True, False])
|
||
|
def test_fit_MLE_comp_optimizer(self, rvs_loc, rvs_scale,
|
||
|
fix_loc, fix_scale):
|
||
|
|
||
|
rng = np.random.default_rng(6762668991392531563)
|
||
|
data = stats.halfnorm.rvs(loc=rvs_loc, scale=rvs_scale, size=1000,
|
||
|
random_state=rng)
|
||
|
|
||
|
if fix_loc and fix_scale:
|
||
|
error_msg = ("All parameters fixed. There is nothing to "
|
||
|
"optimize.")
|
||
|
with pytest.raises(RuntimeError, match=error_msg):
|
||
|
stats.halflogistic.fit(data, floc=rvs_loc, fscale=rvs_scale)
|
||
|
return
|
||
|
|
||
|
kwds = {}
|
||
|
if fix_loc:
|
||
|
kwds['floc'] = rvs_loc
|
||
|
if fix_scale:
|
||
|
kwds['fscale'] = rvs_scale
|
||
|
|
||
|
# Numerical result may equal analytical result if the initial guess
|
||
|
# computed from moment condition is already optimal.
|
||
|
_assert_less_or_close_loglike(stats.halfnorm, data, **kwds,
|
||
|
maybe_identical=True)
|
||
|
|
||
|
def test_fit_error(self):
|
||
|
# `floc` bigger than the minimal data point
|
||
|
with pytest.raises(FitDataError):
|
||
|
stats.halfnorm.fit([1, 2, 3], floc=2)
|
||
|
|
||
|
|
||
|
class TestHalfCauchy:
|
||
|
|
||
|
@pytest.mark.parametrize("rvs_loc", [1e-5, 1e10])
|
||
|
@pytest.mark.parametrize("rvs_scale", [1e-2, 1e8])
|
||
|
@pytest.mark.parametrize('fix_loc', [True, False])
|
||
|
@pytest.mark.parametrize('fix_scale', [True, False])
|
||
|
def test_fit_MLE_comp_optimizer(self, rvs_loc, rvs_scale,
|
||
|
fix_loc, fix_scale):
|
||
|
|
||
|
rng = np.random.default_rng(6762668991392531563)
|
||
|
data = stats.halfnorm.rvs(loc=rvs_loc, scale=rvs_scale, size=1000,
|
||
|
random_state=rng)
|
||
|
|
||
|
if fix_loc and fix_scale:
|
||
|
error_msg = ("All parameters fixed. There is nothing to "
|
||
|
"optimize.")
|
||
|
with pytest.raises(RuntimeError, match=error_msg):
|
||
|
stats.halfcauchy.fit(data, floc=rvs_loc, fscale=rvs_scale)
|
||
|
return
|
||
|
|
||
|
kwds = {}
|
||
|
if fix_loc:
|
||
|
kwds['floc'] = rvs_loc
|
||
|
if fix_scale:
|
||
|
kwds['fscale'] = rvs_scale
|
||
|
|
||
|
_assert_less_or_close_loglike(stats.halfcauchy, data, **kwds)
|
||
|
|
||
|
def test_fit_error(self):
|
||
|
# `floc` bigger than the minimal data point
|
||
|
with pytest.raises(FitDataError):
|
||
|
stats.halfcauchy.fit([1, 2, 3], floc=2)
|
||
|
|
||
|
|
||
|
class TestHalfLogistic:
|
||
|
# survival function reference values were computed with mpmath
|
||
|
# from mpmath import mp
|
||
|
# mp.dps = 50
|
||
|
# def sf_mpmath(x):
|
||
|
# x = mp.mpf(x)
|
||
|
# return float(mp.mpf(2.)/(mp.exp(x) + mp.one))
|
||
|
|
||
|
@pytest.mark.parametrize('x, ref', [(100, 7.440151952041672e-44),
|
||
|
(200, 2.767793053473475e-87)])
|
||
|
def test_sf(self, x, ref):
|
||
|
assert_allclose(stats.halflogistic.sf(x), ref, rtol=1e-15)
|
||
|
|
||
|
# inverse survival function reference values were computed with mpmath
|
||
|
# from mpmath import mp
|
||
|
# mp.dps = 200
|
||
|
# def isf_mpmath(x):
|
||
|
# halfx = mp.mpf(x)/2
|
||
|
# return float(-mp.log(halfx/(mp.one - halfx)))
|
||
|
|
||
|
@pytest.mark.parametrize('q, ref', [(7.440151952041672e-44, 100),
|
||
|
(2.767793053473475e-87, 200),
|
||
|
(1-1e-9, 1.999999943436137e-09),
|
||
|
(1-1e-15, 1.9984014443252818e-15)])
|
||
|
def test_isf(self, q, ref):
|
||
|
assert_allclose(stats.halflogistic.isf(q), ref, rtol=1e-15)
|
||
|
|
||
|
@pytest.mark.parametrize("rvs_loc", [1e-5, 1e10])
|
||
|
@pytest.mark.parametrize("rvs_scale", [1e-2, 100, 1e8])
|
||
|
@pytest.mark.parametrize('fix_loc', [True, False])
|
||
|
@pytest.mark.parametrize('fix_scale', [True, False])
|
||
|
def test_fit_MLE_comp_optimizer(self, rvs_loc, rvs_scale,
|
||
|
fix_loc, fix_scale):
|
||
|
|
||
|
rng = np.random.default_rng(6762668991392531563)
|
||
|
data = stats.halflogistic.rvs(loc=rvs_loc, scale=rvs_scale, size=1000,
|
||
|
random_state=rng)
|
||
|
|
||
|
kwds = {}
|
||
|
if fix_loc and fix_scale:
|
||
|
error_msg = ("All parameters fixed. There is nothing to "
|
||
|
"optimize.")
|
||
|
with pytest.raises(RuntimeError, match=error_msg):
|
||
|
stats.halflogistic.fit(data, floc=rvs_loc, fscale=rvs_scale)
|
||
|
return
|
||
|
|
||
|
if fix_loc:
|
||
|
kwds['floc'] = rvs_loc
|
||
|
if fix_scale:
|
||
|
kwds['fscale'] = rvs_scale
|
||
|
|
||
|
# Numerical result may equal analytical result if the initial guess
|
||
|
# computed from moment condition is already optimal.
|
||
|
_assert_less_or_close_loglike(stats.halflogistic, data, **kwds,
|
||
|
maybe_identical=True)
|
||
|
|
||
|
def test_fit_bad_floc(self):
|
||
|
msg = r" Maximum likelihood estimation with 'halflogistic' requires"
|
||
|
with assert_raises(FitDataError, match=msg):
|
||
|
stats.halflogistic.fit([0, 2, 4], floc=1)
|
||
|
|
||
|
|
||
|
class TestHalfgennorm:
|
||
|
def test_expon(self):
|
||
|
# test against exponential (special case for beta=1)
|
||
|
points = [1, 2, 3]
|
||
|
pdf1 = stats.halfgennorm.pdf(points, 1)
|
||
|
pdf2 = stats.expon.pdf(points)
|
||
|
assert_almost_equal(pdf1, pdf2)
|
||
|
|
||
|
def test_halfnorm(self):
|
||
|
# test against half normal (special case for beta=2)
|
||
|
points = [1, 2, 3]
|
||
|
pdf1 = stats.halfgennorm.pdf(points, 2)
|
||
|
pdf2 = stats.halfnorm.pdf(points, scale=2**-.5)
|
||
|
assert_almost_equal(pdf1, pdf2)
|
||
|
|
||
|
def test_gennorm(self):
|
||
|
# test against generalized normal
|
||
|
points = [1, 2, 3]
|
||
|
pdf1 = stats.halfgennorm.pdf(points, .497324)
|
||
|
pdf2 = stats.gennorm.pdf(points, .497324)
|
||
|
assert_almost_equal(pdf1, 2*pdf2)
|
||
|
|
||
|
|
||
|
class TestLaplaceasymmetric:
|
||
|
def test_laplace(self):
|
||
|
# test against Laplace (special case for kappa=1)
|
||
|
points = np.array([1, 2, 3])
|
||
|
pdf1 = stats.laplace_asymmetric.pdf(points, 1)
|
||
|
pdf2 = stats.laplace.pdf(points)
|
||
|
assert_allclose(pdf1, pdf2)
|
||
|
|
||
|
def test_asymmetric_laplace_pdf(self):
|
||
|
# test asymmetric Laplace
|
||
|
points = np.array([1, 2, 3])
|
||
|
kappa = 2
|
||
|
kapinv = 1/kappa
|
||
|
pdf1 = stats.laplace_asymmetric.pdf(points, kappa)
|
||
|
pdf2 = stats.laplace_asymmetric.pdf(points*(kappa**2), kapinv)
|
||
|
assert_allclose(pdf1, pdf2)
|
||
|
|
||
|
def test_asymmetric_laplace_log_10_16(self):
|
||
|
# test asymmetric Laplace
|
||
|
points = np.array([-np.log(16), np.log(10)])
|
||
|
kappa = 2
|
||
|
pdf1 = stats.laplace_asymmetric.pdf(points, kappa)
|
||
|
cdf1 = stats.laplace_asymmetric.cdf(points, kappa)
|
||
|
sf1 = stats.laplace_asymmetric.sf(points, kappa)
|
||
|
pdf2 = np.array([1/10, 1/250])
|
||
|
cdf2 = np.array([1/5, 1 - 1/500])
|
||
|
sf2 = np.array([4/5, 1/500])
|
||
|
ppf1 = stats.laplace_asymmetric.ppf(cdf2, kappa)
|
||
|
ppf2 = points
|
||
|
isf1 = stats.laplace_asymmetric.isf(sf2, kappa)
|
||
|
isf2 = points
|
||
|
assert_allclose(np.concatenate((pdf1, cdf1, sf1, ppf1, isf1)),
|
||
|
np.concatenate((pdf2, cdf2, sf2, ppf2, isf2)))
|
||
|
|
||
|
|
||
|
class TestTruncnorm:
|
||
|
def setup_method(self):
|
||
|
np.random.seed(1234)
|
||
|
|
||
|
@pytest.mark.parametrize("a, b, ref",
|
||
|
[(0, 100, 0.7257913526447274),
|
||
|
(0.6, 0.7, -2.3027610681852573),
|
||
|
(1e-06, 2e-06, -13.815510557964274)])
|
||
|
def test_entropy(self, a, b, ref):
|
||
|
# All reference values were calculated with mpmath:
|
||
|
# import numpy as np
|
||
|
# from mpmath import mp
|
||
|
# mp.dps = 50
|
||
|
# def entropy_trun(a, b):
|
||
|
# a, b = mp.mpf(a), mp.mpf(b)
|
||
|
# Z = mp.ncdf(b) - mp.ncdf(a)
|
||
|
#
|
||
|
# def pdf(x):
|
||
|
# return mp.npdf(x) / Z
|
||
|
#
|
||
|
# res = -mp.quad(lambda t: pdf(t) * mp.log(pdf(t)), [a, b])
|
||
|
# return np.float64(res)
|
||
|
assert_allclose(stats.truncnorm.entropy(a, b), ref, rtol=1e-10)
|
||
|
|
||
|
@pytest.mark.parametrize("a, b, ref",
|
||
|
[(1e-11, 10000000000.0, 0.725791352640738),
|
||
|
(1e-100, 1e+100, 0.7257913526447274),
|
||
|
(-1e-100, 1e+100, 0.7257913526447274),
|
||
|
(-1e+100, 1e+100, 1.4189385332046727)])
|
||
|
def test_extreme_entropy(self, a, b, ref):
|
||
|
# The reference values were calculated with mpmath
|
||
|
# import numpy as np
|
||
|
# from mpmath import mp
|
||
|
# mp.dps = 50
|
||
|
# def trunc_norm_entropy(a, b):
|
||
|
# a, b = mp.mpf(a), mp.mpf(b)
|
||
|
# Z = mp.ncdf(b) - mp.ncdf(a)
|
||
|
# A = mp.log(mp.sqrt(2 * mp.pi * mp.e) * Z)
|
||
|
# B = (a * mp.npdf(a) - b * mp.npdf(b)) / (2 * Z)
|
||
|
# return np.float64(A + B)
|
||
|
assert_allclose(stats.truncnorm.entropy(a, b), ref, rtol=1e-14)
|
||
|
|
||
|
def test_ppf_ticket1131(self):
|
||
|
vals = stats.truncnorm.ppf([-0.5, 0, 1e-4, 0.5, 1-1e-4, 1, 2], -1., 1.,
|
||
|
loc=[3]*7, scale=2)
|
||
|
expected = np.array([np.nan, 1, 1.00056419, 3, 4.99943581, 5, np.nan])
|
||
|
assert_array_almost_equal(vals, expected)
|
||
|
|
||
|
def test_isf_ticket1131(self):
|
||
|
vals = stats.truncnorm.isf([-0.5, 0, 1e-4, 0.5, 1-1e-4, 1, 2], -1., 1.,
|
||
|
loc=[3]*7, scale=2)
|
||
|
expected = np.array([np.nan, 5, 4.99943581, 3, 1.00056419, 1, np.nan])
|
||
|
assert_array_almost_equal(vals, expected)
|
||
|
|
||
|
def test_gh_2477_small_values(self):
|
||
|
# Check a case that worked in the original issue.
|
||
|
low, high = -11, -10
|
||
|
x = stats.truncnorm.rvs(low, high, 0, 1, size=10)
|
||
|
assert_(low < x.min() < x.max() < high)
|
||
|
# Check a case that failed in the original issue.
|
||
|
low, high = 10, 11
|
||
|
x = stats.truncnorm.rvs(low, high, 0, 1, size=10)
|
||
|
assert_(low < x.min() < x.max() < high)
|
||
|
|
||
|
def test_gh_2477_large_values(self):
|
||
|
# Check a case that used to fail because of extreme tailness.
|
||
|
low, high = 100, 101
|
||
|
x = stats.truncnorm.rvs(low, high, 0, 1, size=10)
|
||
|
assert_(low <= x.min() <= x.max() <= high), str([low, high, x])
|
||
|
|
||
|
# Check some additional extreme tails
|
||
|
low, high = 1000, 1001
|
||
|
x = stats.truncnorm.rvs(low, high, 0, 1, size=10)
|
||
|
assert_(low < x.min() < x.max() < high)
|
||
|
|
||
|
low, high = 10000, 10001
|
||
|
x = stats.truncnorm.rvs(low, high, 0, 1, size=10)
|
||
|
assert_(low < x.min() < x.max() < high)
|
||
|
|
||
|
low, high = -10001, -10000
|
||
|
x = stats.truncnorm.rvs(low, high, 0, 1, size=10)
|
||
|
assert_(low < x.min() < x.max() < high)
|
||
|
|
||
|
def test_gh_9403_nontail_values(self):
|
||
|
for low, high in [[3, 4], [-4, -3]]:
|
||
|
xvals = np.array([-np.inf, low, high, np.inf])
|
||
|
xmid = (high+low)/2.0
|
||
|
cdfs = stats.truncnorm.cdf(xvals, low, high)
|
||
|
sfs = stats.truncnorm.sf(xvals, low, high)
|
||
|
pdfs = stats.truncnorm.pdf(xvals, low, high)
|
||
|
expected_cdfs = np.array([0, 0, 1, 1])
|
||
|
expected_sfs = np.array([1.0, 1.0, 0.0, 0.0])
|
||
|
expected_pdfs = np.array([0, 3.3619772, 0.1015229, 0])
|
||
|
if low < 0:
|
||
|
expected_pdfs = np.array([0, 0.1015229, 3.3619772, 0])
|
||
|
assert_almost_equal(cdfs, expected_cdfs)
|
||
|
assert_almost_equal(sfs, expected_sfs)
|
||
|
assert_almost_equal(pdfs, expected_pdfs)
|
||
|
assert_almost_equal(np.log(expected_pdfs[1]/expected_pdfs[2]),
|
||
|
low + 0.5)
|
||
|
pvals = np.array([0, 0.5, 1.0])
|
||
|
ppfs = stats.truncnorm.ppf(pvals, low, high)
|
||
|
expected_ppfs = np.array([low, np.sign(low)*3.1984741, high])
|
||
|
assert_almost_equal(ppfs, expected_ppfs)
|
||
|
|
||
|
if low < 0:
|
||
|
assert_almost_equal(stats.truncnorm.sf(xmid, low, high),
|
||
|
0.8475544278436675)
|
||
|
assert_almost_equal(stats.truncnorm.cdf(xmid, low, high),
|
||
|
0.1524455721563326)
|
||
|
else:
|
||
|
assert_almost_equal(stats.truncnorm.cdf(xmid, low, high),
|
||
|
0.8475544278436675)
|
||
|
assert_almost_equal(stats.truncnorm.sf(xmid, low, high),
|
||
|
0.1524455721563326)
|
||
|
pdf = stats.truncnorm.pdf(xmid, low, high)
|
||
|
assert_almost_equal(np.log(pdf/expected_pdfs[2]), (xmid+0.25)/2)
|
||
|
|
||
|
def test_gh_9403_medium_tail_values(self):
|
||
|
for low, high in [[39, 40], [-40, -39]]:
|
||
|
xvals = np.array([-np.inf, low, high, np.inf])
|
||
|
xmid = (high+low)/2.0
|
||
|
cdfs = stats.truncnorm.cdf(xvals, low, high)
|
||
|
sfs = stats.truncnorm.sf(xvals, low, high)
|
||
|
pdfs = stats.truncnorm.pdf(xvals, low, high)
|
||
|
expected_cdfs = np.array([0, 0, 1, 1])
|
||
|
expected_sfs = np.array([1.0, 1.0, 0.0, 0.0])
|
||
|
expected_pdfs = np.array([0, 3.90256074e+01, 2.73349092e-16, 0])
|
||
|
if low < 0:
|
||
|
expected_pdfs = np.array([0, 2.73349092e-16,
|
||
|
3.90256074e+01, 0])
|
||
|
assert_almost_equal(cdfs, expected_cdfs)
|
||
|
assert_almost_equal(sfs, expected_sfs)
|
||
|
assert_almost_equal(pdfs, expected_pdfs)
|
||
|
assert_almost_equal(np.log(expected_pdfs[1]/expected_pdfs[2]),
|
||
|
low + 0.5)
|
||
|
pvals = np.array([0, 0.5, 1.0])
|
||
|
ppfs = stats.truncnorm.ppf(pvals, low, high)
|
||
|
expected_ppfs = np.array([low, np.sign(low)*39.01775731, high])
|
||
|
assert_almost_equal(ppfs, expected_ppfs)
|
||
|
cdfs = stats.truncnorm.cdf(ppfs, low, high)
|
||
|
assert_almost_equal(cdfs, pvals)
|
||
|
|
||
|
if low < 0:
|
||
|
assert_almost_equal(stats.truncnorm.sf(xmid, low, high),
|
||
|
0.9999999970389126)
|
||
|
assert_almost_equal(stats.truncnorm.cdf(xmid, low, high),
|
||
|
2.961048103554866e-09)
|
||
|
else:
|
||
|
assert_almost_equal(stats.truncnorm.cdf(xmid, low, high),
|
||
|
0.9999999970389126)
|
||
|
assert_almost_equal(stats.truncnorm.sf(xmid, low, high),
|
||
|
2.961048103554866e-09)
|
||
|
pdf = stats.truncnorm.pdf(xmid, low, high)
|
||
|
assert_almost_equal(np.log(pdf/expected_pdfs[2]), (xmid+0.25)/2)
|
||
|
|
||
|
xvals = np.linspace(low, high, 11)
|
||
|
xvals2 = -xvals[::-1]
|
||
|
assert_almost_equal(stats.truncnorm.cdf(xvals, low, high),
|
||
|
stats.truncnorm.sf(xvals2, -high, -low)[::-1])
|
||
|
assert_almost_equal(stats.truncnorm.sf(xvals, low, high),
|
||
|
stats.truncnorm.cdf(xvals2, -high, -low)[::-1])
|
||
|
assert_almost_equal(stats.truncnorm.pdf(xvals, low, high),
|
||
|
stats.truncnorm.pdf(xvals2, -high, -low)[::-1])
|
||
|
|
||
|
def test_cdf_tail_15110_14753(self):
|
||
|
# Check accuracy issues reported in gh-14753 and gh-155110
|
||
|
# Ground truth values calculated using Wolfram Alpha, e.g.
|
||
|
# (CDF[NormalDistribution[0,1],83/10]-CDF[NormalDistribution[0,1],8])/
|
||
|
# (1 - CDF[NormalDistribution[0,1],8])
|
||
|
assert_allclose(stats.truncnorm(13., 15.).cdf(14.),
|
||
|
0.9999987259565643)
|
||
|
assert_allclose(stats.truncnorm(8, np.inf).cdf(8.3),
|
||
|
0.9163220907327540)
|
||
|
|
||
|
# Test data for the truncnorm stats() method.
|
||
|
# The data in each row is:
|
||
|
# a, b, mean, variance, skewness, excess kurtosis. Generated using
|
||
|
# https://gist.github.com/WarrenWeckesser/636b537ee889679227d53543d333a720
|
||
|
_truncnorm_stats_data = [
|
||
|
[-30, 30,
|
||
|
0.0, 1.0, 0.0, 0.0],
|
||
|
[-10, 10,
|
||
|
0.0, 1.0, 0.0, -1.4927521335810455e-19],
|
||
|
[-3, 3,
|
||
|
0.0, 0.9733369246625415, 0.0, -0.17111443639774404],
|
||
|
[-2, 2,
|
||
|
0.0, 0.7737413035499232, 0.0, -0.6344632828703505],
|
||
|
[0, np.inf,
|
||
|
0.7978845608028654,
|
||
|
0.3633802276324187,
|
||
|
0.995271746431156,
|
||
|
0.8691773036059741],
|
||
|
[-np.inf, 0,
|
||
|
-0.7978845608028654,
|
||
|
0.3633802276324187,
|
||
|
-0.995271746431156,
|
||
|
0.8691773036059741],
|
||
|
[-1, 3,
|
||
|
0.282786110727154,
|
||
|
0.6161417353578293,
|
||
|
0.5393018494027877,
|
||
|
-0.20582065135274694],
|
||
|
[-3, 1,
|
||
|
-0.282786110727154,
|
||
|
0.6161417353578293,
|
||
|
-0.5393018494027877,
|
||
|
-0.20582065135274694],
|
||
|
[-10, -9,
|
||
|
-9.108456288012409,
|
||
|
0.011448805821636248,
|
||
|
-1.8985607290949496,
|
||
|
5.0733461105025075],
|
||
|
]
|
||
|
_truncnorm_stats_data = np.array(_truncnorm_stats_data)
|
||
|
|
||
|
@pytest.mark.parametrize("case", _truncnorm_stats_data)
|
||
|
def test_moments(self, case):
|
||
|
a, b, m0, v0, s0, k0 = case
|
||
|
m, v, s, k = stats.truncnorm.stats(a, b, moments='mvsk')
|
||
|
assert_allclose([m, v, s, k], [m0, v0, s0, k0], atol=1e-17)
|
||
|
|
||
|
def test_9902_moments(self):
|
||
|
m, v = stats.truncnorm.stats(0, np.inf, moments='mv')
|
||
|
assert_almost_equal(m, 0.79788456)
|
||
|
assert_almost_equal(v, 0.36338023)
|
||
|
|
||
|
def test_gh_1489_trac_962_rvs(self):
|
||
|
# Check the original example.
|
||
|
low, high = 10, 15
|
||
|
x = stats.truncnorm.rvs(low, high, 0, 1, size=10)
|
||
|
assert_(low < x.min() < x.max() < high)
|
||
|
|
||
|
def test_gh_11299_rvs(self):
|
||
|
# Arose from investigating gh-11299
|
||
|
# Test multiple shape parameters simultaneously.
|
||
|
low = [-10, 10, -np.inf, -5, -np.inf, -np.inf, -45, -45, 40, -10, 40]
|
||
|
high = [-5, 11, 5, np.inf, 40, -40, 40, -40, 45, np.inf, np.inf]
|
||
|
x = stats.truncnorm.rvs(low, high, size=(5, len(low)))
|
||
|
assert np.shape(x) == (5, len(low))
|
||
|
assert_(np.all(low <= x.min(axis=0)))
|
||
|
assert_(np.all(x.max(axis=0) <= high))
|
||
|
|
||
|
def test_rvs_Generator(self):
|
||
|
# check that rvs can use a Generator
|
||
|
if hasattr(np.random, "default_rng"):
|
||
|
stats.truncnorm.rvs(-10, -5, size=5,
|
||
|
random_state=np.random.default_rng())
|
||
|
|
||
|
def test_logcdf_gh17064(self):
|
||
|
# regression test for gh-17064 - avoid roundoff error for logcdfs ~0
|
||
|
a = np.array([-np.inf, -np.inf, -8, -np.inf, 10])
|
||
|
b = np.array([np.inf, np.inf, 8, 10, np.inf])
|
||
|
x = np.array([10, 7.5, 7.5, 9, 20])
|
||
|
expected = [-7.619853024160525e-24, -3.190891672910947e-14,
|
||
|
-3.128682067168231e-14, -1.1285122074235991e-19,
|
||
|
-3.61374964828753e-66]
|
||
|
assert_allclose(stats.truncnorm(a, b).logcdf(x), expected)
|
||
|
assert_allclose(stats.truncnorm(-b, -a).logsf(-x), expected)
|
||
|
|
||
|
def test_moments_gh18634(self):
|
||
|
# gh-18634 reported that moments 5 and higher didn't work; check that
|
||
|
# this is resolved
|
||
|
res = stats.truncnorm(-2, 3).moment(5)
|
||
|
# From Mathematica:
|
||
|
# Moment[TruncatedDistribution[{-2, 3}, NormalDistribution[]], 5]
|
||
|
ref = 1.645309620208361
|
||
|
assert_allclose(res, ref)
|
||
|
|
||
|
|
||
|
class TestGenLogistic:
|
||
|
|
||
|
# Expected values computed with mpmath with 50 digits of precision.
|
||
|
@pytest.mark.parametrize('x, expected', [(-1000, -1499.5945348918917),
|
||
|
(-125, -187.09453489189184),
|
||
|
(0, -1.3274028432916989),
|
||
|
(100, -99.59453489189184),
|
||
|
(1000, -999.5945348918918)])
|
||
|
def test_logpdf(self, x, expected):
|
||
|
c = 1.5
|
||
|
logp = stats.genlogistic.logpdf(x, c)
|
||
|
assert_allclose(logp, expected, rtol=1e-13)
|
||
|
|
||
|
# Expected values computed with mpmath with 50 digits of precision
|
||
|
# from mpmath import mp
|
||
|
# mp.dps = 50
|
||
|
# def entropy_mp(c):
|
||
|
# c = mp.mpf(c)
|
||
|
# return float(-mp.log(c)+mp.one+mp.digamma(c + mp.one) + mp.euler)
|
||
|
|
||
|
@pytest.mark.parametrize('c, ref', [(1e-100, 231.25850929940458),
|
||
|
(1e-4, 10.21050485336338),
|
||
|
(1e8, 1.577215669901533),
|
||
|
(1e100, 1.5772156649015328)])
|
||
|
def test_entropy(self, c, ref):
|
||
|
assert_allclose(stats.genlogistic.entropy(c), ref, rtol=5e-15)
|
||
|
|
||
|
# Expected values computed with mpmath with 50 digits of precision
|
||
|
# from mpmath import mp
|
||
|
# mp.dps = 1000
|
||
|
#
|
||
|
# def genlogistic_cdf_mp(x, c):
|
||
|
# x = mp.mpf(x)
|
||
|
# c = mp.mpf(c)
|
||
|
# return (mp.one + mp.exp(-x)) ** (-c)
|
||
|
#
|
||
|
# def genlogistic_sf_mp(x, c):
|
||
|
# return mp.one - genlogistic_cdf_mp(x, c)
|
||
|
#
|
||
|
# x, c, ref = 100, 0.02, -7.440151952041672e-466
|
||
|
# print(float(mp.log(genlogistic_cdf_mp(x, c))))
|
||
|
# ppf/isf reference values generated by passing in `ref` (`q` is produced)
|
||
|
|
||
|
@pytest.mark.parametrize('x, c, ref', [(200, 10, 1.3838965267367375e-86),
|
||
|
(500, 20, 1.424915281348257e-216)])
|
||
|
def test_sf(self, x, c, ref):
|
||
|
assert_allclose(stats.genlogistic.sf(x, c), ref, rtol=1e-14)
|
||
|
|
||
|
@pytest.mark.parametrize('q, c, ref', [(0.01, 200, 9.898441467379765),
|
||
|
(0.001, 2, 7.600152115573173)])
|
||
|
def test_isf(self, q, c, ref):
|
||
|
assert_allclose(stats.genlogistic.isf(q, c), ref, rtol=5e-16)
|
||
|
|
||
|
@pytest.mark.parametrize('q, c, ref', [(0.5, 200, 5.6630969187064615),
|
||
|
(0.99, 20, 7.595630231412436)])
|
||
|
def test_ppf(self, q, c, ref):
|
||
|
assert_allclose(stats.genlogistic.ppf(q, c), ref, rtol=5e-16)
|
||
|
|
||
|
@pytest.mark.parametrize('x, c, ref', [(100, 0.02, -7.440151952041672e-46),
|
||
|
(50, 20, -3.857499695927835e-21)])
|
||
|
def test_logcdf(self, x, c, ref):
|
||
|
assert_allclose(stats.genlogistic.logcdf(x, c), ref, rtol=1e-15)
|
||
|
|
||
|
|
||
|
class TestHypergeom:
|
||
|
def setup_method(self):
|
||
|
np.random.seed(1234)
|
||
|
|
||
|
def test_rvs(self):
|
||
|
vals = stats.hypergeom.rvs(20, 10, 3, size=(2, 50))
|
||
|
assert_(numpy.all(vals >= 0) &
|
||
|
numpy.all(vals <= 3))
|
||
|
assert_(numpy.shape(vals) == (2, 50))
|
||
|
assert_(vals.dtype.char in typecodes['AllInteger'])
|
||
|
val = stats.hypergeom.rvs(20, 3, 10)
|
||
|
assert_(isinstance(val, int))
|
||
|
val = stats.hypergeom(20, 3, 10).rvs(3)
|
||
|
assert_(isinstance(val, numpy.ndarray))
|
||
|
assert_(val.dtype.char in typecodes['AllInteger'])
|
||
|
|
||
|
def test_precision(self):
|
||
|
# comparison number from mpmath
|
||
|
M = 2500
|
||
|
n = 50
|
||
|
N = 500
|
||
|
tot = M
|
||
|
good = n
|
||
|
hgpmf = stats.hypergeom.pmf(2, tot, good, N)
|
||
|
assert_almost_equal(hgpmf, 0.0010114963068932233, 11)
|
||
|
|
||
|
def test_args(self):
|
||
|
# test correct output for corner cases of arguments
|
||
|
# see gh-2325
|
||
|
assert_almost_equal(stats.hypergeom.pmf(0, 2, 1, 0), 1.0, 11)
|
||
|
assert_almost_equal(stats.hypergeom.pmf(1, 2, 1, 0), 0.0, 11)
|
||
|
|
||
|
assert_almost_equal(stats.hypergeom.pmf(0, 2, 0, 2), 1.0, 11)
|
||
|
assert_almost_equal(stats.hypergeom.pmf(1, 2, 1, 0), 0.0, 11)
|
||
|
|
||
|
def test_cdf_above_one(self):
|
||
|
# for some values of parameters, hypergeom cdf was >1, see gh-2238
|
||
|
assert_(0 <= stats.hypergeom.cdf(30, 13397950, 4363, 12390) <= 1.0)
|
||
|
|
||
|
def test_precision2(self):
|
||
|
# Test hypergeom precision for large numbers. See #1218.
|
||
|
# Results compared with those from R.
|
||
|
oranges = 9.9e4
|
||
|
pears = 1.1e5
|
||
|
fruits_eaten = np.array([3, 3.8, 3.9, 4, 4.1, 4.2, 5]) * 1e4
|
||
|
quantile = 2e4
|
||
|
res = [stats.hypergeom.sf(quantile, oranges + pears, oranges, eaten)
|
||
|
for eaten in fruits_eaten]
|
||
|
expected = np.array([0, 1.904153e-114, 2.752693e-66, 4.931217e-32,
|
||
|
8.265601e-11, 0.1237904, 1])
|
||
|
assert_allclose(res, expected, atol=0, rtol=5e-7)
|
||
|
|
||
|
# Test with array_like first argument
|
||
|
quantiles = [1.9e4, 2e4, 2.1e4, 2.15e4]
|
||
|
res2 = stats.hypergeom.sf(quantiles, oranges + pears, oranges, 4.2e4)
|
||
|
expected2 = [1, 0.1237904, 6.511452e-34, 3.277667e-69]
|
||
|
assert_allclose(res2, expected2, atol=0, rtol=5e-7)
|
||
|
|
||
|
def test_entropy(self):
|
||
|
# Simple tests of entropy.
|
||
|
hg = stats.hypergeom(4, 1, 1)
|
||
|
h = hg.entropy()
|
||
|
expected_p = np.array([0.75, 0.25])
|
||
|
expected_h = -np.sum(xlogy(expected_p, expected_p))
|
||
|
assert_allclose(h, expected_h)
|
||
|
|
||
|
hg = stats.hypergeom(1, 1, 1)
|
||
|
h = hg.entropy()
|
||
|
assert_equal(h, 0.0)
|
||
|
|
||
|
def test_logsf(self):
|
||
|
# Test logsf for very large numbers. See issue #4982
|
||
|
# Results compare with those from R (v3.2.0):
|
||
|
# phyper(k, n, M-n, N, lower.tail=FALSE, log.p=TRUE)
|
||
|
# -2239.771
|
||
|
|
||
|
k = 1e4
|
||
|
M = 1e7
|
||
|
n = 1e6
|
||
|
N = 5e4
|
||
|
|
||
|
result = stats.hypergeom.logsf(k, M, n, N)
|
||
|
expected = -2239.771 # From R
|
||
|
assert_almost_equal(result, expected, decimal=3)
|
||
|
|
||
|
k = 1
|
||
|
M = 1600
|
||
|
n = 600
|
||
|
N = 300
|
||
|
|
||
|
result = stats.hypergeom.logsf(k, M, n, N)
|
||
|
expected = -2.566567e-68 # From R
|
||
|
assert_almost_equal(result, expected, decimal=15)
|
||
|
|
||
|
def test_logcdf(self):
|
||
|
# Test logcdf for very large numbers. See issue #8692
|
||
|
# Results compare with those from R (v3.3.2):
|
||
|
# phyper(k, n, M-n, N, lower.tail=TRUE, log.p=TRUE)
|
||
|
# -5273.335
|
||
|
|
||
|
k = 1
|
||
|
M = 1e7
|
||
|
n = 1e6
|
||
|
N = 5e4
|
||
|
|
||
|
result = stats.hypergeom.logcdf(k, M, n, N)
|
||
|
expected = -5273.335 # From R
|
||
|
assert_almost_equal(result, expected, decimal=3)
|
||
|
|
||
|
# Same example as in issue #8692
|
||
|
k = 40
|
||
|
M = 1600
|
||
|
n = 50
|
||
|
N = 300
|
||
|
|
||
|
result = stats.hypergeom.logcdf(k, M, n, N)
|
||
|
expected = -7.565148879229e-23 # From R
|
||
|
assert_almost_equal(result, expected, decimal=15)
|
||
|
|
||
|
k = 125
|
||
|
M = 1600
|
||
|
n = 250
|
||
|
N = 500
|
||
|
|
||
|
result = stats.hypergeom.logcdf(k, M, n, N)
|
||
|
expected = -4.242688e-12 # From R
|
||
|
assert_almost_equal(result, expected, decimal=15)
|
||
|
|
||
|
# test broadcasting robustness based on reviewer
|
||
|
# concerns in PR 9603; using an array version of
|
||
|
# the example from issue #8692
|
||
|
k = np.array([40, 40, 40])
|
||
|
M = 1600
|
||
|
n = 50
|
||
|
N = 300
|
||
|
|
||
|
result = stats.hypergeom.logcdf(k, M, n, N)
|
||
|
expected = np.full(3, -7.565148879229e-23) # filled from R result
|
||
|
assert_almost_equal(result, expected, decimal=15)
|
||
|
|
||
|
def test_mean_gh18511(self):
|
||
|
# gh-18511 reported that the `mean` was incorrect for large arguments;
|
||
|
# check that this is resolved
|
||
|
M = 390_000
|
||
|
n = 370_000
|
||
|
N = 12_000
|
||
|
|
||
|
hm = stats.hypergeom.mean(M, n, N)
|
||
|
rm = n / M * N
|
||
|
assert_allclose(hm, rm)
|
||
|
|
||
|
def test_sf_gh18506(self):
|
||
|
# gh-18506 reported that `sf` was incorrect for large population;
|
||
|
# check that this is resolved
|
||
|
n = 10
|
||
|
N = 10**5
|
||
|
i = np.arange(5, 15)
|
||
|
population_size = 10.**i
|
||
|
p = stats.hypergeom.sf(n - 1, population_size, N, n)
|
||
|
assert np.all(p > 0)
|
||
|
assert np.all(np.diff(p) < 0)
|
||
|
|
||
|
|
||
|
class TestLoggamma:
|
||
|
|
||
|
# Expected cdf values were computed with mpmath. For given x and c,
|
||
|
# x = mpmath.mpf(x)
|
||
|
# c = mpmath.mpf(c)
|
||
|
# cdf = mpmath.gammainc(c, 0, mpmath.exp(x),
|
||
|
# regularized=True)
|
||
|
@pytest.mark.parametrize('x, c, cdf',
|
||
|
[(1, 2, 0.7546378854206702),
|
||
|
(-1, 14, 6.768116452566383e-18),
|
||
|
(-745.1, 0.001, 0.4749605142005238),
|
||
|
(-800, 0.001, 0.44958802911019136),
|
||
|
(-725, 0.1, 3.4301205868273265e-32),
|
||
|
(-740, 0.75, 1.0074360436599631e-241)])
|
||
|
def test_cdf_ppf(self, x, c, cdf):
|
||
|
p = stats.loggamma.cdf(x, c)
|
||
|
assert_allclose(p, cdf, rtol=1e-13)
|
||
|
y = stats.loggamma.ppf(cdf, c)
|
||
|
assert_allclose(y, x, rtol=1e-13)
|
||
|
|
||
|
# Expected sf values were computed with mpmath. For given x and c,
|
||
|
# x = mpmath.mpf(x)
|
||
|
# c = mpmath.mpf(c)
|
||
|
# sf = mpmath.gammainc(c, mpmath.exp(x), mpmath.inf,
|
||
|
# regularized=True)
|
||
|
@pytest.mark.parametrize('x, c, sf',
|
||
|
[(4, 1.5, 1.6341528919488565e-23),
|
||
|
(6, 100, 8.23836829202024e-74),
|
||
|
(-800, 0.001, 0.5504119708898086),
|
||
|
(-743, 0.0025, 0.8437131370024089)])
|
||
|
def test_sf_isf(self, x, c, sf):
|
||
|
s = stats.loggamma.sf(x, c)
|
||
|
assert_allclose(s, sf, rtol=1e-13)
|
||
|
y = stats.loggamma.isf(sf, c)
|
||
|
assert_allclose(y, x, rtol=1e-13)
|
||
|
|
||
|
def test_logpdf(self):
|
||
|
# Test logpdf with x=-500, c=2. ln(gamma(2)) = 0, and
|
||
|
# exp(-500) ~= 7e-218, which is far smaller than the ULP
|
||
|
# of c*x=-1000, so logpdf(-500, 2) = c*x - exp(x) - ln(gamma(2))
|
||
|
# should give -1000.0.
|
||
|
lp = stats.loggamma.logpdf(-500, 2)
|
||
|
assert_allclose(lp, -1000.0, rtol=1e-14)
|
||
|
|
||
|
def test_stats(self):
|
||
|
# The following precomputed values are from the table in section 2.2
|
||
|
# of "A Statistical Study of Log-Gamma Distribution", by Ping Shing
|
||
|
# Chan (thesis, McMaster University, 1993).
|
||
|
table = np.array([
|
||
|
# c, mean, var, skew, exc. kurt.
|
||
|
0.5, -1.9635, 4.9348, -1.5351, 4.0000,
|
||
|
1.0, -0.5772, 1.6449, -1.1395, 2.4000,
|
||
|
12.0, 2.4427, 0.0869, -0.2946, 0.1735,
|
||
|
]).reshape(-1, 5)
|
||
|
for c, mean, var, skew, kurt in table:
|
||
|
computed = stats.loggamma.stats(c, moments='msvk')
|
||
|
assert_array_almost_equal(computed, [mean, var, skew, kurt],
|
||
|
decimal=4)
|
||
|
|
||
|
@pytest.mark.parametrize('c', [0.1, 0.001])
|
||
|
def test_rvs(self, c):
|
||
|
# Regression test for gh-11094.
|
||
|
x = stats.loggamma.rvs(c, size=100000)
|
||
|
# Before gh-11094 was fixed, the case with c=0.001 would
|
||
|
# generate many -inf values.
|
||
|
assert np.isfinite(x).all()
|
||
|
# Crude statistical test. About half the values should be
|
||
|
# less than the median and half greater than the median.
|
||
|
med = stats.loggamma.median(c)
|
||
|
btest = stats.binomtest(np.count_nonzero(x < med), len(x))
|
||
|
ci = btest.proportion_ci(confidence_level=0.999)
|
||
|
assert ci.low < 0.5 < ci.high
|
||
|
|
||
|
@pytest.mark.parametrize("c, ref",
|
||
|
[(1e-8, 19.420680753952364),
|
||
|
(1, 1.5772156649015328),
|
||
|
(1e4, -3.186214986116763),
|
||
|
(1e10, -10.093986931748889),
|
||
|
(1e100, -113.71031611649761)])
|
||
|
def test_entropy(self, c, ref):
|
||
|
|
||
|
# Reference values were calculated with mpmath
|
||
|
# from mpmath import mp
|
||
|
# mp.dps = 500
|
||
|
# def loggamma_entropy_mpmath(c):
|
||
|
# c = mp.mpf(c)
|
||
|
# return float(mp.log(mp.gamma(c)) + c * (mp.one - mp.digamma(c)))
|
||
|
|
||
|
assert_allclose(stats.loggamma.entropy(c), ref, rtol=1e-14)
|
||
|
|
||
|
|
||
|
class TestJohnsonsu:
|
||
|
# reference values were computed via mpmath
|
||
|
# from mpmath import mp
|
||
|
# mp.dps = 50
|
||
|
# def johnsonsu_sf(x, a, b):
|
||
|
# x = mp.mpf(x)
|
||
|
# a = mp.mpf(a)
|
||
|
# b = mp.mpf(b)
|
||
|
# return float(mp.ncdf(-(a + b * mp.log(x + mp.sqrt(x*x + 1)))))
|
||
|
# Order is x, a, b, sf, isf tol
|
||
|
# (Can't expect full precision when the ISF input is very nearly 1)
|
||
|
cases = [(-500, 1, 1, 0.9999999982660072, 1e-8),
|
||
|
(2000, 1, 1, 7.426351000595343e-21, 5e-14),
|
||
|
(100000, 1, 1, 4.046923979269977e-40, 5e-14)]
|
||
|
|
||
|
@pytest.mark.parametrize("case", cases)
|
||
|
def test_sf_isf(self, case):
|
||
|
x, a, b, sf, tol = case
|
||
|
assert_allclose(stats.johnsonsu.sf(x, a, b), sf, rtol=5e-14)
|
||
|
assert_allclose(stats.johnsonsu.isf(sf, a, b), x, rtol=tol)
|
||
|
|
||
|
|
||
|
class TestJohnsonb:
|
||
|
# reference values were computed via mpmath
|
||
|
# from mpmath import mp
|
||
|
# mp.dps = 50
|
||
|
# def johnsonb_sf(x, a, b):
|
||
|
# x = mp.mpf(x)
|
||
|
# a = mp.mpf(a)
|
||
|
# b = mp.mpf(b)
|
||
|
# return float(mp.ncdf(-(a + b * mp.log(x/(mp.one - x)))))
|
||
|
# Order is x, a, b, sf, isf atol
|
||
|
# (Can't expect full precision when the ISF input is very nearly 1)
|
||
|
cases = [(1e-4, 1, 1, 0.9999999999999999, 1e-7),
|
||
|
(0.9999, 1, 1, 8.921114313932308e-25, 5e-14),
|
||
|
(0.999999, 1, 1, 5.815197487181902e-50, 5e-14)]
|
||
|
|
||
|
@pytest.mark.parametrize("case", cases)
|
||
|
def test_sf_isf(self, case):
|
||
|
x, a, b, sf, tol = case
|
||
|
assert_allclose(stats.johnsonsb.sf(x, a, b), sf, rtol=5e-14)
|
||
|
assert_allclose(stats.johnsonsb.isf(sf, a, b), x, atol=tol)
|
||
|
|
||
|
|
||
|
class TestLogistic:
|
||
|
# gh-6226
|
||
|
def test_cdf_ppf(self):
|
||
|
x = np.linspace(-20, 20)
|
||
|
y = stats.logistic.cdf(x)
|
||
|
xx = stats.logistic.ppf(y)
|
||
|
assert_allclose(x, xx)
|
||
|
|
||
|
def test_sf_isf(self):
|
||
|
x = np.linspace(-20, 20)
|
||
|
y = stats.logistic.sf(x)
|
||
|
xx = stats.logistic.isf(y)
|
||
|
assert_allclose(x, xx)
|
||
|
|
||
|
def test_extreme_values(self):
|
||
|
# p is chosen so that 1 - (1 - p) == p in double precision
|
||
|
p = 9.992007221626409e-16
|
||
|
desired = 34.53957599234088
|
||
|
assert_allclose(stats.logistic.ppf(1 - p), desired)
|
||
|
assert_allclose(stats.logistic.isf(p), desired)
|
||
|
|
||
|
def test_logpdf_basic(self):
|
||
|
logp = stats.logistic.logpdf([-15, 0, 10])
|
||
|
# Expected values computed with mpmath with 50 digits of precision.
|
||
|
expected = [-15.000000611804547,
|
||
|
-1.3862943611198906,
|
||
|
-10.000090797798434]
|
||
|
assert_allclose(logp, expected, rtol=1e-13)
|
||
|
|
||
|
def test_logpdf_extreme_values(self):
|
||
|
logp = stats.logistic.logpdf([800, -800])
|
||
|
# For such large arguments, logpdf(x) = -abs(x) when computed
|
||
|
# with 64 bit floating point.
|
||
|
assert_equal(logp, [-800, -800])
|
||
|
|
||
|
@pytest.mark.parametrize("loc_rvs,scale_rvs", [(0.4484955, 0.10216821),
|
||
|
(0.62918191, 0.74367064)])
|
||
|
def test_fit(self, loc_rvs, scale_rvs):
|
||
|
data = stats.logistic.rvs(size=100, loc=loc_rvs, scale=scale_rvs)
|
||
|
|
||
|
# test that result of fit method is the same as optimization
|
||
|
def func(input, data):
|
||
|
a, b = input
|
||
|
n = len(data)
|
||
|
x1 = np.sum(np.exp((data - a) / b) /
|
||
|
(1 + np.exp((data - a) / b))) - n / 2
|
||
|
x2 = np.sum(((data - a) / b) *
|
||
|
((np.exp((data - a) / b) - 1) /
|
||
|
(np.exp((data - a) / b) + 1))) - n
|
||
|
return x1, x2
|
||
|
|
||
|
expected_solution = root(func, stats.logistic._fitstart(data), args=(
|
||
|
data,)).x
|
||
|
fit_method = stats.logistic.fit(data)
|
||
|
|
||
|
# other than computational variances, the fit method and the solution
|
||
|
# to this system of equations are equal
|
||
|
assert_allclose(fit_method, expected_solution, atol=1e-30)
|
||
|
|
||
|
def test_fit_comp_optimizer(self):
|
||
|
data = stats.logistic.rvs(size=100, loc=0.5, scale=2)
|
||
|
_assert_less_or_close_loglike(stats.logistic, data)
|
||
|
_assert_less_or_close_loglike(stats.logistic, data, floc=1)
|
||
|
_assert_less_or_close_loglike(stats.logistic, data, fscale=1)
|
||
|
|
||
|
@pytest.mark.parametrize('testlogcdf', [True, False])
|
||
|
def test_logcdfsf_tails(self, testlogcdf):
|
||
|
# Test either logcdf or logsf. By symmetry, we can use the same
|
||
|
# expected values for both by switching the sign of x for logsf.
|
||
|
x = np.array([-10000, -800, 17, 50, 500])
|
||
|
if testlogcdf:
|
||
|
y = stats.logistic.logcdf(x)
|
||
|
else:
|
||
|
y = stats.logistic.logsf(-x)
|
||
|
# The expected values were computed with mpmath.
|
||
|
expected = [-10000.0, -800.0, -4.139937633089748e-08,
|
||
|
-1.9287498479639178e-22, -7.124576406741286e-218]
|
||
|
assert_allclose(y, expected, rtol=2e-15)
|
||
|
|
||
|
def test_fit_gh_18176(self):
|
||
|
# logistic.fit returned `scale < 0` for this data. Check that this has
|
||
|
# been fixed.
|
||
|
data = np.array([-459, 37, 43, 45, 45, 48, 54, 55, 58]
|
||
|
+ [59] * 3 + [61] * 9)
|
||
|
# If scale were negative, NLLF would be infinite, so this would fail
|
||
|
_assert_less_or_close_loglike(stats.logistic, data)
|
||
|
|
||
|
|
||
|
class TestLogser:
|
||
|
def setup_method(self):
|
||
|
np.random.seed(1234)
|
||
|
|
||
|
def test_rvs(self):
|
||
|
vals = stats.logser.rvs(0.75, size=(2, 50))
|
||
|
assert_(numpy.all(vals >= 1))
|
||
|
assert_(numpy.shape(vals) == (2, 50))
|
||
|
assert_(vals.dtype.char in typecodes['AllInteger'])
|
||
|
val = stats.logser.rvs(0.75)
|
||
|
assert_(isinstance(val, int))
|
||
|
val = stats.logser(0.75).rvs(3)
|
||
|
assert_(isinstance(val, numpy.ndarray))
|
||
|
assert_(val.dtype.char in typecodes['AllInteger'])
|
||
|
|
||
|
def test_pmf_small_p(self):
|
||
|
m = stats.logser.pmf(4, 1e-20)
|
||
|
# The expected value was computed using mpmath:
|
||
|
# >>> import mpmath
|
||
|
# >>> mpmath.mp.dps = 64
|
||
|
# >>> k = 4
|
||
|
# >>> p = mpmath.mpf('1e-20')
|
||
|
# >>> float(-(p**k)/k/mpmath.log(1-p))
|
||
|
# 2.5e-61
|
||
|
# It is also clear from noticing that for very small p,
|
||
|
# log(1-p) is approximately -p, and the formula becomes
|
||
|
# p**(k-1) / k
|
||
|
assert_allclose(m, 2.5e-61)
|
||
|
|
||
|
def test_mean_small_p(self):
|
||
|
m = stats.logser.mean(1e-8)
|
||
|
# The expected mean was computed using mpmath:
|
||
|
# >>> import mpmath
|
||
|
# >>> mpmath.dps = 60
|
||
|
# >>> p = mpmath.mpf('1e-8')
|
||
|
# >>> float(-p / ((1 - p)*mpmath.log(1 - p)))
|
||
|
# 1.000000005
|
||
|
assert_allclose(m, 1.000000005)
|
||
|
|
||
|
|
||
|
class TestGumbel_r_l:
|
||
|
@pytest.fixture(scope='function')
|
||
|
def rng(self):
|
||
|
return np.random.default_rng(1234)
|
||
|
|
||
|
@pytest.mark.parametrize("dist", [stats.gumbel_r, stats.gumbel_l])
|
||
|
@pytest.mark.parametrize("loc_rvs", [-1, 0, 1])
|
||
|
@pytest.mark.parametrize("scale_rvs", [.1, 1, 5])
|
||
|
@pytest.mark.parametrize('fix_loc, fix_scale',
|
||
|
([True, False], [False, True]))
|
||
|
def test_fit_comp_optimizer(self, dist, loc_rvs, scale_rvs,
|
||
|
fix_loc, fix_scale, rng):
|
||
|
data = dist.rvs(size=100, loc=loc_rvs, scale=scale_rvs,
|
||
|
random_state=rng)
|
||
|
|
||
|
kwds = dict()
|
||
|
# the fixed location and scales are arbitrarily modified to not be
|
||
|
# close to the true value.
|
||
|
if fix_loc:
|
||
|
kwds['floc'] = loc_rvs * 2
|
||
|
if fix_scale:
|
||
|
kwds['fscale'] = scale_rvs * 2
|
||
|
|
||
|
# test that the gumbel_* fit method is better than super method
|
||
|
_assert_less_or_close_loglike(dist, data, **kwds)
|
||
|
|
||
|
@pytest.mark.parametrize("dist, sgn", [(stats.gumbel_r, 1),
|
||
|
(stats.gumbel_l, -1)])
|
||
|
def test_fit(self, dist, sgn):
|
||
|
z = sgn*np.array([3, 3, 3, 3, 3, 3, 3, 3.00000001])
|
||
|
loc, scale = dist.fit(z)
|
||
|
# The expected values were computed with mpmath with 60 digits
|
||
|
# of precision.
|
||
|
assert_allclose(loc, sgn*3.0000000001667906)
|
||
|
assert_allclose(scale, 1.2495222465145514e-09, rtol=1e-6)
|
||
|
|
||
|
|
||
|
class TestPareto:
|
||
|
def test_stats(self):
|
||
|
# Check the stats() method with some simple values. Also check
|
||
|
# that the calculations do not trigger RuntimeWarnings.
|
||
|
with warnings.catch_warnings():
|
||
|
warnings.simplefilter("error", RuntimeWarning)
|
||
|
|
||
|
m, v, s, k = stats.pareto.stats(0.5, moments='mvsk')
|
||
|
assert_equal(m, np.inf)
|
||
|
assert_equal(v, np.inf)
|
||
|
assert_equal(s, np.nan)
|
||
|
assert_equal(k, np.nan)
|
||
|
|
||
|
m, v, s, k = stats.pareto.stats(1.0, moments='mvsk')
|
||
|
assert_equal(m, np.inf)
|
||
|
assert_equal(v, np.inf)
|
||
|
assert_equal(s, np.nan)
|
||
|
assert_equal(k, np.nan)
|
||
|
|
||
|
m, v, s, k = stats.pareto.stats(1.5, moments='mvsk')
|
||
|
assert_equal(m, 3.0)
|
||
|
assert_equal(v, np.inf)
|
||
|
assert_equal(s, np.nan)
|
||
|
assert_equal(k, np.nan)
|
||
|
|
||
|
m, v, s, k = stats.pareto.stats(2.0, moments='mvsk')
|
||
|
assert_equal(m, 2.0)
|
||
|
assert_equal(v, np.inf)
|
||
|
assert_equal(s, np.nan)
|
||
|
assert_equal(k, np.nan)
|
||
|
|
||
|
m, v, s, k = stats.pareto.stats(2.5, moments='mvsk')
|
||
|
assert_allclose(m, 2.5 / 1.5)
|
||
|
assert_allclose(v, 2.5 / (1.5*1.5*0.5))
|
||
|
assert_equal(s, np.nan)
|
||
|
assert_equal(k, np.nan)
|
||
|
|
||
|
m, v, s, k = stats.pareto.stats(3.0, moments='mvsk')
|
||
|
assert_allclose(m, 1.5)
|
||
|
assert_allclose(v, 0.75)
|
||
|
assert_equal(s, np.nan)
|
||
|
assert_equal(k, np.nan)
|
||
|
|
||
|
m, v, s, k = stats.pareto.stats(3.5, moments='mvsk')
|
||
|
assert_allclose(m, 3.5 / 2.5)
|
||
|
assert_allclose(v, 3.5 / (2.5*2.5*1.5))
|
||
|
assert_allclose(s, (2*4.5/0.5)*np.sqrt(1.5/3.5))
|
||
|
assert_equal(k, np.nan)
|
||
|
|
||
|
m, v, s, k = stats.pareto.stats(4.0, moments='mvsk')
|
||
|
assert_allclose(m, 4.0 / 3.0)
|
||
|
assert_allclose(v, 4.0 / 18.0)
|
||
|
assert_allclose(s, 2*(1+4.0)/(4.0-3) * np.sqrt((4.0-2)/4.0))
|
||
|
assert_equal(k, np.nan)
|
||
|
|
||
|
m, v, s, k = stats.pareto.stats(4.5, moments='mvsk')
|
||
|
assert_allclose(m, 4.5 / 3.5)
|
||
|
assert_allclose(v, 4.5 / (3.5*3.5*2.5))
|
||
|
assert_allclose(s, (2*5.5/1.5) * np.sqrt(2.5/4.5))
|
||
|
assert_allclose(k, 6*(4.5**3 + 4.5**2 - 6*4.5 - 2)/(4.5*1.5*0.5))
|
||
|
|
||
|
def test_sf(self):
|
||
|
x = 1e9
|
||
|
b = 2
|
||
|
scale = 1.5
|
||
|
p = stats.pareto.sf(x, b, loc=0, scale=scale)
|
||
|
expected = (scale/x)**b # 2.25e-18
|
||
|
assert_allclose(p, expected)
|
||
|
|
||
|
@pytest.fixture(scope='function')
|
||
|
def rng(self):
|
||
|
return np.random.default_rng(1234)
|
||
|
|
||
|
@pytest.mark.filterwarnings("ignore:invalid value encountered in "
|
||
|
"double_scalars")
|
||
|
@pytest.mark.parametrize("rvs_shape", [1, 2])
|
||
|
@pytest.mark.parametrize("rvs_loc", [0, 2])
|
||
|
@pytest.mark.parametrize("rvs_scale", [1, 5])
|
||
|
def test_fit(self, rvs_shape, rvs_loc, rvs_scale, rng):
|
||
|
data = stats.pareto.rvs(size=100, b=rvs_shape, scale=rvs_scale,
|
||
|
loc=rvs_loc, random_state=rng)
|
||
|
|
||
|
# shape can still be fixed with multiple names
|
||
|
shape_mle_analytical1 = stats.pareto.fit(data, floc=0, f0=1.04)[0]
|
||
|
shape_mle_analytical2 = stats.pareto.fit(data, floc=0, fix_b=1.04)[0]
|
||
|
shape_mle_analytical3 = stats.pareto.fit(data, floc=0, fb=1.04)[0]
|
||
|
assert (shape_mle_analytical1 == shape_mle_analytical2 ==
|
||
|
shape_mle_analytical3 == 1.04)
|
||
|
|
||
|
# data can be shifted with changes to `loc`
|
||
|
data = stats.pareto.rvs(size=100, b=rvs_shape, scale=rvs_scale,
|
||
|
loc=(rvs_loc + 2), random_state=rng)
|
||
|
shape_mle_a, loc_mle_a, scale_mle_a = stats.pareto.fit(data, floc=2)
|
||
|
assert_equal(scale_mle_a + 2, data.min())
|
||
|
|
||
|
data_shift = data - 2
|
||
|
ndata = data_shift.shape[0]
|
||
|
assert_equal(shape_mle_a,
|
||
|
ndata / np.sum(np.log(data_shift/data_shift.min())))
|
||
|
assert_equal(loc_mle_a, 2)
|
||
|
|
||
|
@pytest.mark.parametrize("rvs_shape", [.1, 2])
|
||
|
@pytest.mark.parametrize("rvs_loc", [0, 2])
|
||
|
@pytest.mark.parametrize("rvs_scale", [1, 5])
|
||
|
@pytest.mark.parametrize('fix_shape, fix_loc, fix_scale',
|
||
|
[p for p in product([True, False], repeat=3)
|
||
|
if False in p])
|
||
|
@np.errstate(invalid="ignore")
|
||
|
def test_fit_MLE_comp_optimizer(self, rvs_shape, rvs_loc, rvs_scale,
|
||
|
fix_shape, fix_loc, fix_scale, rng):
|
||
|
data = stats.pareto.rvs(size=100, b=rvs_shape, scale=rvs_scale,
|
||
|
loc=rvs_loc, random_state=rng)
|
||
|
|
||
|
kwds = {}
|
||
|
if fix_shape:
|
||
|
kwds['f0'] = rvs_shape
|
||
|
if fix_loc:
|
||
|
kwds['floc'] = rvs_loc
|
||
|
if fix_scale:
|
||
|
kwds['fscale'] = rvs_scale
|
||
|
|
||
|
_assert_less_or_close_loglike(stats.pareto, data, **kwds)
|
||
|
|
||
|
@np.errstate(invalid="ignore")
|
||
|
def test_fit_known_bad_seed(self):
|
||
|
# Tests a known seed and set of parameters that would produce a result
|
||
|
# would violate the support of Pareto if the fit method did not check
|
||
|
# the constraint `fscale + floc < min(data)`.
|
||
|
shape, location, scale = 1, 0, 1
|
||
|
data = stats.pareto.rvs(shape, location, scale, size=100,
|
||
|
random_state=np.random.default_rng(2535619))
|
||
|
_assert_less_or_close_loglike(stats.pareto, data)
|
||
|
|
||
|
def test_fit_warnings(self):
|
||
|
assert_fit_warnings(stats.pareto)
|
||
|
# `floc` that causes invalid negative data
|
||
|
assert_raises(FitDataError, stats.pareto.fit, [1, 2, 3], floc=2)
|
||
|
# `floc` and `fscale` combination causes invalid data
|
||
|
assert_raises(FitDataError, stats.pareto.fit, [5, 2, 3], floc=1,
|
||
|
fscale=3)
|
||
|
|
||
|
def test_negative_data(self, rng):
|
||
|
data = stats.pareto.rvs(loc=-130, b=1, size=100, random_state=rng)
|
||
|
assert_array_less(data, 0)
|
||
|
# The purpose of this test is to make sure that no runtime warnings are
|
||
|
# raised for all negative data, not the output of the fit method. Other
|
||
|
# methods test the output but have to silence warnings from the super
|
||
|
# method.
|
||
|
_ = stats.pareto.fit(data)
|
||
|
|
||
|
|
||
|
class TestGenpareto:
|
||
|
def test_ab(self):
|
||
|
# c >= 0: a, b = [0, inf]
|
||
|
for c in [1., 0.]:
|
||
|
c = np.asarray(c)
|
||
|
a, b = stats.genpareto._get_support(c)
|
||
|
assert_equal(a, 0.)
|
||
|
assert_(np.isposinf(b))
|
||
|
|
||
|
# c < 0: a=0, b=1/|c|
|
||
|
c = np.asarray(-2.)
|
||
|
a, b = stats.genpareto._get_support(c)
|
||
|
assert_allclose([a, b], [0., 0.5])
|
||
|
|
||
|
def test_c0(self):
|
||
|
# with c=0, genpareto reduces to the exponential distribution
|
||
|
# rv = stats.genpareto(c=0.)
|
||
|
rv = stats.genpareto(c=0.)
|
||
|
x = np.linspace(0, 10., 30)
|
||
|
assert_allclose(rv.pdf(x), stats.expon.pdf(x))
|
||
|
assert_allclose(rv.cdf(x), stats.expon.cdf(x))
|
||
|
assert_allclose(rv.sf(x), stats.expon.sf(x))
|
||
|
|
||
|
q = np.linspace(0., 1., 10)
|
||
|
assert_allclose(rv.ppf(q), stats.expon.ppf(q))
|
||
|
|
||
|
def test_cm1(self):
|
||
|
# with c=-1, genpareto reduces to the uniform distr on [0, 1]
|
||
|
rv = stats.genpareto(c=-1.)
|
||
|
x = np.linspace(0, 10., 30)
|
||
|
assert_allclose(rv.pdf(x), stats.uniform.pdf(x))
|
||
|
assert_allclose(rv.cdf(x), stats.uniform.cdf(x))
|
||
|
assert_allclose(rv.sf(x), stats.uniform.sf(x))
|
||
|
|
||
|
q = np.linspace(0., 1., 10)
|
||
|
assert_allclose(rv.ppf(q), stats.uniform.ppf(q))
|
||
|
|
||
|
# logpdf(1., c=-1) should be zero
|
||
|
assert_allclose(rv.logpdf(1), 0)
|
||
|
|
||
|
def test_x_inf(self):
|
||
|
# make sure x=inf is handled gracefully
|
||
|
rv = stats.genpareto(c=0.1)
|
||
|
assert_allclose([rv.pdf(np.inf), rv.cdf(np.inf)], [0., 1.])
|
||
|
assert_(np.isneginf(rv.logpdf(np.inf)))
|
||
|
|
||
|
rv = stats.genpareto(c=0.)
|
||
|
assert_allclose([rv.pdf(np.inf), rv.cdf(np.inf)], [0., 1.])
|
||
|
assert_(np.isneginf(rv.logpdf(np.inf)))
|
||
|
|
||
|
rv = stats.genpareto(c=-1.)
|
||
|
assert_allclose([rv.pdf(np.inf), rv.cdf(np.inf)], [0., 1.])
|
||
|
assert_(np.isneginf(rv.logpdf(np.inf)))
|
||
|
|
||
|
def test_c_continuity(self):
|
||
|
# pdf is continuous at c=0, -1
|
||
|
x = np.linspace(0, 10, 30)
|
||
|
for c in [0, -1]:
|
||
|
pdf0 = stats.genpareto.pdf(x, c)
|
||
|
for dc in [1e-14, -1e-14]:
|
||
|
pdfc = stats.genpareto.pdf(x, c + dc)
|
||
|
assert_allclose(pdf0, pdfc, atol=1e-12)
|
||
|
|
||
|
cdf0 = stats.genpareto.cdf(x, c)
|
||
|
for dc in [1e-14, 1e-14]:
|
||
|
cdfc = stats.genpareto.cdf(x, c + dc)
|
||
|
assert_allclose(cdf0, cdfc, atol=1e-12)
|
||
|
|
||
|
def test_c_continuity_ppf(self):
|
||
|
q = np.r_[np.logspace(1e-12, 0.01, base=0.1),
|
||
|
np.linspace(0.01, 1, 30, endpoint=False),
|
||
|
1. - np.logspace(1e-12, 0.01, base=0.1)]
|
||
|
for c in [0., -1.]:
|
||
|
ppf0 = stats.genpareto.ppf(q, c)
|
||
|
for dc in [1e-14, -1e-14]:
|
||
|
ppfc = stats.genpareto.ppf(q, c + dc)
|
||
|
assert_allclose(ppf0, ppfc, atol=1e-12)
|
||
|
|
||
|
def test_c_continuity_isf(self):
|
||
|
q = np.r_[np.logspace(1e-12, 0.01, base=0.1),
|
||
|
np.linspace(0.01, 1, 30, endpoint=False),
|
||
|
1. - np.logspace(1e-12, 0.01, base=0.1)]
|
||
|
for c in [0., -1.]:
|
||
|
isf0 = stats.genpareto.isf(q, c)
|
||
|
for dc in [1e-14, -1e-14]:
|
||
|
isfc = stats.genpareto.isf(q, c + dc)
|
||
|
assert_allclose(isf0, isfc, atol=1e-12)
|
||
|
|
||
|
def test_cdf_ppf_roundtrip(self):
|
||
|
# this should pass with machine precision. hat tip @pbrod
|
||
|
q = np.r_[np.logspace(1e-12, 0.01, base=0.1),
|
||
|
np.linspace(0.01, 1, 30, endpoint=False),
|
||
|
1. - np.logspace(1e-12, 0.01, base=0.1)]
|
||
|
for c in [1e-8, -1e-18, 1e-15, -1e-15]:
|
||
|
assert_allclose(stats.genpareto.cdf(stats.genpareto.ppf(q, c), c),
|
||
|
q, atol=1e-15)
|
||
|
|
||
|
def test_logsf(self):
|
||
|
logp = stats.genpareto.logsf(1e10, .01, 0, 1)
|
||
|
assert_allclose(logp, -1842.0680753952365)
|
||
|
|
||
|
# Values in 'expected_stats' are
|
||
|
# [mean, variance, skewness, excess kurtosis].
|
||
|
@pytest.mark.parametrize(
|
||
|
'c, expected_stats',
|
||
|
[(0, [1, 1, 2, 6]),
|
||
|
(1/4, [4/3, 32/9, 10/np.sqrt(2), np.nan]),
|
||
|
(1/9, [9/8, (81/64)*(9/7), (10/9)*np.sqrt(7), 754/45]),
|
||
|
(-1, [1/2, 1/12, 0, -6/5])])
|
||
|
def test_stats(self, c, expected_stats):
|
||
|
result = stats.genpareto.stats(c, moments='mvsk')
|
||
|
assert_allclose(result, expected_stats, rtol=1e-13, atol=1e-15)
|
||
|
|
||
|
def test_var(self):
|
||
|
# Regression test for gh-11168.
|
||
|
v = stats.genpareto.var(1e-8)
|
||
|
assert_allclose(v, 1.000000040000001, rtol=1e-13)
|
||
|
|
||
|
|
||
|
class TestPearson3:
|
||
|
def setup_method(self):
|
||
|
np.random.seed(1234)
|
||
|
|
||
|
def test_rvs(self):
|
||
|
vals = stats.pearson3.rvs(0.1, size=(2, 50))
|
||
|
assert_(numpy.shape(vals) == (2, 50))
|
||
|
assert_(vals.dtype.char in typecodes['AllFloat'])
|
||
|
val = stats.pearson3.rvs(0.5)
|
||
|
assert_(isinstance(val, float))
|
||
|
val = stats.pearson3(0.5).rvs(3)
|
||
|
assert_(isinstance(val, numpy.ndarray))
|
||
|
assert_(val.dtype.char in typecodes['AllFloat'])
|
||
|
assert_(len(val) == 3)
|
||
|
|
||
|
def test_pdf(self):
|
||
|
vals = stats.pearson3.pdf(2, [0.0, 0.1, 0.2])
|
||
|
assert_allclose(vals, np.array([0.05399097, 0.05555481, 0.05670246]),
|
||
|
atol=1e-6)
|
||
|
vals = stats.pearson3.pdf(-3, 0.1)
|
||
|
assert_allclose(vals, np.array([0.00313791]), atol=1e-6)
|
||
|
vals = stats.pearson3.pdf([-3, -2, -1, 0, 1], 0.1)
|
||
|
assert_allclose(vals, np.array([0.00313791, 0.05192304, 0.25028092,
|
||
|
0.39885918, 0.23413173]), atol=1e-6)
|
||
|
|
||
|
def test_cdf(self):
|
||
|
vals = stats.pearson3.cdf(2, [0.0, 0.1, 0.2])
|
||
|
assert_allclose(vals, np.array([0.97724987, 0.97462004, 0.97213626]),
|
||
|
atol=1e-6)
|
||
|
vals = stats.pearson3.cdf(-3, 0.1)
|
||
|
assert_allclose(vals, [0.00082256], atol=1e-6)
|
||
|
vals = stats.pearson3.cdf([-3, -2, -1, 0, 1], 0.1)
|
||
|
assert_allclose(vals, [8.22563821e-04, 1.99860448e-02, 1.58550710e-01,
|
||
|
5.06649130e-01, 8.41442111e-01], atol=1e-6)
|
||
|
|
||
|
def test_negative_cdf_bug_11186(self):
|
||
|
# incorrect CDFs for negative skews in gh-11186; fixed in gh-12640
|
||
|
# Also check vectorization w/ negative, zero, and positive skews
|
||
|
skews = [-3, -1, 0, 0.5]
|
||
|
x_eval = 0.5
|
||
|
neg_inf = -30 # avoid RuntimeWarning caused by np.log(0)
|
||
|
cdfs = stats.pearson3.cdf(x_eval, skews)
|
||
|
int_pdfs = [quad(stats.pearson3(skew).pdf, neg_inf, x_eval)[0]
|
||
|
for skew in skews]
|
||
|
assert_allclose(cdfs, int_pdfs)
|
||
|
|
||
|
def test_return_array_bug_11746(self):
|
||
|
# pearson3.moment was returning size 0 or 1 array instead of float
|
||
|
# The first moment is equal to the loc, which defaults to zero
|
||
|
moment = stats.pearson3.moment(1, 2)
|
||
|
assert_equal(moment, 0)
|
||
|
assert isinstance(moment, np.number)
|
||
|
|
||
|
moment = stats.pearson3.moment(1, 0.000001)
|
||
|
assert_equal(moment, 0)
|
||
|
assert isinstance(moment, np.number)
|
||
|
|
||
|
def test_ppf_bug_17050(self):
|
||
|
# incorrect PPF for negative skews were reported in gh-17050
|
||
|
# Check that this is fixed (even in the array case)
|
||
|
skews = [-3, -1, 0, 0.5]
|
||
|
x_eval = 0.5
|
||
|
res = stats.pearson3.ppf(stats.pearson3.cdf(x_eval, skews), skews)
|
||
|
assert_allclose(res, x_eval)
|
||
|
|
||
|
# Negation of the skew flips the distribution about the origin, so
|
||
|
# the following should hold
|
||
|
skew = np.array([[-0.5], [1.5]])
|
||
|
x = np.linspace(-2, 2)
|
||
|
assert_allclose(stats.pearson3.pdf(x, skew),
|
||
|
stats.pearson3.pdf(-x, -skew))
|
||
|
assert_allclose(stats.pearson3.cdf(x, skew),
|
||
|
stats.pearson3.sf(-x, -skew))
|
||
|
assert_allclose(stats.pearson3.ppf(x, skew),
|
||
|
-stats.pearson3.isf(x, -skew))
|
||
|
|
||
|
def test_sf(self):
|
||
|
# reference values were computed via the reference distribution, e.g.
|
||
|
# mp.dps = 50; Pearson3(skew=skew).sf(x). Check positive, negative,
|
||
|
# and zero skew due to branching.
|
||
|
skew = [0.1, 0.5, 1.0, -0.1]
|
||
|
x = [5.0, 10.0, 50.0, 8.0]
|
||
|
ref = [1.64721926440872e-06, 8.271911573556123e-11,
|
||
|
1.3149506021756343e-40, 2.763057937820296e-21]
|
||
|
assert_allclose(stats.pearson3.sf(x, skew), ref, rtol=2e-14)
|
||
|
assert_allclose(stats.pearson3.sf(x, 0), stats.norm.sf(x), rtol=2e-14)
|
||
|
|
||
|
|
||
|
class TestKappa4:
|
||
|
def test_cdf_genpareto(self):
|
||
|
# h = 1 and k != 0 is generalized Pareto
|
||
|
x = [0.0, 0.1, 0.2, 0.5]
|
||
|
h = 1.0
|
||
|
for k in [-1.9, -1.0, -0.5, -0.2, -0.1, 0.1, 0.2, 0.5, 1.0,
|
||
|
1.9]:
|
||
|
vals = stats.kappa4.cdf(x, h, k)
|
||
|
# shape parameter is opposite what is expected
|
||
|
vals_comp = stats.genpareto.cdf(x, -k)
|
||
|
assert_allclose(vals, vals_comp)
|
||
|
|
||
|
def test_cdf_genextreme(self):
|
||
|
# h = 0 and k != 0 is generalized extreme value
|
||
|
x = np.linspace(-5, 5, 10)
|
||
|
h = 0.0
|
||
|
k = np.linspace(-3, 3, 10)
|
||
|
vals = stats.kappa4.cdf(x, h, k)
|
||
|
vals_comp = stats.genextreme.cdf(x, k)
|
||
|
assert_allclose(vals, vals_comp)
|
||
|
|
||
|
def test_cdf_expon(self):
|
||
|
# h = 1 and k = 0 is exponential
|
||
|
x = np.linspace(0, 10, 10)
|
||
|
h = 1.0
|
||
|
k = 0.0
|
||
|
vals = stats.kappa4.cdf(x, h, k)
|
||
|
vals_comp = stats.expon.cdf(x)
|
||
|
assert_allclose(vals, vals_comp)
|
||
|
|
||
|
def test_cdf_gumbel_r(self):
|
||
|
# h = 0 and k = 0 is gumbel_r
|
||
|
x = np.linspace(-5, 5, 10)
|
||
|
h = 0.0
|
||
|
k = 0.0
|
||
|
vals = stats.kappa4.cdf(x, h, k)
|
||
|
vals_comp = stats.gumbel_r.cdf(x)
|
||
|
assert_allclose(vals, vals_comp)
|
||
|
|
||
|
def test_cdf_logistic(self):
|
||
|
# h = -1 and k = 0 is logistic
|
||
|
x = np.linspace(-5, 5, 10)
|
||
|
h = -1.0
|
||
|
k = 0.0
|
||
|
vals = stats.kappa4.cdf(x, h, k)
|
||
|
vals_comp = stats.logistic.cdf(x)
|
||
|
assert_allclose(vals, vals_comp)
|
||
|
|
||
|
def test_cdf_uniform(self):
|
||
|
# h = 1 and k = 1 is uniform
|
||
|
x = np.linspace(-5, 5, 10)
|
||
|
h = 1.0
|
||
|
k = 1.0
|
||
|
vals = stats.kappa4.cdf(x, h, k)
|
||
|
vals_comp = stats.uniform.cdf(x)
|
||
|
assert_allclose(vals, vals_comp)
|
||
|
|
||
|
def test_integers_ctor(self):
|
||
|
# regression test for gh-7416: _argcheck fails for integer h and k
|
||
|
# in numpy 1.12
|
||
|
stats.kappa4(1, 2)
|
||
|
|
||
|
|
||
|
class TestPoisson:
|
||
|
def setup_method(self):
|
||
|
np.random.seed(1234)
|
||
|
|
||
|
def test_pmf_basic(self):
|
||
|
# Basic case
|
||
|
ln2 = np.log(2)
|
||
|
vals = stats.poisson.pmf([0, 1, 2], ln2)
|
||
|
expected = [0.5, ln2/2, ln2**2/4]
|
||
|
assert_allclose(vals, expected)
|
||
|
|
||
|
def test_mu0(self):
|
||
|
# Edge case: mu=0
|
||
|
vals = stats.poisson.pmf([0, 1, 2], 0)
|
||
|
expected = [1, 0, 0]
|
||
|
assert_array_equal(vals, expected)
|
||
|
|
||
|
interval = stats.poisson.interval(0.95, 0)
|
||
|
assert_equal(interval, (0, 0))
|
||
|
|
||
|
def test_rvs(self):
|
||
|
vals = stats.poisson.rvs(0.5, size=(2, 50))
|
||
|
assert_(numpy.all(vals >= 0))
|
||
|
assert_(numpy.shape(vals) == (2, 50))
|
||
|
assert_(vals.dtype.char in typecodes['AllInteger'])
|
||
|
val = stats.poisson.rvs(0.5)
|
||
|
assert_(isinstance(val, int))
|
||
|
val = stats.poisson(0.5).rvs(3)
|
||
|
assert_(isinstance(val, numpy.ndarray))
|
||
|
assert_(val.dtype.char in typecodes['AllInteger'])
|
||
|
|
||
|
def test_stats(self):
|
||
|
mu = 16.0
|
||
|
result = stats.poisson.stats(mu, moments='mvsk')
|
||
|
assert_allclose(result, [mu, mu, np.sqrt(1.0/mu), 1.0/mu])
|
||
|
|
||
|
mu = np.array([0.0, 1.0, 2.0])
|
||
|
result = stats.poisson.stats(mu, moments='mvsk')
|
||
|
expected = (mu, mu, [np.inf, 1, 1/np.sqrt(2)], [np.inf, 1, 0.5])
|
||
|
assert_allclose(result, expected)
|
||
|
|
||
|
|
||
|
class TestKSTwo:
|
||
|
def setup_method(self):
|
||
|
np.random.seed(1234)
|
||
|
|
||
|
def test_cdf(self):
|
||
|
for n in [1, 2, 3, 10, 100, 1000]:
|
||
|
# Test x-values:
|
||
|
# 0, 1/2n, where the cdf should be 0
|
||
|
# 1/n, where the cdf should be n!/n^n
|
||
|
# 0.5, where the cdf should match ksone.cdf
|
||
|
# 1-1/n, where cdf = 1-2/n^n
|
||
|
# 1, where cdf == 1
|
||
|
# (E.g. Exact values given by Eqn 1 in Simard / L'Ecuyer)
|
||
|
x = np.array([0, 0.5/n, 1/n, 0.5, 1-1.0/n, 1])
|
||
|
v1 = (1.0/n)**n
|
||
|
lg = scipy.special.gammaln(n+1)
|
||
|
elg = (np.exp(lg) if v1 != 0 else 0)
|
||
|
expected = np.array([0, 0, v1 * elg,
|
||
|
1 - 2*stats.ksone.sf(0.5, n),
|
||
|
max(1 - 2*v1, 0.0),
|
||
|
1.0])
|
||
|
vals_cdf = stats.kstwo.cdf(x, n)
|
||
|
assert_allclose(vals_cdf, expected)
|
||
|
|
||
|
def test_sf(self):
|
||
|
x = np.linspace(0, 1, 11)
|
||
|
for n in [1, 2, 3, 10, 100, 1000]:
|
||
|
# Same x values as in test_cdf, and use sf = 1 - cdf
|
||
|
x = np.array([0, 0.5/n, 1/n, 0.5, 1-1.0/n, 1])
|
||
|
v1 = (1.0/n)**n
|
||
|
lg = scipy.special.gammaln(n+1)
|
||
|
elg = (np.exp(lg) if v1 != 0 else 0)
|
||
|
expected = np.array([1.0, 1.0,
|
||
|
1 - v1 * elg,
|
||
|
2*stats.ksone.sf(0.5, n),
|
||
|
min(2*v1, 1.0), 0])
|
||
|
vals_sf = stats.kstwo.sf(x, n)
|
||
|
assert_allclose(vals_sf, expected)
|
||
|
|
||
|
def test_cdf_sqrtn(self):
|
||
|
# For fixed a, cdf(a/sqrt(n), n) -> kstwobign(a) as n->infinity
|
||
|
# cdf(a/sqrt(n), n) is an increasing function of n (and a)
|
||
|
# Check that the function is indeed increasing (allowing for some
|
||
|
# small floating point and algorithm differences.)
|
||
|
x = np.linspace(0, 2, 11)[1:]
|
||
|
ns = [50, 100, 200, 400, 1000, 2000]
|
||
|
for _x in x:
|
||
|
xn = _x / np.sqrt(ns)
|
||
|
probs = stats.kstwo.cdf(xn, ns)
|
||
|
diffs = np.diff(probs)
|
||
|
assert_array_less(diffs, 1e-8)
|
||
|
|
||
|
def test_cdf_sf(self):
|
||
|
x = np.linspace(0, 1, 11)
|
||
|
for n in [1, 2, 3, 10, 100, 1000]:
|
||
|
vals_cdf = stats.kstwo.cdf(x, n)
|
||
|
vals_sf = stats.kstwo.sf(x, n)
|
||
|
assert_array_almost_equal(vals_cdf, 1 - vals_sf)
|
||
|
|
||
|
def test_cdf_sf_sqrtn(self):
|
||
|
x = np.linspace(0, 1, 11)
|
||
|
for n in [1, 2, 3, 10, 100, 1000]:
|
||
|
xn = x / np.sqrt(n)
|
||
|
vals_cdf = stats.kstwo.cdf(xn, n)
|
||
|
vals_sf = stats.kstwo.sf(xn, n)
|
||
|
assert_array_almost_equal(vals_cdf, 1 - vals_sf)
|
||
|
|
||
|
def test_ppf_of_cdf(self):
|
||
|
x = np.linspace(0, 1, 11)
|
||
|
for n in [1, 2, 3, 10, 100, 1000]:
|
||
|
xn = x[x > 0.5/n]
|
||
|
vals_cdf = stats.kstwo.cdf(xn, n)
|
||
|
# CDFs close to 1 are better dealt with using the SF
|
||
|
cond = (0 < vals_cdf) & (vals_cdf < 0.99)
|
||
|
vals = stats.kstwo.ppf(vals_cdf, n)
|
||
|
assert_allclose(vals[cond], xn[cond], rtol=1e-4)
|
||
|
|
||
|
def test_isf_of_sf(self):
|
||
|
x = np.linspace(0, 1, 11)
|
||
|
for n in [1, 2, 3, 10, 100, 1000]:
|
||
|
xn = x[x > 0.5/n]
|
||
|
vals_isf = stats.kstwo.isf(xn, n)
|
||
|
cond = (0 < vals_isf) & (vals_isf < 1.0)
|
||
|
vals = stats.kstwo.sf(vals_isf, n)
|
||
|
assert_allclose(vals[cond], xn[cond], rtol=1e-4)
|
||
|
|
||
|
def test_ppf_of_cdf_sqrtn(self):
|
||
|
x = np.linspace(0, 1, 11)
|
||
|
for n in [1, 2, 3, 10, 100, 1000]:
|
||
|
xn = (x / np.sqrt(n))[x > 0.5/n]
|
||
|
vals_cdf = stats.kstwo.cdf(xn, n)
|
||
|
cond = (0 < vals_cdf) & (vals_cdf < 1.0)
|
||
|
vals = stats.kstwo.ppf(vals_cdf, n)
|
||
|
assert_allclose(vals[cond], xn[cond])
|
||
|
|
||
|
def test_isf_of_sf_sqrtn(self):
|
||
|
x = np.linspace(0, 1, 11)
|
||
|
for n in [1, 2, 3, 10, 100, 1000]:
|
||
|
xn = (x / np.sqrt(n))[x > 0.5/n]
|
||
|
vals_sf = stats.kstwo.sf(xn, n)
|
||
|
# SFs close to 1 are better dealt with using the CDF
|
||
|
cond = (0 < vals_sf) & (vals_sf < 0.95)
|
||
|
vals = stats.kstwo.isf(vals_sf, n)
|
||
|
assert_allclose(vals[cond], xn[cond])
|
||
|
|
||
|
def test_ppf(self):
|
||
|
probs = np.linspace(0, 1, 11)[1:]
|
||
|
for n in [1, 2, 3, 10, 100, 1000]:
|
||
|
xn = stats.kstwo.ppf(probs, n)
|
||
|
vals_cdf = stats.kstwo.cdf(xn, n)
|
||
|
assert_allclose(vals_cdf, probs)
|
||
|
|
||
|
def test_simard_lecuyer_table1(self):
|
||
|
# Compute the cdf for values near the mean of the distribution.
|
||
|
# The mean u ~ log(2)*sqrt(pi/(2n))
|
||
|
# Compute for x in [u/4, u/3, u/2, u, 2u, 3u]
|
||
|
# This is the computation of Table 1 of Simard, R., L'Ecuyer, P. (2011)
|
||
|
# "Computing the Two-Sided Kolmogorov-Smirnov Distribution".
|
||
|
# Except that the values below are not from the published table, but
|
||
|
# were generated using an independent SageMath implementation of
|
||
|
# Durbin's algorithm (with the exponentiation and scaling of
|
||
|
# Marsaglia/Tsang/Wang's version) using 500 bit arithmetic.
|
||
|
# Some of the values in the published table have relative
|
||
|
# errors greater than 1e-4.
|
||
|
ns = [10, 50, 100, 200, 500, 1000]
|
||
|
ratios = np.array([1.0/4, 1.0/3, 1.0/2, 1, 2, 3])
|
||
|
expected = np.array([
|
||
|
[1.92155292e-08, 5.72933228e-05, 2.15233226e-02, 6.31566589e-01,
|
||
|
9.97685592e-01, 9.99999942e-01],
|
||
|
[2.28096224e-09, 1.99142563e-05, 1.42617934e-02, 5.95345542e-01,
|
||
|
9.96177701e-01, 9.99998662e-01],
|
||
|
[1.00201886e-09, 1.32673079e-05, 1.24608594e-02, 5.86163220e-01,
|
||
|
9.95866877e-01, 9.99998240e-01],
|
||
|
[4.93313022e-10, 9.52658029e-06, 1.12123138e-02, 5.79486872e-01,
|
||
|
9.95661824e-01, 9.99997964e-01],
|
||
|
[2.37049293e-10, 6.85002458e-06, 1.01309221e-02, 5.73427224e-01,
|
||
|
9.95491207e-01, 9.99997750e-01],
|
||
|
[1.56990874e-10, 5.71738276e-06, 9.59725430e-03, 5.70322692e-01,
|
||
|
9.95409545e-01, 9.99997657e-01]
|
||
|
])
|
||
|
for idx, n in enumerate(ns):
|
||
|
x = ratios * np.log(2) * np.sqrt(np.pi/2/n)
|
||
|
vals_cdf = stats.kstwo.cdf(x, n)
|
||
|
assert_allclose(vals_cdf, expected[idx], rtol=1e-5)
|
||
|
|
||
|
|
||
|
class TestZipf:
|
||
|
def setup_method(self):
|
||
|
np.random.seed(1234)
|
||
|
|
||
|
def test_rvs(self):
|
||
|
vals = stats.zipf.rvs(1.5, size=(2, 50))
|
||
|
assert_(numpy.all(vals >= 1))
|
||
|
assert_(numpy.shape(vals) == (2, 50))
|
||
|
assert_(vals.dtype.char in typecodes['AllInteger'])
|
||
|
val = stats.zipf.rvs(1.5)
|
||
|
assert_(isinstance(val, int))
|
||
|
val = stats.zipf(1.5).rvs(3)
|
||
|
assert_(isinstance(val, numpy.ndarray))
|
||
|
assert_(val.dtype.char in typecodes['AllInteger'])
|
||
|
|
||
|
def test_moments(self):
|
||
|
# n-th moment is finite iff a > n + 1
|
||
|
m, v = stats.zipf.stats(a=2.8)
|
||
|
assert_(np.isfinite(m))
|
||
|
assert_equal(v, np.inf)
|
||
|
|
||
|
s, k = stats.zipf.stats(a=4.8, moments='sk')
|
||
|
assert_(not np.isfinite([s, k]).all())
|
||
|
|
||
|
|
||
|
class TestDLaplace:
|
||
|
def setup_method(self):
|
||
|
np.random.seed(1234)
|
||
|
|
||
|
def test_rvs(self):
|
||
|
vals = stats.dlaplace.rvs(1.5, size=(2, 50))
|
||
|
assert_(numpy.shape(vals) == (2, 50))
|
||
|
assert_(vals.dtype.char in typecodes['AllInteger'])
|
||
|
val = stats.dlaplace.rvs(1.5)
|
||
|
assert_(isinstance(val, int))
|
||
|
val = stats.dlaplace(1.5).rvs(3)
|
||
|
assert_(isinstance(val, numpy.ndarray))
|
||
|
assert_(val.dtype.char in typecodes['AllInteger'])
|
||
|
assert_(stats.dlaplace.rvs(0.8) is not None)
|
||
|
|
||
|
def test_stats(self):
|
||
|
# compare the explicit formulas w/ direct summation using pmf
|
||
|
a = 1.
|
||
|
dl = stats.dlaplace(a)
|
||
|
m, v, s, k = dl.stats('mvsk')
|
||
|
|
||
|
N = 37
|
||
|
xx = np.arange(-N, N+1)
|
||
|
pp = dl.pmf(xx)
|
||
|
m2, m4 = np.sum(pp*xx**2), np.sum(pp*xx**4)
|
||
|
assert_equal((m, s), (0, 0))
|
||
|
assert_allclose((v, k), (m2, m4/m2**2 - 3.), atol=1e-14, rtol=1e-8)
|
||
|
|
||
|
def test_stats2(self):
|
||
|
a = np.log(2.)
|
||
|
dl = stats.dlaplace(a)
|
||
|
m, v, s, k = dl.stats('mvsk')
|
||
|
assert_equal((m, s), (0., 0.))
|
||
|
assert_allclose((v, k), (4., 3.25))
|
||
|
|
||
|
|
||
|
class TestInvgauss:
|
||
|
def setup_method(self):
|
||
|
np.random.seed(1234)
|
||
|
|
||
|
@pytest.mark.parametrize("rvs_mu,rvs_loc,rvs_scale",
|
||
|
[(2, 0, 1), (4.635, 4.362, 6.303)])
|
||
|
def test_fit(self, rvs_mu, rvs_loc, rvs_scale):
|
||
|
data = stats.invgauss.rvs(size=100, mu=rvs_mu,
|
||
|
loc=rvs_loc, scale=rvs_scale)
|
||
|
# Analytical MLEs are calculated with formula when `floc` is fixed
|
||
|
mu, loc, scale = stats.invgauss.fit(data, floc=rvs_loc)
|
||
|
|
||
|
data = data - rvs_loc
|
||
|
mu_temp = np.mean(data)
|
||
|
scale_mle = len(data) / (np.sum(data**(-1) - mu_temp**(-1)))
|
||
|
mu_mle = mu_temp/scale_mle
|
||
|
|
||
|
# `mu` and `scale` match analytical formula
|
||
|
assert_allclose(mu_mle, mu, atol=1e-15, rtol=1e-15)
|
||
|
assert_allclose(scale_mle, scale, atol=1e-15, rtol=1e-15)
|
||
|
assert_equal(loc, rvs_loc)
|
||
|
data = stats.invgauss.rvs(size=100, mu=rvs_mu,
|
||
|
loc=rvs_loc, scale=rvs_scale)
|
||
|
# fixed parameters are returned
|
||
|
mu, loc, scale = stats.invgauss.fit(data, floc=rvs_loc - 1,
|
||
|
fscale=rvs_scale + 1)
|
||
|
assert_equal(rvs_scale + 1, scale)
|
||
|
assert_equal(rvs_loc - 1, loc)
|
||
|
|
||
|
# shape can still be fixed with multiple names
|
||
|
shape_mle1 = stats.invgauss.fit(data, fmu=1.04)[0]
|
||
|
shape_mle2 = stats.invgauss.fit(data, fix_mu=1.04)[0]
|
||
|
shape_mle3 = stats.invgauss.fit(data, f0=1.04)[0]
|
||
|
assert shape_mle1 == shape_mle2 == shape_mle3 == 1.04
|
||
|
|
||
|
@pytest.mark.parametrize("rvs_mu,rvs_loc,rvs_scale",
|
||
|
[(2, 0, 1), (6.311, 3.225, 4.520)])
|
||
|
def test_fit_MLE_comp_optimizer(self, rvs_mu, rvs_loc, rvs_scale):
|
||
|
rng = np.random.RandomState(1234)
|
||
|
data = stats.invgauss.rvs(size=100, mu=rvs_mu,
|
||
|
loc=rvs_loc, scale=rvs_scale, random_state=rng)
|
||
|
|
||
|
super_fit = super(type(stats.invgauss), stats.invgauss).fit
|
||
|
# fitting without `floc` uses superclass fit method
|
||
|
super_fitted = super_fit(data)
|
||
|
invgauss_fit = stats.invgauss.fit(data)
|
||
|
assert_equal(super_fitted, invgauss_fit)
|
||
|
|
||
|
# fitting with `fmu` is uses superclass fit method
|
||
|
super_fitted = super_fit(data, floc=0, fmu=2)
|
||
|
invgauss_fit = stats.invgauss.fit(data, floc=0, fmu=2)
|
||
|
assert_equal(super_fitted, invgauss_fit)
|
||
|
|
||
|
# fixed `floc` uses analytical formula and provides better fit than
|
||
|
# super method
|
||
|
_assert_less_or_close_loglike(stats.invgauss, data, floc=rvs_loc)
|
||
|
|
||
|
# fixed `floc` not resulting in invalid data < 0 uses analytical
|
||
|
# formulas and provides a better fit than the super method
|
||
|
assert np.all((data - (rvs_loc - 1)) > 0)
|
||
|
_assert_less_or_close_loglike(stats.invgauss, data, floc=rvs_loc - 1)
|
||
|
|
||
|
# fixed `floc` to an arbitrary number, 0, still provides a better fit
|
||
|
# than the super method
|
||
|
_assert_less_or_close_loglike(stats.invgauss, data, floc=0)
|
||
|
|
||
|
# fixed `fscale` to an arbitrary number still provides a better fit
|
||
|
# than the super method
|
||
|
_assert_less_or_close_loglike(stats.invgauss, data, floc=rvs_loc,
|
||
|
fscale=np.random.rand(1)[0])
|
||
|
|
||
|
def test_fit_raise_errors(self):
|
||
|
assert_fit_warnings(stats.invgauss)
|
||
|
# FitDataError is raised when negative invalid data
|
||
|
with pytest.raises(FitDataError):
|
||
|
stats.invgauss.fit([1, 2, 3], floc=2)
|
||
|
|
||
|
def test_cdf_sf(self):
|
||
|
# Regression tests for gh-13614.
|
||
|
# Ground truth from R's statmod library (pinvgauss), e.g.
|
||
|
# library(statmod)
|
||
|
# options(digits=15)
|
||
|
# mu = c(4.17022005e-04, 7.20324493e-03, 1.14374817e-06,
|
||
|
# 3.02332573e-03, 1.46755891e-03)
|
||
|
# print(pinvgauss(5, mu, 1))
|
||
|
|
||
|
# make sure a finite value is returned when mu is very small. see
|
||
|
# GH-13614
|
||
|
mu = [4.17022005e-04, 7.20324493e-03, 1.14374817e-06,
|
||
|
3.02332573e-03, 1.46755891e-03]
|
||
|
expected = [1, 1, 1, 1, 1]
|
||
|
actual = stats.invgauss.cdf(0.4, mu=mu)
|
||
|
assert_equal(expected, actual)
|
||
|
|
||
|
# test if the function can distinguish small left/right tail
|
||
|
# probabilities from zero.
|
||
|
cdf_actual = stats.invgauss.cdf(0.001, mu=1.05)
|
||
|
assert_allclose(cdf_actual, 4.65246506892667e-219)
|
||
|
sf_actual = stats.invgauss.sf(110, mu=1.05)
|
||
|
assert_allclose(sf_actual, 4.12851625944048e-25)
|
||
|
|
||
|
# test if x does not cause numerical issues when mu is very small
|
||
|
# and x is close to mu in value.
|
||
|
|
||
|
# slightly smaller than mu
|
||
|
actual = stats.invgauss.cdf(0.00009, 0.0001)
|
||
|
assert_allclose(actual, 2.9458022894924e-26)
|
||
|
|
||
|
# slightly bigger than mu
|
||
|
actual = stats.invgauss.cdf(0.000102, 0.0001)
|
||
|
assert_allclose(actual, 0.976445540507925)
|
||
|
|
||
|
def test_logcdf_logsf(self):
|
||
|
# Regression tests for improvements made in gh-13616.
|
||
|
# Ground truth from R's statmod library (pinvgauss), e.g.
|
||
|
# library(statmod)
|
||
|
# options(digits=15)
|
||
|
# print(pinvgauss(0.001, 1.05, 1, log.p=TRUE, lower.tail=FALSE))
|
||
|
|
||
|
# test if logcdf and logsf can compute values too small to
|
||
|
# be represented on the unlogged scale. See: gh-13616
|
||
|
logcdf = stats.invgauss.logcdf(0.0001, mu=1.05)
|
||
|
assert_allclose(logcdf, -5003.87872590367)
|
||
|
logcdf = stats.invgauss.logcdf(110, 1.05)
|
||
|
assert_allclose(logcdf, -4.12851625944087e-25)
|
||
|
logsf = stats.invgauss.logsf(0.001, mu=1.05)
|
||
|
assert_allclose(logsf, -4.65246506892676e-219)
|
||
|
logsf = stats.invgauss.logsf(110, 1.05)
|
||
|
assert_allclose(logsf, -56.1467092416426)
|
||
|
|
||
|
# from mpmath import mp
|
||
|
# mp.dps = 100
|
||
|
# mu = mp.mpf(1e-2)
|
||
|
# ref = (1/2 * mp.log(2 * mp.pi * mp.e * mu**3)
|
||
|
# - 3/2* mp.exp(2/mu) * mp.e1(2/mu))
|
||
|
@pytest.mark.parametrize("mu, ref", [(2e-8, -25.172361826883957),
|
||
|
(1e-3, -8.943444010642972),
|
||
|
(1e-2, -5.4962796152622335),
|
||
|
(1e8, 3.3244822568873476),
|
||
|
(1e100, 3.32448280139689)])
|
||
|
def test_entropy(self, mu, ref):
|
||
|
assert_allclose(stats.invgauss.entropy(mu), ref, rtol=5e-14)
|
||
|
|
||
|
|
||
|
class TestLaplace:
|
||
|
@pytest.mark.parametrize("rvs_loc", [-5, 0, 1, 2])
|
||
|
@pytest.mark.parametrize("rvs_scale", [1, 2, 3, 10])
|
||
|
def test_fit(self, rvs_loc, rvs_scale):
|
||
|
# tests that various inputs follow expected behavior
|
||
|
# for a variety of `loc` and `scale`.
|
||
|
rng = np.random.RandomState(1234)
|
||
|
data = stats.laplace.rvs(size=100, loc=rvs_loc, scale=rvs_scale,
|
||
|
random_state=rng)
|
||
|
|
||
|
# MLE estimates are given by
|
||
|
loc_mle = np.median(data)
|
||
|
scale_mle = np.sum(np.abs(data - loc_mle)) / len(data)
|
||
|
|
||
|
# standard outputs should match analytical MLE formulas
|
||
|
loc, scale = stats.laplace.fit(data)
|
||
|
assert_allclose(loc, loc_mle, atol=1e-15, rtol=1e-15)
|
||
|
assert_allclose(scale, scale_mle, atol=1e-15, rtol=1e-15)
|
||
|
|
||
|
# fixed parameter should use analytical formula for other
|
||
|
loc, scale = stats.laplace.fit(data, floc=loc_mle)
|
||
|
assert_allclose(scale, scale_mle, atol=1e-15, rtol=1e-15)
|
||
|
loc, scale = stats.laplace.fit(data, fscale=scale_mle)
|
||
|
assert_allclose(loc, loc_mle)
|
||
|
|
||
|
# test with non-mle fixed parameter
|
||
|
# create scale with non-median loc
|
||
|
loc = rvs_loc * 2
|
||
|
scale_mle = np.sum(np.abs(data - loc)) / len(data)
|
||
|
|
||
|
# fixed loc to non median, scale should match
|
||
|
# scale calculation with modified loc
|
||
|
loc, scale = stats.laplace.fit(data, floc=loc)
|
||
|
assert_equal(scale_mle, scale)
|
||
|
|
||
|
# fixed scale created with non median loc,
|
||
|
# loc output should still be the data median.
|
||
|
loc, scale = stats.laplace.fit(data, fscale=scale_mle)
|
||
|
assert_equal(loc_mle, loc)
|
||
|
|
||
|
# error raised when both `floc` and `fscale` are fixed
|
||
|
assert_raises(RuntimeError, stats.laplace.fit, data, floc=loc_mle,
|
||
|
fscale=scale_mle)
|
||
|
|
||
|
# error is raised with non-finite values
|
||
|
assert_raises(ValueError, stats.laplace.fit, [np.nan])
|
||
|
assert_raises(ValueError, stats.laplace.fit, [np.inf])
|
||
|
|
||
|
@pytest.mark.parametrize("rvs_loc,rvs_scale", [(-5, 10),
|
||
|
(10, 5),
|
||
|
(0.5, 0.2)])
|
||
|
def test_fit_MLE_comp_optimizer(self, rvs_loc, rvs_scale):
|
||
|
rng = np.random.RandomState(1234)
|
||
|
data = stats.laplace.rvs(size=1000, loc=rvs_loc, scale=rvs_scale,
|
||
|
random_state=rng)
|
||
|
|
||
|
# the log-likelihood function for laplace is given by
|
||
|
def ll(loc, scale, data):
|
||
|
return -1 * (- (len(data)) * np.log(2*scale) -
|
||
|
(1/scale)*np.sum(np.abs(data - loc)))
|
||
|
|
||
|
# test that the objective function result of the analytical MLEs is
|
||
|
# less than or equal to that of the numerically optimized estimate
|
||
|
loc, scale = stats.laplace.fit(data)
|
||
|
loc_opt, scale_opt = super(type(stats.laplace),
|
||
|
stats.laplace).fit(data)
|
||
|
ll_mle = ll(loc, scale, data)
|
||
|
ll_opt = ll(loc_opt, scale_opt, data)
|
||
|
assert ll_mle < ll_opt or np.allclose(ll_mle, ll_opt,
|
||
|
atol=1e-15, rtol=1e-15)
|
||
|
|
||
|
def test_fit_simple_non_random_data(self):
|
||
|
data = np.array([1.0, 1.0, 3.0, 5.0, 8.0, 14.0])
|
||
|
# with `floc` fixed to 6, scale should be 4.
|
||
|
loc, scale = stats.laplace.fit(data, floc=6)
|
||
|
assert_allclose(scale, 4, atol=1e-15, rtol=1e-15)
|
||
|
# with `fscale` fixed to 6, loc should be 4.
|
||
|
loc, scale = stats.laplace.fit(data, fscale=6)
|
||
|
assert_allclose(loc, 4, atol=1e-15, rtol=1e-15)
|
||
|
|
||
|
def test_sf_cdf_extremes(self):
|
||
|
# These calculations should not generate warnings.
|
||
|
x = 1000
|
||
|
p0 = stats.laplace.cdf(-x)
|
||
|
# The exact value is smaller than can be represented with
|
||
|
# 64 bit floating point, so the expected result is 0.
|
||
|
assert p0 == 0.0
|
||
|
# The closest 64 bit floating point representation of the
|
||
|
# exact value is 1.0.
|
||
|
p1 = stats.laplace.cdf(x)
|
||
|
assert p1 == 1.0
|
||
|
|
||
|
p0 = stats.laplace.sf(x)
|
||
|
# The exact value is smaller than can be represented with
|
||
|
# 64 bit floating point, so the expected result is 0.
|
||
|
assert p0 == 0.0
|
||
|
# The closest 64 bit floating point representation of the
|
||
|
# exact value is 1.0.
|
||
|
p1 = stats.laplace.sf(-x)
|
||
|
assert p1 == 1.0
|
||
|
|
||
|
def test_sf(self):
|
||
|
x = 200
|
||
|
p = stats.laplace.sf(x)
|
||
|
assert_allclose(p, np.exp(-x)/2, rtol=1e-13)
|
||
|
|
||
|
def test_isf(self):
|
||
|
p = 1e-25
|
||
|
x = stats.laplace.isf(p)
|
||
|
assert_allclose(x, -np.log(2*p), rtol=1e-13)
|
||
|
|
||
|
|
||
|
class TestLogLaplace:
|
||
|
|
||
|
def test_sf(self):
|
||
|
# reference values were computed via the reference distribution, e.g.
|
||
|
# mp.dps = 100; LogLaplace(c=c).sf(x).
|
||
|
c = np.array([2.0, 3.0, 5.0])
|
||
|
x = np.array([1e-5, 1e10, 1e15])
|
||
|
ref = [0.99999999995, 5e-31, 5e-76]
|
||
|
assert_allclose(stats.loglaplace.sf(x, c), ref, rtol=1e-15)
|
||
|
|
||
|
def test_isf(self):
|
||
|
# reference values were computed via the reference distribution, e.g.
|
||
|
# mp.dps = 100; LogLaplace(c=c).isf(q).
|
||
|
c = 3.25
|
||
|
q = [0.8, 0.1, 1e-10, 1e-20, 1e-40]
|
||
|
ref = [0.7543222539245642, 1.6408455124660906, 964.4916294395846,
|
||
|
1151387.578354072, 1640845512466.0906]
|
||
|
assert_allclose(stats.loglaplace.isf(q, c), ref, rtol=1e-14)
|
||
|
|
||
|
@pytest.mark.parametrize('r', [1, 2, 3, 4])
|
||
|
def test_moments_stats(self, r):
|
||
|
mom = 'mvsk'[r - 1]
|
||
|
c = np.arange(0.5, r + 0.5, 0.5)
|
||
|
|
||
|
# r-th non-central moment is infinite if |r| >= c.
|
||
|
assert_allclose(stats.loglaplace.moment(r, c), np.inf)
|
||
|
|
||
|
# r-th non-central moment is non-finite (inf or nan) if r >= c.
|
||
|
assert not np.any(np.isfinite(stats.loglaplace.stats(c, moments=mom)))
|
||
|
|
||
|
@pytest.mark.parametrize("c", [0.5, 1.0, 2.0])
|
||
|
@pytest.mark.parametrize("loc, scale", [(-1.2, 3.45)])
|
||
|
@pytest.mark.parametrize("fix_c", [True, False])
|
||
|
@pytest.mark.parametrize("fix_scale", [True, False])
|
||
|
def test_fit_analytic_mle(self, c, loc, scale, fix_c, fix_scale):
|
||
|
# Test that the analytical MLE produces no worse result than the
|
||
|
# generic (numerical) MLE.
|
||
|
|
||
|
rng = np.random.default_rng(6762668991392531563)
|
||
|
data = stats.loglaplace.rvs(c, loc=loc, scale=scale, size=100,
|
||
|
random_state=rng)
|
||
|
|
||
|
kwds = {'floc': loc}
|
||
|
if fix_c:
|
||
|
kwds['fc'] = c
|
||
|
if fix_scale:
|
||
|
kwds['fscale'] = scale
|
||
|
nfree = 3 - len(kwds)
|
||
|
|
||
|
if nfree == 0:
|
||
|
error_msg = "All parameters fixed. There is nothing to optimize."
|
||
|
with pytest.raises((RuntimeError, ValueError), match=error_msg):
|
||
|
stats.loglaplace.fit(data, **kwds)
|
||
|
return
|
||
|
|
||
|
_assert_less_or_close_loglike(stats.loglaplace, data, **kwds)
|
||
|
|
||
|
class TestPowerlaw:
|
||
|
|
||
|
# In the following data, `sf` was computed with mpmath.
|
||
|
@pytest.mark.parametrize('x, a, sf',
|
||
|
[(0.25, 2.0, 0.9375),
|
||
|
(0.99609375, 1/256, 1.528855235208108e-05)])
|
||
|
def test_sf(self, x, a, sf):
|
||
|
assert_allclose(stats.powerlaw.sf(x, a), sf, rtol=1e-15)
|
||
|
|
||
|
@pytest.fixture(scope='function')
|
||
|
def rng(self):
|
||
|
return np.random.default_rng(1234)
|
||
|
|
||
|
@pytest.mark.parametrize("rvs_shape", [.1, .5, .75, 1, 2])
|
||
|
@pytest.mark.parametrize("rvs_loc", [-1, 0, 1])
|
||
|
@pytest.mark.parametrize("rvs_scale", [.1, 1, 5])
|
||
|
@pytest.mark.parametrize('fix_shape, fix_loc, fix_scale',
|
||
|
[p for p in product([True, False], repeat=3)
|
||
|
if False in p])
|
||
|
def test_fit_MLE_comp_optimizer(self, rvs_shape, rvs_loc, rvs_scale,
|
||
|
fix_shape, fix_loc, fix_scale, rng):
|
||
|
data = stats.powerlaw.rvs(size=250, a=rvs_shape, loc=rvs_loc,
|
||
|
scale=rvs_scale, random_state=rng)
|
||
|
|
||
|
kwds = dict()
|
||
|
if fix_shape:
|
||
|
kwds['f0'] = rvs_shape
|
||
|
if fix_loc:
|
||
|
kwds['floc'] = np.nextafter(data.min(), -np.inf)
|
||
|
if fix_scale:
|
||
|
kwds['fscale'] = rvs_scale
|
||
|
|
||
|
# Numerical result may equal analytical result if some code path
|
||
|
# of the analytical routine makes use of numerical optimization.
|
||
|
_assert_less_or_close_loglike(stats.powerlaw, data, **kwds,
|
||
|
maybe_identical=True)
|
||
|
|
||
|
def test_problem_case(self):
|
||
|
# An observed problem with the test method indicated that some fixed
|
||
|
# scale values could cause bad results, this is now corrected.
|
||
|
a = 2.50002862645130604506
|
||
|
location = 0.0
|
||
|
scale = 35.249023299873095
|
||
|
|
||
|
data = stats.powerlaw.rvs(a=a, loc=location, scale=scale, size=100,
|
||
|
random_state=np.random.default_rng(5))
|
||
|
|
||
|
kwds = {'fscale': np.ptp(data) * 2}
|
||
|
|
||
|
_assert_less_or_close_loglike(stats.powerlaw, data, **kwds)
|
||
|
|
||
|
def test_fit_warnings(self):
|
||
|
assert_fit_warnings(stats.powerlaw)
|
||
|
# test for error when `fscale + floc <= np.max(data)` is not satisfied
|
||
|
msg = r" Maximum likelihood estimation with 'powerlaw' requires"
|
||
|
with assert_raises(FitDataError, match=msg):
|
||
|
stats.powerlaw.fit([1, 2, 4], floc=0, fscale=3)
|
||
|
|
||
|
# test for error when `data - floc >= 0` is not satisfied
|
||
|
msg = r" Maximum likelihood estimation with 'powerlaw' requires"
|
||
|
with assert_raises(FitDataError, match=msg):
|
||
|
stats.powerlaw.fit([1, 2, 4], floc=2)
|
||
|
|
||
|
# test for fixed location not less than `min(data)`.
|
||
|
msg = r" Maximum likelihood estimation with 'powerlaw' requires"
|
||
|
with assert_raises(FitDataError, match=msg):
|
||
|
stats.powerlaw.fit([1, 2, 4], floc=1)
|
||
|
|
||
|
# test for when fixed scale is less than or equal to range of data
|
||
|
msg = r"Negative or zero `fscale` is outside"
|
||
|
with assert_raises(ValueError, match=msg):
|
||
|
stats.powerlaw.fit([1, 2, 4], fscale=-3)
|
||
|
|
||
|
# test for when fixed scale is less than or equal to range of data
|
||
|
msg = r"`fscale` must be greater than the range of data."
|
||
|
with assert_raises(ValueError, match=msg):
|
||
|
stats.powerlaw.fit([1, 2, 4], fscale=3)
|
||
|
|
||
|
def test_minimum_data_zero_gh17801(self):
|
||
|
# gh-17801 reported an overflow error when the minimum value of the
|
||
|
# data is zero. Check that this problem is resolved.
|
||
|
data = [0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 6]
|
||
|
dist = stats.powerlaw
|
||
|
with np.errstate(over='ignore'):
|
||
|
_assert_less_or_close_loglike(dist, data)
|
||
|
|
||
|
|
||
|
class TestPowerLogNorm:
|
||
|
|
||
|
# reference values were computed via mpmath
|
||
|
# from mpmath import mp
|
||
|
# mp.dps = 80
|
||
|
# def powerlognorm_sf_mp(x, c, s):
|
||
|
# x = mp.mpf(x)
|
||
|
# c = mp.mpf(c)
|
||
|
# s = mp.mpf(s)
|
||
|
# return mp.ncdf(-mp.log(x) / s)**c
|
||
|
#
|
||
|
# def powerlognormal_cdf_mp(x, c, s):
|
||
|
# return mp.one - powerlognorm_sf_mp(x, c, s)
|
||
|
#
|
||
|
# x, c, s = 100, 20, 1
|
||
|
# print(float(powerlognorm_sf_mp(x, c, s)))
|
||
|
|
||
|
@pytest.mark.parametrize("x, c, s, ref",
|
||
|
[(100, 20, 1, 1.9057100820561928e-114),
|
||
|
(1e-3, 20, 1, 0.9999999999507617),
|
||
|
(1e-3, 0.02, 1, 0.9999999999999508),
|
||
|
(1e22, 0.02, 1, 6.50744044621611e-12)])
|
||
|
def test_sf(self, x, c, s, ref):
|
||
|
assert_allclose(stats.powerlognorm.sf(x, c, s), ref, rtol=1e-13)
|
||
|
|
||
|
# reference values were computed via mpmath using the survival
|
||
|
# function above (passing in `ref` and getting `q`).
|
||
|
@pytest.mark.parametrize("q, c, s, ref",
|
||
|
[(0.9999999587870905, 0.02, 1, 0.01),
|
||
|
(6.690376686108851e-233, 20, 1, 1000)])
|
||
|
def test_isf(self, q, c, s, ref):
|
||
|
assert_allclose(stats.powerlognorm.isf(q, c, s), ref, rtol=5e-11)
|
||
|
|
||
|
@pytest.mark.parametrize("x, c, s, ref",
|
||
|
[(1e25, 0.02, 1, 0.9999999999999963),
|
||
|
(1e-6, 0.02, 1, 2.054921078040843e-45),
|
||
|
(1e-6, 200, 1, 2.0549210780408428e-41),
|
||
|
(0.3, 200, 1, 0.9999999999713368)])
|
||
|
def test_cdf(self, x, c, s, ref):
|
||
|
assert_allclose(stats.powerlognorm.cdf(x, c, s), ref, rtol=3e-14)
|
||
|
|
||
|
# reference values were computed via mpmath
|
||
|
# from mpmath import mp
|
||
|
# mp.dps = 50
|
||
|
# def powerlognorm_pdf_mpmath(x, c, s):
|
||
|
# x = mp.mpf(x)
|
||
|
# c = mp.mpf(c)
|
||
|
# s = mp.mpf(s)
|
||
|
# res = (c/(x * s) * mp.npdf(mp.log(x)/s) *
|
||
|
# mp.ncdf(-mp.log(x)/s)**(c - mp.one))
|
||
|
# return float(res)
|
||
|
|
||
|
@pytest.mark.parametrize("x, c, s, ref",
|
||
|
[(1e22, 0.02, 1, 6.5954987852335016e-34),
|
||
|
(1e20, 1e-3, 1, 1.588073750563988e-22),
|
||
|
(1e40, 1e-3, 1, 1.3179391812506349e-43)])
|
||
|
def test_pdf(self, x, c, s, ref):
|
||
|
assert_allclose(stats.powerlognorm.pdf(x, c, s), ref, rtol=3e-12)
|
||
|
|
||
|
|
||
|
class TestPowerNorm:
|
||
|
|
||
|
# survival function references were computed with mpmath via
|
||
|
# from mpmath import mp
|
||
|
# x = mp.mpf(x)
|
||
|
# c = mp.mpf(x)
|
||
|
# float(mp.ncdf(-x)**c)
|
||
|
|
||
|
@pytest.mark.parametrize("x, c, ref",
|
||
|
[(9, 1, 1.1285884059538405e-19),
|
||
|
(20, 2, 7.582445786569958e-178),
|
||
|
(100, 0.02, 3.330957891903866e-44),
|
||
|
(200, 0.01, 1.3004759092324774e-87)])
|
||
|
def test_sf(self, x, c, ref):
|
||
|
assert_allclose(stats.powernorm.sf(x, c), ref, rtol=1e-13)
|
||
|
|
||
|
# inverse survival function references were computed with mpmath via
|
||
|
# from mpmath import mp
|
||
|
# def isf_mp(q, c):
|
||
|
# q = mp.mpf(q)
|
||
|
# c = mp.mpf(c)
|
||
|
# arg = q**(mp.one / c)
|
||
|
# return float(-mp.sqrt(2) * mp.erfinv(mp.mpf(2.) * arg - mp.one))
|
||
|
|
||
|
@pytest.mark.parametrize("q, c, ref",
|
||
|
[(1e-5, 20, -0.15690800666514138),
|
||
|
(0.99999, 100, -5.19933666203545),
|
||
|
(0.9999, 0.02, -2.576676052143387),
|
||
|
(5e-2, 0.02, 17.089518110222244),
|
||
|
(1e-18, 2, 5.9978070150076865),
|
||
|
(1e-50, 5, 6.361340902404057)])
|
||
|
def test_isf(self, q, c, ref):
|
||
|
assert_allclose(stats.powernorm.isf(q, c), ref, rtol=5e-12)
|
||
|
|
||
|
# CDF reference values were computed with mpmath via
|
||
|
# from mpmath import mp
|
||
|
# def cdf_mp(x, c):
|
||
|
# x = mp.mpf(x)
|
||
|
# c = mp.mpf(c)
|
||
|
# return float(mp.one - mp.ncdf(-x)**c)
|
||
|
|
||
|
@pytest.mark.parametrize("x, c, ref",
|
||
|
[(-12, 9, 1.598833900869911e-32),
|
||
|
(2, 9, 0.9999999999999983),
|
||
|
(-20, 9, 2.4782617067456103e-88),
|
||
|
(-5, 0.02, 5.733032242841443e-09),
|
||
|
(-20, 0.02, 5.507248237212467e-91)])
|
||
|
def test_cdf(self, x, c, ref):
|
||
|
assert_allclose(stats.powernorm.cdf(x, c), ref, rtol=5e-14)
|
||
|
|
||
|
|
||
|
class TestInvGamma:
|
||
|
def test_invgamma_inf_gh_1866(self):
|
||
|
# invgamma's moments are only finite for a>n
|
||
|
# specific numbers checked w/ boost 1.54
|
||
|
with warnings.catch_warnings():
|
||
|
warnings.simplefilter('error', RuntimeWarning)
|
||
|
mvsk = stats.invgamma.stats(a=19.31, moments='mvsk')
|
||
|
expected = [0.05461496450, 0.0001723162534, 1.020362676,
|
||
|
2.055616582]
|
||
|
assert_allclose(mvsk, expected)
|
||
|
|
||
|
a = [1.1, 3.1, 5.6]
|
||
|
mvsk = stats.invgamma.stats(a=a, moments='mvsk')
|
||
|
expected = ([10., 0.476190476, 0.2173913043], # mmm
|
||
|
[np.inf, 0.2061430632, 0.01312749422], # vvv
|
||
|
[np.nan, 41.95235392, 2.919025532], # sss
|
||
|
[np.nan, np.nan, 24.51923076]) # kkk
|
||
|
for x, y in zip(mvsk, expected):
|
||
|
assert_almost_equal(x, y)
|
||
|
|
||
|
def test_cdf_ppf(self):
|
||
|
# gh-6245
|
||
|
x = np.logspace(-2.6, 0)
|
||
|
y = stats.invgamma.cdf(x, 1)
|
||
|
xx = stats.invgamma.ppf(y, 1)
|
||
|
assert_allclose(x, xx)
|
||
|
|
||
|
def test_sf_isf(self):
|
||
|
# gh-6245
|
||
|
if sys.maxsize > 2**32:
|
||
|
x = np.logspace(2, 100)
|
||
|
else:
|
||
|
# Invgamme roundtrip on 32-bit systems has relative accuracy
|
||
|
# ~1e-15 until x=1e+15, and becomes inf above x=1e+18
|
||
|
x = np.logspace(2, 18)
|
||
|
|
||
|
y = stats.invgamma.sf(x, 1)
|
||
|
xx = stats.invgamma.isf(y, 1)
|
||
|
assert_allclose(x, xx, rtol=1.0)
|
||
|
|
||
|
@pytest.mark.parametrize("a, ref",
|
||
|
[(100000000.0, -26.21208257605721),
|
||
|
(1e+100, -343.9688254159022)])
|
||
|
def test_large_entropy(self, a, ref):
|
||
|
# The reference values were calculated with mpmath:
|
||
|
# from mpmath import mp
|
||
|
# mp.dps = 500
|
||
|
|
||
|
# def invgamma_entropy(a):
|
||
|
# a = mp.mpf(a)
|
||
|
# h = a + mp.loggamma(a) - (mp.one + a) * mp.digamma(a)
|
||
|
# return float(h)
|
||
|
assert_allclose(stats.invgamma.entropy(a), ref, rtol=1e-15)
|
||
|
|
||
|
|
||
|
class TestF:
|
||
|
def test_endpoints(self):
|
||
|
# Compute the pdf at the left endpoint dst.a.
|
||
|
data = [[stats.f, (2, 1), 1.0]]
|
||
|
for _f, _args, _correct in data:
|
||
|
ans = _f.pdf(_f.a, *_args)
|
||
|
|
||
|
ans = [_f.pdf(_f.a, *_args) for _f, _args, _ in data]
|
||
|
correct = [_correct_ for _f, _args, _correct_ in data]
|
||
|
assert_array_almost_equal(ans, correct)
|
||
|
|
||
|
def test_f_moments(self):
|
||
|
# n-th moment of F distributions is only finite for n < dfd / 2
|
||
|
m, v, s, k = stats.f.stats(11, 6.5, moments='mvsk')
|
||
|
assert_(np.isfinite(m))
|
||
|
assert_(np.isfinite(v))
|
||
|
assert_(np.isfinite(s))
|
||
|
assert_(not np.isfinite(k))
|
||
|
|
||
|
def test_moments_warnings(self):
|
||
|
# no warnings should be generated for dfd = 2, 4, 6, 8 (div by zero)
|
||
|
with warnings.catch_warnings():
|
||
|
warnings.simplefilter('error', RuntimeWarning)
|
||
|
stats.f.stats(dfn=[11]*4, dfd=[2, 4, 6, 8], moments='mvsk')
|
||
|
|
||
|
def test_stats_broadcast(self):
|
||
|
dfn = np.array([[3], [11]])
|
||
|
dfd = np.array([11, 12])
|
||
|
m, v, s, k = stats.f.stats(dfn=dfn, dfd=dfd, moments='mvsk')
|
||
|
m2 = [dfd / (dfd - 2)]*2
|
||
|
assert_allclose(m, m2)
|
||
|
v2 = 2 * dfd**2 * (dfn + dfd - 2) / dfn / (dfd - 2)**2 / (dfd - 4)
|
||
|
assert_allclose(v, v2)
|
||
|
s2 = ((2*dfn + dfd - 2) * np.sqrt(8*(dfd - 4)) /
|
||
|
((dfd - 6) * np.sqrt(dfn*(dfn + dfd - 2))))
|
||
|
assert_allclose(s, s2)
|
||
|
k2num = 12 * (dfn * (5*dfd - 22) * (dfn + dfd - 2) +
|
||
|
(dfd - 4) * (dfd - 2)**2)
|
||
|
k2den = dfn * (dfd - 6) * (dfd - 8) * (dfn + dfd - 2)
|
||
|
k2 = k2num / k2den
|
||
|
assert_allclose(k, k2)
|
||
|
|
||
|
|
||
|
class TestStudentT:
|
||
|
def test_rvgeneric_std(self):
|
||
|
# Regression test for #1191
|
||
|
assert_array_almost_equal(stats.t.std([5, 6]), [1.29099445, 1.22474487])
|
||
|
|
||
|
def test_moments_t(self):
|
||
|
# regression test for #8786
|
||
|
assert_equal(stats.t.stats(df=1, moments='mvsk'),
|
||
|
(np.inf, np.nan, np.nan, np.nan))
|
||
|
assert_equal(stats.t.stats(df=1.01, moments='mvsk'),
|
||
|
(0.0, np.inf, np.nan, np.nan))
|
||
|
assert_equal(stats.t.stats(df=2, moments='mvsk'),
|
||
|
(0.0, np.inf, np.nan, np.nan))
|
||
|
assert_equal(stats.t.stats(df=2.01, moments='mvsk'),
|
||
|
(0.0, 2.01/(2.01-2.0), np.nan, np.inf))
|
||
|
assert_equal(stats.t.stats(df=3, moments='sk'), (np.nan, np.inf))
|
||
|
assert_equal(stats.t.stats(df=3.01, moments='sk'), (0.0, np.inf))
|
||
|
assert_equal(stats.t.stats(df=4, moments='sk'), (0.0, np.inf))
|
||
|
assert_equal(stats.t.stats(df=4.01, moments='sk'), (0.0, 6.0/(4.01 - 4.0)))
|
||
|
|
||
|
def test_t_entropy(self):
|
||
|
df = [1, 2, 25, 100]
|
||
|
# Expected values were computed with mpmath.
|
||
|
expected = [2.5310242469692907, 1.9602792291600821,
|
||
|
1.459327578078393, 1.4289633653182439]
|
||
|
assert_allclose(stats.t.entropy(df), expected, rtol=1e-13)
|
||
|
|
||
|
@pytest.mark.parametrize("v, ref",
|
||
|
[(100, 1.4289633653182439),
|
||
|
(1e+100, 1.4189385332046727)])
|
||
|
def test_t_extreme_entropy(self, v, ref):
|
||
|
# Reference values were calculated with mpmath:
|
||
|
# from mpmath import mp
|
||
|
# mp.dps = 500
|
||
|
#
|
||
|
# def t_entropy(v):
|
||
|
# v = mp.mpf(v)
|
||
|
# C = (v + mp.one) / 2
|
||
|
# A = C * (mp.digamma(C) - mp.digamma(v / 2))
|
||
|
# B = 0.5 * mp.log(v) + mp.log(mp.beta(v / 2, mp.one / 2))
|
||
|
# h = A + B
|
||
|
# return float(h)
|
||
|
assert_allclose(stats.t.entropy(v), ref, rtol=1e-14)
|
||
|
|
||
|
@pytest.mark.parametrize("methname", ["pdf", "logpdf", "cdf",
|
||
|
"ppf", "sf", "isf"])
|
||
|
@pytest.mark.parametrize("df_infmask", [[0, 0], [1, 1], [0, 1],
|
||
|
[[0, 1, 0], [1, 1, 1]],
|
||
|
[[1, 0], [0, 1]],
|
||
|
[[0], [1]]])
|
||
|
def test_t_inf_df(self, methname, df_infmask):
|
||
|
np.random.seed(0)
|
||
|
df_infmask = np.asarray(df_infmask, dtype=bool)
|
||
|
df = np.random.uniform(0, 10, size=df_infmask.shape)
|
||
|
x = np.random.randn(*df_infmask.shape)
|
||
|
df[df_infmask] = np.inf
|
||
|
t_dist = stats.t(df=df, loc=3, scale=1)
|
||
|
t_dist_ref = stats.t(df=df[~df_infmask], loc=3, scale=1)
|
||
|
norm_dist = stats.norm(loc=3, scale=1)
|
||
|
t_meth = getattr(t_dist, methname)
|
||
|
t_meth_ref = getattr(t_dist_ref, methname)
|
||
|
norm_meth = getattr(norm_dist, methname)
|
||
|
res = t_meth(x)
|
||
|
assert_equal(res[df_infmask], norm_meth(x[df_infmask]))
|
||
|
assert_equal(res[~df_infmask], t_meth_ref(x[~df_infmask]))
|
||
|
|
||
|
@pytest.mark.parametrize("df_infmask", [[0, 0], [1, 1], [0, 1],
|
||
|
[[0, 1, 0], [1, 1, 1]],
|
||
|
[[1, 0], [0, 1]],
|
||
|
[[0], [1]]])
|
||
|
def test_t_inf_df_stats_entropy(self, df_infmask):
|
||
|
np.random.seed(0)
|
||
|
df_infmask = np.asarray(df_infmask, dtype=bool)
|
||
|
df = np.random.uniform(0, 10, size=df_infmask.shape)
|
||
|
df[df_infmask] = np.inf
|
||
|
res = stats.t.stats(df=df, loc=3, scale=1, moments='mvsk')
|
||
|
res_ex_inf = stats.norm.stats(loc=3, scale=1, moments='mvsk')
|
||
|
res_ex_noinf = stats.t.stats(df=df[~df_infmask], loc=3, scale=1,
|
||
|
moments='mvsk')
|
||
|
for i in range(4):
|
||
|
assert_equal(res[i][df_infmask], res_ex_inf[i])
|
||
|
assert_equal(res[i][~df_infmask], res_ex_noinf[i])
|
||
|
|
||
|
res = stats.t.entropy(df=df, loc=3, scale=1)
|
||
|
res_ex_inf = stats.norm.entropy(loc=3, scale=1)
|
||
|
res_ex_noinf = stats.t.entropy(df=df[~df_infmask], loc=3, scale=1)
|
||
|
assert_equal(res[df_infmask], res_ex_inf)
|
||
|
assert_equal(res[~df_infmask], res_ex_noinf)
|
||
|
|
||
|
def test_logpdf_pdf(self):
|
||
|
# reference values were computed via the reference distribution, e.g.
|
||
|
# mp.dps = 500; StudentT(df=df).logpdf(x), StudentT(df=df).pdf(x)
|
||
|
x = [1, 1e3, 10, 1]
|
||
|
df = [1e100, 1e50, 1e20, 1]
|
||
|
logpdf_ref = [-1.4189385332046727, -500000.9189385332,
|
||
|
-50.918938533204674, -1.8378770664093456]
|
||
|
pdf_ref = [0.24197072451914334, 0,
|
||
|
7.69459862670642e-23, 0.15915494309189535]
|
||
|
assert_allclose(stats.t.logpdf(x, df), logpdf_ref, rtol=1e-14)
|
||
|
assert_allclose(stats.t.pdf(x, df), pdf_ref, rtol=1e-14)
|
||
|
|
||
|
|
||
|
class TestRvDiscrete:
|
||
|
def setup_method(self):
|
||
|
np.random.seed(1234)
|
||
|
|
||
|
def test_rvs(self):
|
||
|
states = [-1, 0, 1, 2, 3, 4]
|
||
|
probability = [0.0, 0.3, 0.4, 0.0, 0.3, 0.0]
|
||
|
samples = 1000
|
||
|
r = stats.rv_discrete(name='sample', values=(states, probability))
|
||
|
x = r.rvs(size=samples)
|
||
|
assert_(isinstance(x, numpy.ndarray))
|
||
|
|
||
|
for s, p in zip(states, probability):
|
||
|
assert_(abs(sum(x == s)/float(samples) - p) < 0.05)
|
||
|
|
||
|
x = r.rvs()
|
||
|
assert np.issubdtype(type(x), np.integer)
|
||
|
|
||
|
def test_entropy(self):
|
||
|
# Basic tests of entropy.
|
||
|
pvals = np.array([0.25, 0.45, 0.3])
|
||
|
p = stats.rv_discrete(values=([0, 1, 2], pvals))
|
||
|
expected_h = -sum(xlogy(pvals, pvals))
|
||
|
h = p.entropy()
|
||
|
assert_allclose(h, expected_h)
|
||
|
|
||
|
p = stats.rv_discrete(values=([0, 1, 2], [1.0, 0, 0]))
|
||
|
h = p.entropy()
|
||
|
assert_equal(h, 0.0)
|
||
|
|
||
|
def test_pmf(self):
|
||
|
xk = [1, 2, 4]
|
||
|
pk = [0.5, 0.3, 0.2]
|
||
|
rv = stats.rv_discrete(values=(xk, pk))
|
||
|
|
||
|
x = [[1., 4.],
|
||
|
[3., 2]]
|
||
|
assert_allclose(rv.pmf(x),
|
||
|
[[0.5, 0.2],
|
||
|
[0., 0.3]], atol=1e-14)
|
||
|
|
||
|
def test_cdf(self):
|
||
|
xk = [1, 2, 4]
|
||
|
pk = [0.5, 0.3, 0.2]
|
||
|
rv = stats.rv_discrete(values=(xk, pk))
|
||
|
|
||
|
x_values = [-2, 1., 1.1, 1.5, 2.0, 3.0, 4, 5]
|
||
|
expected = [0, 0.5, 0.5, 0.5, 0.8, 0.8, 1, 1]
|
||
|
assert_allclose(rv.cdf(x_values), expected, atol=1e-14)
|
||
|
|
||
|
# also check scalar arguments
|
||
|
assert_allclose([rv.cdf(xx) for xx in x_values],
|
||
|
expected, atol=1e-14)
|
||
|
|
||
|
def test_ppf(self):
|
||
|
xk = [1, 2, 4]
|
||
|
pk = [0.5, 0.3, 0.2]
|
||
|
rv = stats.rv_discrete(values=(xk, pk))
|
||
|
|
||
|
q_values = [0.1, 0.5, 0.6, 0.8, 0.9, 1.]
|
||
|
expected = [1, 1, 2, 2, 4, 4]
|
||
|
assert_allclose(rv.ppf(q_values), expected, atol=1e-14)
|
||
|
|
||
|
# also check scalar arguments
|
||
|
assert_allclose([rv.ppf(q) for q in q_values],
|
||
|
expected, atol=1e-14)
|
||
|
|
||
|
def test_cdf_ppf_next(self):
|
||
|
# copied and special cased from test_discrete_basic
|
||
|
vals = ([1, 2, 4, 7, 8], [0.1, 0.2, 0.3, 0.3, 0.1])
|
||
|
rv = stats.rv_discrete(values=vals)
|
||
|
|
||
|
assert_array_equal(rv.ppf(rv.cdf(rv.xk[:-1]) + 1e-8),
|
||
|
rv.xk[1:])
|
||
|
|
||
|
def test_multidimension(self):
|
||
|
xk = np.arange(12).reshape((3, 4))
|
||
|
pk = np.array([[0.1, 0.1, 0.15, 0.05],
|
||
|
[0.1, 0.1, 0.05, 0.05],
|
||
|
[0.1, 0.1, 0.05, 0.05]])
|
||
|
rv = stats.rv_discrete(values=(xk, pk))
|
||
|
|
||
|
assert_allclose(rv.expect(), np.sum(rv.xk * rv.pk), atol=1e-14)
|
||
|
|
||
|
def test_bad_input(self):
|
||
|
xk = [1, 2, 3]
|
||
|
pk = [0.5, 0.5]
|
||
|
assert_raises(ValueError, stats.rv_discrete, **dict(values=(xk, pk)))
|
||
|
|
||
|
pk = [1, 2, 3]
|
||
|
assert_raises(ValueError, stats.rv_discrete, **dict(values=(xk, pk)))
|
||
|
|
||
|
xk = [1, 2, 3]
|
||
|
pk = [0.5, 1.2, -0.7]
|
||
|
assert_raises(ValueError, stats.rv_discrete, **dict(values=(xk, pk)))
|
||
|
|
||
|
xk = [1, 2, 3, 4, 5]
|
||
|
pk = [0.3, 0.3, 0.3, 0.3, -0.2]
|
||
|
assert_raises(ValueError, stats.rv_discrete, **dict(values=(xk, pk)))
|
||
|
|
||
|
xk = [1, 1]
|
||
|
pk = [0.5, 0.5]
|
||
|
assert_raises(ValueError, stats.rv_discrete, **dict(values=(xk, pk)))
|
||
|
|
||
|
def test_shape_rv_sample(self):
|
||
|
# tests added for gh-9565
|
||
|
|
||
|
# mismatch of 2d inputs
|
||
|
xk, pk = np.arange(4).reshape((2, 2)), np.full((2, 3), 1/6)
|
||
|
assert_raises(ValueError, stats.rv_discrete, **dict(values=(xk, pk)))
|
||
|
|
||
|
# same number of elements, but shapes not compatible
|
||
|
xk, pk = np.arange(6).reshape((3, 2)), np.full((2, 3), 1/6)
|
||
|
assert_raises(ValueError, stats.rv_discrete, **dict(values=(xk, pk)))
|
||
|
|
||
|
# same shapes => no error
|
||
|
xk, pk = np.arange(6).reshape((3, 2)), np.full((3, 2), 1/6)
|
||
|
assert_equal(stats.rv_discrete(values=(xk, pk)).pmf(0), 1/6)
|
||
|
|
||
|
def test_expect1(self):
|
||
|
xk = [1, 2, 4, 6, 7, 11]
|
||
|
pk = [0.1, 0.2, 0.2, 0.2, 0.2, 0.1]
|
||
|
rv = stats.rv_discrete(values=(xk, pk))
|
||
|
|
||
|
assert_allclose(rv.expect(), np.sum(rv.xk * rv.pk), atol=1e-14)
|
||
|
|
||
|
def test_expect2(self):
|
||
|
# rv_sample should override _expect. Bug report from
|
||
|
# https://stackoverflow.com/questions/63199792
|
||
|
y = [200.0, 300.0, 400.0, 500.0, 600.0, 700.0, 800.0, 900.0, 1000.0,
|
||
|
1100.0, 1200.0, 1300.0, 1400.0, 1500.0, 1600.0, 1700.0, 1800.0,
|
||
|
1900.0, 2000.0, 2100.0, 2200.0, 2300.0, 2400.0, 2500.0, 2600.0,
|
||
|
2700.0, 2800.0, 2900.0, 3000.0, 3100.0, 3200.0, 3300.0, 3400.0,
|
||
|
3500.0, 3600.0, 3700.0, 3800.0, 3900.0, 4000.0, 4100.0, 4200.0,
|
||
|
4300.0, 4400.0, 4500.0, 4600.0, 4700.0, 4800.0]
|
||
|
|
||
|
py = [0.0004, 0.0, 0.0033, 0.006500000000000001, 0.0, 0.0,
|
||
|
0.004399999999999999, 0.6862, 0.0, 0.0, 0.0,
|
||
|
0.00019999999999997797, 0.0006000000000000449,
|
||
|
0.024499999999999966, 0.006400000000000072,
|
||
|
0.0043999999999999595, 0.019499999999999962,
|
||
|
0.03770000000000007, 0.01759999999999995, 0.015199999999999991,
|
||
|
0.018100000000000005, 0.04500000000000004, 0.0025999999999999357,
|
||
|
0.0, 0.0041000000000001036, 0.005999999999999894,
|
||
|
0.0042000000000000925, 0.0050000000000000044,
|
||
|
0.0041999999999999815, 0.0004999999999999449,
|
||
|
0.009199999999999986, 0.008200000000000096,
|
||
|
0.0, 0.0, 0.0046999999999999265, 0.0019000000000000128,
|
||
|
0.0006000000000000449, 0.02510000000000001, 0.0,
|
||
|
0.007199999999999984, 0.0, 0.012699999999999934, 0.0, 0.0,
|
||
|
0.008199999999999985, 0.005600000000000049, 0.0]
|
||
|
|
||
|
rv = stats.rv_discrete(values=(y, py))
|
||
|
|
||
|
# check the mean
|
||
|
assert_allclose(rv.expect(), rv.mean(), atol=1e-14)
|
||
|
assert_allclose(rv.expect(),
|
||
|
sum(v * w for v, w in zip(y, py)), atol=1e-14)
|
||
|
|
||
|
# also check the second moment
|
||
|
assert_allclose(rv.expect(lambda x: x**2),
|
||
|
sum(v**2 * w for v, w in zip(y, py)), atol=1e-14)
|
||
|
|
||
|
|
||
|
class TestSkewCauchy:
|
||
|
def test_cauchy(self):
|
||
|
x = np.linspace(-5, 5, 100)
|
||
|
assert_array_almost_equal(stats.skewcauchy.pdf(x, a=0),
|
||
|
stats.cauchy.pdf(x))
|
||
|
assert_array_almost_equal(stats.skewcauchy.cdf(x, a=0),
|
||
|
stats.cauchy.cdf(x))
|
||
|
assert_array_almost_equal(stats.skewcauchy.ppf(x, a=0),
|
||
|
stats.cauchy.ppf(x))
|
||
|
|
||
|
def test_skewcauchy_R(self):
|
||
|
# options(digits=16)
|
||
|
# library(sgt)
|
||
|
# # lmbda, x contain the values generated for a, x below
|
||
|
# lmbda <- c(0.0976270078546495, 0.430378732744839, 0.2055267521432877,
|
||
|
# 0.0897663659937937, -0.15269040132219, 0.2917882261333122,
|
||
|
# -0.12482557747462, 0.7835460015641595, 0.9273255210020589,
|
||
|
# -0.2331169623484446)
|
||
|
# x <- c(2.917250380826646, 0.2889491975290444, 0.6804456109393229,
|
||
|
# 4.25596638292661, -4.289639418021131, -4.1287070029845925,
|
||
|
# -4.797816025596743, 3.32619845547938, 2.7815675094985046,
|
||
|
# 3.700121482468191)
|
||
|
# pdf = dsgt(x, mu=0, lambda=lambda, sigma=1, q=1/2, mean.cent=FALSE,
|
||
|
# var.adj = sqrt(2))
|
||
|
# cdf = psgt(x, mu=0, lambda=lambda, sigma=1, q=1/2, mean.cent=FALSE,
|
||
|
# var.adj = sqrt(2))
|
||
|
# qsgt(cdf, mu=0, lambda=lambda, sigma=1, q=1/2, mean.cent=FALSE,
|
||
|
# var.adj = sqrt(2))
|
||
|
|
||
|
np.random.seed(0)
|
||
|
a = np.random.rand(10) * 2 - 1
|
||
|
x = np.random.rand(10) * 10 - 5
|
||
|
pdf = [0.039473975217333909, 0.305829714049903223, 0.24140158118994162,
|
||
|
0.019585772402693054, 0.021436553695989482, 0.00909817103867518,
|
||
|
0.01658423410016873, 0.071083288030394126, 0.103250045941454524,
|
||
|
0.013110230778426242]
|
||
|
cdf = [0.87426677718213752, 0.37556468910780882, 0.59442096496538066,
|
||
|
0.91304659850890202, 0.09631964100300605, 0.03829624330921733,
|
||
|
0.08245240578402535, 0.72057062945510386, 0.62826415852515449,
|
||
|
0.95011308463898292]
|
||
|
assert_allclose(stats.skewcauchy.pdf(x, a), pdf)
|
||
|
assert_allclose(stats.skewcauchy.cdf(x, a), cdf)
|
||
|
assert_allclose(stats.skewcauchy.ppf(cdf, a), x)
|
||
|
|
||
|
|
||
|
class TestJFSkewT:
|
||
|
def test_compare_t(self):
|
||
|
# Verify that jf_skew_t with a=b recovers the t distribution with 2a
|
||
|
# degrees of freedom
|
||
|
a = b = 5
|
||
|
df = a * 2
|
||
|
x = [-1.0, 0.0, 1.0, 2.0]
|
||
|
q = [0.0, 0.1, 0.25, 0.75, 0.90, 1.0]
|
||
|
|
||
|
jf = stats.jf_skew_t(a, b)
|
||
|
t = stats.t(df)
|
||
|
|
||
|
assert_allclose(jf.pdf(x), t.pdf(x))
|
||
|
assert_allclose(jf.cdf(x), t.cdf(x))
|
||
|
assert_allclose(jf.ppf(q), t.ppf(q))
|
||
|
assert_allclose(jf.stats('mvsk'), t.stats('mvsk'))
|
||
|
|
||
|
@pytest.fixture
|
||
|
def gamlss_pdf_data(self):
|
||
|
"""Sample data points computed using the `ST5` distribution from the
|
||
|
GAMLSS package in R. The pdf has been calculated for (a,b)=(2,3),
|
||
|
(a,b)=(8,4), and (a,b)=(12,13) for x in `np.linspace(-10, 10, 41)`.
|
||
|
|
||
|
N.B. the `ST5` distribution in R uses an alternative parameterization
|
||
|
in terms of nu and tau, where:
|
||
|
- nu = (a - b) / (a * b * (a + b)) ** 0.5
|
||
|
- tau = 2 / (a + b)
|
||
|
"""
|
||
|
data = np.load(
|
||
|
Path(__file__).parent / "data/jf_skew_t_gamlss_pdf_data.npy"
|
||
|
)
|
||
|
return np.rec.fromarrays(data, names="x,pdf,a,b")
|
||
|
|
||
|
@pytest.mark.parametrize("a,b", [(2, 3), (8, 4), (12, 13)])
|
||
|
def test_compare_with_gamlss_r(self, gamlss_pdf_data, a, b):
|
||
|
"""Compare the pdf with a table of reference values. The table of
|
||
|
reference values was produced using R, where the Jones and Faddy skew
|
||
|
t distribution is available in the GAMLSS package as `ST5`.
|
||
|
"""
|
||
|
data = gamlss_pdf_data[
|
||
|
(gamlss_pdf_data["a"] == a) & (gamlss_pdf_data["b"] == b)
|
||
|
]
|
||
|
x, pdf = data["x"], data["pdf"]
|
||
|
assert_allclose(pdf, stats.jf_skew_t(a, b).pdf(x), rtol=1e-12)
|
||
|
|
||
|
# Test data for TestSkewNorm.test_noncentral_moments()
|
||
|
# The expected noncentral moments were computed by Wolfram Alpha.
|
||
|
# In Wolfram Alpha, enter
|
||
|
# SkewNormalDistribution[0, 1, a] moment
|
||
|
# with `a` replaced by the desired shape parameter. In the results, there
|
||
|
# should be a table of the first four moments. Click on "More" to get more
|
||
|
# moments. The expected moments start with the first moment (order = 1).
|
||
|
_skewnorm_noncentral_moments = [
|
||
|
(2, [2*np.sqrt(2/(5*np.pi)),
|
||
|
1,
|
||
|
22/5*np.sqrt(2/(5*np.pi)),
|
||
|
3,
|
||
|
446/25*np.sqrt(2/(5*np.pi)),
|
||
|
15,
|
||
|
2682/25*np.sqrt(2/(5*np.pi)),
|
||
|
105,
|
||
|
107322/125*np.sqrt(2/(5*np.pi))]),
|
||
|
(0.1, [np.sqrt(2/(101*np.pi)),
|
||
|
1,
|
||
|
302/101*np.sqrt(2/(101*np.pi)),
|
||
|
3,
|
||
|
(152008*np.sqrt(2/(101*np.pi)))/10201,
|
||
|
15,
|
||
|
(107116848*np.sqrt(2/(101*np.pi)))/1030301,
|
||
|
105,
|
||
|
(97050413184*np.sqrt(2/(101*np.pi)))/104060401]),
|
||
|
(-3, [-3/np.sqrt(5*np.pi),
|
||
|
1,
|
||
|
-63/(10*np.sqrt(5*np.pi)),
|
||
|
3,
|
||
|
-2529/(100*np.sqrt(5*np.pi)),
|
||
|
15,
|
||
|
-30357/(200*np.sqrt(5*np.pi)),
|
||
|
105,
|
||
|
-2428623/(2000*np.sqrt(5*np.pi)),
|
||
|
945,
|
||
|
-242862867/(20000*np.sqrt(5*np.pi)),
|
||
|
10395,
|
||
|
-29143550277/(200000*np.sqrt(5*np.pi)),
|
||
|
135135]),
|
||
|
]
|
||
|
|
||
|
|
||
|
class TestSkewNorm:
|
||
|
def setup_method(self):
|
||
|
self.rng = check_random_state(1234)
|
||
|
|
||
|
def test_normal(self):
|
||
|
# When the skewness is 0 the distribution is normal
|
||
|
x = np.linspace(-5, 5, 100)
|
||
|
assert_array_almost_equal(stats.skewnorm.pdf(x, a=0),
|
||
|
stats.norm.pdf(x))
|
||
|
|
||
|
def test_rvs(self):
|
||
|
shape = (3, 4, 5)
|
||
|
x = stats.skewnorm.rvs(a=0.75, size=shape, random_state=self.rng)
|
||
|
assert_equal(shape, x.shape)
|
||
|
|
||
|
x = stats.skewnorm.rvs(a=-3, size=shape, random_state=self.rng)
|
||
|
assert_equal(shape, x.shape)
|
||
|
|
||
|
def test_moments(self):
|
||
|
X = stats.skewnorm.rvs(a=4, size=int(1e6), loc=5, scale=2,
|
||
|
random_state=self.rng)
|
||
|
expected = [np.mean(X), np.var(X), stats.skew(X), stats.kurtosis(X)]
|
||
|
computed = stats.skewnorm.stats(a=4, loc=5, scale=2, moments='mvsk')
|
||
|
assert_array_almost_equal(computed, expected, decimal=2)
|
||
|
|
||
|
X = stats.skewnorm.rvs(a=-4, size=int(1e6), loc=5, scale=2,
|
||
|
random_state=self.rng)
|
||
|
expected = [np.mean(X), np.var(X), stats.skew(X), stats.kurtosis(X)]
|
||
|
computed = stats.skewnorm.stats(a=-4, loc=5, scale=2, moments='mvsk')
|
||
|
assert_array_almost_equal(computed, expected, decimal=2)
|
||
|
|
||
|
def test_pdf_large_x(self):
|
||
|
# Triples are [x, a, logpdf(x, a)]. These values were computed
|
||
|
# using Log[PDF[SkewNormalDistribution[0, 1, a], x]] in Wolfram Alpha.
|
||
|
logpdfvals = [
|
||
|
[40, -1, -1604.834233366398515598970],
|
||
|
[40, -1/2, -1004.142946723741991369168],
|
||
|
[40, 0, -800.9189385332046727417803],
|
||
|
[40, 1/2, -800.2257913526447274323631],
|
||
|
[-40, -1/2, -800.2257913526447274323631],
|
||
|
[-2, 1e7, -2.000000000000199559727173e14],
|
||
|
[2, -1e7, -2.000000000000199559727173e14],
|
||
|
]
|
||
|
for x, a, logpdfval in logpdfvals:
|
||
|
logp = stats.skewnorm.logpdf(x, a)
|
||
|
assert_allclose(logp, logpdfval, rtol=1e-8)
|
||
|
|
||
|
def test_cdf_large_x(self):
|
||
|
# Regression test for gh-7746.
|
||
|
# The x values are large enough that the closest 64 bit floating
|
||
|
# point representation of the exact CDF is 1.0.
|
||
|
p = stats.skewnorm.cdf([10, 20, 30], -1)
|
||
|
assert_allclose(p, np.ones(3), rtol=1e-14)
|
||
|
p = stats.skewnorm.cdf(25, 2.5)
|
||
|
assert_allclose(p, 1.0, rtol=1e-14)
|
||
|
|
||
|
def test_cdf_sf_small_values(self):
|
||
|
# Triples are [x, a, cdf(x, a)]. These values were computed
|
||
|
# using CDF[SkewNormalDistribution[0, 1, a], x] in Wolfram Alpha.
|
||
|
cdfvals = [
|
||
|
[-8, 1, 3.870035046664392611e-31],
|
||
|
[-4, 2, 8.1298399188811398e-21],
|
||
|
[-2, 5, 1.55326826787106273e-26],
|
||
|
[-9, -1, 2.257176811907681295e-19],
|
||
|
[-10, -4, 1.523970604832105213e-23],
|
||
|
]
|
||
|
for x, a, cdfval in cdfvals:
|
||
|
p = stats.skewnorm.cdf(x, a)
|
||
|
assert_allclose(p, cdfval, rtol=1e-8)
|
||
|
# For the skew normal distribution, sf(-x, -a) = cdf(x, a).
|
||
|
p = stats.skewnorm.sf(-x, -a)
|
||
|
assert_allclose(p, cdfval, rtol=1e-8)
|
||
|
|
||
|
@pytest.mark.parametrize('a, moments', _skewnorm_noncentral_moments)
|
||
|
def test_noncentral_moments(self, a, moments):
|
||
|
for order, expected in enumerate(moments, start=1):
|
||
|
mom = stats.skewnorm.moment(order, a)
|
||
|
assert_allclose(mom, expected, rtol=1e-14)
|
||
|
|
||
|
def test_fit(self):
|
||
|
rng = np.random.default_rng(4609813989115202851)
|
||
|
|
||
|
a, loc, scale = -2, 3.5, 0.5 # arbitrary, valid parameters
|
||
|
dist = stats.skewnorm(a, loc, scale)
|
||
|
rvs = dist.rvs(size=100, random_state=rng)
|
||
|
|
||
|
# test that MLE still honors guesses and fixed parameters
|
||
|
a2, loc2, scale2 = stats.skewnorm.fit(rvs, -1.5, floc=3)
|
||
|
a3, loc3, scale3 = stats.skewnorm.fit(rvs, -1.6, floc=3)
|
||
|
assert loc2 == loc3 == 3 # fixed parameter is respected
|
||
|
assert a2 != a3 # different guess -> (slightly) different outcome
|
||
|
# quality of fit is tested elsewhere
|
||
|
|
||
|
# test that MoM honors fixed parameters, accepts (but ignores) guesses
|
||
|
a4, loc4, scale4 = stats.skewnorm.fit(rvs, 3, fscale=3, method='mm')
|
||
|
assert scale4 == 3
|
||
|
# because scale was fixed, only the mean and skewness will be matched
|
||
|
dist4 = stats.skewnorm(a4, loc4, scale4)
|
||
|
res = dist4.stats(moments='ms')
|
||
|
ref = np.mean(rvs), stats.skew(rvs)
|
||
|
assert_allclose(res, ref)
|
||
|
|
||
|
# Test behavior when skew of data is beyond maximum of skewnorm
|
||
|
rvs2 = stats.pareto.rvs(1, size=100, random_state=rng)
|
||
|
|
||
|
# MLE still works
|
||
|
res = stats.skewnorm.fit(rvs2)
|
||
|
assert np.all(np.isfinite(res))
|
||
|
|
||
|
# MoM fits variance and skewness
|
||
|
a5, loc5, scale5 = stats.skewnorm.fit(rvs2, method='mm')
|
||
|
assert np.isinf(a5)
|
||
|
# distribution infrastruction doesn't allow infinite shape parameters
|
||
|
# into _stats; it just bypasses it and produces NaNs. Calculate
|
||
|
# moments manually.
|
||
|
m, v = np.mean(rvs2), np.var(rvs2)
|
||
|
assert_allclose(m, loc5 + scale5 * np.sqrt(2/np.pi))
|
||
|
assert_allclose(v, scale5**2 * (1 - 2 / np.pi))
|
||
|
|
||
|
# test that MLE and MoM behave as expected under sign changes
|
||
|
a6p, loc6p, scale6p = stats.skewnorm.fit(rvs, method='mle')
|
||
|
a6m, loc6m, scale6m = stats.skewnorm.fit(-rvs, method='mle')
|
||
|
assert_allclose([a6m, loc6m, scale6m], [-a6p, -loc6p, scale6p])
|
||
|
a7p, loc7p, scale7p = stats.skewnorm.fit(rvs, method='mm')
|
||
|
a7m, loc7m, scale7m = stats.skewnorm.fit(-rvs, method='mm')
|
||
|
assert_allclose([a7m, loc7m, scale7m], [-a7p, -loc7p, scale7p])
|
||
|
|
||
|
def test_fit_gh19332(self):
|
||
|
# When the skewness of the data was high, `skewnorm.fit` fell back on
|
||
|
# generic `fit` behavior with a bad guess of the skewness parameter.
|
||
|
# Test that this is improved; `skewnorm.fit` is now better at finding
|
||
|
# the global optimum when the sample is highly skewed. See gh-19332.
|
||
|
x = np.array([-5, -1, 1 / 100_000] + 12 * [1] + [5])
|
||
|
|
||
|
params = stats.skewnorm.fit(x)
|
||
|
res = stats.skewnorm.nnlf(params, x)
|
||
|
|
||
|
# Compare overridden fit against generic fit.
|
||
|
# res should be about 32.01, and generic fit is worse at 32.64.
|
||
|
# In case the generic fit improves, remove this assertion (see gh-19333).
|
||
|
params_super = stats.skewnorm.fit(x, superfit=True)
|
||
|
ref = stats.skewnorm.nnlf(params_super, x)
|
||
|
assert res < ref - 0.5
|
||
|
|
||
|
# Compare overridden fit against stats.fit
|
||
|
rng = np.random.default_rng(9842356982345693637)
|
||
|
bounds = {'a': (-5, 5), 'loc': (-10, 10), 'scale': (1e-16, 10)}
|
||
|
def optimizer(fun, bounds):
|
||
|
return differential_evolution(fun, bounds, seed=rng)
|
||
|
|
||
|
fit_result = stats.fit(stats.skewnorm, x, bounds, optimizer=optimizer)
|
||
|
np.testing.assert_allclose(params, fit_result.params, rtol=1e-4)
|
||
|
|
||
|
|
||
|
class TestExpon:
|
||
|
def test_zero(self):
|
||
|
assert_equal(stats.expon.pdf(0), 1)
|
||
|
|
||
|
def test_tail(self): # Regression test for ticket 807
|
||
|
assert_equal(stats.expon.cdf(1e-18), 1e-18)
|
||
|
assert_equal(stats.expon.isf(stats.expon.sf(40)), 40)
|
||
|
|
||
|
def test_nan_raises_error(self):
|
||
|
# see gh-issue 10300
|
||
|
x = np.array([1.6483, 2.7169, 2.4667, 1.1791, 3.5433, np.nan])
|
||
|
assert_raises(ValueError, stats.expon.fit, x)
|
||
|
|
||
|
def test_inf_raises_error(self):
|
||
|
# see gh-issue 10300
|
||
|
x = np.array([1.6483, 2.7169, 2.4667, 1.1791, 3.5433, np.inf])
|
||
|
assert_raises(ValueError, stats.expon.fit, x)
|
||
|
|
||
|
|
||
|
class TestNorm:
|
||
|
def test_nan_raises_error(self):
|
||
|
# see gh-issue 10300
|
||
|
x = np.array([1.6483, 2.7169, 2.4667, 1.1791, 3.5433, np.nan])
|
||
|
assert_raises(ValueError, stats.norm.fit, x)
|
||
|
|
||
|
def test_inf_raises_error(self):
|
||
|
# see gh-issue 10300
|
||
|
x = np.array([1.6483, 2.7169, 2.4667, 1.1791, 3.5433, np.inf])
|
||
|
assert_raises(ValueError, stats.norm.fit, x)
|
||
|
|
||
|
def test_bad_keyword_arg(self):
|
||
|
x = [1, 2, 3]
|
||
|
assert_raises(TypeError, stats.norm.fit, x, plate="shrimp")
|
||
|
|
||
|
@pytest.mark.parametrize('loc', [0, 1])
|
||
|
def test_delta_cdf(self, loc):
|
||
|
# The expected value is computed with mpmath:
|
||
|
# >>> import mpmath
|
||
|
# >>> mpmath.mp.dps = 60
|
||
|
# >>> float(mpmath.ncdf(12) - mpmath.ncdf(11))
|
||
|
# 1.910641809677555e-28
|
||
|
expected = 1.910641809677555e-28
|
||
|
delta = stats.norm._delta_cdf(11+loc, 12+loc, loc=loc)
|
||
|
assert_allclose(delta, expected, rtol=1e-13)
|
||
|
delta = stats.norm._delta_cdf(-(12+loc), -(11+loc), loc=-loc)
|
||
|
assert_allclose(delta, expected, rtol=1e-13)
|
||
|
|
||
|
|
||
|
class TestUniform:
|
||
|
"""gh-10300"""
|
||
|
def test_nan_raises_error(self):
|
||
|
# see gh-issue 10300
|
||
|
x = np.array([1.6483, 2.7169, 2.4667, 1.1791, 3.5433, np.nan])
|
||
|
assert_raises(ValueError, stats.uniform.fit, x)
|
||
|
|
||
|
def test_inf_raises_error(self):
|
||
|
# see gh-issue 10300
|
||
|
x = np.array([1.6483, 2.7169, 2.4667, 1.1791, 3.5433, np.inf])
|
||
|
assert_raises(ValueError, stats.uniform.fit, x)
|
||
|
|
||
|
|
||
|
class TestExponNorm:
|
||
|
def test_moments(self):
|
||
|
# Some moment test cases based on non-loc/scaled formula
|
||
|
def get_moms(lam, sig, mu):
|
||
|
# See wikipedia for these formulae
|
||
|
# where it is listed as an exponentially modified gaussian
|
||
|
opK2 = 1.0 + 1 / (lam*sig)**2
|
||
|
exp_skew = 2 / (lam * sig)**3 * opK2**(-1.5)
|
||
|
exp_kurt = 6.0 * (1 + (lam * sig)**2)**(-2)
|
||
|
return [mu + 1/lam, sig*sig + 1.0/(lam*lam), exp_skew, exp_kurt]
|
||
|
|
||
|
mu, sig, lam = 0, 1, 1
|
||
|
K = 1.0 / (lam * sig)
|
||
|
sts = stats.exponnorm.stats(K, loc=mu, scale=sig, moments='mvsk')
|
||
|
assert_almost_equal(sts, get_moms(lam, sig, mu))
|
||
|
mu, sig, lam = -3, 2, 0.1
|
||
|
K = 1.0 / (lam * sig)
|
||
|
sts = stats.exponnorm.stats(K, loc=mu, scale=sig, moments='mvsk')
|
||
|
assert_almost_equal(sts, get_moms(lam, sig, mu))
|
||
|
mu, sig, lam = 0, 3, 1
|
||
|
K = 1.0 / (lam * sig)
|
||
|
sts = stats.exponnorm.stats(K, loc=mu, scale=sig, moments='mvsk')
|
||
|
assert_almost_equal(sts, get_moms(lam, sig, mu))
|
||
|
mu, sig, lam = -5, 11, 3.5
|
||
|
K = 1.0 / (lam * sig)
|
||
|
sts = stats.exponnorm.stats(K, loc=mu, scale=sig, moments='mvsk')
|
||
|
assert_almost_equal(sts, get_moms(lam, sig, mu))
|
||
|
|
||
|
def test_nan_raises_error(self):
|
||
|
# see gh-issue 10300
|
||
|
x = np.array([1.6483, 2.7169, 2.4667, 1.1791, 3.5433, np.nan])
|
||
|
assert_raises(ValueError, stats.exponnorm.fit, x, floc=0, fscale=1)
|
||
|
|
||
|
def test_inf_raises_error(self):
|
||
|
# see gh-issue 10300
|
||
|
x = np.array([1.6483, 2.7169, 2.4667, 1.1791, 3.5433, np.inf])
|
||
|
assert_raises(ValueError, stats.exponnorm.fit, x, floc=0, fscale=1)
|
||
|
|
||
|
def test_extremes_x(self):
|
||
|
# Test for extreme values against overflows
|
||
|
assert_almost_equal(stats.exponnorm.pdf(-900, 1), 0.0)
|
||
|
assert_almost_equal(stats.exponnorm.pdf(+900, 1), 0.0)
|
||
|
assert_almost_equal(stats.exponnorm.pdf(-900, 0.01), 0.0)
|
||
|
assert_almost_equal(stats.exponnorm.pdf(+900, 0.01), 0.0)
|
||
|
|
||
|
# Expected values for the PDF were computed with mpmath, with
|
||
|
# the following function, and with mpmath.mp.dps = 50.
|
||
|
#
|
||
|
# def exponnorm_stdpdf(x, K):
|
||
|
# x = mpmath.mpf(x)
|
||
|
# K = mpmath.mpf(K)
|
||
|
# t1 = mpmath.exp(1/(2*K**2) - x/K)
|
||
|
# erfcarg = -(x - 1/K)/mpmath.sqrt(2)
|
||
|
# t2 = mpmath.erfc(erfcarg)
|
||
|
# return t1 * t2 / (2*K)
|
||
|
#
|
||
|
@pytest.mark.parametrize('x, K, expected',
|
||
|
[(20, 0.01, 6.90010764753618e-88),
|
||
|
(1, 0.01, 0.24438994313247364),
|
||
|
(-1, 0.01, 0.23955149623472075),
|
||
|
(-20, 0.01, 4.6004708690125477e-88),
|
||
|
(10, 1, 7.48518298877006e-05),
|
||
|
(10, 10000, 9.990005048283775e-05)])
|
||
|
def test_std_pdf(self, x, K, expected):
|
||
|
assert_allclose(stats.exponnorm.pdf(x, K), expected, rtol=5e-12)
|
||
|
|
||
|
# Expected values for the CDF were computed with mpmath using
|
||
|
# the following function and with mpmath.mp.dps = 60:
|
||
|
#
|
||
|
# def mp_exponnorm_cdf(x, K, loc=0, scale=1):
|
||
|
# x = mpmath.mpf(x)
|
||
|
# K = mpmath.mpf(K)
|
||
|
# loc = mpmath.mpf(loc)
|
||
|
# scale = mpmath.mpf(scale)
|
||
|
# z = (x - loc)/scale
|
||
|
# return (mpmath.ncdf(z)
|
||
|
# - mpmath.exp((1/(2*K) - z)/K)*mpmath.ncdf(z - 1/K))
|
||
|
#
|
||
|
@pytest.mark.parametrize('x, K, scale, expected',
|
||
|
[[0, 0.01, 1, 0.4960109760186432],
|
||
|
[-5, 0.005, 1, 2.7939945412195734e-07],
|
||
|
[-1e4, 0.01, 100, 0.0],
|
||
|
[-1e4, 0.01, 1000, 6.920401854427357e-24],
|
||
|
[5, 0.001, 1, 0.9999997118542392]])
|
||
|
def test_cdf_small_K(self, x, K, scale, expected):
|
||
|
p = stats.exponnorm.cdf(x, K, scale=scale)
|
||
|
if expected == 0.0:
|
||
|
assert p == 0.0
|
||
|
else:
|
||
|
assert_allclose(p, expected, rtol=1e-13)
|
||
|
|
||
|
# Expected values for the SF were computed with mpmath using
|
||
|
# the following function and with mpmath.mp.dps = 60:
|
||
|
#
|
||
|
# def mp_exponnorm_sf(x, K, loc=0, scale=1):
|
||
|
# x = mpmath.mpf(x)
|
||
|
# K = mpmath.mpf(K)
|
||
|
# loc = mpmath.mpf(loc)
|
||
|
# scale = mpmath.mpf(scale)
|
||
|
# z = (x - loc)/scale
|
||
|
# return (mpmath.ncdf(-z)
|
||
|
# + mpmath.exp((1/(2*K) - z)/K)*mpmath.ncdf(z - 1/K))
|
||
|
#
|
||
|
@pytest.mark.parametrize('x, K, scale, expected',
|
||
|
[[10, 0.01, 1, 8.474702916146657e-24],
|
||
|
[2, 0.005, 1, 0.02302280664231312],
|
||
|
[5, 0.005, 0.5, 8.024820681931086e-24],
|
||
|
[10, 0.005, 0.5, 3.0603340062892486e-89],
|
||
|
[20, 0.005, 0.5, 0.0],
|
||
|
[-3, 0.001, 1, 0.9986545205566117]])
|
||
|
def test_sf_small_K(self, x, K, scale, expected):
|
||
|
p = stats.exponnorm.sf(x, K, scale=scale)
|
||
|
if expected == 0.0:
|
||
|
assert p == 0.0
|
||
|
else:
|
||
|
assert_allclose(p, expected, rtol=5e-13)
|
||
|
|
||
|
|
||
|
class TestGenExpon:
|
||
|
def test_pdf_unity_area(self):
|
||
|
from scipy.integrate import simpson
|
||
|
# PDF should integrate to one
|
||
|
p = stats.genexpon.pdf(numpy.arange(0, 10, 0.01), 0.5, 0.5, 2.0)
|
||
|
assert_almost_equal(simpson(p, dx=0.01), 1, 1)
|
||
|
|
||
|
def test_cdf_bounds(self):
|
||
|
# CDF should always be positive
|
||
|
cdf = stats.genexpon.cdf(numpy.arange(0, 10, 0.01), 0.5, 0.5, 2.0)
|
||
|
assert_(numpy.all((0 <= cdf) & (cdf <= 1)))
|
||
|
|
||
|
# The values of p in the following data were computed with mpmath.
|
||
|
# E.g. the script
|
||
|
# from mpmath import mp
|
||
|
# mp.dps = 80
|
||
|
# x = mp.mpf('15.0')
|
||
|
# a = mp.mpf('1.0')
|
||
|
# b = mp.mpf('2.0')
|
||
|
# c = mp.mpf('1.5')
|
||
|
# print(float(mp.exp((-a-b)*x + (b/c)*-mp.expm1(-c*x))))
|
||
|
# prints
|
||
|
# 1.0859444834514553e-19
|
||
|
@pytest.mark.parametrize('x, p, a, b, c',
|
||
|
[(15, 1.0859444834514553e-19, 1, 2, 1.5),
|
||
|
(0.25, 0.7609068232534623, 0.5, 2, 3),
|
||
|
(0.25, 0.09026661397565876, 9.5, 2, 0.5),
|
||
|
(0.01, 0.9753038265071597, 2.5, 0.25, 0.5),
|
||
|
(3.25, 0.0001962824553094492, 2.5, 0.25, 0.5),
|
||
|
(0.125, 0.9508674287164001, 0.25, 5, 0.5)])
|
||
|
def test_sf_isf(self, x, p, a, b, c):
|
||
|
sf = stats.genexpon.sf(x, a, b, c)
|
||
|
assert_allclose(sf, p, rtol=2e-14)
|
||
|
isf = stats.genexpon.isf(p, a, b, c)
|
||
|
assert_allclose(isf, x, rtol=2e-14)
|
||
|
|
||
|
# The values of p in the following data were computed with mpmath.
|
||
|
@pytest.mark.parametrize('x, p, a, b, c',
|
||
|
[(0.25, 0.2390931767465377, 0.5, 2, 3),
|
||
|
(0.25, 0.9097333860243412, 9.5, 2, 0.5),
|
||
|
(0.01, 0.0246961734928403, 2.5, 0.25, 0.5),
|
||
|
(3.25, 0.9998037175446906, 2.5, 0.25, 0.5),
|
||
|
(0.125, 0.04913257128359998, 0.25, 5, 0.5)])
|
||
|
def test_cdf_ppf(self, x, p, a, b, c):
|
||
|
cdf = stats.genexpon.cdf(x, a, b, c)
|
||
|
assert_allclose(cdf, p, rtol=2e-14)
|
||
|
ppf = stats.genexpon.ppf(p, a, b, c)
|
||
|
assert_allclose(ppf, x, rtol=2e-14)
|
||
|
|
||
|
|
||
|
class TestTruncexpon:
|
||
|
|
||
|
def test_sf_isf(self):
|
||
|
# reference values were computed via the reference distribution, e.g.
|
||
|
# mp.dps = 50; TruncExpon(b=b).sf(x)
|
||
|
b = [20, 100]
|
||
|
x = [19.999999, 99.999999]
|
||
|
ref = [2.0611546593828472e-15, 3.7200778266671455e-50]
|
||
|
assert_allclose(stats.truncexpon.sf(x, b), ref, rtol=1.5e-10)
|
||
|
assert_allclose(stats.truncexpon.isf(ref, b), x, rtol=1e-12)
|
||
|
|
||
|
|
||
|
class TestExponpow:
|
||
|
def test_tail(self):
|
||
|
assert_almost_equal(stats.exponpow.cdf(1e-10, 2.), 1e-20)
|
||
|
assert_almost_equal(stats.exponpow.isf(stats.exponpow.sf(5, .8), .8),
|
||
|
5)
|
||
|
|
||
|
|
||
|
class TestSkellam:
|
||
|
def test_pmf(self):
|
||
|
# comparison to R
|
||
|
k = numpy.arange(-10, 15)
|
||
|
mu1, mu2 = 10, 5
|
||
|
skpmfR = numpy.array(
|
||
|
[4.2254582961926893e-005, 1.1404838449648488e-004,
|
||
|
2.8979625801752660e-004, 6.9177078182101231e-004,
|
||
|
1.5480716105844708e-003, 3.2412274963433889e-003,
|
||
|
6.3373707175123292e-003, 1.1552351566696643e-002,
|
||
|
1.9606152375042644e-002, 3.0947164083410337e-002,
|
||
|
4.5401737566767360e-002, 6.1894328166820688e-002,
|
||
|
7.8424609500170578e-002, 9.2418812533573133e-002,
|
||
|
1.0139793148019728e-001, 1.0371927988298846e-001,
|
||
|
9.9076583077406091e-002, 8.8546660073089561e-002,
|
||
|
7.4187842052486810e-002, 5.8392772862200251e-002,
|
||
|
4.3268692953013159e-002, 3.0248159818374226e-002,
|
||
|
1.9991434305603021e-002, 1.2516877303301180e-002,
|
||
|
7.4389876226229707e-003])
|
||
|
|
||
|
assert_almost_equal(stats.skellam.pmf(k, mu1, mu2), skpmfR, decimal=15)
|
||
|
|
||
|
def test_cdf(self):
|
||
|
# comparison to R, only 5 decimals
|
||
|
k = numpy.arange(-10, 15)
|
||
|
mu1, mu2 = 10, 5
|
||
|
skcdfR = numpy.array(
|
||
|
[6.4061475386192104e-005, 1.7810985988267694e-004,
|
||
|
4.6790611790020336e-004, 1.1596768997212152e-003,
|
||
|
2.7077485103056847e-003, 5.9489760066490718e-003,
|
||
|
1.2286346724161398e-002, 2.3838698290858034e-002,
|
||
|
4.3444850665900668e-002, 7.4392014749310995e-002,
|
||
|
1.1979375231607835e-001, 1.8168808048289900e-001,
|
||
|
2.6011268998306952e-001, 3.5253150251664261e-001,
|
||
|
4.5392943399683988e-001, 5.5764871387982828e-001,
|
||
|
6.5672529695723436e-001, 7.4527195703032389e-001,
|
||
|
8.1945979908281064e-001, 8.7785257194501087e-001,
|
||
|
9.2112126489802404e-001, 9.5136942471639818e-001,
|
||
|
9.7136085902200120e-001, 9.8387773632530240e-001,
|
||
|
9.9131672394792536e-001])
|
||
|
|
||
|
assert_almost_equal(stats.skellam.cdf(k, mu1, mu2), skcdfR, decimal=5)
|
||
|
|
||
|
def test_extreme_mu2(self):
|
||
|
# check that crash reported by gh-17916 large mu2 is resolved
|
||
|
x, mu1, mu2 = 0, 1, 4820232647677555.0
|
||
|
assert_allclose(stats.skellam.pmf(x, mu1, mu2), 0, atol=1e-16)
|
||
|
assert_allclose(stats.skellam.cdf(x, mu1, mu2), 1, atol=1e-16)
|
||
|
|
||
|
|
||
|
class TestLognorm:
|
||
|
def test_pdf(self):
|
||
|
# Regression test for Ticket #1471: avoid nan with 0/0 situation
|
||
|
# Also make sure there are no warnings at x=0, cf gh-5202
|
||
|
with warnings.catch_warnings():
|
||
|
warnings.simplefilter('error', RuntimeWarning)
|
||
|
pdf = stats.lognorm.pdf([0, 0.5, 1], 1)
|
||
|
assert_array_almost_equal(pdf, [0.0, 0.62749608, 0.39894228])
|
||
|
|
||
|
def test_logcdf(self):
|
||
|
# Regression test for gh-5940: sf et al would underflow too early
|
||
|
x2, mu, sigma = 201.68, 195, 0.149
|
||
|
assert_allclose(stats.lognorm.sf(x2-mu, s=sigma),
|
||
|
stats.norm.sf(np.log(x2-mu)/sigma))
|
||
|
assert_allclose(stats.lognorm.logsf(x2-mu, s=sigma),
|
||
|
stats.norm.logsf(np.log(x2-mu)/sigma))
|
||
|
|
||
|
@pytest.fixture(scope='function')
|
||
|
def rng(self):
|
||
|
return np.random.default_rng(1234)
|
||
|
|
||
|
@pytest.mark.parametrize("rvs_shape", [.1, 2])
|
||
|
@pytest.mark.parametrize("rvs_loc", [-2, 0, 2])
|
||
|
@pytest.mark.parametrize("rvs_scale", [.2, 1, 5])
|
||
|
@pytest.mark.parametrize('fix_shape, fix_loc, fix_scale',
|
||
|
[e for e in product((False, True), repeat=3)
|
||
|
if False in e])
|
||
|
@np.errstate(invalid="ignore")
|
||
|
def test_fit_MLE_comp_optimizer(self, rvs_shape, rvs_loc, rvs_scale,
|
||
|
fix_shape, fix_loc, fix_scale, rng):
|
||
|
data = stats.lognorm.rvs(size=100, s=rvs_shape, scale=rvs_scale,
|
||
|
loc=rvs_loc, random_state=rng)
|
||
|
|
||
|
kwds = {}
|
||
|
if fix_shape:
|
||
|
kwds['f0'] = rvs_shape
|
||
|
if fix_loc:
|
||
|
kwds['floc'] = rvs_loc
|
||
|
if fix_scale:
|
||
|
kwds['fscale'] = rvs_scale
|
||
|
|
||
|
# Numerical result may equal analytical result if some code path
|
||
|
# of the analytical routine makes use of numerical optimization.
|
||
|
_assert_less_or_close_loglike(stats.lognorm, data, **kwds,
|
||
|
maybe_identical=True)
|
||
|
|
||
|
def test_isf(self):
|
||
|
# reference values were computed via the reference distribution, e.g.
|
||
|
# mp.dps = 100;
|
||
|
# LogNormal(s=s).isf(q=0.1, guess=0)
|
||
|
# LogNormal(s=s).isf(q=2e-10, guess=100)
|
||
|
s = 0.954
|
||
|
q = [0.1, 2e-10, 5e-20, 6e-40]
|
||
|
ref = [3.3960065375794937, 390.07632793595974, 5830.5020828128445,
|
||
|
287872.84087457904]
|
||
|
assert_allclose(stats.lognorm.isf(q, s), ref, rtol=1e-14)
|
||
|
|
||
|
|
||
|
class TestBeta:
|
||
|
def test_logpdf(self):
|
||
|
# Regression test for Ticket #1326: avoid nan with 0*log(0) situation
|
||
|
logpdf = stats.beta.logpdf(0, 1, 0.5)
|
||
|
assert_almost_equal(logpdf, -0.69314718056)
|
||
|
logpdf = stats.beta.logpdf(0, 0.5, 1)
|
||
|
assert_almost_equal(logpdf, np.inf)
|
||
|
|
||
|
def test_logpdf_ticket_1866(self):
|
||
|
alpha, beta = 267, 1472
|
||
|
x = np.array([0.2, 0.5, 0.6])
|
||
|
b = stats.beta(alpha, beta)
|
||
|
assert_allclose(b.logpdf(x).sum(), -1201.699061824062)
|
||
|
assert_allclose(b.pdf(x), np.exp(b.logpdf(x)))
|
||
|
|
||
|
def test_fit_bad_keyword_args(self):
|
||
|
x = [0.1, 0.5, 0.6]
|
||
|
assert_raises(TypeError, stats.beta.fit, x, floc=0, fscale=1,
|
||
|
plate="shrimp")
|
||
|
|
||
|
def test_fit_duplicated_fixed_parameter(self):
|
||
|
# At most one of 'f0', 'fa' or 'fix_a' can be given to the fit method.
|
||
|
# More than one raises a ValueError.
|
||
|
x = [0.1, 0.5, 0.6]
|
||
|
assert_raises(ValueError, stats.beta.fit, x, fa=0.5, fix_a=0.5)
|
||
|
|
||
|
@pytest.mark.skipif(MACOS_INTEL, reason="Overflow, see gh-14901")
|
||
|
def test_issue_12635(self):
|
||
|
# Confirm that Boost's beta distribution resolves gh-12635.
|
||
|
# Check against R:
|
||
|
# options(digits=16)
|
||
|
# p = 0.9999999999997369
|
||
|
# a = 75.0
|
||
|
# b = 66334470.0
|
||
|
# print(qbeta(p, a, b))
|
||
|
p, a, b = 0.9999999999997369, 75.0, 66334470.0
|
||
|
assert_allclose(stats.beta.ppf(p, a, b), 2.343620802982393e-06)
|
||
|
|
||
|
@pytest.mark.skipif(MACOS_INTEL, reason="Overflow, see gh-14901")
|
||
|
def test_issue_12794(self):
|
||
|
# Confirm that Boost's beta distribution resolves gh-12794.
|
||
|
# Check against R.
|
||
|
# options(digits=16)
|
||
|
# p = 1e-11
|
||
|
# count_list = c(10,100,1000)
|
||
|
# print(qbeta(1-p, count_list + 1, 100000 - count_list))
|
||
|
inv_R = np.array([0.0004944464889611935,
|
||
|
0.0018360586912635726,
|
||
|
0.0122663919942518351])
|
||
|
count_list = np.array([10, 100, 1000])
|
||
|
p = 1e-11
|
||
|
inv = stats.beta.isf(p, count_list + 1, 100000 - count_list)
|
||
|
assert_allclose(inv, inv_R)
|
||
|
res = stats.beta.sf(inv, count_list + 1, 100000 - count_list)
|
||
|
assert_allclose(res, p)
|
||
|
|
||
|
@pytest.mark.skipif(MACOS_INTEL, reason="Overflow, see gh-14901")
|
||
|
def test_issue_12796(self):
|
||
|
# Confirm that Boost's beta distribution succeeds in the case
|
||
|
# of gh-12796
|
||
|
alpha_2 = 5e-6
|
||
|
count_ = np.arange(1, 20)
|
||
|
nobs = 100000
|
||
|
q, a, b = 1 - alpha_2, count_ + 1, nobs - count_
|
||
|
inv = stats.beta.ppf(q, a, b)
|
||
|
res = stats.beta.cdf(inv, a, b)
|
||
|
assert_allclose(res, 1 - alpha_2)
|
||
|
|
||
|
def test_endpoints(self):
|
||
|
# Confirm that boost's beta distribution returns inf at x=1
|
||
|
# when b<1
|
||
|
a, b = 1, 0.5
|
||
|
assert_equal(stats.beta.pdf(1, a, b), np.inf)
|
||
|
|
||
|
# Confirm that boost's beta distribution returns inf at x=0
|
||
|
# when a<1
|
||
|
a, b = 0.2, 3
|
||
|
assert_equal(stats.beta.pdf(0, a, b), np.inf)
|
||
|
|
||
|
# Confirm that boost's beta distribution returns 5 at x=0
|
||
|
# when a=1, b=5
|
||
|
a, b = 1, 5
|
||
|
assert_equal(stats.beta.pdf(0, a, b), 5)
|
||
|
assert_equal(stats.beta.pdf(1e-310, a, b), 5)
|
||
|
|
||
|
# Confirm that boost's beta distribution returns 5 at x=1
|
||
|
# when a=5, b=1
|
||
|
a, b = 5, 1
|
||
|
assert_equal(stats.beta.pdf(1, a, b), 5)
|
||
|
assert_equal(stats.beta.pdf(1-1e-310, a, b), 5)
|
||
|
|
||
|
@pytest.mark.xfail(IS_PYPY, reason="Does not convert boost warning")
|
||
|
def test_boost_eval_issue_14606(self):
|
||
|
q, a, b = 0.995, 1.0e11, 1.0e13
|
||
|
with pytest.warns(RuntimeWarning):
|
||
|
stats.beta.ppf(q, a, b)
|
||
|
|
||
|
@pytest.mark.parametrize('method', [stats.beta.ppf, stats.beta.isf])
|
||
|
@pytest.mark.parametrize('a, b', [(1e-310, 12.5), (12.5, 1e-310)])
|
||
|
def test_beta_ppf_with_subnormal_a_b(self, method, a, b):
|
||
|
# Regression test for gh-17444: beta.ppf(p, a, b) and beta.isf(p, a, b)
|
||
|
# would result in a segmentation fault if either a or b was subnormal.
|
||
|
p = 0.9
|
||
|
# Depending on the version of Boost that we have vendored and
|
||
|
# our setting of the Boost double promotion policy, the call
|
||
|
# `stats.beta.ppf(p, a, b)` might raise an OverflowError or
|
||
|
# return a value. We'll accept either behavior (and not care about
|
||
|
# the value), because our goal here is to verify that the call does
|
||
|
# not trigger a segmentation fault.
|
||
|
try:
|
||
|
method(p, a, b)
|
||
|
except OverflowError:
|
||
|
# The OverflowError exception occurs with Boost 1.80 or earlier
|
||
|
# when Boost's double promotion policy is false; see
|
||
|
# https://github.com/boostorg/math/issues/882
|
||
|
# and
|
||
|
# https://github.com/boostorg/math/pull/883
|
||
|
# Once we have vendored the fixed version of Boost, we can drop
|
||
|
# this try-except wrapper and just call the function.
|
||
|
pass
|
||
|
|
||
|
# entropy accuracy was confirmed using the following mpmath function
|
||
|
# from mpmath import mp
|
||
|
# mp.dps = 50
|
||
|
# def beta_entropy_mpmath(a, b):
|
||
|
# a = mp.mpf(a)
|
||
|
# b = mp.mpf(b)
|
||
|
# entropy = mp.log(mp.beta(a, b)) - (a - 1) * mp.digamma(a) -\
|
||
|
# (b - 1) * mp.digamma(b) + (a + b -2) * mp.digamma(a + b)
|
||
|
# return float(entropy)
|
||
|
|
||
|
@pytest.mark.parametrize('a, b, ref',
|
||
|
[(0.5, 0.5, -0.24156447527049044),
|
||
|
(0.001, 1, -992.0922447210179),
|
||
|
(1, 10000, -8.210440371976183),
|
||
|
(100000, 100000, -5.377247470132859)])
|
||
|
def test_entropy(self, a, b, ref):
|
||
|
assert_allclose(stats.beta(a, b).entropy(), ref)
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"a, b, ref, tol",
|
||
|
[
|
||
|
(1, 10, -1.4025850929940458, 1e-14),
|
||
|
(10, 20, -1.0567887388936708, 1e-13),
|
||
|
(4e6, 4e6+20, -7.221686009678741, 1e-9),
|
||
|
(5e6, 5e6+10, -7.333257022834638, 1e-8),
|
||
|
(1e10, 1e10+20, -11.133707703130474, 1e-11),
|
||
|
(1e50, 1e50+20, -57.185409562486385, 1e-15),
|
||
|
(2, 1e10, -21.448635265288925, 1e-11),
|
||
|
(2, 1e20, -44.47448619497938, 1e-14),
|
||
|
(2, 1e50, -113.55203898480075, 1e-14),
|
||
|
(5, 1e10, -20.87226777401971, 1e-10),
|
||
|
(5, 1e20, -43.89811870326017, 1e-14),
|
||
|
(5, 1e50, -112.97567149308153, 1e-14),
|
||
|
(10, 1e10, -20.489796752909477, 1e-9),
|
||
|
(10, 1e20, -43.51564768139993, 1e-14),
|
||
|
(10, 1e50, -112.59320047122131, 1e-14),
|
||
|
(1e20, 2, -44.47448619497938, 1e-14),
|
||
|
(1e20, 5, -43.89811870326017, 1e-14),
|
||
|
(1e50, 10, -112.59320047122131, 1e-14),
|
||
|
]
|
||
|
)
|
||
|
def test_extreme_entropy(self, a, b, ref, tol):
|
||
|
# Reference values were calculated with mpmath:
|
||
|
# from mpmath import mp
|
||
|
# mp.dps = 500
|
||
|
#
|
||
|
# def beta_entropy_mpmath(a, b):
|
||
|
# a = mp.mpf(a)
|
||
|
# b = mp.mpf(b)
|
||
|
# entropy = (
|
||
|
# mp.log(mp.beta(a, b)) - (a - 1) * mp.digamma(a)
|
||
|
# - (b - 1) * mp.digamma(b) + (a + b - 2) * mp.digamma(a + b)
|
||
|
# )
|
||
|
# return float(entropy)
|
||
|
assert_allclose(stats.beta(a, b).entropy(), ref, rtol=tol)
|
||
|
|
||
|
|
||
|
class TestBetaPrime:
|
||
|
# the test values are used in test_cdf_gh_17631 / test_ppf_gh_17631
|
||
|
# They are computed with mpmath. Example:
|
||
|
# from mpmath import mp
|
||
|
# mp.dps = 50
|
||
|
# a, b = mp.mpf(0.05), mp.mpf(0.1)
|
||
|
# x = mp.mpf(1e22)
|
||
|
# float(mp.betainc(a, b, 0.0, x/(1+x), regularized=True))
|
||
|
# note: we use the values computed by the cdf to test whether
|
||
|
# ppf(cdf(x)) == x (up to a small tolerance)
|
||
|
# since the ppf can be very sensitive to small variations of the input,
|
||
|
# it can be required to generate the test case for the ppf separately,
|
||
|
# see self.test_ppf
|
||
|
cdf_vals = [
|
||
|
(1e22, 100.0, 0.05, 0.8973027435427167),
|
||
|
(1e10, 100.0, 0.05, 0.5911548582766262),
|
||
|
(1e8, 0.05, 0.1, 0.9467768090820048),
|
||
|
(1e8, 100.0, 0.05, 0.4852944858726726),
|
||
|
(1e-10, 0.05, 0.1, 0.21238845427095),
|
||
|
(1e-10, 1.5, 1.5, 1.697652726007973e-15),
|
||
|
(1e-10, 0.05, 100.0, 0.40884514172337383),
|
||
|
(1e-22, 0.05, 0.1, 0.053349567649287326),
|
||
|
(1e-22, 1.5, 1.5, 1.6976527263135503e-33),
|
||
|
(1e-22, 0.05, 100.0, 0.10269725645728331),
|
||
|
(1e-100, 0.05, 0.1, 6.7163126421919795e-06),
|
||
|
(1e-100, 1.5, 1.5, 1.6976527263135503e-150),
|
||
|
(1e-100, 0.05, 100.0, 1.2928818587561651e-05),
|
||
|
]
|
||
|
|
||
|
def test_logpdf(self):
|
||
|
alpha, beta = 267, 1472
|
||
|
x = np.array([0.2, 0.5, 0.6])
|
||
|
b = stats.betaprime(alpha, beta)
|
||
|
assert_(np.isfinite(b.logpdf(x)).all())
|
||
|
assert_allclose(b.pdf(x), np.exp(b.logpdf(x)))
|
||
|
|
||
|
def test_cdf(self):
|
||
|
# regression test for gh-4030: Implementation of
|
||
|
# scipy.stats.betaprime.cdf()
|
||
|
x = stats.betaprime.cdf(0, 0.2, 0.3)
|
||
|
assert_equal(x, 0.0)
|
||
|
|
||
|
alpha, beta = 267, 1472
|
||
|
x = np.array([0.2, 0.5, 0.6])
|
||
|
cdfs = stats.betaprime.cdf(x, alpha, beta)
|
||
|
assert_(np.isfinite(cdfs).all())
|
||
|
|
||
|
# check the new cdf implementation vs generic one:
|
||
|
gen_cdf = stats.rv_continuous._cdf_single
|
||
|
cdfs_g = [gen_cdf(stats.betaprime, val, alpha, beta) for val in x]
|
||
|
assert_allclose(cdfs, cdfs_g, atol=0, rtol=2e-12)
|
||
|
|
||
|
# The expected values for test_ppf() were computed with mpmath, e.g.
|
||
|
#
|
||
|
# from mpmath import mp
|
||
|
# mp.dps = 125
|
||
|
# p = 0.01
|
||
|
# a, b = 1.25, 2.5
|
||
|
# x = mp.findroot(lambda t: mp.betainc(a, b, x1=0, x2=t/(1+t),
|
||
|
# regularized=True) - p,
|
||
|
# x0=(0.01, 0.011), method='secant')
|
||
|
# print(float(x))
|
||
|
#
|
||
|
# prints
|
||
|
#
|
||
|
# 0.01080162700956614
|
||
|
#
|
||
|
@pytest.mark.parametrize(
|
||
|
'p, a, b, expected',
|
||
|
[(0.010, 1.25, 2.5, 0.01080162700956614),
|
||
|
(1e-12, 1.25, 2.5, 1.0610141996279122e-10),
|
||
|
(1e-18, 1.25, 2.5, 1.6815941817974941e-15),
|
||
|
(1e-17, 0.25, 7.0, 1.0179194531881782e-69),
|
||
|
(0.375, 0.25, 7.0, 0.002036820346115211),
|
||
|
(0.9978811466052919, 0.05, 0.1, 1.0000000000001218e22),]
|
||
|
)
|
||
|
def test_ppf(self, p, a, b, expected):
|
||
|
x = stats.betaprime.ppf(p, a, b)
|
||
|
assert_allclose(x, expected, rtol=1e-14)
|
||
|
|
||
|
@pytest.mark.parametrize('x, a, b, p', cdf_vals)
|
||
|
def test_ppf_gh_17631(self, x, a, b, p):
|
||
|
assert_allclose(stats.betaprime.ppf(p, a, b), x, rtol=1e-14)
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
'x, a, b, expected',
|
||
|
cdf_vals + [
|
||
|
(1e10, 1.5, 1.5, 0.9999999999999983),
|
||
|
(1e10, 0.05, 0.1, 0.9664184367890859),
|
||
|
(1e22, 0.05, 0.1, 0.9978811466052919),
|
||
|
])
|
||
|
def test_cdf_gh_17631(self, x, a, b, expected):
|
||
|
assert_allclose(stats.betaprime.cdf(x, a, b), expected, rtol=1e-14)
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
'x, a, b, expected',
|
||
|
[(1e50, 0.05, 0.1, 0.9999966641709545),
|
||
|
(1e50, 100.0, 0.05, 0.995925162631006)])
|
||
|
def test_cdf_extreme_tails(self, x, a, b, expected):
|
||
|
# for even more extreme values, we only get a few correct digits
|
||
|
# results are still < 1
|
||
|
y = stats.betaprime.cdf(x, a, b)
|
||
|
assert y < 1.0
|
||
|
assert_allclose(y, expected, rtol=2e-5)
|
||
|
|
||
|
def test_sf(self):
|
||
|
# reference values were computed via the reference distribution,
|
||
|
# e.g.
|
||
|
# mp.dps = 50
|
||
|
# a, b = 5, 3
|
||
|
# x = 1e10
|
||
|
# BetaPrime(a=a, b=b).sf(x); returns 3.4999999979e-29
|
||
|
a = [5, 4, 2, 0.05, 0.05, 0.05, 0.05, 100.0, 100.0, 0.05, 0.05,
|
||
|
0.05, 1.5, 1.5]
|
||
|
b = [3, 2, 1, 0.1, 0.1, 0.1, 0.1, 0.05, 0.05, 100.0, 100.0,
|
||
|
100.0, 1.5, 1.5]
|
||
|
x = [1e10, 1e20, 1e30, 1e22, 1e-10, 1e-22, 1e-100, 1e22, 1e10,
|
||
|
1e-10, 1e-22, 1e-100, 1e10, 1e-10]
|
||
|
ref = [3.4999999979e-29, 9.999999999994357e-40, 1.9999999999999998e-30,
|
||
|
0.0021188533947081017, 0.78761154572905, 0.9466504323507127,
|
||
|
0.9999932836873578, 0.10269725645728331, 0.40884514172337383,
|
||
|
0.5911548582766262, 0.8973027435427167, 0.9999870711814124,
|
||
|
1.6976527260079727e-15, 0.9999999999999983]
|
||
|
sf_values = stats.betaprime.sf(x, a, b)
|
||
|
assert_allclose(sf_values, ref, rtol=1e-12)
|
||
|
|
||
|
def test_fit_stats_gh18274(self):
|
||
|
# gh-18274 reported spurious warning emitted when fitting `betaprime`
|
||
|
# to data. Some of these were emitted by stats, too. Check that the
|
||
|
# warnings are no longer emitted.
|
||
|
stats.betaprime.fit([0.1, 0.25, 0.3, 1.2, 1.6], floc=0, fscale=1)
|
||
|
stats.betaprime(a=1, b=1).stats('mvsk')
|
||
|
|
||
|
def test_moment_gh18634(self):
|
||
|
# Testing for gh-18634 revealed that `betaprime` raised a
|
||
|
# NotImplementedError for higher moments. Check that this is
|
||
|
# resolved. Parameters are arbitrary but lie on either side of the
|
||
|
# moment order (5) to test both branches of `_lazywhere`. Reference
|
||
|
# values produced with Mathematica, e.g.
|
||
|
# `Moment[BetaPrimeDistribution[2,7],5]`
|
||
|
ref = [np.inf, 0.867096912929055]
|
||
|
res = stats.betaprime(2, [4.2, 7.1]).moment(5)
|
||
|
assert_allclose(res, ref)
|
||
|
|
||
|
|
||
|
class TestGamma:
|
||
|
def test_pdf(self):
|
||
|
# a few test cases to compare with R
|
||
|
pdf = stats.gamma.pdf(90, 394, scale=1./5)
|
||
|
assert_almost_equal(pdf, 0.002312341)
|
||
|
|
||
|
pdf = stats.gamma.pdf(3, 10, scale=1./5)
|
||
|
assert_almost_equal(pdf, 0.1620358)
|
||
|
|
||
|
def test_logpdf(self):
|
||
|
# Regression test for Ticket #1326: cornercase avoid nan with 0*log(0)
|
||
|
# situation
|
||
|
logpdf = stats.gamma.logpdf(0, 1)
|
||
|
assert_almost_equal(logpdf, 0)
|
||
|
|
||
|
def test_fit_bad_keyword_args(self):
|
||
|
x = [0.1, 0.5, 0.6]
|
||
|
assert_raises(TypeError, stats.gamma.fit, x, floc=0, plate="shrimp")
|
||
|
|
||
|
def test_isf(self):
|
||
|
# Test cases for when the probability is very small. See gh-13664.
|
||
|
# The expected values can be checked with mpmath. With mpmath,
|
||
|
# the survival function sf(x, k) can be computed as
|
||
|
#
|
||
|
# mpmath.gammainc(k, x, mpmath.inf, regularized=True)
|
||
|
#
|
||
|
# Here we have:
|
||
|
#
|
||
|
# >>> mpmath.mp.dps = 60
|
||
|
# >>> float(mpmath.gammainc(1, 39.14394658089878, mpmath.inf,
|
||
|
# ... regularized=True))
|
||
|
# 9.99999999999999e-18
|
||
|
# >>> float(mpmath.gammainc(100, 330.6557590436547, mpmath.inf,
|
||
|
# regularized=True))
|
||
|
# 1.000000000000028e-50
|
||
|
#
|
||
|
assert np.isclose(stats.gamma.isf(1e-17, 1),
|
||
|
39.14394658089878, atol=1e-14)
|
||
|
assert np.isclose(stats.gamma.isf(1e-50, 100),
|
||
|
330.6557590436547, atol=1e-13)
|
||
|
|
||
|
@pytest.mark.parametrize('scale', [1.0, 5.0])
|
||
|
def test_delta_cdf(self, scale):
|
||
|
# Expected value computed with mpmath:
|
||
|
#
|
||
|
# >>> import mpmath
|
||
|
# >>> mpmath.mp.dps = 150
|
||
|
# >>> cdf1 = mpmath.gammainc(3, 0, 245, regularized=True)
|
||
|
# >>> cdf2 = mpmath.gammainc(3, 0, 250, regularized=True)
|
||
|
# >>> float(cdf2 - cdf1)
|
||
|
# 1.1902609356171962e-102
|
||
|
#
|
||
|
delta = stats.gamma._delta_cdf(scale*245, scale*250, 3, scale=scale)
|
||
|
assert_allclose(delta, 1.1902609356171962e-102, rtol=1e-13)
|
||
|
|
||
|
@pytest.mark.parametrize('a, ref, rtol',
|
||
|
[(1e-4, -9990.366610819761, 1e-15),
|
||
|
(2, 1.5772156649015328, 1e-15),
|
||
|
(100, 3.7181819485047463, 1e-13),
|
||
|
(1e4, 6.024075385026086, 1e-15),
|
||
|
(1e18, 22.142204370151084, 1e-15),
|
||
|
(1e100, 116.54819318290696, 1e-15)])
|
||
|
def test_entropy(self, a, ref, rtol):
|
||
|
# expected value computed with mpmath:
|
||
|
# from mpmath import mp
|
||
|
# mp.dps = 500
|
||
|
# def gamma_entropy_reference(x):
|
||
|
# x = mp.mpf(x)
|
||
|
# return float(mp.digamma(x) * (mp.one - x) + x + mp.loggamma(x))
|
||
|
|
||
|
assert_allclose(stats.gamma.entropy(a), ref, rtol=rtol)
|
||
|
|
||
|
@pytest.mark.parametrize("a", [1e-2, 1, 1e2])
|
||
|
@pytest.mark.parametrize("loc", [1e-2, 0, 1e2])
|
||
|
@pytest.mark.parametrize('scale', [1e-2, 1, 1e2])
|
||
|
@pytest.mark.parametrize('fix_a', [True, False])
|
||
|
@pytest.mark.parametrize('fix_loc', [True, False])
|
||
|
@pytest.mark.parametrize('fix_scale', [True, False])
|
||
|
def test_fit_mm(self, a, loc, scale, fix_a, fix_loc, fix_scale):
|
||
|
rng = np.random.default_rng(6762668991392531563)
|
||
|
data = stats.gamma.rvs(a, loc=loc, scale=scale, size=100,
|
||
|
random_state=rng)
|
||
|
|
||
|
kwds = {}
|
||
|
if fix_a:
|
||
|
kwds['fa'] = a
|
||
|
if fix_loc:
|
||
|
kwds['floc'] = loc
|
||
|
if fix_scale:
|
||
|
kwds['fscale'] = scale
|
||
|
nfree = 3 - len(kwds)
|
||
|
|
||
|
if nfree == 0:
|
||
|
error_msg = "All parameters fixed. There is nothing to optimize."
|
||
|
with pytest.raises(ValueError, match=error_msg):
|
||
|
stats.gamma.fit(data, method='mm', **kwds)
|
||
|
return
|
||
|
|
||
|
theta = stats.gamma.fit(data, method='mm', **kwds)
|
||
|
dist = stats.gamma(*theta)
|
||
|
if nfree >= 1:
|
||
|
assert_allclose(dist.mean(), np.mean(data))
|
||
|
if nfree >= 2:
|
||
|
assert_allclose(dist.moment(2), np.mean(data**2))
|
||
|
if nfree >= 3:
|
||
|
assert_allclose(dist.moment(3), np.mean(data**3))
|
||
|
|
||
|
def test_pdf_overflow_gh19616():
|
||
|
# Confirm that gh19616 (intermediate over/underflows in PDF) is resolved
|
||
|
# Reference value from R GeneralizedHyperbolic library
|
||
|
# library(GeneralizedHyperbolic)
|
||
|
# options(digits=16)
|
||
|
# jitter = 1e-3
|
||
|
# dnig(1, a=2**0.5 / jitter**2, b=1 / jitter**2)
|
||
|
jitter = 1e-3
|
||
|
Z = stats.norminvgauss(2**0.5 / jitter**2, 1 / jitter**2, loc=0, scale=1)
|
||
|
assert_allclose(Z.pdf(1.0), 282.0948446666433)
|
||
|
|
||
|
|
||
|
class TestDgamma:
|
||
|
def test_pdf(self):
|
||
|
rng = np.random.default_rng(3791303244302340058)
|
||
|
size = 10 # number of points to check
|
||
|
x = rng.normal(scale=10, size=size)
|
||
|
a = rng.uniform(high=10, size=size)
|
||
|
res = stats.dgamma.pdf(x, a)
|
||
|
ref = stats.gamma.pdf(np.abs(x), a) / 2
|
||
|
assert_allclose(res, ref)
|
||
|
|
||
|
dist = stats.dgamma(a)
|
||
|
# There was an intermittent failure with assert_equal on Linux - 32 bit
|
||
|
assert_allclose(dist.pdf(x), res, rtol=5e-16)
|
||
|
|
||
|
# mpmath was used to compute the expected values.
|
||
|
# For x < 0, cdf(x, a) is mp.gammainc(a, -x, mp.inf, regularized=True)/2
|
||
|
# For x > 0, cdf(x, a) is (1 + mp.gammainc(a, 0, x, regularized=True))/2
|
||
|
# E.g.
|
||
|
# from mpmath import mp
|
||
|
# mp.dps = 50
|
||
|
# print(float(mp.gammainc(1, 20, mp.inf, regularized=True)/2))
|
||
|
# prints
|
||
|
# 1.030576811219279e-09
|
||
|
@pytest.mark.parametrize('x, a, expected',
|
||
|
[(-20, 1, 1.030576811219279e-09),
|
||
|
(-40, 1, 2.1241771276457944e-18),
|
||
|
(-50, 5, 2.7248509914602648e-17),
|
||
|
(-25, 0.125, 5.333071920958156e-14),
|
||
|
(5, 1, 0.9966310265004573)])
|
||
|
def test_cdf_ppf_sf_isf_tail(self, x, a, expected):
|
||
|
cdf = stats.dgamma.cdf(x, a)
|
||
|
assert_allclose(cdf, expected, rtol=5e-15)
|
||
|
ppf = stats.dgamma.ppf(expected, a)
|
||
|
assert_allclose(ppf, x, rtol=5e-15)
|
||
|
sf = stats.dgamma.sf(-x, a)
|
||
|
assert_allclose(sf, expected, rtol=5e-15)
|
||
|
isf = stats.dgamma.isf(expected, a)
|
||
|
assert_allclose(isf, -x, rtol=5e-15)
|
||
|
|
||
|
@pytest.mark.parametrize("a, ref",
|
||
|
[(1.5, 2.0541199559354117),
|
||
|
(1.3, 1.9357296377121247),
|
||
|
(1.1, 1.7856502333412134)])
|
||
|
def test_entropy(self, a, ref):
|
||
|
# The reference values were calculated with mpmath:
|
||
|
# def entropy_dgamma(a):
|
||
|
# def pdf(x):
|
||
|
# A = mp.one / (mp.mpf(2.) * mp.gamma(a))
|
||
|
# B = mp.fabs(x) ** (a - mp.one)
|
||
|
# C = mp.exp(-mp.fabs(x))
|
||
|
# h = A * B * C
|
||
|
# return h
|
||
|
#
|
||
|
# return -mp.quad(lambda t: pdf(t) * mp.log(pdf(t)),
|
||
|
# [-mp.inf, mp.inf])
|
||
|
assert_allclose(stats.dgamma.entropy(a), ref, rtol=1e-14)
|
||
|
|
||
|
@pytest.mark.parametrize("a, ref",
|
||
|
[(1e-100, -1e+100),
|
||
|
(1e-10, -9999999975.858217),
|
||
|
(1e-5, -99987.37111657023),
|
||
|
(1e4, 6.717222565586032),
|
||
|
(1000000000000000.0, 19.38147391121996),
|
||
|
(1e+100, 117.2413403634669)])
|
||
|
def test_entropy_entreme_values(self, a, ref):
|
||
|
# The reference values were calculated with mpmath:
|
||
|
# from mpmath import mp
|
||
|
# mp.dps = 500
|
||
|
# def second_dgamma(a):
|
||
|
# a = mp.mpf(a)
|
||
|
# x_1 = a + mp.log(2) + mp.loggamma(a)
|
||
|
# x_2 = (mp.one - a) * mp.digamma(a)
|
||
|
# h = x_1 + x_2
|
||
|
# return h
|
||
|
assert_allclose(stats.dgamma.entropy(a), ref, rtol=1e-10)
|
||
|
|
||
|
def test_entropy_array_input(self):
|
||
|
x = np.array([1, 5, 1e20, 1e-5])
|
||
|
y = stats.dgamma.entropy(x)
|
||
|
for i in range(len(y)):
|
||
|
assert y[i] == stats.dgamma.entropy(x[i])
|
||
|
|
||
|
|
||
|
class TestChi2:
|
||
|
# regression tests after precision improvements, ticket:1041, not verified
|
||
|
def test_precision(self):
|
||
|
assert_almost_equal(stats.chi2.pdf(1000, 1000), 8.919133934753128e-003,
|
||
|
decimal=14)
|
||
|
assert_almost_equal(stats.chi2.pdf(100, 100), 0.028162503162596778,
|
||
|
decimal=14)
|
||
|
|
||
|
def test_ppf(self):
|
||
|
# Expected values computed with mpmath.
|
||
|
df = 4.8
|
||
|
x = stats.chi2.ppf(2e-47, df)
|
||
|
assert_allclose(x, 1.098472479575179840604902808e-19, rtol=1e-10)
|
||
|
x = stats.chi2.ppf(0.5, df)
|
||
|
assert_allclose(x, 4.15231407598589358660093156, rtol=1e-10)
|
||
|
|
||
|
df = 13
|
||
|
x = stats.chi2.ppf(2e-77, df)
|
||
|
assert_allclose(x, 1.0106330688195199050507943e-11, rtol=1e-10)
|
||
|
x = stats.chi2.ppf(0.1, df)
|
||
|
assert_allclose(x, 7.041504580095461859307179763, rtol=1e-10)
|
||
|
|
||
|
# Entropy references values were computed with the following mpmath code
|
||
|
# from mpmath import mp
|
||
|
# mp.dps = 50
|
||
|
# def chisq_entropy_mpmath(df):
|
||
|
# df = mp.mpf(df)
|
||
|
# half_df = 0.5 * df
|
||
|
# entropy = (half_df + mp.log(2) + mp.log(mp.gamma(half_df)) +
|
||
|
# (mp.one - half_df) * mp.digamma(half_df))
|
||
|
# return float(entropy)
|
||
|
|
||
|
@pytest.mark.parametrize('df, ref',
|
||
|
[(1e-4, -19988.980448690163),
|
||
|
(1, 0.7837571104739337),
|
||
|
(100, 4.061397128938114),
|
||
|
(251, 4.525577254045129),
|
||
|
(1e15, 19.034900320939986)])
|
||
|
def test_entropy(self, df, ref):
|
||
|
assert_allclose(stats.chi2(df).entropy(), ref, rtol=1e-13)
|
||
|
|
||
|
|
||
|
class TestGumbelL:
|
||
|
# gh-6228
|
||
|
def test_cdf_ppf(self):
|
||
|
x = np.linspace(-100, -4)
|
||
|
y = stats.gumbel_l.cdf(x)
|
||
|
xx = stats.gumbel_l.ppf(y)
|
||
|
assert_allclose(x, xx)
|
||
|
|
||
|
def test_logcdf_logsf(self):
|
||
|
x = np.linspace(-100, -4)
|
||
|
y = stats.gumbel_l.logcdf(x)
|
||
|
z = stats.gumbel_l.logsf(x)
|
||
|
u = np.exp(y)
|
||
|
v = -special.expm1(z)
|
||
|
assert_allclose(u, v)
|
||
|
|
||
|
def test_sf_isf(self):
|
||
|
x = np.linspace(-20, 5)
|
||
|
y = stats.gumbel_l.sf(x)
|
||
|
xx = stats.gumbel_l.isf(y)
|
||
|
assert_allclose(x, xx)
|
||
|
|
||
|
@pytest.mark.parametrize('loc', [-1, 1])
|
||
|
def test_fit_fixed_param(self, loc):
|
||
|
# ensure fixed location is correctly reflected from `gumbel_r.fit`
|
||
|
# See comments at end of gh-12737.
|
||
|
data = stats.gumbel_l.rvs(size=100, loc=loc)
|
||
|
fitted_loc, _ = stats.gumbel_l.fit(data, floc=loc)
|
||
|
assert_equal(fitted_loc, loc)
|
||
|
|
||
|
|
||
|
class TestGumbelR:
|
||
|
|
||
|
def test_sf(self):
|
||
|
# Expected value computed with mpmath:
|
||
|
# >>> import mpmath
|
||
|
# >>> mpmath.mp.dps = 40
|
||
|
# >>> float(mpmath.mp.one - mpmath.exp(-mpmath.exp(-50)))
|
||
|
# 1.9287498479639178e-22
|
||
|
assert_allclose(stats.gumbel_r.sf(50), 1.9287498479639178e-22,
|
||
|
rtol=1e-14)
|
||
|
|
||
|
def test_isf(self):
|
||
|
# Expected value computed with mpmath:
|
||
|
# >>> import mpmath
|
||
|
# >>> mpmath.mp.dps = 40
|
||
|
# >>> float(-mpmath.log(-mpmath.log(mpmath.mp.one - 1e-17)))
|
||
|
# 39.14394658089878
|
||
|
assert_allclose(stats.gumbel_r.isf(1e-17), 39.14394658089878,
|
||
|
rtol=1e-14)
|
||
|
|
||
|
|
||
|
class TestLevyStable:
|
||
|
@pytest.fixture(autouse=True)
|
||
|
def reset_levy_stable_params(self):
|
||
|
"""Setup default parameters for levy_stable generator"""
|
||
|
stats.levy_stable.parameterization = "S1"
|
||
|
stats.levy_stable.cdf_default_method = "piecewise"
|
||
|
stats.levy_stable.pdf_default_method = "piecewise"
|
||
|
stats.levy_stable.quad_eps = stats._levy_stable._QUAD_EPS
|
||
|
|
||
|
@pytest.fixture
|
||
|
def nolan_pdf_sample_data(self):
|
||
|
"""Sample data points for pdf computed with Nolan's stablec
|
||
|
|
||
|
See - http://fs2.american.edu/jpnolan/www/stable/stable.html
|
||
|
|
||
|
There's a known limitation of Nolan's executable for alpha < 0.2.
|
||
|
|
||
|
The data table loaded below is generated from Nolan's stablec
|
||
|
with the following parameter space:
|
||
|
|
||
|
alpha = 0.1, 0.2, ..., 2.0
|
||
|
beta = -1.0, -0.9, ..., 1.0
|
||
|
p = 0.01, 0.05, 0.1, 0.25, 0.35, 0.5,
|
||
|
and the equivalent for the right tail
|
||
|
|
||
|
Typically inputs for stablec:
|
||
|
|
||
|
stablec.exe <<
|
||
|
1 # pdf
|
||
|
1 # Nolan S equivalent to S0 in scipy
|
||
|
.25,2,.25 # alpha
|
||
|
-1,-1,0 # beta
|
||
|
-10,10,1 # x
|
||
|
1,0 # gamma, delta
|
||
|
2 # output file
|
||
|
"""
|
||
|
data = np.load(
|
||
|
Path(__file__).parent /
|
||
|
'data/levy_stable/stable-Z1-pdf-sample-data.npy'
|
||
|
)
|
||
|
data = np.rec.fromarrays(data.T, names='x,p,alpha,beta,pct')
|
||
|
return data
|
||
|
|
||
|
@pytest.fixture
|
||
|
def nolan_cdf_sample_data(self):
|
||
|
"""Sample data points for cdf computed with Nolan's stablec
|
||
|
|
||
|
See - http://fs2.american.edu/jpnolan/www/stable/stable.html
|
||
|
|
||
|
There's a known limitation of Nolan's executable for alpha < 0.2.
|
||
|
|
||
|
The data table loaded below is generated from Nolan's stablec
|
||
|
with the following parameter space:
|
||
|
|
||
|
alpha = 0.1, 0.2, ..., 2.0
|
||
|
beta = -1.0, -0.9, ..., 1.0
|
||
|
p = 0.01, 0.05, 0.1, 0.25, 0.35, 0.5,
|
||
|
|
||
|
and the equivalent for the right tail
|
||
|
|
||
|
Ideally, Nolan's output for CDF values should match the percentile
|
||
|
from where they have been sampled from. Even more so as we extract
|
||
|
percentile x positions from stablec too. However, we note at places
|
||
|
Nolan's stablec will produce absolute errors in order of 1e-5. We
|
||
|
compare against his calculations here. In future, once we less
|
||
|
reliant on Nolan's paper we might switch to comparing directly at
|
||
|
percentiles (those x values being produced from some alternative
|
||
|
means).
|
||
|
|
||
|
Typically inputs for stablec:
|
||
|
|
||
|
stablec.exe <<
|
||
|
2 # cdf
|
||
|
1 # Nolan S equivalent to S0 in scipy
|
||
|
.25,2,.25 # alpha
|
||
|
-1,-1,0 # beta
|
||
|
-10,10,1 # x
|
||
|
1,0 # gamma, delta
|
||
|
2 # output file
|
||
|
"""
|
||
|
data = np.load(
|
||
|
Path(__file__).parent /
|
||
|
'data/levy_stable/stable-Z1-cdf-sample-data.npy'
|
||
|
)
|
||
|
data = np.rec.fromarrays(data.T, names='x,p,alpha,beta,pct')
|
||
|
return data
|
||
|
|
||
|
@pytest.fixture
|
||
|
def nolan_loc_scale_sample_data(self):
|
||
|
"""Sample data where loc, scale are different from 0, 1
|
||
|
|
||
|
Data extracted in similar way to pdf/cdf above using
|
||
|
Nolan's stablec but set to an arbitrary location scale of
|
||
|
(2, 3) for various important parameters alpha, beta and for
|
||
|
parameterisations S0 and S1.
|
||
|
"""
|
||
|
data = np.load(
|
||
|
Path(__file__).parent /
|
||
|
'data/levy_stable/stable-loc-scale-sample-data.npy'
|
||
|
)
|
||
|
return data
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"sample_size", [
|
||
|
pytest.param(50), pytest.param(1500, marks=pytest.mark.slow)
|
||
|
]
|
||
|
)
|
||
|
@pytest.mark.parametrize("parameterization", ["S0", "S1"])
|
||
|
@pytest.mark.parametrize(
|
||
|
"alpha,beta", [(1.0, 0), (1.0, -0.5), (1.5, 0), (1.9, 0.5)]
|
||
|
)
|
||
|
@pytest.mark.parametrize("gamma,delta", [(1, 0), (3, 2)])
|
||
|
def test_rvs(
|
||
|
self,
|
||
|
parameterization,
|
||
|
alpha,
|
||
|
beta,
|
||
|
gamma,
|
||
|
delta,
|
||
|
sample_size,
|
||
|
):
|
||
|
stats.levy_stable.parameterization = parameterization
|
||
|
ls = stats.levy_stable(
|
||
|
alpha=alpha, beta=beta, scale=gamma, loc=delta
|
||
|
)
|
||
|
_, p = stats.kstest(
|
||
|
ls.rvs(size=sample_size, random_state=1234), ls.cdf
|
||
|
)
|
||
|
assert p > 0.05
|
||
|
|
||
|
@pytest.mark.slow
|
||
|
@pytest.mark.parametrize('beta', [0.5, 1])
|
||
|
def test_rvs_alpha1(self, beta):
|
||
|
"""Additional test cases for rvs for alpha equal to 1."""
|
||
|
np.random.seed(987654321)
|
||
|
alpha = 1.0
|
||
|
loc = 0.5
|
||
|
scale = 1.5
|
||
|
x = stats.levy_stable.rvs(alpha, beta, loc=loc, scale=scale,
|
||
|
size=5000)
|
||
|
stat, p = stats.kstest(x, 'levy_stable',
|
||
|
args=(alpha, beta, loc, scale))
|
||
|
assert p > 0.01
|
||
|
|
||
|
def test_fit(self):
|
||
|
# construct data to have percentiles that match
|
||
|
# example in McCulloch 1986.
|
||
|
x = [
|
||
|
-.05413, -.05413, 0., 0., 0., 0., .00533, .00533, .00533, .00533,
|
||
|
.00533, .03354, .03354, .03354, .03354, .03354, .05309, .05309,
|
||
|
.05309, .05309, .05309
|
||
|
]
|
||
|
alpha1, beta1, loc1, scale1 = stats.levy_stable._fitstart(x)
|
||
|
assert_allclose(alpha1, 1.48, rtol=0, atol=0.01)
|
||
|
assert_almost_equal(beta1, -.22, 2)
|
||
|
assert_almost_equal(scale1, 0.01717, 4)
|
||
|
assert_almost_equal(
|
||
|
loc1, 0.00233, 2
|
||
|
) # to 2 dps due to rounding error in McCulloch86
|
||
|
|
||
|
# cover alpha=2 scenario
|
||
|
x2 = x + [.05309, .05309, .05309, .05309, .05309]
|
||
|
alpha2, beta2, loc2, scale2 = stats.levy_stable._fitstart(x2)
|
||
|
assert_equal(alpha2, 2)
|
||
|
assert_equal(beta2, -1)
|
||
|
assert_almost_equal(scale2, .02503, 4)
|
||
|
assert_almost_equal(loc2, .03354, 4)
|
||
|
|
||
|
@pytest.mark.xfail(reason="Unknown problem with fitstart.")
|
||
|
@pytest.mark.parametrize(
|
||
|
"alpha,beta,delta,gamma",
|
||
|
[
|
||
|
(1.5, 0.4, 2, 3),
|
||
|
(1.0, 0.4, 2, 3),
|
||
|
]
|
||
|
)
|
||
|
@pytest.mark.parametrize(
|
||
|
"parametrization", ["S0", "S1"]
|
||
|
)
|
||
|
def test_fit_rvs(self, alpha, beta, delta, gamma, parametrization):
|
||
|
"""Test that fit agrees with rvs for each parametrization."""
|
||
|
stats.levy_stable.parametrization = parametrization
|
||
|
data = stats.levy_stable.rvs(
|
||
|
alpha, beta, loc=delta, scale=gamma, size=10000, random_state=1234
|
||
|
)
|
||
|
fit = stats.levy_stable._fitstart(data)
|
||
|
alpha_obs, beta_obs, delta_obs, gamma_obs = fit
|
||
|
assert_allclose(
|
||
|
[alpha, beta, delta, gamma],
|
||
|
[alpha_obs, beta_obs, delta_obs, gamma_obs],
|
||
|
rtol=0.01,
|
||
|
)
|
||
|
|
||
|
def test_fit_beta_flip(self):
|
||
|
# Confirm that sign of beta affects loc, not alpha or scale.
|
||
|
x = np.array([1, 1, 3, 3, 10, 10, 10, 30, 30, 100, 100])
|
||
|
alpha1, beta1, loc1, scale1 = stats.levy_stable._fitstart(x)
|
||
|
alpha2, beta2, loc2, scale2 = stats.levy_stable._fitstart(-x)
|
||
|
assert_equal(beta1, 1)
|
||
|
assert loc1 != 0
|
||
|
assert_almost_equal(alpha2, alpha1)
|
||
|
assert_almost_equal(beta2, -beta1)
|
||
|
assert_almost_equal(loc2, -loc1)
|
||
|
assert_almost_equal(scale2, scale1)
|
||
|
|
||
|
def test_fit_delta_shift(self):
|
||
|
# Confirm that loc slides up and down if data shifts.
|
||
|
SHIFT = 1
|
||
|
x = np.array([1, 1, 3, 3, 10, 10, 10, 30, 30, 100, 100])
|
||
|
alpha1, beta1, loc1, scale1 = stats.levy_stable._fitstart(-x)
|
||
|
alpha2, beta2, loc2, scale2 = stats.levy_stable._fitstart(-x + SHIFT)
|
||
|
assert_almost_equal(alpha2, alpha1)
|
||
|
assert_almost_equal(beta2, beta1)
|
||
|
assert_almost_equal(loc2, loc1 + SHIFT)
|
||
|
assert_almost_equal(scale2, scale1)
|
||
|
|
||
|
def test_fit_loc_extrap(self):
|
||
|
# Confirm that loc goes out of sample for alpha close to 1.
|
||
|
x = [1, 1, 3, 3, 10, 10, 10, 30, 30, 140, 140]
|
||
|
alpha1, beta1, loc1, scale1 = stats.levy_stable._fitstart(x)
|
||
|
assert alpha1 < 1, f"Expected alpha < 1, got {alpha1}"
|
||
|
assert loc1 < min(x), f"Expected loc < {min(x)}, got {loc1}"
|
||
|
|
||
|
x2 = [1, 1, 3, 3, 10, 10, 10, 30, 30, 130, 130]
|
||
|
alpha2, beta2, loc2, scale2 = stats.levy_stable._fitstart(x2)
|
||
|
assert alpha2 > 1, f"Expected alpha > 1, got {alpha2}"
|
||
|
assert loc2 > max(x2), f"Expected loc > {max(x2)}, got {loc2}"
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"pct_range,alpha_range,beta_range", [
|
||
|
pytest.param(
|
||
|
[.01, .5, .99],
|
||
|
[.1, 1, 2],
|
||
|
[-1, 0, .8],
|
||
|
),
|
||
|
pytest.param(
|
||
|
[.01, .05, .5, .95, .99],
|
||
|
[.1, .5, 1, 1.5, 2],
|
||
|
[-.9, -.5, 0, .3, .6, 1],
|
||
|
marks=pytest.mark.slow
|
||
|
),
|
||
|
pytest.param(
|
||
|
[.01, .05, .1, .25, .35, .5, .65, .75, .9, .95, .99],
|
||
|
np.linspace(0.1, 2, 20),
|
||
|
np.linspace(-1, 1, 21),
|
||
|
marks=pytest.mark.xslow,
|
||
|
),
|
||
|
]
|
||
|
)
|
||
|
def test_pdf_nolan_samples(
|
||
|
self, nolan_pdf_sample_data, pct_range, alpha_range, beta_range
|
||
|
):
|
||
|
"""Test pdf values against Nolan's stablec.exe output"""
|
||
|
data = nolan_pdf_sample_data
|
||
|
|
||
|
# some tests break on linux 32 bit
|
||
|
uname = platform.uname()
|
||
|
is_linux_32 = uname.system == 'Linux' and uname.machine == 'i686'
|
||
|
platform_desc = "/".join(
|
||
|
[uname.system, uname.machine, uname.processor])
|
||
|
|
||
|
# fmt: off
|
||
|
# There are a number of cases which fail on some but not all platforms.
|
||
|
# These are excluded by the filters below. TODO: Rewrite tests so that
|
||
|
# the now filtered out test cases are still run but marked in pytest as
|
||
|
# expected to fail.
|
||
|
tests = [
|
||
|
[
|
||
|
'dni', 1e-7, lambda r: (
|
||
|
np.isin(r['pct'], pct_range) &
|
||
|
np.isin(r['alpha'], alpha_range) &
|
||
|
np.isin(r['beta'], beta_range) &
|
||
|
~(
|
||
|
(
|
||
|
(r['beta'] == 0) &
|
||
|
(r['pct'] == 0.5)
|
||
|
) |
|
||
|
(
|
||
|
(r['beta'] >= 0.9) &
|
||
|
(r['alpha'] >= 1.6) &
|
||
|
(r['pct'] == 0.5)
|
||
|
) |
|
||
|
(
|
||
|
(r['alpha'] <= 0.4) &
|
||
|
np.isin(r['pct'], [.01, .99])
|
||
|
) |
|
||
|
(
|
||
|
(r['alpha'] <= 0.3) &
|
||
|
np.isin(r['pct'], [.05, .95])
|
||
|
) |
|
||
|
(
|
||
|
(r['alpha'] <= 0.2) &
|
||
|
np.isin(r['pct'], [.1, .9])
|
||
|
) |
|
||
|
(
|
||
|
(r['alpha'] == 0.1) &
|
||
|
np.isin(r['pct'], [.25, .75]) &
|
||
|
np.isin(np.abs(r['beta']), [.5, .6, .7])
|
||
|
) |
|
||
|
(
|
||
|
(r['alpha'] == 0.1) &
|
||
|
np.isin(r['pct'], [.5]) &
|
||
|
np.isin(np.abs(r['beta']), [.1])
|
||
|
) |
|
||
|
(
|
||
|
(r['alpha'] == 0.1) &
|
||
|
np.isin(r['pct'], [.35, .65]) &
|
||
|
np.isin(np.abs(r['beta']), [-.4, -.3, .3, .4, .5])
|
||
|
) |
|
||
|
(
|
||
|
(r['alpha'] == 0.2) &
|
||
|
(r['beta'] == 0.5) &
|
||
|
(r['pct'] == 0.25)
|
||
|
) |
|
||
|
(
|
||
|
(r['alpha'] == 0.2) &
|
||
|
(r['beta'] == -0.3) &
|
||
|
(r['pct'] == 0.65)
|
||
|
) |
|
||
|
(
|
||
|
(r['alpha'] == 0.2) &
|
||
|
(r['beta'] == 0.3) &
|
||
|
(r['pct'] == 0.35)
|
||
|
) |
|
||
|
(
|
||
|
(r['alpha'] == 1.) &
|
||
|
np.isin(r['pct'], [.5]) &
|
||
|
np.isin(np.abs(r['beta']), [.1, .2, .3, .4])
|
||
|
) |
|
||
|
(
|
||
|
(r['alpha'] == 1.) &
|
||
|
np.isin(r['pct'], [.35, .65]) &
|
||
|
np.isin(np.abs(r['beta']), [.8, .9, 1.])
|
||
|
) |
|
||
|
(
|
||
|
(r['alpha'] == 1.) &
|
||
|
np.isin(r['pct'], [.01, .99]) &
|
||
|
np.isin(np.abs(r['beta']), [-.1, .1])
|
||
|
) |
|
||
|
# various points ok but too sparse to list
|
||
|
(r['alpha'] >= 1.1)
|
||
|
)
|
||
|
)
|
||
|
],
|
||
|
# piecewise generally good accuracy
|
||
|
[
|
||
|
'piecewise', 1e-11, lambda r: (
|
||
|
np.isin(r['pct'], pct_range) &
|
||
|
np.isin(r['alpha'], alpha_range) &
|
||
|
np.isin(r['beta'], beta_range) &
|
||
|
(r['alpha'] > 0.2) &
|
||
|
(r['alpha'] != 1.)
|
||
|
)
|
||
|
],
|
||
|
# for alpha = 1. for linux 32 bit optimize.bisect
|
||
|
# has some issues for .01 and .99 percentile
|
||
|
[
|
||
|
'piecewise', 1e-11, lambda r: (
|
||
|
(r['alpha'] == 1.) &
|
||
|
(not is_linux_32) &
|
||
|
np.isin(r['pct'], pct_range) &
|
||
|
(1. in alpha_range) &
|
||
|
np.isin(r['beta'], beta_range)
|
||
|
)
|
||
|
],
|
||
|
# for small alpha very slightly reduced accuracy
|
||
|
[
|
||
|
'piecewise', 2.5e-10, lambda r: (
|
||
|
np.isin(r['pct'], pct_range) &
|
||
|
np.isin(r['alpha'], alpha_range) &
|
||
|
np.isin(r['beta'], beta_range) &
|
||
|
(r['alpha'] <= 0.2)
|
||
|
)
|
||
|
],
|
||
|
# fft accuracy reduces as alpha decreases
|
||
|
[
|
||
|
'fft-simpson', 1e-5, lambda r: (
|
||
|
(r['alpha'] >= 1.9) &
|
||
|
np.isin(r['pct'], pct_range) &
|
||
|
np.isin(r['alpha'], alpha_range) &
|
||
|
np.isin(r['beta'], beta_range)
|
||
|
),
|
||
|
],
|
||
|
[
|
||
|
'fft-simpson', 1e-6, lambda r: (
|
||
|
np.isin(r['pct'], pct_range) &
|
||
|
np.isin(r['alpha'], alpha_range) &
|
||
|
np.isin(r['beta'], beta_range) &
|
||
|
(r['alpha'] > 1) &
|
||
|
(r['alpha'] < 1.9)
|
||
|
)
|
||
|
],
|
||
|
# fft relative errors for alpha < 1, will raise if enabled
|
||
|
# ['fft-simpson', 1e-4, lambda r: r['alpha'] == 0.9],
|
||
|
# ['fft-simpson', 1e-3, lambda r: r['alpha'] == 0.8],
|
||
|
# ['fft-simpson', 1e-2, lambda r: r['alpha'] == 0.7],
|
||
|
# ['fft-simpson', 1e-1, lambda r: r['alpha'] == 0.6],
|
||
|
]
|
||
|
# fmt: on
|
||
|
for ix, (default_method, rtol,
|
||
|
filter_func) in enumerate(tests):
|
||
|
stats.levy_stable.pdf_default_method = default_method
|
||
|
subdata = data[filter_func(data)
|
||
|
] if filter_func is not None else data
|
||
|
with suppress_warnings() as sup:
|
||
|
# occurs in FFT methods only
|
||
|
sup.record(
|
||
|
RuntimeWarning,
|
||
|
"Density calculations experimental for FFT method.*"
|
||
|
)
|
||
|
p = stats.levy_stable.pdf(
|
||
|
subdata['x'],
|
||
|
subdata['alpha'],
|
||
|
subdata['beta'],
|
||
|
scale=1,
|
||
|
loc=0
|
||
|
)
|
||
|
with np.errstate(over="ignore"):
|
||
|
subdata2 = rec_append_fields(
|
||
|
subdata,
|
||
|
['calc', 'abserr', 'relerr'],
|
||
|
[
|
||
|
p,
|
||
|
np.abs(p - subdata['p']),
|
||
|
np.abs(p - subdata['p']) / np.abs(subdata['p'])
|
||
|
]
|
||
|
)
|
||
|
failures = subdata2[
|
||
|
(subdata2['relerr'] >= rtol) |
|
||
|
np.isnan(p)
|
||
|
]
|
||
|
message = (
|
||
|
f"pdf test {ix} failed with method '{default_method}' "
|
||
|
f"[platform: {platform_desc}]\n{failures.dtype.names}\n{failures}"
|
||
|
)
|
||
|
assert_allclose(
|
||
|
p,
|
||
|
subdata['p'],
|
||
|
rtol,
|
||
|
err_msg=message,
|
||
|
verbose=False
|
||
|
)
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"pct_range,alpha_range,beta_range", [
|
||
|
pytest.param(
|
||
|
[.01, .5, .99],
|
||
|
[.1, 1, 2],
|
||
|
[-1, 0, .8],
|
||
|
),
|
||
|
pytest.param(
|
||
|
[.01, .05, .5, .95, .99],
|
||
|
[.1, .5, 1, 1.5, 2],
|
||
|
[-.9, -.5, 0, .3, .6, 1],
|
||
|
marks=pytest.mark.slow
|
||
|
),
|
||
|
pytest.param(
|
||
|
[.01, .05, .1, .25, .35, .5, .65, .75, .9, .95, .99],
|
||
|
np.linspace(0.1, 2, 20),
|
||
|
np.linspace(-1, 1, 21),
|
||
|
marks=pytest.mark.xslow,
|
||
|
),
|
||
|
]
|
||
|
)
|
||
|
def test_cdf_nolan_samples(
|
||
|
self, nolan_cdf_sample_data, pct_range, alpha_range, beta_range
|
||
|
):
|
||
|
""" Test cdf values against Nolan's stablec.exe output."""
|
||
|
data = nolan_cdf_sample_data
|
||
|
tests = [
|
||
|
# piecewise generally good accuracy
|
||
|
[
|
||
|
'piecewise', 2e-12, lambda r: (
|
||
|
np.isin(r['pct'], pct_range) &
|
||
|
np.isin(r['alpha'], alpha_range) &
|
||
|
np.isin(r['beta'], beta_range) &
|
||
|
~(
|
||
|
(
|
||
|
(r['alpha'] == 1.) &
|
||
|
np.isin(r['beta'], [-0.3, -0.2, -0.1]) &
|
||
|
(r['pct'] == 0.01)
|
||
|
) |
|
||
|
(
|
||
|
(r['alpha'] == 1.) &
|
||
|
np.isin(r['beta'], [0.1, 0.2, 0.3]) &
|
||
|
(r['pct'] == 0.99)
|
||
|
)
|
||
|
)
|
||
|
)
|
||
|
],
|
||
|
# for some points with alpha=1, Nolan's STABLE clearly
|
||
|
# loses accuracy
|
||
|
[
|
||
|
'piecewise', 5e-2, lambda r: (
|
||
|
np.isin(r['pct'], pct_range) &
|
||
|
np.isin(r['alpha'], alpha_range) &
|
||
|
np.isin(r['beta'], beta_range) &
|
||
|
(
|
||
|
(r['alpha'] == 1.) &
|
||
|
np.isin(r['beta'], [-0.3, -0.2, -0.1]) &
|
||
|
(r['pct'] == 0.01)
|
||
|
) |
|
||
|
(
|
||
|
(r['alpha'] == 1.) &
|
||
|
np.isin(r['beta'], [0.1, 0.2, 0.3]) &
|
||
|
(r['pct'] == 0.99)
|
||
|
)
|
||
|
)
|
||
|
],
|
||
|
# fft accuracy poor, very poor alpha < 1
|
||
|
[
|
||
|
'fft-simpson', 1e-5, lambda r: (
|
||
|
np.isin(r['pct'], pct_range) &
|
||
|
np.isin(r['alpha'], alpha_range) &
|
||
|
np.isin(r['beta'], beta_range) &
|
||
|
(r['alpha'] > 1.7)
|
||
|
)
|
||
|
],
|
||
|
[
|
||
|
'fft-simpson', 1e-4, lambda r: (
|
||
|
np.isin(r['pct'], pct_range) &
|
||
|
np.isin(r['alpha'], alpha_range) &
|
||
|
np.isin(r['beta'], beta_range) &
|
||
|
(r['alpha'] > 1.5) &
|
||
|
(r['alpha'] <= 1.7)
|
||
|
)
|
||
|
],
|
||
|
[
|
||
|
'fft-simpson', 1e-3, lambda r: (
|
||
|
np.isin(r['pct'], pct_range) &
|
||
|
np.isin(r['alpha'], alpha_range) &
|
||
|
np.isin(r['beta'], beta_range) &
|
||
|
(r['alpha'] > 1.3) &
|
||
|
(r['alpha'] <= 1.5)
|
||
|
)
|
||
|
],
|
||
|
[
|
||
|
'fft-simpson', 1e-2, lambda r: (
|
||
|
np.isin(r['pct'], pct_range) &
|
||
|
np.isin(r['alpha'], alpha_range) &
|
||
|
np.isin(r['beta'], beta_range) &
|
||
|
(r['alpha'] > 1.0) &
|
||
|
(r['alpha'] <= 1.3)
|
||
|
)
|
||
|
],
|
||
|
]
|
||
|
for ix, (default_method, rtol,
|
||
|
filter_func) in enumerate(tests):
|
||
|
stats.levy_stable.cdf_default_method = default_method
|
||
|
subdata = data[filter_func(data)
|
||
|
] if filter_func is not None else data
|
||
|
with suppress_warnings() as sup:
|
||
|
sup.record(
|
||
|
RuntimeWarning,
|
||
|
'Cumulative density calculations experimental for FFT'
|
||
|
+ ' method. Use piecewise method instead.*'
|
||
|
)
|
||
|
p = stats.levy_stable.cdf(
|
||
|
subdata['x'],
|
||
|
subdata['alpha'],
|
||
|
subdata['beta'],
|
||
|
scale=1,
|
||
|
loc=0
|
||
|
)
|
||
|
with np.errstate(over="ignore"):
|
||
|
subdata2 = rec_append_fields(
|
||
|
subdata,
|
||
|
['calc', 'abserr', 'relerr'],
|
||
|
[
|
||
|
p,
|
||
|
np.abs(p - subdata['p']),
|
||
|
np.abs(p - subdata['p']) / np.abs(subdata['p'])
|
||
|
]
|
||
|
)
|
||
|
failures = subdata2[
|
||
|
(subdata2['relerr'] >= rtol) |
|
||
|
np.isnan(p)
|
||
|
]
|
||
|
message = (f"cdf test {ix} failed with method '{default_method}'\n"
|
||
|
f"{failures.dtype.names}\n{failures}")
|
||
|
assert_allclose(
|
||
|
p,
|
||
|
subdata['p'],
|
||
|
rtol,
|
||
|
err_msg=message,
|
||
|
verbose=False
|
||
|
)
|
||
|
|
||
|
@pytest.mark.parametrize("param", [0, 1])
|
||
|
@pytest.mark.parametrize("case", ["pdf", "cdf"])
|
||
|
def test_location_scale(
|
||
|
self, nolan_loc_scale_sample_data, param, case
|
||
|
):
|
||
|
"""Tests for pdf and cdf where loc, scale are different from 0, 1
|
||
|
"""
|
||
|
|
||
|
uname = platform.uname()
|
||
|
is_linux_32 = uname.system == 'Linux' and "32bit" in platform.architecture()[0]
|
||
|
# Test seems to be unstable (see gh-17839 for a bug report on Debian
|
||
|
# i386), so skip it.
|
||
|
if is_linux_32 and case == 'pdf':
|
||
|
pytest.skip("Test unstable on some platforms; see gh-17839, 17859")
|
||
|
|
||
|
data = nolan_loc_scale_sample_data
|
||
|
# We only test against piecewise as location/scale transforms
|
||
|
# are same for other methods.
|
||
|
stats.levy_stable.cdf_default_method = "piecewise"
|
||
|
stats.levy_stable.pdf_default_method = "piecewise"
|
||
|
|
||
|
subdata = data[data["param"] == param]
|
||
|
stats.levy_stable.parameterization = f"S{param}"
|
||
|
|
||
|
assert case in ["pdf", "cdf"]
|
||
|
function = (
|
||
|
stats.levy_stable.pdf if case == "pdf" else stats.levy_stable.cdf
|
||
|
)
|
||
|
|
||
|
v1 = function(
|
||
|
subdata['x'], subdata['alpha'], subdata['beta'], scale=2, loc=3
|
||
|
)
|
||
|
assert_allclose(v1, subdata[case], 1e-5)
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"method,decimal_places",
|
||
|
[
|
||
|
['dni', 4],
|
||
|
['piecewise', 4],
|
||
|
]
|
||
|
)
|
||
|
def test_pdf_alpha_equals_one_beta_non_zero(self, method, decimal_places):
|
||
|
""" sample points extracted from Tables and Graphs of Stable
|
||
|
Probability Density Functions - Donald R Holt - 1973 - p 187.
|
||
|
"""
|
||
|
xs = np.array(
|
||
|
[0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4]
|
||
|
)
|
||
|
density = np.array(
|
||
|
[
|
||
|
.3183, .3096, .2925, .2622, .1591, .1587, .1599, .1635, .0637,
|
||
|
.0729, .0812, .0955, .0318, .0390, .0458, .0586, .0187, .0236,
|
||
|
.0285, .0384
|
||
|
]
|
||
|
)
|
||
|
betas = np.array(
|
||
|
[
|
||
|
0, .25, .5, 1, 0, .25, .5, 1, 0, .25, .5, 1, 0, .25, .5, 1, 0,
|
||
|
.25, .5, 1
|
||
|
]
|
||
|
)
|
||
|
with np.errstate(all='ignore'), suppress_warnings() as sup:
|
||
|
sup.filter(
|
||
|
category=RuntimeWarning,
|
||
|
message="Density calculation unstable.*"
|
||
|
)
|
||
|
stats.levy_stable.pdf_default_method = method
|
||
|
# stats.levy_stable.fft_grid_spacing = 0.0001
|
||
|
pdf = stats.levy_stable.pdf(xs, 1, betas, scale=1, loc=0)
|
||
|
assert_almost_equal(
|
||
|
pdf, density, decimal_places, method
|
||
|
)
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"params,expected",
|
||
|
[
|
||
|
[(1.48, -.22, 0, 1), (0, np.inf, np.nan, np.nan)],
|
||
|
[(2, .9, 10, 1.5), (10, 4.5, 0, 0)]
|
||
|
]
|
||
|
)
|
||
|
def test_stats(self, params, expected):
|
||
|
observed = stats.levy_stable.stats(
|
||
|
params[0], params[1], loc=params[2], scale=params[3],
|
||
|
moments='mvsk'
|
||
|
)
|
||
|
assert_almost_equal(observed, expected)
|
||
|
|
||
|
@pytest.mark.parametrize('alpha', [0.25, 0.5, 0.75])
|
||
|
@pytest.mark.parametrize(
|
||
|
'function,beta,points,expected',
|
||
|
[
|
||
|
(
|
||
|
stats.levy_stable.cdf,
|
||
|
1.0,
|
||
|
np.linspace(-25, 0, 10),
|
||
|
0.0,
|
||
|
),
|
||
|
(
|
||
|
stats.levy_stable.pdf,
|
||
|
1.0,
|
||
|
np.linspace(-25, 0, 10),
|
||
|
0.0,
|
||
|
),
|
||
|
(
|
||
|
stats.levy_stable.cdf,
|
||
|
-1.0,
|
||
|
np.linspace(0, 25, 10),
|
||
|
1.0,
|
||
|
),
|
||
|
(
|
||
|
stats.levy_stable.pdf,
|
||
|
-1.0,
|
||
|
np.linspace(0, 25, 10),
|
||
|
0.0,
|
||
|
)
|
||
|
]
|
||
|
)
|
||
|
def test_distribution_outside_support(
|
||
|
self, alpha, function, beta, points, expected
|
||
|
):
|
||
|
"""Ensure the pdf/cdf routines do not return nan outside support.
|
||
|
|
||
|
This distribution's support becomes truncated in a few special cases:
|
||
|
support is [mu, infty) if alpha < 1 and beta = 1
|
||
|
support is (-infty, mu] if alpha < 1 and beta = -1
|
||
|
Otherwise, the support is all reals. Here, mu is zero by default.
|
||
|
"""
|
||
|
assert 0 < alpha < 1
|
||
|
assert_almost_equal(
|
||
|
function(points, alpha=alpha, beta=beta),
|
||
|
np.full(len(points), expected)
|
||
|
)
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
'x,alpha,beta,expected',
|
||
|
# Reference values from Matlab
|
||
|
# format long
|
||
|
# alphas = [1.7720732804618808, 1.9217001522410235, 1.5654806051633634,
|
||
|
# 1.7420803447784388, 1.5748002527689913];
|
||
|
# betas = [0.5059373136902996, -0.8779442746685926, -0.4016220341911392,
|
||
|
# -0.38180029468259247, -0.25200194914153684];
|
||
|
# x0s = [0, 1e-4, -1e-4];
|
||
|
# for x0 = x0s
|
||
|
# disp("x0 = " + x0)
|
||
|
# for ii = 1:5
|
||
|
# alpha = alphas(ii);
|
||
|
# beta = betas(ii);
|
||
|
# pd = makedist('Stable','alpha',alpha,'beta',beta,'gam',1,'delta',0);
|
||
|
# % we need to adjust x. It is the same as x = 0 In scipy.
|
||
|
# x = x0 - beta * tan(pi * alpha / 2);
|
||
|
# disp(pd.pdf(x))
|
||
|
# end
|
||
|
# end
|
||
|
[
|
||
|
(0, 1.7720732804618808, 0.5059373136902996, 0.278932636798268),
|
||
|
(0, 1.9217001522410235, -0.8779442746685926, 0.281054757202316),
|
||
|
(0, 1.5654806051633634, -0.4016220341911392, 0.271282133194204),
|
||
|
(0, 1.7420803447784388, -0.38180029468259247, 0.280202199244247),
|
||
|
(0, 1.5748002527689913, -0.25200194914153684, 0.280136576218665),
|
||
|
]
|
||
|
)
|
||
|
def test_x_equal_zeta(
|
||
|
self, x, alpha, beta, expected
|
||
|
):
|
||
|
"""Test pdf for x equal to zeta.
|
||
|
|
||
|
With S1 parametrization: x0 = x + zeta if alpha != 1 So, for x = 0, x0
|
||
|
will be close to zeta.
|
||
|
|
||
|
When case "x equal zeta" is not handled properly and quad_eps is not
|
||
|
low enough: - pdf may be less than 0 - logpdf is nan
|
||
|
|
||
|
The points from the parametrize block are found randomly so that PDF is
|
||
|
less than 0.
|
||
|
|
||
|
Reference values taken from MATLAB
|
||
|
https://www.mathworks.com/help/stats/stable-distribution.html
|
||
|
"""
|
||
|
stats.levy_stable.quad_eps = 1.2e-11
|
||
|
|
||
|
assert_almost_equal(
|
||
|
stats.levy_stable.pdf(x, alpha=alpha, beta=beta),
|
||
|
expected,
|
||
|
)
|
||
|
|
||
|
@pytest.mark.xfail
|
||
|
@pytest.mark.parametrize(
|
||
|
# See comment for test_x_equal_zeta for script for reference values
|
||
|
'x,alpha,beta,expected',
|
||
|
[
|
||
|
(1e-4, 1.7720732804618808, 0.5059373136902996, 0.278929165340670),
|
||
|
(1e-4, 1.9217001522410235, -0.8779442746685926, 0.281056564327953),
|
||
|
(1e-4, 1.5654806051633634, -0.4016220341911392, 0.271252432161167),
|
||
|
(1e-4, 1.7420803447784388, -0.38180029468259247, 0.280205311264134),
|
||
|
(1e-4, 1.5748002527689913, -0.25200194914153684, 0.280140965235426),
|
||
|
(-1e-4, 1.7720732804618808, 0.5059373136902996, 0.278936106741754),
|
||
|
(-1e-4, 1.9217001522410235, -0.8779442746685926, 0.281052948629429),
|
||
|
(-1e-4, 1.5654806051633634, -0.4016220341911392, 0.271275394392385),
|
||
|
(-1e-4, 1.7420803447784388, -0.38180029468259247, 0.280199085645099),
|
||
|
(-1e-4, 1.5748002527689913, -0.25200194914153684, 0.280132185432842),
|
||
|
]
|
||
|
)
|
||
|
def test_x_near_zeta(
|
||
|
self, x, alpha, beta, expected
|
||
|
):
|
||
|
"""Test pdf for x near zeta.
|
||
|
|
||
|
With S1 parametrization: x0 = x + zeta if alpha != 1 So, for x = 0, x0
|
||
|
will be close to zeta.
|
||
|
|
||
|
When case "x near zeta" is not handled properly and quad_eps is not
|
||
|
low enough: - pdf may be less than 0 - logpdf is nan
|
||
|
|
||
|
The points from the parametrize block are found randomly so that PDF is
|
||
|
less than 0.
|
||
|
|
||
|
Reference values taken from MATLAB
|
||
|
https://www.mathworks.com/help/stats/stable-distribution.html
|
||
|
"""
|
||
|
stats.levy_stable.quad_eps = 1.2e-11
|
||
|
|
||
|
assert_almost_equal(
|
||
|
stats.levy_stable.pdf(x, alpha=alpha, beta=beta),
|
||
|
expected,
|
||
|
)
|
||
|
|
||
|
|
||
|
class TestArrayArgument: # test for ticket:992
|
||
|
def setup_method(self):
|
||
|
np.random.seed(1234)
|
||
|
|
||
|
def test_noexception(self):
|
||
|
rvs = stats.norm.rvs(loc=(np.arange(5)), scale=np.ones(5),
|
||
|
size=(10, 5))
|
||
|
assert_equal(rvs.shape, (10, 5))
|
||
|
|
||
|
|
||
|
class TestDocstring:
|
||
|
def test_docstrings(self):
|
||
|
# See ticket #761
|
||
|
if stats.rayleigh.__doc__ is not None:
|
||
|
assert_("rayleigh" in stats.rayleigh.__doc__.lower())
|
||
|
if stats.bernoulli.__doc__ is not None:
|
||
|
assert_("bernoulli" in stats.bernoulli.__doc__.lower())
|
||
|
|
||
|
def test_no_name_arg(self):
|
||
|
# If name is not given, construction shouldn't fail. See #1508.
|
||
|
stats.rv_continuous()
|
||
|
stats.rv_discrete()
|
||
|
|
||
|
|
||
|
def test_args_reduce():
|
||
|
a = array([1, 3, 2, 1, 2, 3, 3])
|
||
|
b, c = argsreduce(a > 1, a, 2)
|
||
|
|
||
|
assert_array_equal(b, [3, 2, 2, 3, 3])
|
||
|
assert_array_equal(c, [2])
|
||
|
|
||
|
b, c = argsreduce(2 > 1, a, 2)
|
||
|
assert_array_equal(b, a)
|
||
|
assert_array_equal(c, [2] * np.size(a))
|
||
|
|
||
|
b, c = argsreduce(a > 0, a, 2)
|
||
|
assert_array_equal(b, a)
|
||
|
assert_array_equal(c, [2] * np.size(a))
|
||
|
|
||
|
|
||
|
class TestFitMethod:
|
||
|
skip = ['ncf', 'ksone', 'kstwo']
|
||
|
|
||
|
def setup_method(self):
|
||
|
np.random.seed(1234)
|
||
|
|
||
|
# skip these b/c deprecated, or only loc and scale arguments
|
||
|
fitSkipNonFinite = ['expon', 'norm', 'uniform']
|
||
|
|
||
|
@pytest.mark.parametrize('dist,args', distcont)
|
||
|
def test_fit_w_non_finite_data_values(self, dist, args):
|
||
|
"""gh-10300"""
|
||
|
if dist in self.fitSkipNonFinite:
|
||
|
pytest.skip("%s fit known to fail or deprecated" % dist)
|
||
|
x = np.array([1.6483, 2.7169, 2.4667, 1.1791, 3.5433, np.nan])
|
||
|
y = np.array([1.6483, 2.7169, 2.4667, 1.1791, 3.5433, np.inf])
|
||
|
distfunc = getattr(stats, dist)
|
||
|
assert_raises(ValueError, distfunc.fit, x, fscale=1)
|
||
|
assert_raises(ValueError, distfunc.fit, y, fscale=1)
|
||
|
|
||
|
def test_fix_fit_2args_lognorm(self):
|
||
|
# Regression test for #1551.
|
||
|
np.random.seed(12345)
|
||
|
with np.errstate(all='ignore'):
|
||
|
x = stats.lognorm.rvs(0.25, 0., 20.0, size=20)
|
||
|
expected_shape = np.sqrt(((np.log(x) - np.log(20))**2).mean())
|
||
|
assert_allclose(np.array(stats.lognorm.fit(x, floc=0, fscale=20)),
|
||
|
[expected_shape, 0, 20], atol=1e-8)
|
||
|
|
||
|
def test_fix_fit_norm(self):
|
||
|
x = np.arange(1, 6)
|
||
|
|
||
|
loc, scale = stats.norm.fit(x)
|
||
|
assert_almost_equal(loc, 3)
|
||
|
assert_almost_equal(scale, np.sqrt(2))
|
||
|
|
||
|
loc, scale = stats.norm.fit(x, floc=2)
|
||
|
assert_equal(loc, 2)
|
||
|
assert_equal(scale, np.sqrt(3))
|
||
|
|
||
|
loc, scale = stats.norm.fit(x, fscale=2)
|
||
|
assert_almost_equal(loc, 3)
|
||
|
assert_equal(scale, 2)
|
||
|
|
||
|
def test_fix_fit_gamma(self):
|
||
|
x = np.arange(1, 6)
|
||
|
meanlog = np.log(x).mean()
|
||
|
|
||
|
# A basic test of gamma.fit with floc=0.
|
||
|
floc = 0
|
||
|
a, loc, scale = stats.gamma.fit(x, floc=floc)
|
||
|
s = np.log(x.mean()) - meanlog
|
||
|
assert_almost_equal(np.log(a) - special.digamma(a), s, decimal=5)
|
||
|
assert_equal(loc, floc)
|
||
|
assert_almost_equal(scale, x.mean()/a, decimal=8)
|
||
|
|
||
|
# Regression tests for gh-2514.
|
||
|
# The problem was that if `floc=0` was given, any other fixed
|
||
|
# parameters were ignored.
|
||
|
f0 = 1
|
||
|
floc = 0
|
||
|
a, loc, scale = stats.gamma.fit(x, f0=f0, floc=floc)
|
||
|
assert_equal(a, f0)
|
||
|
assert_equal(loc, floc)
|
||
|
assert_almost_equal(scale, x.mean()/a, decimal=8)
|
||
|
|
||
|
f0 = 2
|
||
|
floc = 0
|
||
|
a, loc, scale = stats.gamma.fit(x, f0=f0, floc=floc)
|
||
|
assert_equal(a, f0)
|
||
|
assert_equal(loc, floc)
|
||
|
assert_almost_equal(scale, x.mean()/a, decimal=8)
|
||
|
|
||
|
# loc and scale fixed.
|
||
|
floc = 0
|
||
|
fscale = 2
|
||
|
a, loc, scale = stats.gamma.fit(x, floc=floc, fscale=fscale)
|
||
|
assert_equal(loc, floc)
|
||
|
assert_equal(scale, fscale)
|
||
|
c = meanlog - np.log(fscale)
|
||
|
assert_almost_equal(special.digamma(a), c)
|
||
|
|
||
|
def test_fix_fit_beta(self):
|
||
|
# Test beta.fit when both floc and fscale are given.
|
||
|
|
||
|
def mlefunc(a, b, x):
|
||
|
# Zeros of this function are critical points of
|
||
|
# the maximum likelihood function.
|
||
|
n = len(x)
|
||
|
s1 = np.log(x).sum()
|
||
|
s2 = np.log(1-x).sum()
|
||
|
psiab = special.psi(a + b)
|
||
|
func = [s1 - n * (-psiab + special.psi(a)),
|
||
|
s2 - n * (-psiab + special.psi(b))]
|
||
|
return func
|
||
|
|
||
|
# Basic test with floc and fscale given.
|
||
|
x = np.array([0.125, 0.25, 0.5])
|
||
|
a, b, loc, scale = stats.beta.fit(x, floc=0, fscale=1)
|
||
|
assert_equal(loc, 0)
|
||
|
assert_equal(scale, 1)
|
||
|
assert_allclose(mlefunc(a, b, x), [0, 0], atol=1e-6)
|
||
|
|
||
|
# Basic test with f0, floc and fscale given.
|
||
|
# This is also a regression test for gh-2514.
|
||
|
x = np.array([0.125, 0.25, 0.5])
|
||
|
a, b, loc, scale = stats.beta.fit(x, f0=2, floc=0, fscale=1)
|
||
|
assert_equal(a, 2)
|
||
|
assert_equal(loc, 0)
|
||
|
assert_equal(scale, 1)
|
||
|
da, db = mlefunc(a, b, x)
|
||
|
assert_allclose(db, 0, atol=1e-5)
|
||
|
|
||
|
# Same floc and fscale values as above, but reverse the data
|
||
|
# and fix b (f1).
|
||
|
x2 = 1 - x
|
||
|
a2, b2, loc2, scale2 = stats.beta.fit(x2, f1=2, floc=0, fscale=1)
|
||
|
assert_equal(b2, 2)
|
||
|
assert_equal(loc2, 0)
|
||
|
assert_equal(scale2, 1)
|
||
|
da, db = mlefunc(a2, b2, x2)
|
||
|
assert_allclose(da, 0, atol=1e-5)
|
||
|
# a2 of this test should equal b from above.
|
||
|
assert_almost_equal(a2, b)
|
||
|
|
||
|
# Check for detection of data out of bounds when floc and fscale
|
||
|
# are given.
|
||
|
assert_raises(ValueError, stats.beta.fit, x, floc=0.5, fscale=1)
|
||
|
y = np.array([0, .5, 1])
|
||
|
assert_raises(ValueError, stats.beta.fit, y, floc=0, fscale=1)
|
||
|
assert_raises(ValueError, stats.beta.fit, y, floc=0, fscale=1, f0=2)
|
||
|
assert_raises(ValueError, stats.beta.fit, y, floc=0, fscale=1, f1=2)
|
||
|
|
||
|
# Check that attempting to fix all the parameters raises a ValueError.
|
||
|
assert_raises(ValueError, stats.beta.fit, y, f0=0, f1=1,
|
||
|
floc=2, fscale=3)
|
||
|
|
||
|
def test_expon_fit(self):
|
||
|
x = np.array([2, 2, 4, 4, 4, 4, 4, 8])
|
||
|
|
||
|
loc, scale = stats.expon.fit(x)
|
||
|
assert_equal(loc, 2) # x.min()
|
||
|
assert_equal(scale, 2) # x.mean() - x.min()
|
||
|
|
||
|
loc, scale = stats.expon.fit(x, fscale=3)
|
||
|
assert_equal(loc, 2) # x.min()
|
||
|
assert_equal(scale, 3) # fscale
|
||
|
|
||
|
loc, scale = stats.expon.fit(x, floc=0)
|
||
|
assert_equal(loc, 0) # floc
|
||
|
assert_equal(scale, 4) # x.mean() - loc
|
||
|
|
||
|
def test_lognorm_fit(self):
|
||
|
x = np.array([1.5, 3, 10, 15, 23, 59])
|
||
|
lnxm1 = np.log(x - 1)
|
||
|
|
||
|
shape, loc, scale = stats.lognorm.fit(x, floc=1)
|
||
|
assert_allclose(shape, lnxm1.std(), rtol=1e-12)
|
||
|
assert_equal(loc, 1)
|
||
|
assert_allclose(scale, np.exp(lnxm1.mean()), rtol=1e-12)
|
||
|
|
||
|
shape, loc, scale = stats.lognorm.fit(x, floc=1, fscale=6)
|
||
|
assert_allclose(shape, np.sqrt(((lnxm1 - np.log(6))**2).mean()),
|
||
|
rtol=1e-12)
|
||
|
assert_equal(loc, 1)
|
||
|
assert_equal(scale, 6)
|
||
|
|
||
|
shape, loc, scale = stats.lognorm.fit(x, floc=1, fix_s=0.75)
|
||
|
assert_equal(shape, 0.75)
|
||
|
assert_equal(loc, 1)
|
||
|
assert_allclose(scale, np.exp(lnxm1.mean()), rtol=1e-12)
|
||
|
|
||
|
def test_uniform_fit(self):
|
||
|
x = np.array([1.0, 1.1, 1.2, 9.0])
|
||
|
|
||
|
loc, scale = stats.uniform.fit(x)
|
||
|
assert_equal(loc, x.min())
|
||
|
assert_equal(scale, np.ptp(x))
|
||
|
|
||
|
loc, scale = stats.uniform.fit(x, floc=0)
|
||
|
assert_equal(loc, 0)
|
||
|
assert_equal(scale, x.max())
|
||
|
|
||
|
loc, scale = stats.uniform.fit(x, fscale=10)
|
||
|
assert_equal(loc, 0)
|
||
|
assert_equal(scale, 10)
|
||
|
|
||
|
assert_raises(ValueError, stats.uniform.fit, x, floc=2.0)
|
||
|
assert_raises(ValueError, stats.uniform.fit, x, fscale=5.0)
|
||
|
|
||
|
@pytest.mark.slow
|
||
|
@pytest.mark.parametrize("method", ["MLE", "MM"])
|
||
|
def test_fshapes(self, method):
|
||
|
# take a beta distribution, with shapes='a, b', and make sure that
|
||
|
# fa is equivalent to f0, and fb is equivalent to f1
|
||
|
a, b = 3., 4.
|
||
|
x = stats.beta.rvs(a, b, size=100, random_state=1234)
|
||
|
res_1 = stats.beta.fit(x, f0=3., method=method)
|
||
|
res_2 = stats.beta.fit(x, fa=3., method=method)
|
||
|
assert_allclose(res_1, res_2, atol=1e-12, rtol=1e-12)
|
||
|
|
||
|
res_2 = stats.beta.fit(x, fix_a=3., method=method)
|
||
|
assert_allclose(res_1, res_2, atol=1e-12, rtol=1e-12)
|
||
|
|
||
|
res_3 = stats.beta.fit(x, f1=4., method=method)
|
||
|
res_4 = stats.beta.fit(x, fb=4., method=method)
|
||
|
assert_allclose(res_3, res_4, atol=1e-12, rtol=1e-12)
|
||
|
|
||
|
res_4 = stats.beta.fit(x, fix_b=4., method=method)
|
||
|
assert_allclose(res_3, res_4, atol=1e-12, rtol=1e-12)
|
||
|
|
||
|
# cannot specify both positional and named args at the same time
|
||
|
assert_raises(ValueError, stats.beta.fit, x, fa=1, f0=2, method=method)
|
||
|
|
||
|
# check that attempting to fix all parameters raises a ValueError
|
||
|
assert_raises(ValueError, stats.beta.fit, x, fa=0, f1=1,
|
||
|
floc=2, fscale=3, method=method)
|
||
|
|
||
|
# check that specifying floc, fscale and fshapes works for
|
||
|
# beta and gamma which override the generic fit method
|
||
|
res_5 = stats.beta.fit(x, fa=3., floc=0, fscale=1, method=method)
|
||
|
aa, bb, ll, ss = res_5
|
||
|
assert_equal([aa, ll, ss], [3., 0, 1])
|
||
|
|
||
|
# gamma distribution
|
||
|
a = 3.
|
||
|
data = stats.gamma.rvs(a, size=100)
|
||
|
aa, ll, ss = stats.gamma.fit(data, fa=a, method=method)
|
||
|
assert_equal(aa, a)
|
||
|
|
||
|
@pytest.mark.parametrize("method", ["MLE", "MM"])
|
||
|
def test_extra_params(self, method):
|
||
|
# unknown parameters should raise rather than be silently ignored
|
||
|
dist = stats.exponnorm
|
||
|
data = dist.rvs(K=2, size=100)
|
||
|
dct = dict(enikibeniki=-101)
|
||
|
assert_raises(TypeError, dist.fit, data, **dct, method=method)
|
||
|
|
||
|
|
||
|
class TestFrozen:
|
||
|
def setup_method(self):
|
||
|
np.random.seed(1234)
|
||
|
|
||
|
# Test that a frozen distribution gives the same results as the original
|
||
|
# object.
|
||
|
#
|
||
|
# Only tested for the normal distribution (with loc and scale specified)
|
||
|
# and for the gamma distribution (with a shape parameter specified).
|
||
|
def test_norm(self):
|
||
|
dist = stats.norm
|
||
|
frozen = stats.norm(loc=10.0, scale=3.0)
|
||
|
|
||
|
result_f = frozen.pdf(20.0)
|
||
|
result = dist.pdf(20.0, loc=10.0, scale=3.0)
|
||
|
assert_equal(result_f, result)
|
||
|
|
||
|
result_f = frozen.cdf(20.0)
|
||
|
result = dist.cdf(20.0, loc=10.0, scale=3.0)
|
||
|
assert_equal(result_f, result)
|
||
|
|
||
|
result_f = frozen.ppf(0.25)
|
||
|
result = dist.ppf(0.25, loc=10.0, scale=3.0)
|
||
|
assert_equal(result_f, result)
|
||
|
|
||
|
result_f = frozen.isf(0.25)
|
||
|
result = dist.isf(0.25, loc=10.0, scale=3.0)
|
||
|
assert_equal(result_f, result)
|
||
|
|
||
|
result_f = frozen.sf(10.0)
|
||
|
result = dist.sf(10.0, loc=10.0, scale=3.0)
|
||
|
assert_equal(result_f, result)
|
||
|
|
||
|
result_f = frozen.median()
|
||
|
result = dist.median(loc=10.0, scale=3.0)
|
||
|
assert_equal(result_f, result)
|
||
|
|
||
|
result_f = frozen.mean()
|
||
|
result = dist.mean(loc=10.0, scale=3.0)
|
||
|
assert_equal(result_f, result)
|
||
|
|
||
|
result_f = frozen.var()
|
||
|
result = dist.var(loc=10.0, scale=3.0)
|
||
|
assert_equal(result_f, result)
|
||
|
|
||
|
result_f = frozen.std()
|
||
|
result = dist.std(loc=10.0, scale=3.0)
|
||
|
assert_equal(result_f, result)
|
||
|
|
||
|
result_f = frozen.entropy()
|
||
|
result = dist.entropy(loc=10.0, scale=3.0)
|
||
|
assert_equal(result_f, result)
|
||
|
|
||
|
result_f = frozen.moment(2)
|
||
|
result = dist.moment(2, loc=10.0, scale=3.0)
|
||
|
assert_equal(result_f, result)
|
||
|
|
||
|
assert_equal(frozen.a, dist.a)
|
||
|
assert_equal(frozen.b, dist.b)
|
||
|
|
||
|
def test_gamma(self):
|
||
|
a = 2.0
|
||
|
dist = stats.gamma
|
||
|
frozen = stats.gamma(a)
|
||
|
|
||
|
result_f = frozen.pdf(20.0)
|
||
|
result = dist.pdf(20.0, a)
|
||
|
assert_equal(result_f, result)
|
||
|
|
||
|
result_f = frozen.cdf(20.0)
|
||
|
result = dist.cdf(20.0, a)
|
||
|
assert_equal(result_f, result)
|
||
|
|
||
|
result_f = frozen.ppf(0.25)
|
||
|
result = dist.ppf(0.25, a)
|
||
|
assert_equal(result_f, result)
|
||
|
|
||
|
result_f = frozen.isf(0.25)
|
||
|
result = dist.isf(0.25, a)
|
||
|
assert_equal(result_f, result)
|
||
|
|
||
|
result_f = frozen.sf(10.0)
|
||
|
result = dist.sf(10.0, a)
|
||
|
assert_equal(result_f, result)
|
||
|
|
||
|
result_f = frozen.median()
|
||
|
result = dist.median(a)
|
||
|
assert_equal(result_f, result)
|
||
|
|
||
|
result_f = frozen.mean()
|
||
|
result = dist.mean(a)
|
||
|
assert_equal(result_f, result)
|
||
|
|
||
|
result_f = frozen.var()
|
||
|
result = dist.var(a)
|
||
|
assert_equal(result_f, result)
|
||
|
|
||
|
result_f = frozen.std()
|
||
|
result = dist.std(a)
|
||
|
assert_equal(result_f, result)
|
||
|
|
||
|
result_f = frozen.entropy()
|
||
|
result = dist.entropy(a)
|
||
|
assert_equal(result_f, result)
|
||
|
|
||
|
result_f = frozen.moment(2)
|
||
|
result = dist.moment(2, a)
|
||
|
assert_equal(result_f, result)
|
||
|
|
||
|
assert_equal(frozen.a, frozen.dist.a)
|
||
|
assert_equal(frozen.b, frozen.dist.b)
|
||
|
|
||
|
def test_regression_ticket_1293(self):
|
||
|
# Create a frozen distribution.
|
||
|
frozen = stats.lognorm(1)
|
||
|
# Call one of its methods that does not take any keyword arguments.
|
||
|
m1 = frozen.moment(2)
|
||
|
# Now call a method that takes a keyword argument.
|
||
|
frozen.stats(moments='mvsk')
|
||
|
# Call moment(2) again.
|
||
|
# After calling stats(), the following was raising an exception.
|
||
|
# So this test passes if the following does not raise an exception.
|
||
|
m2 = frozen.moment(2)
|
||
|
# The following should also be true, of course. But it is not
|
||
|
# the focus of this test.
|
||
|
assert_equal(m1, m2)
|
||
|
|
||
|
def test_ab(self):
|
||
|
# test that the support of a frozen distribution
|
||
|
# (i) remains frozen even if it changes for the original one
|
||
|
# (ii) is actually correct if the shape parameters are such that
|
||
|
# the values of [a, b] are not the default [0, inf]
|
||
|
# take a genpareto as an example where the support
|
||
|
# depends on the value of the shape parameter:
|
||
|
# for c > 0: a, b = 0, inf
|
||
|
# for c < 0: a, b = 0, -1/c
|
||
|
|
||
|
c = -0.1
|
||
|
rv = stats.genpareto(c=c)
|
||
|
a, b = rv.dist._get_support(c)
|
||
|
assert_equal([a, b], [0., 10.])
|
||
|
|
||
|
c = 0.1
|
||
|
stats.genpareto.pdf(0, c=c)
|
||
|
assert_equal(rv.dist._get_support(c), [0, np.inf])
|
||
|
|
||
|
c = -0.1
|
||
|
rv = stats.genpareto(c=c)
|
||
|
a, b = rv.dist._get_support(c)
|
||
|
assert_equal([a, b], [0., 10.])
|
||
|
|
||
|
c = 0.1
|
||
|
stats.genpareto.pdf(0, c) # this should NOT change genpareto.b
|
||
|
assert_equal((rv.dist.a, rv.dist.b), stats.genpareto._get_support(c))
|
||
|
|
||
|
rv1 = stats.genpareto(c=0.1)
|
||
|
assert_(rv1.dist is not rv.dist)
|
||
|
|
||
|
# c >= 0: a, b = [0, inf]
|
||
|
for c in [1., 0.]:
|
||
|
c = np.asarray(c)
|
||
|
rv = stats.genpareto(c=c)
|
||
|
a, b = rv.a, rv.b
|
||
|
assert_equal(a, 0.)
|
||
|
assert_(np.isposinf(b))
|
||
|
|
||
|
# c < 0: a=0, b=1/|c|
|
||
|
c = np.asarray(-2.)
|
||
|
a, b = stats.genpareto._get_support(c)
|
||
|
assert_allclose([a, b], [0., 0.5])
|
||
|
|
||
|
def test_rv_frozen_in_namespace(self):
|
||
|
# Regression test for gh-3522
|
||
|
assert_(hasattr(stats.distributions, 'rv_frozen'))
|
||
|
|
||
|
def test_random_state(self):
|
||
|
# only check that the random_state attribute exists,
|
||
|
frozen = stats.norm()
|
||
|
assert_(hasattr(frozen, 'random_state'))
|
||
|
|
||
|
# ... that it can be set,
|
||
|
frozen.random_state = 42
|
||
|
assert_equal(frozen.random_state.get_state(),
|
||
|
np.random.RandomState(42).get_state())
|
||
|
|
||
|
# ... and that .rvs method accepts it as an argument
|
||
|
rndm = np.random.RandomState(1234)
|
||
|
frozen.rvs(size=8, random_state=rndm)
|
||
|
|
||
|
def test_pickling(self):
|
||
|
# test that a frozen instance pickles and unpickles
|
||
|
# (this method is a clone of common_tests.check_pickling)
|
||
|
beta = stats.beta(2.3098496451481823, 0.62687954300963677)
|
||
|
poiss = stats.poisson(3.)
|
||
|
sample = stats.rv_discrete(values=([0, 1, 2, 3],
|
||
|
[0.1, 0.2, 0.3, 0.4]))
|
||
|
|
||
|
for distfn in [beta, poiss, sample]:
|
||
|
distfn.random_state = 1234
|
||
|
distfn.rvs(size=8)
|
||
|
s = pickle.dumps(distfn)
|
||
|
r0 = distfn.rvs(size=8)
|
||
|
|
||
|
unpickled = pickle.loads(s)
|
||
|
r1 = unpickled.rvs(size=8)
|
||
|
assert_equal(r0, r1)
|
||
|
|
||
|
# also smoke test some methods
|
||
|
medians = [distfn.ppf(0.5), unpickled.ppf(0.5)]
|
||
|
assert_equal(medians[0], medians[1])
|
||
|
assert_equal(distfn.cdf(medians[0]),
|
||
|
unpickled.cdf(medians[1]))
|
||
|
|
||
|
def test_expect(self):
|
||
|
# smoke test the expect method of the frozen distribution
|
||
|
# only take a gamma w/loc and scale and poisson with loc specified
|
||
|
def func(x):
|
||
|
return x
|
||
|
|
||
|
gm = stats.gamma(a=2, loc=3, scale=4)
|
||
|
with np.errstate(invalid="ignore", divide="ignore"):
|
||
|
gm_val = gm.expect(func, lb=1, ub=2, conditional=True)
|
||
|
gamma_val = stats.gamma.expect(func, args=(2,), loc=3, scale=4,
|
||
|
lb=1, ub=2, conditional=True)
|
||
|
assert_allclose(gm_val, gamma_val)
|
||
|
|
||
|
p = stats.poisson(3, loc=4)
|
||
|
p_val = p.expect(func)
|
||
|
poisson_val = stats.poisson.expect(func, args=(3,), loc=4)
|
||
|
assert_allclose(p_val, poisson_val)
|
||
|
|
||
|
|
||
|
class TestExpect:
|
||
|
# Test for expect method.
|
||
|
#
|
||
|
# Uses normal distribution and beta distribution for finite bounds, and
|
||
|
# hypergeom for discrete distribution with finite support
|
||
|
def test_norm(self):
|
||
|
v = stats.norm.expect(lambda x: (x-5)*(x-5), loc=5, scale=2)
|
||
|
assert_almost_equal(v, 4, decimal=14)
|
||
|
|
||
|
m = stats.norm.expect(lambda x: (x), loc=5, scale=2)
|
||
|
assert_almost_equal(m, 5, decimal=14)
|
||
|
|
||
|
lb = stats.norm.ppf(0.05, loc=5, scale=2)
|
||
|
ub = stats.norm.ppf(0.95, loc=5, scale=2)
|
||
|
prob90 = stats.norm.expect(lambda x: 1, loc=5, scale=2, lb=lb, ub=ub)
|
||
|
assert_almost_equal(prob90, 0.9, decimal=14)
|
||
|
|
||
|
prob90c = stats.norm.expect(lambda x: 1, loc=5, scale=2, lb=lb, ub=ub,
|
||
|
conditional=True)
|
||
|
assert_almost_equal(prob90c, 1., decimal=14)
|
||
|
|
||
|
def test_beta(self):
|
||
|
# case with finite support interval
|
||
|
v = stats.beta.expect(lambda x: (x-19/3.)*(x-19/3.), args=(10, 5),
|
||
|
loc=5, scale=2)
|
||
|
assert_almost_equal(v, 1./18., decimal=13)
|
||
|
|
||
|
m = stats.beta.expect(lambda x: x, args=(10, 5), loc=5., scale=2.)
|
||
|
assert_almost_equal(m, 19/3., decimal=13)
|
||
|
|
||
|
ub = stats.beta.ppf(0.95, 10, 10, loc=5, scale=2)
|
||
|
lb = stats.beta.ppf(0.05, 10, 10, loc=5, scale=2)
|
||
|
prob90 = stats.beta.expect(lambda x: 1., args=(10, 10), loc=5.,
|
||
|
scale=2., lb=lb, ub=ub, conditional=False)
|
||
|
assert_almost_equal(prob90, 0.9, decimal=13)
|
||
|
|
||
|
prob90c = stats.beta.expect(lambda x: 1, args=(10, 10), loc=5,
|
||
|
scale=2, lb=lb, ub=ub, conditional=True)
|
||
|
assert_almost_equal(prob90c, 1., decimal=13)
|
||
|
|
||
|
def test_hypergeom(self):
|
||
|
# test case with finite bounds
|
||
|
|
||
|
# without specifying bounds
|
||
|
m_true, v_true = stats.hypergeom.stats(20, 10, 8, loc=5.)
|
||
|
m = stats.hypergeom.expect(lambda x: x, args=(20, 10, 8), loc=5.)
|
||
|
assert_almost_equal(m, m_true, decimal=13)
|
||
|
|
||
|
v = stats.hypergeom.expect(lambda x: (x-9.)**2, args=(20, 10, 8),
|
||
|
loc=5.)
|
||
|
assert_almost_equal(v, v_true, decimal=14)
|
||
|
|
||
|
# with bounds, bounds equal to shifted support
|
||
|
v_bounds = stats.hypergeom.expect(lambda x: (x-9.)**2,
|
||
|
args=(20, 10, 8),
|
||
|
loc=5., lb=5, ub=13)
|
||
|
assert_almost_equal(v_bounds, v_true, decimal=14)
|
||
|
|
||
|
# drop boundary points
|
||
|
prob_true = 1-stats.hypergeom.pmf([5, 13], 20, 10, 8, loc=5).sum()
|
||
|
prob_bounds = stats.hypergeom.expect(lambda x: 1, args=(20, 10, 8),
|
||
|
loc=5., lb=6, ub=12)
|
||
|
assert_almost_equal(prob_bounds, prob_true, decimal=13)
|
||
|
|
||
|
# conditional
|
||
|
prob_bc = stats.hypergeom.expect(lambda x: 1, args=(20, 10, 8), loc=5.,
|
||
|
lb=6, ub=12, conditional=True)
|
||
|
assert_almost_equal(prob_bc, 1, decimal=14)
|
||
|
|
||
|
# check simple integral
|
||
|
prob_b = stats.hypergeom.expect(lambda x: 1, args=(20, 10, 8),
|
||
|
lb=0, ub=8)
|
||
|
assert_almost_equal(prob_b, 1, decimal=13)
|
||
|
|
||
|
def test_poisson(self):
|
||
|
# poisson, use lower bound only
|
||
|
prob_bounds = stats.poisson.expect(lambda x: 1, args=(2,), lb=3,
|
||
|
conditional=False)
|
||
|
prob_b_true = 1-stats.poisson.cdf(2, 2)
|
||
|
assert_almost_equal(prob_bounds, prob_b_true, decimal=14)
|
||
|
|
||
|
prob_lb = stats.poisson.expect(lambda x: 1, args=(2,), lb=2,
|
||
|
conditional=True)
|
||
|
assert_almost_equal(prob_lb, 1, decimal=14)
|
||
|
|
||
|
def test_genhalflogistic(self):
|
||
|
# genhalflogistic, changes upper bound of support in _argcheck
|
||
|
# regression test for gh-2622
|
||
|
halflog = stats.genhalflogistic
|
||
|
# check consistency when calling expect twice with the same input
|
||
|
res1 = halflog.expect(args=(1.5,))
|
||
|
halflog.expect(args=(0.5,))
|
||
|
res2 = halflog.expect(args=(1.5,))
|
||
|
assert_almost_equal(res1, res2, decimal=14)
|
||
|
|
||
|
def test_rice_overflow(self):
|
||
|
# rice.pdf(999, 0.74) was inf since special.i0 silentyly overflows
|
||
|
# check that using i0e fixes it
|
||
|
assert_(np.isfinite(stats.rice.pdf(999, 0.74)))
|
||
|
|
||
|
assert_(np.isfinite(stats.rice.expect(lambda x: 1, args=(0.74,))))
|
||
|
assert_(np.isfinite(stats.rice.expect(lambda x: 2, args=(0.74,))))
|
||
|
assert_(np.isfinite(stats.rice.expect(lambda x: 3, args=(0.74,))))
|
||
|
|
||
|
def test_logser(self):
|
||
|
# test a discrete distribution with infinite support and loc
|
||
|
p, loc = 0.3, 3
|
||
|
res_0 = stats.logser.expect(lambda k: k, args=(p,))
|
||
|
# check against the correct answer (sum of a geom series)
|
||
|
assert_allclose(res_0,
|
||
|
p / (p - 1.) / np.log(1. - p), atol=1e-15)
|
||
|
|
||
|
# now check it with `loc`
|
||
|
res_l = stats.logser.expect(lambda k: k, args=(p,), loc=loc)
|
||
|
assert_allclose(res_l, res_0 + loc, atol=1e-15)
|
||
|
|
||
|
def test_skellam(self):
|
||
|
# Use a discrete distribution w/ bi-infinite support. Compute two first
|
||
|
# moments and compare to known values (cf skellam.stats)
|
||
|
p1, p2 = 18, 22
|
||
|
m1 = stats.skellam.expect(lambda x: x, args=(p1, p2))
|
||
|
m2 = stats.skellam.expect(lambda x: x**2, args=(p1, p2))
|
||
|
assert_allclose(m1, p1 - p2, atol=1e-12)
|
||
|
assert_allclose(m2 - m1**2, p1 + p2, atol=1e-12)
|
||
|
|
||
|
def test_randint(self):
|
||
|
# Use a discrete distribution w/ parameter-dependent support, which
|
||
|
# is larger than the default chunksize
|
||
|
lo, hi = 0, 113
|
||
|
res = stats.randint.expect(lambda x: x, (lo, hi))
|
||
|
assert_allclose(res,
|
||
|
sum(_ for _ in range(lo, hi)) / (hi - lo), atol=1e-15)
|
||
|
|
||
|
def test_zipf(self):
|
||
|
# Test that there is no infinite loop even if the sum diverges
|
||
|
assert_warns(RuntimeWarning, stats.zipf.expect,
|
||
|
lambda x: x**2, (2,))
|
||
|
|
||
|
def test_discrete_kwds(self):
|
||
|
# check that discrete expect accepts keywords to control the summation
|
||
|
n0 = stats.poisson.expect(lambda x: 1, args=(2,))
|
||
|
n1 = stats.poisson.expect(lambda x: 1, args=(2,),
|
||
|
maxcount=1001, chunksize=32, tolerance=1e-8)
|
||
|
assert_almost_equal(n0, n1, decimal=14)
|
||
|
|
||
|
def test_moment(self):
|
||
|
# test the .moment() method: compute a higher moment and compare to
|
||
|
# a known value
|
||
|
def poiss_moment5(mu):
|
||
|
return mu**5 + 10*mu**4 + 25*mu**3 + 15*mu**2 + mu
|
||
|
|
||
|
for mu in [5, 7]:
|
||
|
m5 = stats.poisson.moment(5, mu)
|
||
|
assert_allclose(m5, poiss_moment5(mu), rtol=1e-10)
|
||
|
|
||
|
def test_challenging_cases_gh8928(self):
|
||
|
# Several cases where `expect` failed to produce a correct result were
|
||
|
# reported in gh-8928. Check that these cases have been resolved.
|
||
|
assert_allclose(stats.norm.expect(loc=36, scale=1.0), 36)
|
||
|
assert_allclose(stats.norm.expect(loc=40, scale=1.0), 40)
|
||
|
assert_allclose(stats.norm.expect(loc=10, scale=0.1), 10)
|
||
|
assert_allclose(stats.gamma.expect(args=(148,)), 148)
|
||
|
assert_allclose(stats.logistic.expect(loc=85), 85)
|
||
|
|
||
|
def test_lb_ub_gh15855(self):
|
||
|
# Make sure changes to `expect` made in gh15855 treat lb/ub correctly
|
||
|
dist = stats.uniform
|
||
|
ref = dist.mean(loc=10, scale=5) # 12.5
|
||
|
# moment over whole distribution
|
||
|
assert_allclose(dist.expect(loc=10, scale=5), ref)
|
||
|
# moment over whole distribution, lb and ub outside of support
|
||
|
assert_allclose(dist.expect(loc=10, scale=5, lb=9, ub=16), ref)
|
||
|
# moment over 60% of distribution, [lb, ub] centered within support
|
||
|
assert_allclose(dist.expect(loc=10, scale=5, lb=11, ub=14), ref*0.6)
|
||
|
# moment over truncated distribution, essentially
|
||
|
assert_allclose(dist.expect(loc=10, scale=5, lb=11, ub=14,
|
||
|
conditional=True), ref)
|
||
|
# moment over 40% of distribution, [lb, ub] not centered within support
|
||
|
assert_allclose(dist.expect(loc=10, scale=5, lb=11, ub=13), 12*0.4)
|
||
|
# moment with lb > ub
|
||
|
assert_allclose(dist.expect(loc=10, scale=5, lb=13, ub=11), -12*0.4)
|
||
|
# moment with lb > ub, conditional
|
||
|
assert_allclose(dist.expect(loc=10, scale=5, lb=13, ub=11,
|
||
|
conditional=True), 12)
|
||
|
|
||
|
|
||
|
class TestNct:
|
||
|
def test_nc_parameter(self):
|
||
|
# Parameter values c<=0 were not enabled (gh-2402).
|
||
|
# For negative values c and for c=0 results of rv.cdf(0) below were nan
|
||
|
rv = stats.nct(5, 0)
|
||
|
assert_equal(rv.cdf(0), 0.5)
|
||
|
rv = stats.nct(5, -1)
|
||
|
assert_almost_equal(rv.cdf(0), 0.841344746069, decimal=10)
|
||
|
|
||
|
def test_broadcasting(self):
|
||
|
res = stats.nct.pdf(5, np.arange(4, 7)[:, None],
|
||
|
np.linspace(0.1, 1, 4))
|
||
|
expected = array([[0.00321886, 0.00557466, 0.00918418, 0.01442997],
|
||
|
[0.00217142, 0.00395366, 0.00683888, 0.01126276],
|
||
|
[0.00153078, 0.00291093, 0.00525206, 0.00900815]])
|
||
|
assert_allclose(res, expected, rtol=1e-5)
|
||
|
|
||
|
def test_variance_gh_issue_2401(self):
|
||
|
# Computation of the variance of a non-central t-distribution resulted
|
||
|
# in a TypeError: ufunc 'isinf' not supported for the input types,
|
||
|
# and the inputs could not be safely coerced to any supported types
|
||
|
# according to the casting rule 'safe'
|
||
|
rv = stats.nct(4, 0)
|
||
|
assert_equal(rv.var(), 2.0)
|
||
|
|
||
|
def test_nct_inf_moments(self):
|
||
|
# n-th moment of nct only exists for df > n
|
||
|
m, v, s, k = stats.nct.stats(df=0.9, nc=0.3, moments='mvsk')
|
||
|
assert_equal([m, v, s, k], [np.nan, np.nan, np.nan, np.nan])
|
||
|
|
||
|
m, v, s, k = stats.nct.stats(df=1.9, nc=0.3, moments='mvsk')
|
||
|
assert_(np.isfinite(m))
|
||
|
assert_equal([v, s, k], [np.nan, np.nan, np.nan])
|
||
|
|
||
|
m, v, s, k = stats.nct.stats(df=3.1, nc=0.3, moments='mvsk')
|
||
|
assert_(np.isfinite([m, v, s]).all())
|
||
|
assert_equal(k, np.nan)
|
||
|
|
||
|
def test_nct_stats_large_df_values(self):
|
||
|
# previously gamma function was used which lost precision at df=345
|
||
|
# cf. https://github.com/scipy/scipy/issues/12919 for details
|
||
|
nct_mean_df_1000 = stats.nct.mean(1000, 2)
|
||
|
nct_stats_df_1000 = stats.nct.stats(1000, 2)
|
||
|
# These expected values were computed with mpmath. They were also
|
||
|
# verified with the Wolfram Alpha expressions:
|
||
|
# Mean[NoncentralStudentTDistribution[1000, 2]]
|
||
|
# Var[NoncentralStudentTDistribution[1000, 2]]
|
||
|
expected_stats_df_1000 = [2.0015015641422464, 1.0040115288163005]
|
||
|
assert_allclose(nct_mean_df_1000, expected_stats_df_1000[0],
|
||
|
rtol=1e-10)
|
||
|
assert_allclose(nct_stats_df_1000, expected_stats_df_1000,
|
||
|
rtol=1e-10)
|
||
|
# and a bigger df value
|
||
|
nct_mean = stats.nct.mean(100000, 2)
|
||
|
nct_stats = stats.nct.stats(100000, 2)
|
||
|
# These expected values were computed with mpmath.
|
||
|
expected_stats = [2.0000150001562518, 1.0000400011500288]
|
||
|
assert_allclose(nct_mean, expected_stats[0], rtol=1e-10)
|
||
|
assert_allclose(nct_stats, expected_stats, rtol=1e-9)
|
||
|
|
||
|
def test_cdf_large_nc(self):
|
||
|
# gh-17916 reported a crash with large `nc` values
|
||
|
assert_allclose(stats.nct.cdf(2, 2, float(2**16)), 0)
|
||
|
|
||
|
|
||
|
class TestRecipInvGauss:
|
||
|
|
||
|
def test_pdf_endpoint(self):
|
||
|
p = stats.recipinvgauss.pdf(0, 0.6)
|
||
|
assert p == 0.0
|
||
|
|
||
|
def test_logpdf_endpoint(self):
|
||
|
logp = stats.recipinvgauss.logpdf(0, 0.6)
|
||
|
assert logp == -np.inf
|
||
|
|
||
|
def test_cdf_small_x(self):
|
||
|
# The expected value was computer with mpmath:
|
||
|
#
|
||
|
# import mpmath
|
||
|
#
|
||
|
# mpmath.mp.dps = 100
|
||
|
#
|
||
|
# def recipinvgauss_cdf_mp(x, mu):
|
||
|
# x = mpmath.mpf(x)
|
||
|
# mu = mpmath.mpf(mu)
|
||
|
# trm1 = 1/mu - x
|
||
|
# trm2 = 1/mu + x
|
||
|
# isqx = 1/mpmath.sqrt(x)
|
||
|
# return (mpmath.ncdf(-isqx*trm1)
|
||
|
# - mpmath.exp(2/mu)*mpmath.ncdf(-isqx*trm2))
|
||
|
#
|
||
|
p = stats.recipinvgauss.cdf(0.05, 0.5)
|
||
|
expected = 6.590396159501331e-20
|
||
|
assert_allclose(p, expected, rtol=1e-14)
|
||
|
|
||
|
def test_sf_large_x(self):
|
||
|
# The expected value was computed with mpmath; see test_cdf_small.
|
||
|
p = stats.recipinvgauss.sf(80, 0.5)
|
||
|
expected = 2.699819200556787e-18
|
||
|
assert_allclose(p, expected, 5e-15)
|
||
|
|
||
|
|
||
|
class TestRice:
|
||
|
def test_rice_zero_b(self):
|
||
|
# rice distribution should work with b=0, cf gh-2164
|
||
|
x = [0.2, 1., 5.]
|
||
|
assert_(np.isfinite(stats.rice.pdf(x, b=0.)).all())
|
||
|
assert_(np.isfinite(stats.rice.logpdf(x, b=0.)).all())
|
||
|
assert_(np.isfinite(stats.rice.cdf(x, b=0.)).all())
|
||
|
assert_(np.isfinite(stats.rice.logcdf(x, b=0.)).all())
|
||
|
|
||
|
q = [0.1, 0.1, 0.5, 0.9]
|
||
|
assert_(np.isfinite(stats.rice.ppf(q, b=0.)).all())
|
||
|
|
||
|
mvsk = stats.rice.stats(0, moments='mvsk')
|
||
|
assert_(np.isfinite(mvsk).all())
|
||
|
|
||
|
# furthermore, pdf is continuous as b\to 0
|
||
|
# rice.pdf(x, b\to 0) = x exp(-x^2/2) + O(b^2)
|
||
|
# see e.g. Abramovich & Stegun 9.6.7 & 9.6.10
|
||
|
b = 1e-8
|
||
|
assert_allclose(stats.rice.pdf(x, 0), stats.rice.pdf(x, b),
|
||
|
atol=b, rtol=0)
|
||
|
|
||
|
def test_rice_rvs(self):
|
||
|
rvs = stats.rice.rvs
|
||
|
assert_equal(rvs(b=3.).size, 1)
|
||
|
assert_equal(rvs(b=3., size=(3, 5)).shape, (3, 5))
|
||
|
|
||
|
def test_rice_gh9836(self):
|
||
|
# test that gh-9836 is resolved; previously jumped to 1 at the end
|
||
|
|
||
|
cdf = stats.rice.cdf(np.arange(10, 160, 10), np.arange(10, 160, 10))
|
||
|
# Generated in R
|
||
|
# library(VGAM)
|
||
|
# options(digits=16)
|
||
|
# x = seq(10, 150, 10)
|
||
|
# print(price(x, sigma=1, vee=x))
|
||
|
cdf_exp = [0.4800278103504522, 0.4900233218590353, 0.4933500379379548,
|
||
|
0.4950128317658719, 0.4960103776798502, 0.4966753655438764,
|
||
|
0.4971503395812474, 0.4975065620443196, 0.4977836197921638,
|
||
|
0.4980052636649550, 0.4981866072661382, 0.4983377260666599,
|
||
|
0.4984655952615694, 0.4985751970541413, 0.4986701850071265]
|
||
|
assert_allclose(cdf, cdf_exp)
|
||
|
|
||
|
probabilities = np.arange(0.1, 1, 0.1)
|
||
|
ppf = stats.rice.ppf(probabilities, 500/4, scale=4)
|
||
|
# Generated in R
|
||
|
# library(VGAM)
|
||
|
# options(digits=16)
|
||
|
# p = seq(0.1, .9, by = .1)
|
||
|
# print(qrice(p, vee = 500, sigma = 4))
|
||
|
ppf_exp = [494.8898762347361, 496.6495690858350, 497.9184315188069,
|
||
|
499.0026277378915, 500.0159999146250, 501.0293721352668,
|
||
|
502.1135684981884, 503.3824312270405, 505.1421247157822]
|
||
|
assert_allclose(ppf, ppf_exp)
|
||
|
|
||
|
ppf = scipy.stats.rice.ppf(0.5, np.arange(10, 150, 10))
|
||
|
# Generated in R
|
||
|
# library(VGAM)
|
||
|
# options(digits=16)
|
||
|
# b <- seq(10, 140, 10)
|
||
|
# print(qrice(0.5, vee = b, sigma = 1))
|
||
|
ppf_exp = [10.04995862522287, 20.02499480078302, 30.01666512465732,
|
||
|
40.01249934924363, 50.00999966676032, 60.00833314046875,
|
||
|
70.00714273568241, 80.00624991862573, 90.00555549840364,
|
||
|
100.00499995833597, 110.00454542324384, 120.00416664255323,
|
||
|
130.00384613488120, 140.00357141338748]
|
||
|
assert_allclose(ppf, ppf_exp)
|
||
|
|
||
|
|
||
|
class TestErlang:
|
||
|
def setup_method(self):
|
||
|
np.random.seed(1234)
|
||
|
|
||
|
def test_erlang_runtimewarning(self):
|
||
|
# erlang should generate a RuntimeWarning if a non-integer
|
||
|
# shape parameter is used.
|
||
|
with warnings.catch_warnings():
|
||
|
warnings.simplefilter("error", RuntimeWarning)
|
||
|
|
||
|
# The non-integer shape parameter 1.3 should trigger a
|
||
|
# RuntimeWarning
|
||
|
assert_raises(RuntimeWarning,
|
||
|
stats.erlang.rvs, 1.3, loc=0, scale=1, size=4)
|
||
|
|
||
|
# Calling the fit method with `f0` set to an integer should
|
||
|
# *not* trigger a RuntimeWarning. It should return the same
|
||
|
# values as gamma.fit(...).
|
||
|
data = [0.5, 1.0, 2.0, 4.0]
|
||
|
result_erlang = stats.erlang.fit(data, f0=1)
|
||
|
result_gamma = stats.gamma.fit(data, f0=1)
|
||
|
assert_allclose(result_erlang, result_gamma, rtol=1e-3)
|
||
|
|
||
|
def test_gh_pr_10949_argcheck(self):
|
||
|
assert_equal(stats.erlang.pdf(0.5, a=[1, -1]),
|
||
|
stats.gamma.pdf(0.5, a=[1, -1]))
|
||
|
|
||
|
|
||
|
class TestRayleigh:
|
||
|
def setup_method(self):
|
||
|
np.random.seed(987654321)
|
||
|
|
||
|
# gh-6227
|
||
|
def test_logpdf(self):
|
||
|
y = stats.rayleigh.logpdf(50)
|
||
|
assert_allclose(y, -1246.0879769945718)
|
||
|
|
||
|
def test_logsf(self):
|
||
|
y = stats.rayleigh.logsf(50)
|
||
|
assert_allclose(y, -1250)
|
||
|
|
||
|
@pytest.mark.parametrize("rvs_loc,rvs_scale", [(0.85373171, 0.86932204),
|
||
|
(0.20558821, 0.61621008)])
|
||
|
def test_fit(self, rvs_loc, rvs_scale):
|
||
|
data = stats.rayleigh.rvs(size=250, loc=rvs_loc, scale=rvs_scale)
|
||
|
|
||
|
def scale_mle(data, floc):
|
||
|
return (np.sum((data - floc) ** 2) / (2 * len(data))) ** .5
|
||
|
|
||
|
# when `floc` is provided, `scale` is found with an analytical formula
|
||
|
scale_expect = scale_mle(data, rvs_loc)
|
||
|
loc, scale = stats.rayleigh.fit(data, floc=rvs_loc)
|
||
|
assert_equal(loc, rvs_loc)
|
||
|
assert_equal(scale, scale_expect)
|
||
|
|
||
|
# when `fscale` is fixed, superclass fit is used to determine `loc`.
|
||
|
loc, scale = stats.rayleigh.fit(data, fscale=.6)
|
||
|
assert_equal(scale, .6)
|
||
|
|
||
|
# with both parameters free, one dimensional optimization is done
|
||
|
# over a new function that takes into account the dependent relation
|
||
|
# of `scale` to `loc`.
|
||
|
loc, scale = stats.rayleigh.fit(data)
|
||
|
# test that `scale` is defined by its relation to `loc`
|
||
|
assert_equal(scale, scale_mle(data, loc))
|
||
|
|
||
|
@pytest.mark.parametrize("rvs_loc,rvs_scale", [[0.74, 0.01],
|
||
|
[0.08464463, 0.12069025]])
|
||
|
def test_fit_comparison_super_method(self, rvs_loc, rvs_scale):
|
||
|
# test that the objective function result of the analytical MLEs is
|
||
|
# less than or equal to that of the numerically optimized estimate
|
||
|
data = stats.rayleigh.rvs(size=250, loc=rvs_loc, scale=rvs_scale)
|
||
|
_assert_less_or_close_loglike(stats.rayleigh, data)
|
||
|
|
||
|
def test_fit_warnings(self):
|
||
|
assert_fit_warnings(stats.rayleigh)
|
||
|
|
||
|
def test_fit_gh17088(self):
|
||
|
# `rayleigh.fit` could return a location that was inconsistent with
|
||
|
# the data. See gh-17088.
|
||
|
rng = np.random.default_rng(456)
|
||
|
loc, scale, size = 50, 600, 500
|
||
|
rvs = stats.rayleigh.rvs(loc, scale, size=size, random_state=rng)
|
||
|
loc_fit, _ = stats.rayleigh.fit(rvs)
|
||
|
assert loc_fit < np.min(rvs)
|
||
|
loc_fit, scale_fit = stats.rayleigh.fit(rvs, fscale=scale)
|
||
|
assert loc_fit < np.min(rvs)
|
||
|
assert scale_fit == scale
|
||
|
|
||
|
|
||
|
class TestExponWeib:
|
||
|
|
||
|
def test_pdf_logpdf(self):
|
||
|
# Regression test for gh-3508.
|
||
|
x = 0.1
|
||
|
a = 1.0
|
||
|
c = 100.0
|
||
|
p = stats.exponweib.pdf(x, a, c)
|
||
|
logp = stats.exponweib.logpdf(x, a, c)
|
||
|
# Expected values were computed with mpmath.
|
||
|
assert_allclose([p, logp],
|
||
|
[1.0000000000000054e-97, -223.35075402042244])
|
||
|
|
||
|
def test_a_is_1(self):
|
||
|
# For issue gh-3508.
|
||
|
# Check that when a=1, the pdf and logpdf methods of exponweib are the
|
||
|
# same as those of weibull_min.
|
||
|
x = np.logspace(-4, -1, 4)
|
||
|
a = 1
|
||
|
c = 100
|
||
|
|
||
|
p = stats.exponweib.pdf(x, a, c)
|
||
|
expected = stats.weibull_min.pdf(x, c)
|
||
|
assert_allclose(p, expected)
|
||
|
|
||
|
logp = stats.exponweib.logpdf(x, a, c)
|
||
|
expected = stats.weibull_min.logpdf(x, c)
|
||
|
assert_allclose(logp, expected)
|
||
|
|
||
|
def test_a_is_1_c_is_1(self):
|
||
|
# When a = 1 and c = 1, the distribution is exponential.
|
||
|
x = np.logspace(-8, 1, 10)
|
||
|
a = 1
|
||
|
c = 1
|
||
|
|
||
|
p = stats.exponweib.pdf(x, a, c)
|
||
|
expected = stats.expon.pdf(x)
|
||
|
assert_allclose(p, expected)
|
||
|
|
||
|
logp = stats.exponweib.logpdf(x, a, c)
|
||
|
expected = stats.expon.logpdf(x)
|
||
|
assert_allclose(logp, expected)
|
||
|
|
||
|
# Reference values were computed with mpmath, e.g:
|
||
|
#
|
||
|
# from mpmath import mp
|
||
|
#
|
||
|
# def mp_sf(x, a, c):
|
||
|
# x = mp.mpf(x)
|
||
|
# a = mp.mpf(a)
|
||
|
# c = mp.mpf(c)
|
||
|
# return -mp.powm1(-mp.expm1(-x**c)), a)
|
||
|
#
|
||
|
# mp.dps = 100
|
||
|
# print(float(mp_sf(1, 2.5, 0.75)))
|
||
|
#
|
||
|
# prints
|
||
|
#
|
||
|
# 0.6823127476985246
|
||
|
#
|
||
|
@pytest.mark.parametrize(
|
||
|
'x, a, c, ref',
|
||
|
[(1, 2.5, 0.75, 0.6823127476985246),
|
||
|
(50, 2.5, 0.75, 1.7056666054719663e-08),
|
||
|
(125, 2.5, 0.75, 1.4534393150714602e-16),
|
||
|
(250, 2.5, 0.75, 1.2391389689773512e-27),
|
||
|
(250, 0.03125, 0.75, 1.548923711221689e-29),
|
||
|
(3, 0.03125, 3.0, 5.873527551689983e-14),
|
||
|
(2e80, 10.0, 0.02, 2.9449084156902135e-17)]
|
||
|
)
|
||
|
def test_sf(self, x, a, c, ref):
|
||
|
sf = stats.exponweib.sf(x, a, c)
|
||
|
assert_allclose(sf, ref, rtol=1e-14)
|
||
|
|
||
|
# Reference values were computed with mpmath, e.g.
|
||
|
#
|
||
|
# from mpmath import mp
|
||
|
#
|
||
|
# def mp_isf(p, a, c):
|
||
|
# p = mp.mpf(p)
|
||
|
# a = mp.mpf(a)
|
||
|
# c = mp.mpf(c)
|
||
|
# return (-mp.log(-mp.expm1(mp.log1p(-p)/a)))**(1/c)
|
||
|
#
|
||
|
# mp.dps = 100
|
||
|
# print(float(mp_isf(0.25, 2.5, 0.75)))
|
||
|
#
|
||
|
# prints
|
||
|
#
|
||
|
# 2.8946008178158924
|
||
|
#
|
||
|
@pytest.mark.parametrize(
|
||
|
'p, a, c, ref',
|
||
|
[(0.25, 2.5, 0.75, 2.8946008178158924),
|
||
|
(3e-16, 2.5, 0.75, 121.77966713102938),
|
||
|
(1e-12, 1, 2, 5.256521769756932),
|
||
|
(2e-13, 0.03125, 3, 2.953915059484589),
|
||
|
(5e-14, 10.0, 0.02, 7.57094886384687e+75)]
|
||
|
)
|
||
|
def test_isf(self, p, a, c, ref):
|
||
|
isf = stats.exponweib.isf(p, a, c)
|
||
|
assert_allclose(isf, ref, rtol=5e-14)
|
||
|
|
||
|
|
||
|
class TestFatigueLife:
|
||
|
|
||
|
def test_sf_tail(self):
|
||
|
# Expected value computed with mpmath:
|
||
|
# import mpmath
|
||
|
# mpmath.mp.dps = 80
|
||
|
# x = mpmath.mpf(800.0)
|
||
|
# c = mpmath.mpf(2.5)
|
||
|
# s = float(1 - mpmath.ncdf(1/c * (mpmath.sqrt(x)
|
||
|
# - 1/mpmath.sqrt(x))))
|
||
|
# print(s)
|
||
|
# Output:
|
||
|
# 6.593376447038406e-30
|
||
|
s = stats.fatiguelife.sf(800.0, 2.5)
|
||
|
assert_allclose(s, 6.593376447038406e-30, rtol=1e-13)
|
||
|
|
||
|
def test_isf_tail(self):
|
||
|
# See test_sf_tail for the mpmath code.
|
||
|
p = 6.593376447038406e-30
|
||
|
q = stats.fatiguelife.isf(p, 2.5)
|
||
|
assert_allclose(q, 800.0, rtol=1e-13)
|
||
|
|
||
|
|
||
|
class TestWeibull:
|
||
|
|
||
|
def test_logpdf(self):
|
||
|
# gh-6217
|
||
|
y = stats.weibull_min.logpdf(0, 1)
|
||
|
assert_equal(y, 0)
|
||
|
|
||
|
def test_with_maxima_distrib(self):
|
||
|
# Tests for weibull_min and weibull_max.
|
||
|
# The expected values were computed using the symbolic algebra
|
||
|
# program 'maxima' with the package 'distrib', which has
|
||
|
# 'pdf_weibull' and 'cdf_weibull'. The mapping between the
|
||
|
# scipy and maxima functions is as follows:
|
||
|
# -----------------------------------------------------------------
|
||
|
# scipy maxima
|
||
|
# --------------------------------- ------------------------------
|
||
|
# weibull_min.pdf(x, a, scale=b) pdf_weibull(x, a, b)
|
||
|
# weibull_min.logpdf(x, a, scale=b) log(pdf_weibull(x, a, b))
|
||
|
# weibull_min.cdf(x, a, scale=b) cdf_weibull(x, a, b)
|
||
|
# weibull_min.logcdf(x, a, scale=b) log(cdf_weibull(x, a, b))
|
||
|
# weibull_min.sf(x, a, scale=b) 1 - cdf_weibull(x, a, b)
|
||
|
# weibull_min.logsf(x, a, scale=b) log(1 - cdf_weibull(x, a, b))
|
||
|
#
|
||
|
# weibull_max.pdf(x, a, scale=b) pdf_weibull(-x, a, b)
|
||
|
# weibull_max.logpdf(x, a, scale=b) log(pdf_weibull(-x, a, b))
|
||
|
# weibull_max.cdf(x, a, scale=b) 1 - cdf_weibull(-x, a, b)
|
||
|
# weibull_max.logcdf(x, a, scale=b) log(1 - cdf_weibull(-x, a, b))
|
||
|
# weibull_max.sf(x, a, scale=b) cdf_weibull(-x, a, b)
|
||
|
# weibull_max.logsf(x, a, scale=b) log(cdf_weibull(-x, a, b))
|
||
|
# -----------------------------------------------------------------
|
||
|
x = 1.5
|
||
|
a = 2.0
|
||
|
b = 3.0
|
||
|
|
||
|
# weibull_min
|
||
|
|
||
|
p = stats.weibull_min.pdf(x, a, scale=b)
|
||
|
assert_allclose(p, np.exp(-0.25)/3)
|
||
|
|
||
|
lp = stats.weibull_min.logpdf(x, a, scale=b)
|
||
|
assert_allclose(lp, -0.25 - np.log(3))
|
||
|
|
||
|
c = stats.weibull_min.cdf(x, a, scale=b)
|
||
|
assert_allclose(c, -special.expm1(-0.25))
|
||
|
|
||
|
lc = stats.weibull_min.logcdf(x, a, scale=b)
|
||
|
assert_allclose(lc, np.log(-special.expm1(-0.25)))
|
||
|
|
||
|
s = stats.weibull_min.sf(x, a, scale=b)
|
||
|
assert_allclose(s, np.exp(-0.25))
|
||
|
|
||
|
ls = stats.weibull_min.logsf(x, a, scale=b)
|
||
|
assert_allclose(ls, -0.25)
|
||
|
|
||
|
# Also test using a large value x, for which computing the survival
|
||
|
# function using the CDF would result in 0.
|
||
|
s = stats.weibull_min.sf(30, 2, scale=3)
|
||
|
assert_allclose(s, np.exp(-100))
|
||
|
|
||
|
ls = stats.weibull_min.logsf(30, 2, scale=3)
|
||
|
assert_allclose(ls, -100)
|
||
|
|
||
|
# weibull_max
|
||
|
x = -1.5
|
||
|
|
||
|
p = stats.weibull_max.pdf(x, a, scale=b)
|
||
|
assert_allclose(p, np.exp(-0.25)/3)
|
||
|
|
||
|
lp = stats.weibull_max.logpdf(x, a, scale=b)
|
||
|
assert_allclose(lp, -0.25 - np.log(3))
|
||
|
|
||
|
c = stats.weibull_max.cdf(x, a, scale=b)
|
||
|
assert_allclose(c, np.exp(-0.25))
|
||
|
|
||
|
lc = stats.weibull_max.logcdf(x, a, scale=b)
|
||
|
assert_allclose(lc, -0.25)
|
||
|
|
||
|
s = stats.weibull_max.sf(x, a, scale=b)
|
||
|
assert_allclose(s, -special.expm1(-0.25))
|
||
|
|
||
|
ls = stats.weibull_max.logsf(x, a, scale=b)
|
||
|
assert_allclose(ls, np.log(-special.expm1(-0.25)))
|
||
|
|
||
|
# Also test using a value of x close to 0, for which computing the
|
||
|
# survival function using the CDF would result in 0.
|
||
|
s = stats.weibull_max.sf(-1e-9, 2, scale=3)
|
||
|
assert_allclose(s, -special.expm1(-1/9000000000000000000))
|
||
|
|
||
|
ls = stats.weibull_max.logsf(-1e-9, 2, scale=3)
|
||
|
assert_allclose(ls, np.log(-special.expm1(-1/9000000000000000000)))
|
||
|
|
||
|
@pytest.mark.parametrize('scale', [1.0, 0.1])
|
||
|
def test_delta_cdf(self, scale):
|
||
|
# Expected value computed with mpmath:
|
||
|
#
|
||
|
# def weibull_min_sf(x, k, scale):
|
||
|
# x = mpmath.mpf(x)
|
||
|
# k = mpmath.mpf(k)
|
||
|
# scale =mpmath.mpf(scale)
|
||
|
# return mpmath.exp(-(x/scale)**k)
|
||
|
#
|
||
|
# >>> import mpmath
|
||
|
# >>> mpmath.mp.dps = 60
|
||
|
# >>> sf1 = weibull_min_sf(7.5, 3, 1)
|
||
|
# >>> sf2 = weibull_min_sf(8.0, 3, 1)
|
||
|
# >>> float(sf1 - sf2)
|
||
|
# 6.053624060118734e-184
|
||
|
#
|
||
|
delta = stats.weibull_min._delta_cdf(scale*7.5, scale*8, 3,
|
||
|
scale=scale)
|
||
|
assert_allclose(delta, 6.053624060118734e-184)
|
||
|
|
||
|
def test_fit_min(self):
|
||
|
rng = np.random.default_rng(5985959307161735394)
|
||
|
|
||
|
c, loc, scale = 2, 3.5, 0.5 # arbitrary, valid parameters
|
||
|
dist = stats.weibull_min(c, loc, scale)
|
||
|
rvs = dist.rvs(size=100, random_state=rng)
|
||
|
|
||
|
# test that MLE still honors guesses and fixed parameters
|
||
|
c2, loc2, scale2 = stats.weibull_min.fit(rvs, 1.5, floc=3)
|
||
|
c3, loc3, scale3 = stats.weibull_min.fit(rvs, 1.6, floc=3)
|
||
|
assert loc2 == loc3 == 3 # fixed parameter is respected
|
||
|
assert c2 != c3 # different guess -> (slightly) different outcome
|
||
|
# quality of fit is tested elsewhere
|
||
|
|
||
|
# test that MoM honors fixed parameters, accepts (but ignores) guesses
|
||
|
c4, loc4, scale4 = stats.weibull_min.fit(rvs, 3, fscale=3, method='mm')
|
||
|
assert scale4 == 3
|
||
|
# because scale was fixed, only the mean and skewness will be matched
|
||
|
dist4 = stats.weibull_min(c4, loc4, scale4)
|
||
|
res = dist4.stats(moments='ms')
|
||
|
ref = np.mean(rvs), stats.skew(rvs)
|
||
|
assert_allclose(res, ref)
|
||
|
|
||
|
# reference values were computed via mpmath
|
||
|
# from mpmath import mp
|
||
|
# def weibull_sf_mpmath(x, c):
|
||
|
# x = mp.mpf(x)
|
||
|
# c = mp.mpf(c)
|
||
|
# return float(mp.exp(-x**c))
|
||
|
|
||
|
@pytest.mark.parametrize('x, c, ref', [(50, 1, 1.9287498479639178e-22),
|
||
|
(1000, 0.8,
|
||
|
8.131269637872743e-110)])
|
||
|
def test_sf_isf(self, x, c, ref):
|
||
|
assert_allclose(stats.weibull_min.sf(x, c), ref, rtol=5e-14)
|
||
|
assert_allclose(stats.weibull_min.isf(ref, c), x, rtol=5e-14)
|
||
|
|
||
|
|
||
|
class TestDweibull:
|
||
|
def test_entropy(self):
|
||
|
# Test that dweibull entropy follows that of weibull_min.
|
||
|
# (Generic tests check that the dweibull entropy is consistent
|
||
|
# with its PDF. As for accuracy, dweibull entropy should be just
|
||
|
# as accurate as weibull_min entropy. Checks of accuracy against
|
||
|
# a reference need only be applied to the fundamental distribution -
|
||
|
# weibull_min.)
|
||
|
rng = np.random.default_rng(8486259129157041777)
|
||
|
c = 10**rng.normal(scale=100, size=10)
|
||
|
res = stats.dweibull.entropy(c)
|
||
|
ref = stats.weibull_min.entropy(c) - np.log(0.5)
|
||
|
assert_allclose(res, ref, rtol=1e-15)
|
||
|
|
||
|
def test_sf(self):
|
||
|
# test that for positive values the dweibull survival function is half
|
||
|
# the weibull_min survival function
|
||
|
rng = np.random.default_rng(8486259129157041777)
|
||
|
c = 10**rng.normal(scale=1, size=10)
|
||
|
x = 10 * rng.uniform()
|
||
|
res = stats.dweibull.sf(x, c)
|
||
|
ref = 0.5 * stats.weibull_min.sf(x, c)
|
||
|
assert_allclose(res, ref, rtol=1e-15)
|
||
|
|
||
|
|
||
|
class TestTruncWeibull:
|
||
|
|
||
|
def test_pdf_bounds(self):
|
||
|
# test bounds
|
||
|
y = stats.truncweibull_min.pdf([0.1, 2.0], 2.0, 0.11, 1.99)
|
||
|
assert_equal(y, [0.0, 0.0])
|
||
|
|
||
|
def test_logpdf(self):
|
||
|
y = stats.truncweibull_min.logpdf(2.0, 1.0, 2.0, np.inf)
|
||
|
assert_equal(y, 0.0)
|
||
|
|
||
|
# hand calculation
|
||
|
y = stats.truncweibull_min.logpdf(2.0, 1.0, 2.0, 4.0)
|
||
|
assert_allclose(y, 0.14541345786885884)
|
||
|
|
||
|
def test_ppf_bounds(self):
|
||
|
# test bounds
|
||
|
y = stats.truncweibull_min.ppf([0.0, 1.0], 2.0, 0.1, 2.0)
|
||
|
assert_equal(y, [0.1, 2.0])
|
||
|
|
||
|
def test_cdf_to_ppf(self):
|
||
|
q = [0., 0.1, .25, 0.50, 0.75, 0.90, 1.]
|
||
|
x = stats.truncweibull_min.ppf(q, 2., 0., 3.)
|
||
|
q_out = stats.truncweibull_min.cdf(x, 2., 0., 3.)
|
||
|
assert_allclose(q, q_out)
|
||
|
|
||
|
def test_sf_to_isf(self):
|
||
|
q = [0., 0.1, .25, 0.50, 0.75, 0.90, 1.]
|
||
|
x = stats.truncweibull_min.isf(q, 2., 0., 3.)
|
||
|
q_out = stats.truncweibull_min.sf(x, 2., 0., 3.)
|
||
|
assert_allclose(q, q_out)
|
||
|
|
||
|
def test_munp(self):
|
||
|
c = 2.
|
||
|
a = 1.
|
||
|
b = 3.
|
||
|
|
||
|
def xnpdf(x, n):
|
||
|
return x**n*stats.truncweibull_min.pdf(x, c, a, b)
|
||
|
|
||
|
m0 = stats.truncweibull_min.moment(0, c, a, b)
|
||
|
assert_equal(m0, 1.)
|
||
|
|
||
|
m1 = stats.truncweibull_min.moment(1, c, a, b)
|
||
|
m1_expected, _ = quad(lambda x: xnpdf(x, 1), a, b)
|
||
|
assert_allclose(m1, m1_expected)
|
||
|
|
||
|
m2 = stats.truncweibull_min.moment(2, c, a, b)
|
||
|
m2_expected, _ = quad(lambda x: xnpdf(x, 2), a, b)
|
||
|
assert_allclose(m2, m2_expected)
|
||
|
|
||
|
m3 = stats.truncweibull_min.moment(3, c, a, b)
|
||
|
m3_expected, _ = quad(lambda x: xnpdf(x, 3), a, b)
|
||
|
assert_allclose(m3, m3_expected)
|
||
|
|
||
|
m4 = stats.truncweibull_min.moment(4, c, a, b)
|
||
|
m4_expected, _ = quad(lambda x: xnpdf(x, 4), a, b)
|
||
|
assert_allclose(m4, m4_expected)
|
||
|
|
||
|
def test_reference_values(self):
|
||
|
a = 1.
|
||
|
b = 3.
|
||
|
c = 2.
|
||
|
x_med = np.sqrt(1 - np.log(0.5 + np.exp(-(8. + np.log(2.)))))
|
||
|
|
||
|
cdf = stats.truncweibull_min.cdf(x_med, c, a, b)
|
||
|
assert_allclose(cdf, 0.5)
|
||
|
|
||
|
lc = stats.truncweibull_min.logcdf(x_med, c, a, b)
|
||
|
assert_allclose(lc, -np.log(2.))
|
||
|
|
||
|
ppf = stats.truncweibull_min.ppf(0.5, c, a, b)
|
||
|
assert_allclose(ppf, x_med)
|
||
|
|
||
|
sf = stats.truncweibull_min.sf(x_med, c, a, b)
|
||
|
assert_allclose(sf, 0.5)
|
||
|
|
||
|
ls = stats.truncweibull_min.logsf(x_med, c, a, b)
|
||
|
assert_allclose(ls, -np.log(2.))
|
||
|
|
||
|
isf = stats.truncweibull_min.isf(0.5, c, a, b)
|
||
|
assert_allclose(isf, x_med)
|
||
|
|
||
|
def test_compare_weibull_min(self):
|
||
|
# Verify that the truncweibull_min distribution gives the same results
|
||
|
# as the original weibull_min
|
||
|
x = 1.5
|
||
|
c = 2.0
|
||
|
a = 0.0
|
||
|
b = np.inf
|
||
|
scale = 3.0
|
||
|
|
||
|
p = stats.weibull_min.pdf(x, c, scale=scale)
|
||
|
p_trunc = stats.truncweibull_min.pdf(x, c, a, b, scale=scale)
|
||
|
assert_allclose(p, p_trunc)
|
||
|
|
||
|
lp = stats.weibull_min.logpdf(x, c, scale=scale)
|
||
|
lp_trunc = stats.truncweibull_min.logpdf(x, c, a, b, scale=scale)
|
||
|
assert_allclose(lp, lp_trunc)
|
||
|
|
||
|
cdf = stats.weibull_min.cdf(x, c, scale=scale)
|
||
|
cdf_trunc = stats.truncweibull_min.cdf(x, c, a, b, scale=scale)
|
||
|
assert_allclose(cdf, cdf_trunc)
|
||
|
|
||
|
lc = stats.weibull_min.logcdf(x, c, scale=scale)
|
||
|
lc_trunc = stats.truncweibull_min.logcdf(x, c, a, b, scale=scale)
|
||
|
assert_allclose(lc, lc_trunc)
|
||
|
|
||
|
s = stats.weibull_min.sf(x, c, scale=scale)
|
||
|
s_trunc = stats.truncweibull_min.sf(x, c, a, b, scale=scale)
|
||
|
assert_allclose(s, s_trunc)
|
||
|
|
||
|
ls = stats.weibull_min.logsf(x, c, scale=scale)
|
||
|
ls_trunc = stats.truncweibull_min.logsf(x, c, a, b, scale=scale)
|
||
|
assert_allclose(ls, ls_trunc)
|
||
|
|
||
|
# # Also test using a large value x, for which computing the survival
|
||
|
# # function using the CDF would result in 0.
|
||
|
s = stats.truncweibull_min.sf(30, 2, a, b, scale=3)
|
||
|
assert_allclose(s, np.exp(-100))
|
||
|
|
||
|
ls = stats.truncweibull_min.logsf(30, 2, a, b, scale=3)
|
||
|
assert_allclose(ls, -100)
|
||
|
|
||
|
def test_compare_weibull_min2(self):
|
||
|
# Verify that the truncweibull_min distribution PDF and CDF results
|
||
|
# are the same as those calculated from truncating weibull_min
|
||
|
c, a, b = 2.5, 0.25, 1.25
|
||
|
x = np.linspace(a, b, 100)
|
||
|
|
||
|
pdf1 = stats.truncweibull_min.pdf(x, c, a, b)
|
||
|
cdf1 = stats.truncweibull_min.cdf(x, c, a, b)
|
||
|
|
||
|
norm = stats.weibull_min.cdf(b, c) - stats.weibull_min.cdf(a, c)
|
||
|
pdf2 = stats.weibull_min.pdf(x, c) / norm
|
||
|
cdf2 = (stats.weibull_min.cdf(x, c) - stats.weibull_min.cdf(a, c))/norm
|
||
|
|
||
|
np.testing.assert_allclose(pdf1, pdf2)
|
||
|
np.testing.assert_allclose(cdf1, cdf2)
|
||
|
|
||
|
|
||
|
class TestRdist:
|
||
|
def test_rdist_cdf_gh1285(self):
|
||
|
# check workaround in rdist._cdf for issue gh-1285.
|
||
|
distfn = stats.rdist
|
||
|
values = [0.001, 0.5, 0.999]
|
||
|
assert_almost_equal(distfn.cdf(distfn.ppf(values, 541.0), 541.0),
|
||
|
values, decimal=5)
|
||
|
|
||
|
def test_rdist_beta(self):
|
||
|
# rdist is a special case of stats.beta
|
||
|
x = np.linspace(-0.99, 0.99, 10)
|
||
|
c = 2.7
|
||
|
assert_almost_equal(0.5*stats.beta(c/2, c/2).pdf((x + 1)/2),
|
||
|
stats.rdist(c).pdf(x))
|
||
|
|
||
|
# reference values were computed via mpmath
|
||
|
# from mpmath import mp
|
||
|
# mp.dps = 200
|
||
|
# def rdist_sf_mpmath(x, c):
|
||
|
# x = mp.mpf(x)
|
||
|
# c = mp.mpf(c)
|
||
|
# return float(mp.betainc(c/2, c/2, (x+1)/2, mp.one, regularized=True))
|
||
|
@pytest.mark.parametrize(
|
||
|
"x, c, ref",
|
||
|
[
|
||
|
(0.0001, 541, 0.49907251345565845),
|
||
|
(0.1, 241, 0.06000788166249205),
|
||
|
(0.5, 441, 1.0655898106047832e-29),
|
||
|
(0.8, 341, 6.025478373732215e-78),
|
||
|
]
|
||
|
)
|
||
|
def test_rdist_sf(self, x, c, ref):
|
||
|
assert_allclose(stats.rdist.sf(x, c), ref, rtol=5e-14)
|
||
|
|
||
|
|
||
|
class TestTrapezoid:
|
||
|
def test_reduces_to_triang(self):
|
||
|
modes = [0, 0.3, 0.5, 1]
|
||
|
for mode in modes:
|
||
|
x = [0, mode, 1]
|
||
|
assert_almost_equal(stats.trapezoid.pdf(x, mode, mode),
|
||
|
stats.triang.pdf(x, mode))
|
||
|
assert_almost_equal(stats.trapezoid.cdf(x, mode, mode),
|
||
|
stats.triang.cdf(x, mode))
|
||
|
|
||
|
def test_reduces_to_uniform(self):
|
||
|
x = np.linspace(0, 1, 10)
|
||
|
assert_almost_equal(stats.trapezoid.pdf(x, 0, 1), stats.uniform.pdf(x))
|
||
|
assert_almost_equal(stats.trapezoid.cdf(x, 0, 1), stats.uniform.cdf(x))
|
||
|
|
||
|
def test_cases(self):
|
||
|
# edge cases
|
||
|
assert_almost_equal(stats.trapezoid.pdf(0, 0, 0), 2)
|
||
|
assert_almost_equal(stats.trapezoid.pdf(1, 1, 1), 2)
|
||
|
assert_almost_equal(stats.trapezoid.pdf(0.5, 0, 0.8),
|
||
|
1.11111111111111111)
|
||
|
assert_almost_equal(stats.trapezoid.pdf(0.5, 0.2, 1.0),
|
||
|
1.11111111111111111)
|
||
|
|
||
|
# straightforward case
|
||
|
assert_almost_equal(stats.trapezoid.pdf(0.1, 0.2, 0.8), 0.625)
|
||
|
assert_almost_equal(stats.trapezoid.pdf(0.5, 0.2, 0.8), 1.25)
|
||
|
assert_almost_equal(stats.trapezoid.pdf(0.9, 0.2, 0.8), 0.625)
|
||
|
|
||
|
assert_almost_equal(stats.trapezoid.cdf(0.1, 0.2, 0.8), 0.03125)
|
||
|
assert_almost_equal(stats.trapezoid.cdf(0.2, 0.2, 0.8), 0.125)
|
||
|
assert_almost_equal(stats.trapezoid.cdf(0.5, 0.2, 0.8), 0.5)
|
||
|
assert_almost_equal(stats.trapezoid.cdf(0.9, 0.2, 0.8), 0.96875)
|
||
|
assert_almost_equal(stats.trapezoid.cdf(1.0, 0.2, 0.8), 1.0)
|
||
|
|
||
|
def test_moments_and_entropy(self):
|
||
|
# issue #11795: improve precision of trapezoid stats
|
||
|
# Apply formulas from Wikipedia for the following parameters:
|
||
|
a, b, c, d = -3, -1, 2, 3 # => 1/3, 5/6, -3, 6
|
||
|
p1, p2, loc, scale = (b-a) / (d-a), (c-a) / (d-a), a, d-a
|
||
|
h = 2 / (d+c-b-a)
|
||
|
|
||
|
def moment(n):
|
||
|
return (h * ((d**(n+2) - c**(n+2)) / (d-c)
|
||
|
- (b**(n+2) - a**(n+2)) / (b-a)) /
|
||
|
(n+1) / (n+2))
|
||
|
|
||
|
mean = moment(1)
|
||
|
var = moment(2) - mean**2
|
||
|
entropy = 0.5 * (d-c+b-a) / (d+c-b-a) + np.log(0.5 * (d+c-b-a))
|
||
|
assert_almost_equal(stats.trapezoid.mean(p1, p2, loc, scale),
|
||
|
mean, decimal=13)
|
||
|
assert_almost_equal(stats.trapezoid.var(p1, p2, loc, scale),
|
||
|
var, decimal=13)
|
||
|
assert_almost_equal(stats.trapezoid.entropy(p1, p2, loc, scale),
|
||
|
entropy, decimal=13)
|
||
|
|
||
|
# Check boundary cases where scipy d=0 or d=1.
|
||
|
assert_almost_equal(stats.trapezoid.mean(0, 0, -3, 6), -1, decimal=13)
|
||
|
assert_almost_equal(stats.trapezoid.mean(0, 1, -3, 6), 0, decimal=13)
|
||
|
assert_almost_equal(stats.trapezoid.var(0, 1, -3, 6), 3, decimal=13)
|
||
|
|
||
|
def test_trapezoid_vect(self):
|
||
|
# test that array-valued shapes and arguments are handled
|
||
|
c = np.array([0.1, 0.2, 0.3])
|
||
|
d = np.array([0.5, 0.6])[:, None]
|
||
|
x = np.array([0.15, 0.25, 0.9])
|
||
|
v = stats.trapezoid.pdf(x, c, d)
|
||
|
|
||
|
cc, dd, xx = np.broadcast_arrays(c, d, x)
|
||
|
|
||
|
res = np.empty(xx.size, dtype=xx.dtype)
|
||
|
ind = np.arange(xx.size)
|
||
|
for i, x1, c1, d1 in zip(ind, xx.ravel(), cc.ravel(), dd.ravel()):
|
||
|
res[i] = stats.trapezoid.pdf(x1, c1, d1)
|
||
|
|
||
|
assert_allclose(v, res.reshape(v.shape), atol=1e-15)
|
||
|
|
||
|
# Check that the stats() method supports vector arguments.
|
||
|
v = np.asarray(stats.trapezoid.stats(c, d, moments="mvsk"))
|
||
|
cc, dd = np.broadcast_arrays(c, d)
|
||
|
res = np.empty((cc.size, 4)) # 4 stats returned per value
|
||
|
ind = np.arange(cc.size)
|
||
|
for i, c1, d1 in zip(ind, cc.ravel(), dd.ravel()):
|
||
|
res[i] = stats.trapezoid.stats(c1, d1, moments="mvsk")
|
||
|
|
||
|
assert_allclose(v, res.T.reshape(v.shape), atol=1e-15)
|
||
|
|
||
|
def test_trapz(self):
|
||
|
# Basic test for alias
|
||
|
x = np.linspace(0, 1, 10)
|
||
|
assert_almost_equal(stats.trapz.pdf(x, 0, 1), stats.uniform.pdf(x))
|
||
|
|
||
|
|
||
|
class TestTriang:
|
||
|
def test_edge_cases(self):
|
||
|
with np.errstate(all='raise'):
|
||
|
assert_equal(stats.triang.pdf(0, 0), 2.)
|
||
|
assert_equal(stats.triang.pdf(0.5, 0), 1.)
|
||
|
assert_equal(stats.triang.pdf(1, 0), 0.)
|
||
|
|
||
|
assert_equal(stats.triang.pdf(0, 1), 0)
|
||
|
assert_equal(stats.triang.pdf(0.5, 1), 1.)
|
||
|
assert_equal(stats.triang.pdf(1, 1), 2)
|
||
|
|
||
|
assert_equal(stats.triang.cdf(0., 0.), 0.)
|
||
|
assert_equal(stats.triang.cdf(0.5, 0.), 0.75)
|
||
|
assert_equal(stats.triang.cdf(1.0, 0.), 1.0)
|
||
|
|
||
|
assert_equal(stats.triang.cdf(0., 1.), 0.)
|
||
|
assert_equal(stats.triang.cdf(0.5, 1.), 0.25)
|
||
|
assert_equal(stats.triang.cdf(1., 1.), 1)
|
||
|
|
||
|
|
||
|
class TestMaxwell:
|
||
|
|
||
|
# reference values were computed with wolfram alpha
|
||
|
# erfc(x/sqrt(2)) + sqrt(2/pi) * x * e^(-x^2/2)
|
||
|
|
||
|
@pytest.mark.parametrize("x, ref",
|
||
|
[(20, 2.2138865931011177e-86),
|
||
|
(0.01, 0.999999734046458435)])
|
||
|
def test_sf(self, x, ref):
|
||
|
assert_allclose(stats.maxwell.sf(x), ref, rtol=1e-14)
|
||
|
|
||
|
# reference values were computed with wolfram alpha
|
||
|
# sqrt(2) * sqrt(Q^(-1)(3/2, q))
|
||
|
|
||
|
@pytest.mark.parametrize("q, ref",
|
||
|
[(0.001, 4.033142223656157022),
|
||
|
(0.9999847412109375, 0.0385743284050381),
|
||
|
(2**-55, 8.95564974719481)])
|
||
|
def test_isf(self, q, ref):
|
||
|
assert_allclose(stats.maxwell.isf(q), ref, rtol=1e-15)
|
||
|
|
||
|
|
||
|
class TestMielke:
|
||
|
def test_moments(self):
|
||
|
k, s = 4.642, 0.597
|
||
|
# n-th moment exists only if n < s
|
||
|
assert_equal(stats.mielke(k, s).moment(1), np.inf)
|
||
|
assert_equal(stats.mielke(k, 1.0).moment(1), np.inf)
|
||
|
assert_(np.isfinite(stats.mielke(k, 1.01).moment(1)))
|
||
|
|
||
|
def test_burr_equivalence(self):
|
||
|
x = np.linspace(0.01, 100, 50)
|
||
|
k, s = 2.45, 5.32
|
||
|
assert_allclose(stats.burr.pdf(x, s, k/s), stats.mielke.pdf(x, k, s))
|
||
|
|
||
|
|
||
|
class TestBurr:
|
||
|
def test_endpoints_7491(self):
|
||
|
# gh-7491
|
||
|
# Compute the pdf at the left endpoint dst.a.
|
||
|
data = [
|
||
|
[stats.fisk, (1,), 1],
|
||
|
[stats.burr, (0.5, 2), 1],
|
||
|
[stats.burr, (1, 1), 1],
|
||
|
[stats.burr, (2, 0.5), 1],
|
||
|
[stats.burr12, (1, 0.5), 0.5],
|
||
|
[stats.burr12, (1, 1), 1.0],
|
||
|
[stats.burr12, (1, 2), 2.0]]
|
||
|
|
||
|
ans = [_f.pdf(_f.a, *_args) for _f, _args, _ in data]
|
||
|
correct = [_correct_ for _f, _args, _correct_ in data]
|
||
|
assert_array_almost_equal(ans, correct)
|
||
|
|
||
|
ans = [_f.logpdf(_f.a, *_args) for _f, _args, _ in data]
|
||
|
correct = [np.log(_correct_) for _f, _args, _correct_ in data]
|
||
|
assert_array_almost_equal(ans, correct)
|
||
|
|
||
|
def test_burr_stats_9544(self):
|
||
|
# gh-9544. Test from gh-9978
|
||
|
c, d = 5.0, 3
|
||
|
mean, variance = stats.burr(c, d).stats()
|
||
|
# mean = sc.beta(3 + 1/5, 1. - 1/5) * 3 = 1.4110263...
|
||
|
# var = sc.beta(3 + 2 / 5, 1. - 2 / 5) * 3 -
|
||
|
# (sc.beta(3 + 1 / 5, 1. - 1 / 5) * 3) ** 2
|
||
|
mean_hc, variance_hc = 1.4110263183925857, 0.22879948026191643
|
||
|
assert_allclose(mean, mean_hc)
|
||
|
assert_allclose(variance, variance_hc)
|
||
|
|
||
|
def test_burr_nan_mean_var_9544(self):
|
||
|
# gh-9544. Test from gh-9978
|
||
|
c, d = 0.5, 3
|
||
|
mean, variance = stats.burr(c, d).stats()
|
||
|
assert_(np.isnan(mean))
|
||
|
assert_(np.isnan(variance))
|
||
|
c, d = 1.5, 3
|
||
|
mean, variance = stats.burr(c, d).stats()
|
||
|
assert_(np.isfinite(mean))
|
||
|
assert_(np.isnan(variance))
|
||
|
|
||
|
c, d = 0.5, 3
|
||
|
e1, e2, e3, e4 = stats.burr._munp(np.array([1, 2, 3, 4]), c, d)
|
||
|
assert_(np.isnan(e1))
|
||
|
assert_(np.isnan(e2))
|
||
|
assert_(np.isnan(e3))
|
||
|
assert_(np.isnan(e4))
|
||
|
c, d = 1.5, 3
|
||
|
e1, e2, e3, e4 = stats.burr._munp([1, 2, 3, 4], c, d)
|
||
|
assert_(np.isfinite(e1))
|
||
|
assert_(np.isnan(e2))
|
||
|
assert_(np.isnan(e3))
|
||
|
assert_(np.isnan(e4))
|
||
|
c, d = 2.5, 3
|
||
|
e1, e2, e3, e4 = stats.burr._munp([1, 2, 3, 4], c, d)
|
||
|
assert_(np.isfinite(e1))
|
||
|
assert_(np.isfinite(e2))
|
||
|
assert_(np.isnan(e3))
|
||
|
assert_(np.isnan(e4))
|
||
|
c, d = 3.5, 3
|
||
|
e1, e2, e3, e4 = stats.burr._munp([1, 2, 3, 4], c, d)
|
||
|
assert_(np.isfinite(e1))
|
||
|
assert_(np.isfinite(e2))
|
||
|
assert_(np.isfinite(e3))
|
||
|
assert_(np.isnan(e4))
|
||
|
c, d = 4.5, 3
|
||
|
e1, e2, e3, e4 = stats.burr._munp([1, 2, 3, 4], c, d)
|
||
|
assert_(np.isfinite(e1))
|
||
|
assert_(np.isfinite(e2))
|
||
|
assert_(np.isfinite(e3))
|
||
|
assert_(np.isfinite(e4))
|
||
|
|
||
|
def test_burr_isf(self):
|
||
|
# reference values were computed via the reference distribution, e.g.
|
||
|
# mp.dps = 100
|
||
|
# Burr(c=5, d=3).isf([0.1, 1e-10, 1e-20, 1e-40])
|
||
|
c, d = 5.0, 3.0
|
||
|
q = [0.1, 1e-10, 1e-20, 1e-40]
|
||
|
ref = [1.9469686558286508, 124.57309395989076, 12457.309396155173,
|
||
|
124573093.96155174]
|
||
|
assert_allclose(stats.burr.isf(q, c, d), ref, rtol=1e-14)
|
||
|
|
||
|
|
||
|
class TestBurr12:
|
||
|
|
||
|
@pytest.mark.parametrize('scale, expected',
|
||
|
[(1.0, 2.3283064359965952e-170),
|
||
|
(3.5, 5.987114417447875e-153)])
|
||
|
def test_delta_cdf(self, scale, expected):
|
||
|
# Expected value computed with mpmath:
|
||
|
#
|
||
|
# def burr12sf(x, c, d, scale):
|
||
|
# x = mpmath.mpf(x)
|
||
|
# c = mpmath.mpf(c)
|
||
|
# d = mpmath.mpf(d)
|
||
|
# scale = mpmath.mpf(scale)
|
||
|
# return (mpmath.mp.one + (x/scale)**c)**(-d)
|
||
|
#
|
||
|
# >>> import mpmath
|
||
|
# >>> mpmath.mp.dps = 60
|
||
|
# >>> float(burr12sf(2e5, 4, 8, 1) - burr12sf(4e5, 4, 8, 1))
|
||
|
# 2.3283064359965952e-170
|
||
|
# >>> float(burr12sf(2e5, 4, 8, 3.5) - burr12sf(4e5, 4, 8, 3.5))
|
||
|
# 5.987114417447875e-153
|
||
|
#
|
||
|
delta = stats.burr12._delta_cdf(2e5, 4e5, 4, 8, scale=scale)
|
||
|
assert_allclose(delta, expected, rtol=1e-13)
|
||
|
|
||
|
def test_moments_edge(self):
|
||
|
# gh-18838 reported that burr12 moments could be invalid; see above.
|
||
|
# Check that this is resolved in an edge case where c*d == n, and
|
||
|
# compare the results against those produced by Mathematica, e.g.
|
||
|
# `SinghMaddalaDistribution[2, 2, 1]` at Wolfram Alpha.
|
||
|
c, d = 2, 2
|
||
|
mean = np.pi/4
|
||
|
var = 1 - np.pi**2/16
|
||
|
skew = np.pi**3/(32*var**1.5)
|
||
|
kurtosis = np.nan
|
||
|
ref = [mean, var, skew, kurtosis]
|
||
|
res = stats.burr12(c, d).stats('mvsk')
|
||
|
assert_allclose(res, ref, rtol=1e-14)
|
||
|
|
||
|
|
||
|
class TestStudentizedRange:
|
||
|
# For alpha = .05, .01, and .001, and for each value of
|
||
|
# v = [1, 3, 10, 20, 120, inf], a Q was picked from each table for
|
||
|
# k = [2, 8, 14, 20].
|
||
|
|
||
|
# these arrays are written with `k` as column, and `v` as rows.
|
||
|
# Q values are taken from table 3:
|
||
|
# https://www.jstor.org/stable/2237810
|
||
|
q05 = [17.97, 45.40, 54.33, 59.56,
|
||
|
4.501, 8.853, 10.35, 11.24,
|
||
|
3.151, 5.305, 6.028, 6.467,
|
||
|
2.950, 4.768, 5.357, 5.714,
|
||
|
2.800, 4.363, 4.842, 5.126,
|
||
|
2.772, 4.286, 4.743, 5.012]
|
||
|
q01 = [90.03, 227.2, 271.8, 298.0,
|
||
|
8.261, 15.64, 18.22, 19.77,
|
||
|
4.482, 6.875, 7.712, 8.226,
|
||
|
4.024, 5.839, 6.450, 6.823,
|
||
|
3.702, 5.118, 5.562, 5.827,
|
||
|
3.643, 4.987, 5.400, 5.645]
|
||
|
q001 = [900.3, 2272, 2718, 2980,
|
||
|
18.28, 34.12, 39.69, 43.05,
|
||
|
6.487, 9.352, 10.39, 11.03,
|
||
|
5.444, 7.313, 7.966, 8.370,
|
||
|
4.772, 6.039, 6.448, 6.695,
|
||
|
4.654, 5.823, 6.191, 6.411]
|
||
|
qs = np.concatenate((q05, q01, q001))
|
||
|
ps = [.95, .99, .999]
|
||
|
vs = [1, 3, 10, 20, 120, np.inf]
|
||
|
ks = [2, 8, 14, 20]
|
||
|
|
||
|
data = list(zip(product(ps, vs, ks), qs))
|
||
|
|
||
|
# A small selection of large-v cases generated with R's `ptukey`
|
||
|
# Each case is in the format (q, k, v, r_result)
|
||
|
r_data = [
|
||
|
(0.1, 3, 9001, 0.002752818526842),
|
||
|
(1, 10, 1000, 0.000526142388912),
|
||
|
(1, 3, np.inf, 0.240712641229283),
|
||
|
(4, 3, np.inf, 0.987012338626815),
|
||
|
(1, 10, np.inf, 0.000519869467083),
|
||
|
]
|
||
|
|
||
|
def test_cdf_against_tables(self):
|
||
|
for pvk, q in self.data:
|
||
|
p_expected, v, k = pvk
|
||
|
res_p = stats.studentized_range.cdf(q, k, v)
|
||
|
assert_allclose(res_p, p_expected, rtol=1e-4)
|
||
|
|
||
|
@pytest.mark.slow
|
||
|
def test_ppf_against_tables(self):
|
||
|
for pvk, q_expected in self.data:
|
||
|
p, v, k = pvk
|
||
|
res_q = stats.studentized_range.ppf(p, k, v)
|
||
|
assert_allclose(res_q, q_expected, rtol=5e-4)
|
||
|
|
||
|
path_prefix = os.path.dirname(__file__)
|
||
|
relative_path = "data/studentized_range_mpmath_ref.json"
|
||
|
with open(os.path.join(path_prefix, relative_path)) as file:
|
||
|
pregenerated_data = json.load(file)
|
||
|
|
||
|
@pytest.mark.parametrize("case_result", pregenerated_data["cdf_data"])
|
||
|
def test_cdf_against_mp(self, case_result):
|
||
|
src_case = case_result["src_case"]
|
||
|
mp_result = case_result["mp_result"]
|
||
|
qkv = src_case["q"], src_case["k"], src_case["v"]
|
||
|
res = stats.studentized_range.cdf(*qkv)
|
||
|
|
||
|
assert_allclose(res, mp_result,
|
||
|
atol=src_case["expected_atol"],
|
||
|
rtol=src_case["expected_rtol"])
|
||
|
|
||
|
@pytest.mark.parametrize("case_result", pregenerated_data["pdf_data"])
|
||
|
def test_pdf_against_mp(self, case_result):
|
||
|
src_case = case_result["src_case"]
|
||
|
mp_result = case_result["mp_result"]
|
||
|
qkv = src_case["q"], src_case["k"], src_case["v"]
|
||
|
res = stats.studentized_range.pdf(*qkv)
|
||
|
|
||
|
assert_allclose(res, mp_result,
|
||
|
atol=src_case["expected_atol"],
|
||
|
rtol=src_case["expected_rtol"])
|
||
|
|
||
|
@pytest.mark.slow
|
||
|
@pytest.mark.xfail_on_32bit("intermittent RuntimeWarning: invalid value.")
|
||
|
@pytest.mark.parametrize("case_result", pregenerated_data["moment_data"])
|
||
|
def test_moment_against_mp(self, case_result):
|
||
|
src_case = case_result["src_case"]
|
||
|
mp_result = case_result["mp_result"]
|
||
|
mkv = src_case["m"], src_case["k"], src_case["v"]
|
||
|
|
||
|
# Silence invalid value encountered warnings. Actual problems will be
|
||
|
# caught by the result comparison.
|
||
|
with np.errstate(invalid='ignore'):
|
||
|
res = stats.studentized_range.moment(*mkv)
|
||
|
|
||
|
assert_allclose(res, mp_result,
|
||
|
atol=src_case["expected_atol"],
|
||
|
rtol=src_case["expected_rtol"])
|
||
|
|
||
|
def test_pdf_integration(self):
|
||
|
k, v = 3, 10
|
||
|
# Test whether PDF integration is 1 like it should be.
|
||
|
res = quad(stats.studentized_range.pdf, 0, np.inf, args=(k, v))
|
||
|
assert_allclose(res[0], 1)
|
||
|
|
||
|
@pytest.mark.xslow
|
||
|
def test_pdf_against_cdf(self):
|
||
|
k, v = 3, 10
|
||
|
|
||
|
# Test whether the integrated PDF matches the CDF using cumulative
|
||
|
# integration. Use a small step size to reduce error due to the
|
||
|
# summation. This is slow, but tests the results well.
|
||
|
x = np.arange(0, 10, step=0.01)
|
||
|
|
||
|
y_cdf = stats.studentized_range.cdf(x, k, v)[1:]
|
||
|
y_pdf_raw = stats.studentized_range.pdf(x, k, v)
|
||
|
y_pdf_cumulative = cumulative_trapezoid(y_pdf_raw, x)
|
||
|
|
||
|
# Because of error caused by the summation, use a relatively large rtol
|
||
|
assert_allclose(y_pdf_cumulative, y_cdf, rtol=1e-4)
|
||
|
|
||
|
@pytest.mark.parametrize("r_case_result", r_data)
|
||
|
def test_cdf_against_r(self, r_case_result):
|
||
|
# Test large `v` values using R
|
||
|
q, k, v, r_res = r_case_result
|
||
|
with np.errstate(invalid='ignore'):
|
||
|
res = stats.studentized_range.cdf(q, k, v)
|
||
|
assert_allclose(res, r_res)
|
||
|
|
||
|
@pytest.mark.slow
|
||
|
@pytest.mark.xfail_on_32bit("intermittent RuntimeWarning: invalid value.")
|
||
|
def test_moment_vectorization(self):
|
||
|
# Test moment broadcasting. Calls `_munp` directly because
|
||
|
# `rv_continuous.moment` is broken at time of writing. See gh-12192
|
||
|
|
||
|
# Silence invalid value encountered warnings. Actual problems will be
|
||
|
# caught by the result comparison.
|
||
|
with np.errstate(invalid='ignore'):
|
||
|
m = stats.studentized_range._munp([1, 2], [4, 5], [10, 11])
|
||
|
|
||
|
assert_allclose(m.shape, (2,))
|
||
|
|
||
|
with pytest.raises(ValueError, match="...could not be broadcast..."):
|
||
|
stats.studentized_range._munp(1, [4, 5], [10, 11, 12])
|
||
|
|
||
|
@pytest.mark.xslow
|
||
|
def test_fitstart_valid(self):
|
||
|
with suppress_warnings() as sup, np.errstate(invalid="ignore"):
|
||
|
# the integration warning message may differ
|
||
|
sup.filter(IntegrationWarning)
|
||
|
k, df, _, _ = stats.studentized_range._fitstart([1, 2, 3])
|
||
|
assert_(stats.studentized_range._argcheck(k, df))
|
||
|
|
||
|
def test_infinite_df(self):
|
||
|
# Check that the CDF and PDF infinite and normal integrators
|
||
|
# roughly match for a high df case
|
||
|
res = stats.studentized_range.pdf(3, 10, np.inf)
|
||
|
res_finite = stats.studentized_range.pdf(3, 10, 99999)
|
||
|
assert_allclose(res, res_finite, atol=1e-4, rtol=1e-4)
|
||
|
|
||
|
res = stats.studentized_range.cdf(3, 10, np.inf)
|
||
|
res_finite = stats.studentized_range.cdf(3, 10, 99999)
|
||
|
assert_allclose(res, res_finite, atol=1e-4, rtol=1e-4)
|
||
|
|
||
|
def test_df_cutoff(self):
|
||
|
# Test that the CDF and PDF properly switch integrators at df=100,000.
|
||
|
# The infinite integrator should be different enough that it fails
|
||
|
# an allclose assertion. Also sanity check that using the same
|
||
|
# integrator does pass the allclose with a 1-df difference, which
|
||
|
# should be tiny.
|
||
|
|
||
|
res = stats.studentized_range.pdf(3, 10, 100000)
|
||
|
res_finite = stats.studentized_range.pdf(3, 10, 99999)
|
||
|
res_sanity = stats.studentized_range.pdf(3, 10, 99998)
|
||
|
assert_raises(AssertionError, assert_allclose, res, res_finite,
|
||
|
atol=1e-6, rtol=1e-6)
|
||
|
assert_allclose(res_finite, res_sanity, atol=1e-6, rtol=1e-6)
|
||
|
|
||
|
res = stats.studentized_range.cdf(3, 10, 100000)
|
||
|
res_finite = stats.studentized_range.cdf(3, 10, 99999)
|
||
|
res_sanity = stats.studentized_range.cdf(3, 10, 99998)
|
||
|
assert_raises(AssertionError, assert_allclose, res, res_finite,
|
||
|
atol=1e-6, rtol=1e-6)
|
||
|
assert_allclose(res_finite, res_sanity, atol=1e-6, rtol=1e-6)
|
||
|
|
||
|
def test_clipping(self):
|
||
|
# The result of this computation was -9.9253938401489e-14 on some
|
||
|
# systems. The correct result is very nearly zero, but should not be
|
||
|
# negative.
|
||
|
q, k, v = 34.6413996195345746, 3, 339
|
||
|
p = stats.studentized_range.sf(q, k, v)
|
||
|
assert_allclose(p, 0, atol=1e-10)
|
||
|
assert p >= 0
|
||
|
|
||
|
|
||
|
def test_540_567():
|
||
|
# test for nan returned in tickets 540, 567
|
||
|
assert_almost_equal(stats.norm.cdf(-1.7624320982), 0.03899815971089126,
|
||
|
decimal=10, err_msg='test_540_567')
|
||
|
assert_almost_equal(stats.norm.cdf(-1.7624320983), 0.038998159702449846,
|
||
|
decimal=10, err_msg='test_540_567')
|
||
|
assert_almost_equal(stats.norm.cdf(1.38629436112, loc=0.950273420309,
|
||
|
scale=0.204423758009),
|
||
|
0.98353464004309321,
|
||
|
decimal=10, err_msg='test_540_567')
|
||
|
|
||
|
|
||
|
def test_regression_ticket_1326():
|
||
|
# adjust to avoid nan with 0*log(0)
|
||
|
assert_almost_equal(stats.chi2.pdf(0.0, 2), 0.5, 14)
|
||
|
|
||
|
|
||
|
def test_regression_tukey_lambda():
|
||
|
# Make sure that Tukey-Lambda distribution correctly handles
|
||
|
# non-positive lambdas.
|
||
|
x = np.linspace(-5.0, 5.0, 101)
|
||
|
|
||
|
with np.errstate(divide='ignore'):
|
||
|
for lam in [0.0, -1.0, -2.0, np.array([[-1.0], [0.0], [-2.0]])]:
|
||
|
p = stats.tukeylambda.pdf(x, lam)
|
||
|
assert_((p != 0.0).all())
|
||
|
assert_(~np.isnan(p).all())
|
||
|
|
||
|
lam = np.array([[-1.0], [0.0], [2.0]])
|
||
|
p = stats.tukeylambda.pdf(x, lam)
|
||
|
|
||
|
assert_(~np.isnan(p).all())
|
||
|
assert_((p[0] != 0.0).all())
|
||
|
assert_((p[1] != 0.0).all())
|
||
|
assert_((p[2] != 0.0).any())
|
||
|
assert_((p[2] == 0.0).any())
|
||
|
|
||
|
|
||
|
@pytest.mark.skipif(DOCSTRINGS_STRIPPED, reason="docstrings stripped")
|
||
|
def test_regression_ticket_1421():
|
||
|
assert_('pdf(x, mu, loc=0, scale=1)' not in stats.poisson.__doc__)
|
||
|
assert_('pmf(x,' in stats.poisson.__doc__)
|
||
|
|
||
|
|
||
|
def test_nan_arguments_gh_issue_1362():
|
||
|
with np.errstate(invalid='ignore'):
|
||
|
assert_(np.isnan(stats.t.logcdf(1, np.nan)))
|
||
|
assert_(np.isnan(stats.t.cdf(1, np.nan)))
|
||
|
assert_(np.isnan(stats.t.logsf(1, np.nan)))
|
||
|
assert_(np.isnan(stats.t.sf(1, np.nan)))
|
||
|
assert_(np.isnan(stats.t.pdf(1, np.nan)))
|
||
|
assert_(np.isnan(stats.t.logpdf(1, np.nan)))
|
||
|
assert_(np.isnan(stats.t.ppf(1, np.nan)))
|
||
|
assert_(np.isnan(stats.t.isf(1, np.nan)))
|
||
|
|
||
|
assert_(np.isnan(stats.bernoulli.logcdf(np.nan, 0.5)))
|
||
|
assert_(np.isnan(stats.bernoulli.cdf(np.nan, 0.5)))
|
||
|
assert_(np.isnan(stats.bernoulli.logsf(np.nan, 0.5)))
|
||
|
assert_(np.isnan(stats.bernoulli.sf(np.nan, 0.5)))
|
||
|
assert_(np.isnan(stats.bernoulli.pmf(np.nan, 0.5)))
|
||
|
assert_(np.isnan(stats.bernoulli.logpmf(np.nan, 0.5)))
|
||
|
assert_(np.isnan(stats.bernoulli.ppf(np.nan, 0.5)))
|
||
|
assert_(np.isnan(stats.bernoulli.isf(np.nan, 0.5)))
|
||
|
|
||
|
|
||
|
def test_frozen_fit_ticket_1536():
|
||
|
np.random.seed(5678)
|
||
|
true = np.array([0.25, 0., 0.5])
|
||
|
x = stats.lognorm.rvs(true[0], true[1], true[2], size=100)
|
||
|
|
||
|
with np.errstate(divide='ignore'):
|
||
|
params = np.array(stats.lognorm.fit(x, floc=0.))
|
||
|
|
||
|
assert_almost_equal(params, true, decimal=2)
|
||
|
|
||
|
params = np.array(stats.lognorm.fit(x, fscale=0.5, loc=0))
|
||
|
assert_almost_equal(params, true, decimal=2)
|
||
|
|
||
|
params = np.array(stats.lognorm.fit(x, f0=0.25, loc=0))
|
||
|
assert_almost_equal(params, true, decimal=2)
|
||
|
|
||
|
params = np.array(stats.lognorm.fit(x, f0=0.25, floc=0))
|
||
|
assert_almost_equal(params, true, decimal=2)
|
||
|
|
||
|
np.random.seed(5678)
|
||
|
loc = 1
|
||
|
floc = 0.9
|
||
|
x = stats.norm.rvs(loc, 2., size=100)
|
||
|
params = np.array(stats.norm.fit(x, floc=floc))
|
||
|
expected = np.array([floc, np.sqrt(((x-floc)**2).mean())])
|
||
|
assert_almost_equal(params, expected, decimal=4)
|
||
|
|
||
|
|
||
|
def test_regression_ticket_1530():
|
||
|
# Check the starting value works for Cauchy distribution fit.
|
||
|
np.random.seed(654321)
|
||
|
rvs = stats.cauchy.rvs(size=100)
|
||
|
params = stats.cauchy.fit(rvs)
|
||
|
expected = (0.045, 1.142)
|
||
|
assert_almost_equal(params, expected, decimal=1)
|
||
|
|
||
|
|
||
|
def test_gh_pr_4806():
|
||
|
# Check starting values for Cauchy distribution fit.
|
||
|
np.random.seed(1234)
|
||
|
x = np.random.randn(42)
|
||
|
for offset in 10000.0, 1222333444.0:
|
||
|
loc, scale = stats.cauchy.fit(x + offset)
|
||
|
assert_allclose(loc, offset, atol=1.0)
|
||
|
assert_allclose(scale, 0.6, atol=1.0)
|
||
|
|
||
|
|
||
|
def test_tukeylambda_stats_ticket_1545():
|
||
|
# Some test for the variance and kurtosis of the Tukey Lambda distr.
|
||
|
# See test_tukeylamdba_stats.py for more tests.
|
||
|
|
||
|
mv = stats.tukeylambda.stats(0, moments='mvsk')
|
||
|
# Known exact values:
|
||
|
expected = [0, np.pi**2/3, 0, 1.2]
|
||
|
assert_almost_equal(mv, expected, decimal=10)
|
||
|
|
||
|
mv = stats.tukeylambda.stats(3.13, moments='mvsk')
|
||
|
# 'expected' computed with mpmath.
|
||
|
expected = [0, 0.0269220858861465102, 0, -0.898062386219224104]
|
||
|
assert_almost_equal(mv, expected, decimal=10)
|
||
|
|
||
|
mv = stats.tukeylambda.stats(0.14, moments='mvsk')
|
||
|
# 'expected' computed with mpmath.
|
||
|
expected = [0, 2.11029702221450250, 0, -0.02708377353223019456]
|
||
|
assert_almost_equal(mv, expected, decimal=10)
|
||
|
|
||
|
|
||
|
def test_poisson_logpmf_ticket_1436():
|
||
|
assert_(np.isfinite(stats.poisson.logpmf(1500, 200)))
|
||
|
|
||
|
|
||
|
def test_powerlaw_stats():
|
||
|
"""Test the powerlaw stats function.
|
||
|
|
||
|
This unit test is also a regression test for ticket 1548.
|
||
|
|
||
|
The exact values are:
|
||
|
mean:
|
||
|
mu = a / (a + 1)
|
||
|
variance:
|
||
|
sigma**2 = a / ((a + 2) * (a + 1) ** 2)
|
||
|
skewness:
|
||
|
One formula (see https://en.wikipedia.org/wiki/Skewness) is
|
||
|
gamma_1 = (E[X**3] - 3*mu*E[X**2] + 2*mu**3) / sigma**3
|
||
|
A short calculation shows that E[X**k] is a / (a + k), so gamma_1
|
||
|
can be implemented as
|
||
|
n = a/(a+3) - 3*(a/(a+1))*a/(a+2) + 2*(a/(a+1))**3
|
||
|
d = sqrt(a/((a+2)*(a+1)**2)) ** 3
|
||
|
gamma_1 = n/d
|
||
|
Either by simplifying, or by a direct calculation of mu_3 / sigma**3,
|
||
|
one gets the more concise formula:
|
||
|
gamma_1 = -2.0 * ((a - 1) / (a + 3)) * sqrt((a + 2) / a)
|
||
|
kurtosis: (See https://en.wikipedia.org/wiki/Kurtosis)
|
||
|
The excess kurtosis is
|
||
|
gamma_2 = mu_4 / sigma**4 - 3
|
||
|
A bit of calculus and algebra (sympy helps) shows that
|
||
|
mu_4 = 3*a*(3*a**2 - a + 2) / ((a+1)**4 * (a+2) * (a+3) * (a+4))
|
||
|
so
|
||
|
gamma_2 = 3*(3*a**2 - a + 2) * (a+2) / (a*(a+3)*(a+4)) - 3
|
||
|
which can be rearranged to
|
||
|
gamma_2 = 6 * (a**3 - a**2 - 6*a + 2) / (a*(a+3)*(a+4))
|
||
|
"""
|
||
|
cases = [(1.0, (0.5, 1./12, 0.0, -1.2)),
|
||
|
(2.0, (2./3, 2./36, -0.56568542494924734, -0.6))]
|
||
|
for a, exact_mvsk in cases:
|
||
|
mvsk = stats.powerlaw.stats(a, moments="mvsk")
|
||
|
assert_array_almost_equal(mvsk, exact_mvsk)
|
||
|
|
||
|
|
||
|
def test_powerlaw_edge():
|
||
|
# Regression test for gh-3986.
|
||
|
p = stats.powerlaw.logpdf(0, 1)
|
||
|
assert_equal(p, 0.0)
|
||
|
|
||
|
|
||
|
def test_exponpow_edge():
|
||
|
# Regression test for gh-3982.
|
||
|
p = stats.exponpow.logpdf(0, 1)
|
||
|
assert_equal(p, 0.0)
|
||
|
|
||
|
# Check pdf and logpdf at x = 0 for other values of b.
|
||
|
p = stats.exponpow.pdf(0, [0.25, 1.0, 1.5])
|
||
|
assert_equal(p, [np.inf, 1.0, 0.0])
|
||
|
p = stats.exponpow.logpdf(0, [0.25, 1.0, 1.5])
|
||
|
assert_equal(p, [np.inf, 0.0, -np.inf])
|
||
|
|
||
|
|
||
|
def test_gengamma_edge():
|
||
|
# Regression test for gh-3985.
|
||
|
p = stats.gengamma.pdf(0, 1, 1)
|
||
|
assert_equal(p, 1.0)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("a, c, ref, tol",
|
||
|
[(1500000.0, 1, 8.529426144018633, 1e-15),
|
||
|
(1e+30, 1, 35.95771492811536, 1e-15),
|
||
|
(1e+100, 1, 116.54819318290696, 1e-15),
|
||
|
(3e3, 1, 5.422011196659015, 1e-13),
|
||
|
(3e6, -1e100, -236.29663213396054, 1e-15),
|
||
|
(3e60, 1e-100, 1.3925371786831085e+102, 1e-15)])
|
||
|
def test_gengamma_extreme_entropy(a, c, ref, tol):
|
||
|
# The reference values were calculated with mpmath:
|
||
|
# from mpmath import mp
|
||
|
# mp.dps = 500
|
||
|
#
|
||
|
# def gen_entropy(a, c):
|
||
|
# a, c = mp.mpf(a), mp.mpf(c)
|
||
|
# val = mp.digamma(a)
|
||
|
# h = (a * (mp.one - val) + val/c + mp.loggamma(a) - mp.log(abs(c)))
|
||
|
# return float(h)
|
||
|
assert_allclose(stats.gengamma.entropy(a, c), ref, rtol=tol)
|
||
|
|
||
|
|
||
|
def test_gengamma_endpoint_with_neg_c():
|
||
|
p = stats.gengamma.pdf(0, 1, -1)
|
||
|
assert p == 0.0
|
||
|
logp = stats.gengamma.logpdf(0, 1, -1)
|
||
|
assert logp == -np.inf
|
||
|
|
||
|
|
||
|
def test_gengamma_munp():
|
||
|
# Regression tests for gh-4724.
|
||
|
p = stats.gengamma._munp(-2, 200, 1.)
|
||
|
assert_almost_equal(p, 1./199/198)
|
||
|
|
||
|
p = stats.gengamma._munp(-2, 10, 1.)
|
||
|
assert_almost_equal(p, 1./9/8)
|
||
|
|
||
|
|
||
|
def test_ksone_fit_freeze():
|
||
|
# Regression test for ticket #1638.
|
||
|
d = np.array(
|
||
|
[-0.18879233, 0.15734249, 0.18695107, 0.27908787, -0.248649,
|
||
|
-0.2171497, 0.12233512, 0.15126419, 0.03119282, 0.4365294,
|
||
|
0.08930393, -0.23509903, 0.28231224, -0.09974875, -0.25196048,
|
||
|
0.11102028, 0.1427649, 0.10176452, 0.18754054, 0.25826724,
|
||
|
0.05988819, 0.0531668, 0.21906056, 0.32106729, 0.2117662,
|
||
|
0.10886442, 0.09375789, 0.24583286, -0.22968366, -0.07842391,
|
||
|
-0.31195432, -0.21271196, 0.1114243, -0.13293002, 0.01331725,
|
||
|
-0.04330977, -0.09485776, -0.28434547, 0.22245721, -0.18518199,
|
||
|
-0.10943985, -0.35243174, 0.06897665, -0.03553363, -0.0701746,
|
||
|
-0.06037974, 0.37670779, -0.21684405])
|
||
|
|
||
|
with np.errstate(invalid='ignore'):
|
||
|
with suppress_warnings() as sup:
|
||
|
sup.filter(IntegrationWarning,
|
||
|
"The maximum number of subdivisions .50. has been "
|
||
|
"achieved.")
|
||
|
sup.filter(RuntimeWarning,
|
||
|
"floating point number truncated to an integer")
|
||
|
stats.ksone.fit(d)
|
||
|
|
||
|
|
||
|
def test_norm_logcdf():
|
||
|
# Test precision of the logcdf of the normal distribution.
|
||
|
# This precision was enhanced in ticket 1614.
|
||
|
x = -np.asarray(list(range(0, 120, 4)))
|
||
|
# Values from R
|
||
|
expected = [-0.69314718, -10.36010149, -35.01343716, -75.41067300,
|
||
|
-131.69539607, -203.91715537, -292.09872100, -396.25241451,
|
||
|
-516.38564863, -652.50322759, -804.60844201, -972.70364403,
|
||
|
-1156.79057310, -1356.87055173, -1572.94460885, -1805.01356068,
|
||
|
-2053.07806561, -2317.13866238, -2597.19579746, -2893.24984493,
|
||
|
-3205.30112136, -3533.34989701, -3877.39640444, -4237.44084522,
|
||
|
-4613.48339520, -5005.52420869, -5413.56342187, -5837.60115548,
|
||
|
-6277.63751711, -6733.67260303]
|
||
|
|
||
|
assert_allclose(stats.norm().logcdf(x), expected, atol=1e-8)
|
||
|
|
||
|
# also test the complex-valued code path
|
||
|
assert_allclose(stats.norm().logcdf(x + 1e-14j).real, expected, atol=1e-8)
|
||
|
|
||
|
# test the accuracy: d(logcdf)/dx = pdf / cdf \equiv exp(logpdf - logcdf)
|
||
|
deriv = (stats.norm.logcdf(x + 1e-10j)/1e-10).imag
|
||
|
deriv_expected = np.exp(stats.norm.logpdf(x) - stats.norm.logcdf(x))
|
||
|
assert_allclose(deriv, deriv_expected, atol=1e-10)
|
||
|
|
||
|
|
||
|
def test_levy_cdf_ppf():
|
||
|
# Test levy.cdf, including small arguments.
|
||
|
x = np.array([1000, 1.0, 0.5, 0.1, 0.01, 0.001])
|
||
|
|
||
|
# Expected values were calculated separately with mpmath.
|
||
|
# E.g.
|
||
|
# >>> mpmath.mp.dps = 100
|
||
|
# >>> x = mpmath.mp.mpf('0.01')
|
||
|
# >>> cdf = mpmath.erfc(mpmath.sqrt(1/(2*x)))
|
||
|
expected = np.array([0.9747728793699604,
|
||
|
0.3173105078629141,
|
||
|
0.1572992070502851,
|
||
|
0.0015654022580025495,
|
||
|
1.523970604832105e-23,
|
||
|
1.795832784800726e-219])
|
||
|
|
||
|
y = stats.levy.cdf(x)
|
||
|
assert_allclose(y, expected, rtol=1e-10)
|
||
|
|
||
|
# ppf(expected) should get us back to x.
|
||
|
xx = stats.levy.ppf(expected)
|
||
|
assert_allclose(xx, x, rtol=1e-13)
|
||
|
|
||
|
|
||
|
def test_levy_sf():
|
||
|
# Large values, far into the tail of the distribution.
|
||
|
x = np.array([1e15, 1e25, 1e35, 1e50])
|
||
|
# Expected values were calculated with mpmath.
|
||
|
expected = np.array([2.5231325220201597e-08,
|
||
|
2.52313252202016e-13,
|
||
|
2.52313252202016e-18,
|
||
|
7.978845608028653e-26])
|
||
|
y = stats.levy.sf(x)
|
||
|
assert_allclose(y, expected, rtol=1e-14)
|
||
|
|
||
|
|
||
|
# The expected values for levy.isf(p) were calculated with mpmath.
|
||
|
# For loc=0 and scale=1, the inverse SF can be computed with
|
||
|
#
|
||
|
# import mpmath
|
||
|
#
|
||
|
# def levy_invsf(p):
|
||
|
# return 1/(2*mpmath.erfinv(p)**2)
|
||
|
#
|
||
|
# For example, with mpmath.mp.dps set to 60, float(levy_invsf(1e-20))
|
||
|
# returns 6.366197723675814e+39.
|
||
|
#
|
||
|
@pytest.mark.parametrize('p, expected_isf',
|
||
|
[(1e-20, 6.366197723675814e+39),
|
||
|
(1e-8, 6366197723675813.0),
|
||
|
(0.375, 4.185810119346273),
|
||
|
(0.875, 0.42489442055310134),
|
||
|
(0.999, 0.09235685880262713),
|
||
|
(0.9999999962747097, 0.028766845244146945)])
|
||
|
def test_levy_isf(p, expected_isf):
|
||
|
x = stats.levy.isf(p)
|
||
|
assert_allclose(x, expected_isf, atol=5e-15)
|
||
|
|
||
|
|
||
|
def test_levy_l_sf():
|
||
|
# Test levy_l.sf for small arguments.
|
||
|
x = np.array([-0.016, -0.01, -0.005, -0.0015])
|
||
|
# Expected values were calculated with mpmath.
|
||
|
expected = np.array([2.6644463892359302e-15,
|
||
|
1.523970604832107e-23,
|
||
|
2.0884875837625492e-45,
|
||
|
5.302850374626878e-147])
|
||
|
y = stats.levy_l.sf(x)
|
||
|
assert_allclose(y, expected, rtol=1e-13)
|
||
|
|
||
|
|
||
|
def test_levy_l_isf():
|
||
|
# Test roundtrip sf(isf(p)), including a small input value.
|
||
|
p = np.array([3.0e-15, 0.25, 0.99])
|
||
|
x = stats.levy_l.isf(p)
|
||
|
q = stats.levy_l.sf(x)
|
||
|
assert_allclose(q, p, rtol=5e-14)
|
||
|
|
||
|
|
||
|
def test_hypergeom_interval_1802():
|
||
|
# these two had endless loops
|
||
|
assert_equal(stats.hypergeom.interval(.95, 187601, 43192, 757),
|
||
|
(152.0, 197.0))
|
||
|
assert_equal(stats.hypergeom.interval(.945, 187601, 43192, 757),
|
||
|
(152.0, 197.0))
|
||
|
# this was working also before
|
||
|
assert_equal(stats.hypergeom.interval(.94, 187601, 43192, 757),
|
||
|
(153.0, 196.0))
|
||
|
|
||
|
# degenerate case .a == .b
|
||
|
assert_equal(stats.hypergeom.ppf(0.02, 100, 100, 8), 8)
|
||
|
assert_equal(stats.hypergeom.ppf(1, 100, 100, 8), 8)
|
||
|
|
||
|
|
||
|
def test_distribution_too_many_args():
|
||
|
np.random.seed(1234)
|
||
|
|
||
|
# Check that a TypeError is raised when too many args are given to a method
|
||
|
# Regression test for ticket 1815.
|
||
|
x = np.linspace(0.1, 0.7, num=5)
|
||
|
assert_raises(TypeError, stats.gamma.pdf, x, 2, 3, loc=1.0)
|
||
|
assert_raises(TypeError, stats.gamma.pdf, x, 2, 3, 4, loc=1.0)
|
||
|
assert_raises(TypeError, stats.gamma.pdf, x, 2, 3, 4, 5)
|
||
|
assert_raises(TypeError, stats.gamma.pdf, x, 2, 3, loc=1.0, scale=0.5)
|
||
|
assert_raises(TypeError, stats.gamma.rvs, 2., 3, loc=1.0, scale=0.5)
|
||
|
assert_raises(TypeError, stats.gamma.cdf, x, 2., 3, loc=1.0, scale=0.5)
|
||
|
assert_raises(TypeError, stats.gamma.ppf, x, 2., 3, loc=1.0, scale=0.5)
|
||
|
assert_raises(TypeError, stats.gamma.stats, 2., 3, loc=1.0, scale=0.5)
|
||
|
assert_raises(TypeError, stats.gamma.entropy, 2., 3, loc=1.0, scale=0.5)
|
||
|
assert_raises(TypeError, stats.gamma.fit, x, 2., 3, loc=1.0, scale=0.5)
|
||
|
|
||
|
# These should not give errors
|
||
|
stats.gamma.pdf(x, 2, 3) # loc=3
|
||
|
stats.gamma.pdf(x, 2, 3, 4) # loc=3, scale=4
|
||
|
stats.gamma.stats(2., 3)
|
||
|
stats.gamma.stats(2., 3, 4)
|
||
|
stats.gamma.stats(2., 3, 4, 'mv')
|
||
|
stats.gamma.rvs(2., 3, 4, 5)
|
||
|
stats.gamma.fit(stats.gamma.rvs(2., size=7), 2.)
|
||
|
|
||
|
# Also for a discrete distribution
|
||
|
stats.geom.pmf(x, 2, loc=3) # no error, loc=3
|
||
|
assert_raises(TypeError, stats.geom.pmf, x, 2, 3, 4)
|
||
|
assert_raises(TypeError, stats.geom.pmf, x, 2, 3, loc=4)
|
||
|
|
||
|
# And for distributions with 0, 2 and 3 args respectively
|
||
|
assert_raises(TypeError, stats.expon.pdf, x, 3, loc=1.0)
|
||
|
assert_raises(TypeError, stats.exponweib.pdf, x, 3, 4, 5, loc=1.0)
|
||
|
assert_raises(TypeError, stats.exponweib.pdf, x, 3, 4, 5, 0.1, 0.1)
|
||
|
assert_raises(TypeError, stats.ncf.pdf, x, 3, 4, 5, 6, loc=1.0)
|
||
|
assert_raises(TypeError, stats.ncf.pdf, x, 3, 4, 5, 6, 1.0, scale=0.5)
|
||
|
stats.ncf.pdf(x, 3, 4, 5, 6, 1.0) # 3 args, plus loc/scale
|
||
|
|
||
|
|
||
|
def test_ncx2_tails_ticket_955():
|
||
|
# Trac #955 -- check that the cdf computed by special functions
|
||
|
# matches the integrated pdf
|
||
|
a = stats.ncx2.cdf(np.arange(20, 25, 0.2), 2, 1.07458615e+02)
|
||
|
b = stats.ncx2._cdfvec(np.arange(20, 25, 0.2), 2, 1.07458615e+02)
|
||
|
assert_allclose(a, b, rtol=1e-3, atol=0)
|
||
|
|
||
|
|
||
|
def test_ncx2_tails_pdf():
|
||
|
# ncx2.pdf does not return nans in extreme tails(example from gh-1577)
|
||
|
# NB: this is to check that nan_to_num is not needed in ncx2.pdf
|
||
|
with warnings.catch_warnings():
|
||
|
warnings.simplefilter('error', RuntimeWarning)
|
||
|
assert_equal(stats.ncx2.pdf(1, np.arange(340, 350), 2), 0)
|
||
|
logval = stats.ncx2.logpdf(1, np.arange(340, 350), 2)
|
||
|
|
||
|
assert_(np.isneginf(logval).all())
|
||
|
|
||
|
# Verify logpdf has extended precision when pdf underflows to 0
|
||
|
with warnings.catch_warnings():
|
||
|
warnings.simplefilter('error', RuntimeWarning)
|
||
|
assert_equal(stats.ncx2.pdf(10000, 3, 12), 0)
|
||
|
assert_allclose(stats.ncx2.logpdf(10000, 3, 12), -4662.444377524883)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('method, expected', [
|
||
|
('cdf', np.array([2.497951336e-09, 3.437288941e-10])),
|
||
|
('pdf', np.array([1.238579980e-07, 1.710041145e-08])),
|
||
|
('logpdf', np.array([-15.90413011, -17.88416331])),
|
||
|
('ppf', np.array([4.865182052, 7.017182271]))
|
||
|
])
|
||
|
def test_ncx2_zero_nc(method, expected):
|
||
|
# gh-5441
|
||
|
# ncx2 with nc=0 is identical to chi2
|
||
|
# Comparison to R (v3.5.1)
|
||
|
# > options(digits=10)
|
||
|
# > pchisq(0.1, df=10, ncp=c(0,4))
|
||
|
# > dchisq(0.1, df=10, ncp=c(0,4))
|
||
|
# > dchisq(0.1, df=10, ncp=c(0,4), log=TRUE)
|
||
|
# > qchisq(0.1, df=10, ncp=c(0,4))
|
||
|
|
||
|
result = getattr(stats.ncx2, method)(0.1, nc=[0, 4], df=10)
|
||
|
assert_allclose(result, expected, atol=1e-15)
|
||
|
|
||
|
|
||
|
def test_ncx2_zero_nc_rvs():
|
||
|
# gh-5441
|
||
|
# ncx2 with nc=0 is identical to chi2
|
||
|
result = stats.ncx2.rvs(df=10, nc=0, random_state=1)
|
||
|
expected = stats.chi2.rvs(df=10, random_state=1)
|
||
|
assert_allclose(result, expected, atol=1e-15)
|
||
|
|
||
|
|
||
|
def test_ncx2_gh12731():
|
||
|
# test that gh-12731 is resolved; previously these were all 0.5
|
||
|
nc = 10**np.arange(5, 10)
|
||
|
assert_equal(stats.ncx2.cdf(1e4, df=1, nc=nc), 0)
|
||
|
|
||
|
|
||
|
def test_ncx2_gh8665():
|
||
|
# test that gh-8665 is resolved; previously this tended to nonzero value
|
||
|
x = np.array([4.99515382e+00, 1.07617327e+01, 2.31854502e+01,
|
||
|
4.99515382e+01, 1.07617327e+02, 2.31854502e+02,
|
||
|
4.99515382e+02, 1.07617327e+03, 2.31854502e+03,
|
||
|
4.99515382e+03, 1.07617327e+04, 2.31854502e+04,
|
||
|
4.99515382e+04])
|
||
|
nu, lam = 20, 499.51538166556196
|
||
|
|
||
|
sf = stats.ncx2.sf(x, df=nu, nc=lam)
|
||
|
# computed in R. Couldn't find a survival function implementation
|
||
|
# options(digits=16)
|
||
|
# x <- c(4.99515382e+00, 1.07617327e+01, 2.31854502e+01, 4.99515382e+01,
|
||
|
# 1.07617327e+02, 2.31854502e+02, 4.99515382e+02, 1.07617327e+03,
|
||
|
# 2.31854502e+03, 4.99515382e+03, 1.07617327e+04, 2.31854502e+04,
|
||
|
# 4.99515382e+04)
|
||
|
# nu <- 20
|
||
|
# lam <- 499.51538166556196
|
||
|
# 1 - pchisq(x, df = nu, ncp = lam)
|
||
|
sf_expected = [1.0000000000000000, 1.0000000000000000, 1.0000000000000000,
|
||
|
1.0000000000000000, 1.0000000000000000, 0.9999999999999888,
|
||
|
0.6646525582135460, 0.0000000000000000, 0.0000000000000000,
|
||
|
0.0000000000000000, 0.0000000000000000, 0.0000000000000000,
|
||
|
0.0000000000000000]
|
||
|
assert_allclose(sf, sf_expected, atol=1e-12)
|
||
|
|
||
|
|
||
|
def test_ncx2_gh11777():
|
||
|
# regression test for gh-11777:
|
||
|
# At high values of degrees of freedom df, ensure the pdf of ncx2 does
|
||
|
# not get clipped to zero when the non-centrality parameter is
|
||
|
# sufficiently less than df
|
||
|
df = 6700
|
||
|
nc = 5300
|
||
|
x = np.linspace(stats.ncx2.ppf(0.001, df, nc),
|
||
|
stats.ncx2.ppf(0.999, df, nc), num=10000)
|
||
|
ncx2_pdf = stats.ncx2.pdf(x, df, nc)
|
||
|
gauss_approx = stats.norm.pdf(x, df + nc, np.sqrt(2 * df + 4 * nc))
|
||
|
# use huge tolerance as we're only looking for obvious discrepancy
|
||
|
assert_allclose(ncx2_pdf, gauss_approx, atol=1e-4)
|
||
|
|
||
|
|
||
|
# Expected values for foldnorm.sf were computed with mpmath:
|
||
|
#
|
||
|
# from mpmath import mp
|
||
|
# mp.dps = 60
|
||
|
# def foldcauchy_sf(x, c):
|
||
|
# x = mp.mpf(x)
|
||
|
# c = mp.mpf(c)
|
||
|
# return mp.one - (mp.atan(x - c) + mp.atan(x + c))/mp.pi
|
||
|
#
|
||
|
# E.g.
|
||
|
#
|
||
|
# >>> float(foldcauchy_sf(2, 1))
|
||
|
# 0.35241638234956674
|
||
|
#
|
||
|
@pytest.mark.parametrize('x, c, expected',
|
||
|
[(2, 1, 0.35241638234956674),
|
||
|
(2, 2, 0.5779791303773694),
|
||
|
(1e13, 1, 6.366197723675813e-14),
|
||
|
(2e16, 1, 3.183098861837907e-17),
|
||
|
(1e13, 2e11, 6.368745221764519e-14),
|
||
|
(0.125, 200, 0.999998010612169)])
|
||
|
def test_foldcauchy_sf(x, c, expected):
|
||
|
sf = stats.foldcauchy.sf(x, c)
|
||
|
assert_allclose(sf, expected, 2e-15)
|
||
|
|
||
|
|
||
|
# The same mpmath code shown in the comments above test_foldcauchy_sf()
|
||
|
# is used to create these expected values.
|
||
|
@pytest.mark.parametrize('x, expected',
|
||
|
[(2, 0.2951672353008665),
|
||
|
(1e13, 6.366197723675813e-14),
|
||
|
(2e16, 3.183098861837907e-17),
|
||
|
(5e80, 1.2732395447351629e-81)])
|
||
|
def test_halfcauchy_sf(x, expected):
|
||
|
sf = stats.halfcauchy.sf(x)
|
||
|
assert_allclose(sf, expected, 2e-15)
|
||
|
|
||
|
|
||
|
# Expected value computed with mpmath:
|
||
|
# expected = mp.cot(mp.pi*p/2)
|
||
|
@pytest.mark.parametrize('p, expected',
|
||
|
[(0.9999995, 7.853981633329977e-07),
|
||
|
(0.975, 0.039290107007669675),
|
||
|
(0.5, 1.0),
|
||
|
(0.01, 63.65674116287158),
|
||
|
(1e-14, 63661977236758.13),
|
||
|
(5e-80, 1.2732395447351627e+79)])
|
||
|
def test_halfcauchy_isf(p, expected):
|
||
|
x = stats.halfcauchy.isf(p)
|
||
|
assert_allclose(x, expected)
|
||
|
|
||
|
|
||
|
def test_foldnorm_zero():
|
||
|
# Parameter value c=0 was not enabled, see gh-2399.
|
||
|
rv = stats.foldnorm(0, scale=1)
|
||
|
assert_equal(rv.cdf(0), 0) # rv.cdf(0) previously resulted in: nan
|
||
|
|
||
|
|
||
|
# Expected values for foldnorm.sf were computed with mpmath:
|
||
|
#
|
||
|
# from mpmath import mp
|
||
|
# mp.dps = 60
|
||
|
# def foldnorm_sf(x, c):
|
||
|
# x = mp.mpf(x)
|
||
|
# c = mp.mpf(c)
|
||
|
# return mp.ncdf(-x+c) + mp.ncdf(-x-c)
|
||
|
#
|
||
|
# E.g.
|
||
|
#
|
||
|
# >>> float(foldnorm_sf(2, 1))
|
||
|
# 0.16000515196308715
|
||
|
#
|
||
|
@pytest.mark.parametrize('x, c, expected',
|
||
|
[(2, 1, 0.16000515196308715),
|
||
|
(20, 1, 8.527223952630977e-81),
|
||
|
(10, 15, 0.9999997133484281),
|
||
|
(25, 15, 7.619853024160525e-24)])
|
||
|
def test_foldnorm_sf(x, c, expected):
|
||
|
sf = stats.foldnorm.sf(x, c)
|
||
|
assert_allclose(sf, expected, 1e-14)
|
||
|
|
||
|
|
||
|
def test_stats_shapes_argcheck():
|
||
|
# stats method was failing for vector shapes if some of the values
|
||
|
# were outside of the allowed range, see gh-2678
|
||
|
mv3 = stats.invgamma.stats([0.0, 0.5, 1.0], 1, 0.5) # 0 is not a legal `a`
|
||
|
mv2 = stats.invgamma.stats([0.5, 1.0], 1, 0.5)
|
||
|
mv2_augmented = tuple(np.r_[np.nan, _] for _ in mv2)
|
||
|
assert_equal(mv2_augmented, mv3)
|
||
|
|
||
|
# -1 is not a legal shape parameter
|
||
|
mv3 = stats.lognorm.stats([2, 2.4, -1])
|
||
|
mv2 = stats.lognorm.stats([2, 2.4])
|
||
|
mv2_augmented = tuple(np.r_[_, np.nan] for _ in mv2)
|
||
|
assert_equal(mv2_augmented, mv3)
|
||
|
|
||
|
# FIXME: this is only a quick-and-dirty test of a quick-and-dirty bugfix.
|
||
|
# stats method with multiple shape parameters is not properly vectorized
|
||
|
# anyway, so some distributions may or may not fail.
|
||
|
|
||
|
|
||
|
# Test subclassing distributions w/ explicit shapes
|
||
|
|
||
|
class _distr_gen(stats.rv_continuous):
|
||
|
def _pdf(self, x, a):
|
||
|
return 42
|
||
|
|
||
|
|
||
|
class _distr2_gen(stats.rv_continuous):
|
||
|
def _cdf(self, x, a):
|
||
|
return 42 * a + x
|
||
|
|
||
|
|
||
|
class _distr3_gen(stats.rv_continuous):
|
||
|
def _pdf(self, x, a, b):
|
||
|
return a + b
|
||
|
|
||
|
def _cdf(self, x, a):
|
||
|
# Different # of shape params from _pdf, to be able to check that
|
||
|
# inspection catches the inconsistency.
|
||
|
return 42 * a + x
|
||
|
|
||
|
|
||
|
class _distr6_gen(stats.rv_continuous):
|
||
|
# Two shape parameters (both _pdf and _cdf defined, consistent shapes.)
|
||
|
def _pdf(self, x, a, b):
|
||
|
return a*x + b
|
||
|
|
||
|
def _cdf(self, x, a, b):
|
||
|
return 42 * a + x
|
||
|
|
||
|
|
||
|
class TestSubclassingExplicitShapes:
|
||
|
# Construct a distribution w/ explicit shapes parameter and test it.
|
||
|
|
||
|
def test_correct_shapes(self):
|
||
|
dummy_distr = _distr_gen(name='dummy', shapes='a')
|
||
|
assert_equal(dummy_distr.pdf(1, a=1), 42)
|
||
|
|
||
|
def test_wrong_shapes_1(self):
|
||
|
dummy_distr = _distr_gen(name='dummy', shapes='A')
|
||
|
assert_raises(TypeError, dummy_distr.pdf, 1, **dict(a=1))
|
||
|
|
||
|
def test_wrong_shapes_2(self):
|
||
|
dummy_distr = _distr_gen(name='dummy', shapes='a, b, c')
|
||
|
dct = dict(a=1, b=2, c=3)
|
||
|
assert_raises(TypeError, dummy_distr.pdf, 1, **dct)
|
||
|
|
||
|
def test_shapes_string(self):
|
||
|
# shapes must be a string
|
||
|
dct = dict(name='dummy', shapes=42)
|
||
|
assert_raises(TypeError, _distr_gen, **dct)
|
||
|
|
||
|
def test_shapes_identifiers_1(self):
|
||
|
# shapes must be a comma-separated list of valid python identifiers
|
||
|
dct = dict(name='dummy', shapes='(!)')
|
||
|
assert_raises(SyntaxError, _distr_gen, **dct)
|
||
|
|
||
|
def test_shapes_identifiers_2(self):
|
||
|
dct = dict(name='dummy', shapes='4chan')
|
||
|
assert_raises(SyntaxError, _distr_gen, **dct)
|
||
|
|
||
|
def test_shapes_identifiers_3(self):
|
||
|
dct = dict(name='dummy', shapes='m(fti)')
|
||
|
assert_raises(SyntaxError, _distr_gen, **dct)
|
||
|
|
||
|
def test_shapes_identifiers_nodefaults(self):
|
||
|
dct = dict(name='dummy', shapes='a=2')
|
||
|
assert_raises(SyntaxError, _distr_gen, **dct)
|
||
|
|
||
|
def test_shapes_args(self):
|
||
|
dct = dict(name='dummy', shapes='*args')
|
||
|
assert_raises(SyntaxError, _distr_gen, **dct)
|
||
|
|
||
|
def test_shapes_kwargs(self):
|
||
|
dct = dict(name='dummy', shapes='**kwargs')
|
||
|
assert_raises(SyntaxError, _distr_gen, **dct)
|
||
|
|
||
|
def test_shapes_keywords(self):
|
||
|
# python keywords cannot be used for shape parameters
|
||
|
dct = dict(name='dummy', shapes='a, b, c, lambda')
|
||
|
assert_raises(SyntaxError, _distr_gen, **dct)
|
||
|
|
||
|
def test_shapes_signature(self):
|
||
|
# test explicit shapes which agree w/ the signature of _pdf
|
||
|
class _dist_gen(stats.rv_continuous):
|
||
|
def _pdf(self, x, a):
|
||
|
return stats.norm._pdf(x) * a
|
||
|
|
||
|
dist = _dist_gen(shapes='a')
|
||
|
assert_equal(dist.pdf(0.5, a=2), stats.norm.pdf(0.5)*2)
|
||
|
|
||
|
def test_shapes_signature_inconsistent(self):
|
||
|
# test explicit shapes which do not agree w/ the signature of _pdf
|
||
|
class _dist_gen(stats.rv_continuous):
|
||
|
def _pdf(self, x, a):
|
||
|
return stats.norm._pdf(x) * a
|
||
|
|
||
|
dist = _dist_gen(shapes='a, b')
|
||
|
assert_raises(TypeError, dist.pdf, 0.5, **dict(a=1, b=2))
|
||
|
|
||
|
def test_star_args(self):
|
||
|
# test _pdf with only starargs
|
||
|
# NB: **kwargs of pdf will never reach _pdf
|
||
|
class _dist_gen(stats.rv_continuous):
|
||
|
def _pdf(self, x, *args):
|
||
|
extra_kwarg = args[0]
|
||
|
return stats.norm._pdf(x) * extra_kwarg
|
||
|
|
||
|
dist = _dist_gen(shapes='extra_kwarg')
|
||
|
assert_equal(dist.pdf(0.5, extra_kwarg=33), stats.norm.pdf(0.5)*33)
|
||
|
assert_equal(dist.pdf(0.5, 33), stats.norm.pdf(0.5)*33)
|
||
|
assert_raises(TypeError, dist.pdf, 0.5, **dict(xxx=33))
|
||
|
|
||
|
def test_star_args_2(self):
|
||
|
# test _pdf with named & starargs
|
||
|
# NB: **kwargs of pdf will never reach _pdf
|
||
|
class _dist_gen(stats.rv_continuous):
|
||
|
def _pdf(self, x, offset, *args):
|
||
|
extra_kwarg = args[0]
|
||
|
return stats.norm._pdf(x) * extra_kwarg + offset
|
||
|
|
||
|
dist = _dist_gen(shapes='offset, extra_kwarg')
|
||
|
assert_equal(dist.pdf(0.5, offset=111, extra_kwarg=33),
|
||
|
stats.norm.pdf(0.5)*33 + 111)
|
||
|
assert_equal(dist.pdf(0.5, 111, 33),
|
||
|
stats.norm.pdf(0.5)*33 + 111)
|
||
|
|
||
|
def test_extra_kwarg(self):
|
||
|
# **kwargs to _pdf are ignored.
|
||
|
# this is a limitation of the framework (_pdf(x, *goodargs))
|
||
|
class _distr_gen(stats.rv_continuous):
|
||
|
def _pdf(self, x, *args, **kwargs):
|
||
|
# _pdf should handle *args, **kwargs itself. Here "handling"
|
||
|
# is ignoring *args and looking for ``extra_kwarg`` and using
|
||
|
# that.
|
||
|
extra_kwarg = kwargs.pop('extra_kwarg', 1)
|
||
|
return stats.norm._pdf(x) * extra_kwarg
|
||
|
|
||
|
dist = _distr_gen(shapes='extra_kwarg')
|
||
|
assert_equal(dist.pdf(1, extra_kwarg=3), stats.norm.pdf(1))
|
||
|
|
||
|
def test_shapes_empty_string(self):
|
||
|
# shapes='' is equivalent to shapes=None
|
||
|
class _dist_gen(stats.rv_continuous):
|
||
|
def _pdf(self, x):
|
||
|
return stats.norm.pdf(x)
|
||
|
|
||
|
dist = _dist_gen(shapes='')
|
||
|
assert_equal(dist.pdf(0.5), stats.norm.pdf(0.5))
|
||
|
|
||
|
|
||
|
class TestSubclassingNoShapes:
|
||
|
# Construct a distribution w/o explicit shapes parameter and test it.
|
||
|
|
||
|
def test_only__pdf(self):
|
||
|
dummy_distr = _distr_gen(name='dummy')
|
||
|
assert_equal(dummy_distr.pdf(1, a=1), 42)
|
||
|
|
||
|
def test_only__cdf(self):
|
||
|
# _pdf is determined from _cdf by taking numerical derivative
|
||
|
dummy_distr = _distr2_gen(name='dummy')
|
||
|
assert_almost_equal(dummy_distr.pdf(1, a=1), 1)
|
||
|
|
||
|
@pytest.mark.skipif(DOCSTRINGS_STRIPPED, reason="docstring stripped")
|
||
|
def test_signature_inspection(self):
|
||
|
# check that _pdf signature inspection works correctly, and is used in
|
||
|
# the class docstring
|
||
|
dummy_distr = _distr_gen(name='dummy')
|
||
|
assert_equal(dummy_distr.numargs, 1)
|
||
|
assert_equal(dummy_distr.shapes, 'a')
|
||
|
res = re.findall(r'logpdf\(x, a, loc=0, scale=1\)',
|
||
|
dummy_distr.__doc__)
|
||
|
assert_(len(res) == 1)
|
||
|
|
||
|
@pytest.mark.skipif(DOCSTRINGS_STRIPPED, reason="docstring stripped")
|
||
|
def test_signature_inspection_2args(self):
|
||
|
# same for 2 shape params and both _pdf and _cdf defined
|
||
|
dummy_distr = _distr6_gen(name='dummy')
|
||
|
assert_equal(dummy_distr.numargs, 2)
|
||
|
assert_equal(dummy_distr.shapes, 'a, b')
|
||
|
res = re.findall(r'logpdf\(x, a, b, loc=0, scale=1\)',
|
||
|
dummy_distr.__doc__)
|
||
|
assert_(len(res) == 1)
|
||
|
|
||
|
def test_signature_inspection_2args_incorrect_shapes(self):
|
||
|
# both _pdf and _cdf defined, but shapes are inconsistent: raises
|
||
|
assert_raises(TypeError, _distr3_gen, name='dummy')
|
||
|
|
||
|
def test_defaults_raise(self):
|
||
|
# default arguments should raise
|
||
|
class _dist_gen(stats.rv_continuous):
|
||
|
def _pdf(self, x, a=42):
|
||
|
return 42
|
||
|
assert_raises(TypeError, _dist_gen, **dict(name='dummy'))
|
||
|
|
||
|
def test_starargs_raise(self):
|
||
|
# without explicit shapes, *args are not allowed
|
||
|
class _dist_gen(stats.rv_continuous):
|
||
|
def _pdf(self, x, a, *args):
|
||
|
return 42
|
||
|
assert_raises(TypeError, _dist_gen, **dict(name='dummy'))
|
||
|
|
||
|
def test_kwargs_raise(self):
|
||
|
# without explicit shapes, **kwargs are not allowed
|
||
|
class _dist_gen(stats.rv_continuous):
|
||
|
def _pdf(self, x, a, **kwargs):
|
||
|
return 42
|
||
|
assert_raises(TypeError, _dist_gen, **dict(name='dummy'))
|
||
|
|
||
|
|
||
|
@pytest.mark.skipif(DOCSTRINGS_STRIPPED, reason="docstring stripped")
|
||
|
def test_docstrings():
|
||
|
badones = [r',\s*,', r'\(\s*,', r'^\s*:']
|
||
|
for distname in stats.__all__:
|
||
|
dist = getattr(stats, distname)
|
||
|
if isinstance(dist, (stats.rv_discrete, stats.rv_continuous)):
|
||
|
for regex in badones:
|
||
|
assert_(re.search(regex, dist.__doc__) is None)
|
||
|
|
||
|
|
||
|
def test_infinite_input():
|
||
|
assert_almost_equal(stats.skellam.sf(np.inf, 10, 11), 0)
|
||
|
assert_almost_equal(stats.ncx2._cdf(np.inf, 8, 0.1), 1)
|
||
|
|
||
|
|
||
|
def test_lomax_accuracy():
|
||
|
# regression test for gh-4033
|
||
|
p = stats.lomax.ppf(stats.lomax.cdf(1e-100, 1), 1)
|
||
|
assert_allclose(p, 1e-100)
|
||
|
|
||
|
|
||
|
def test_truncexpon_accuracy():
|
||
|
# regression test for gh-4035
|
||
|
p = stats.truncexpon.ppf(stats.truncexpon.cdf(1e-100, 1), 1)
|
||
|
assert_allclose(p, 1e-100)
|
||
|
|
||
|
|
||
|
def test_rayleigh_accuracy():
|
||
|
# regression test for gh-4034
|
||
|
p = stats.rayleigh.isf(stats.rayleigh.sf(9, 1), 1)
|
||
|
assert_almost_equal(p, 9.0, decimal=15)
|
||
|
|
||
|
|
||
|
def test_genextreme_give_no_warnings():
|
||
|
"""regression test for gh-6219"""
|
||
|
|
||
|
with warnings.catch_warnings(record=True) as w:
|
||
|
warnings.simplefilter("always")
|
||
|
|
||
|
stats.genextreme.cdf(.5, 0)
|
||
|
stats.genextreme.pdf(.5, 0)
|
||
|
stats.genextreme.ppf(.5, 0)
|
||
|
stats.genextreme.logpdf(-np.inf, 0.0)
|
||
|
number_of_warnings_thrown = len(w)
|
||
|
assert_equal(number_of_warnings_thrown, 0)
|
||
|
|
||
|
|
||
|
def test_genextreme_entropy():
|
||
|
# regression test for gh-5181
|
||
|
euler_gamma = 0.5772156649015329
|
||
|
|
||
|
h = stats.genextreme.entropy(-1.0)
|
||
|
assert_allclose(h, 2*euler_gamma + 1, rtol=1e-14)
|
||
|
|
||
|
h = stats.genextreme.entropy(0)
|
||
|
assert_allclose(h, euler_gamma + 1, rtol=1e-14)
|
||
|
|
||
|
h = stats.genextreme.entropy(1.0)
|
||
|
assert_equal(h, 1)
|
||
|
|
||
|
h = stats.genextreme.entropy(-2.0, scale=10)
|
||
|
assert_allclose(h, euler_gamma*3 + np.log(10) + 1, rtol=1e-14)
|
||
|
|
||
|
h = stats.genextreme.entropy(10)
|
||
|
assert_allclose(h, -9*euler_gamma + 1, rtol=1e-14)
|
||
|
|
||
|
h = stats.genextreme.entropy(-10)
|
||
|
assert_allclose(h, 11*euler_gamma + 1, rtol=1e-14)
|
||
|
|
||
|
|
||
|
def test_genextreme_sf_isf():
|
||
|
# Expected values were computed using mpmath:
|
||
|
#
|
||
|
# import mpmath
|
||
|
#
|
||
|
# def mp_genextreme_sf(x, xi, mu=0, sigma=1):
|
||
|
# # Formula from wikipedia, which has a sign convention for xi that
|
||
|
# # is the opposite of scipy's shape parameter.
|
||
|
# if xi != 0:
|
||
|
# t = mpmath.power(1 + ((x - mu)/sigma)*xi, -1/xi)
|
||
|
# else:
|
||
|
# t = mpmath.exp(-(x - mu)/sigma)
|
||
|
# return 1 - mpmath.exp(-t)
|
||
|
#
|
||
|
# >>> mpmath.mp.dps = 1000
|
||
|
# >>> s = mp_genextreme_sf(mpmath.mp.mpf("1e8"), mpmath.mp.mpf("0.125"))
|
||
|
# >>> float(s)
|
||
|
# 1.6777205262585625e-57
|
||
|
# >>> s = mp_genextreme_sf(mpmath.mp.mpf("7.98"), mpmath.mp.mpf("-0.125"))
|
||
|
# >>> float(s)
|
||
|
# 1.52587890625e-21
|
||
|
# >>> s = mp_genextreme_sf(mpmath.mp.mpf("7.98"), mpmath.mp.mpf("0"))
|
||
|
# >>> float(s)
|
||
|
# 0.00034218086528426593
|
||
|
|
||
|
x = 1e8
|
||
|
s = stats.genextreme.sf(x, -0.125)
|
||
|
assert_allclose(s, 1.6777205262585625e-57)
|
||
|
x2 = stats.genextreme.isf(s, -0.125)
|
||
|
assert_allclose(x2, x)
|
||
|
|
||
|
x = 7.98
|
||
|
s = stats.genextreme.sf(x, 0.125)
|
||
|
assert_allclose(s, 1.52587890625e-21)
|
||
|
x2 = stats.genextreme.isf(s, 0.125)
|
||
|
assert_allclose(x2, x)
|
||
|
|
||
|
x = 7.98
|
||
|
s = stats.genextreme.sf(x, 0)
|
||
|
assert_allclose(s, 0.00034218086528426593)
|
||
|
x2 = stats.genextreme.isf(s, 0)
|
||
|
assert_allclose(x2, x)
|
||
|
|
||
|
|
||
|
def test_burr12_ppf_small_arg():
|
||
|
prob = 1e-16
|
||
|
quantile = stats.burr12.ppf(prob, 2, 3)
|
||
|
# The expected quantile was computed using mpmath:
|
||
|
# >>> import mpmath
|
||
|
# >>> mpmath.mp.dps = 100
|
||
|
# >>> prob = mpmath.mpf('1e-16')
|
||
|
# >>> c = mpmath.mpf(2)
|
||
|
# >>> d = mpmath.mpf(3)
|
||
|
# >>> float(((1-prob)**(-1/d) - 1)**(1/c))
|
||
|
# 5.7735026918962575e-09
|
||
|
assert_allclose(quantile, 5.7735026918962575e-09)
|
||
|
|
||
|
|
||
|
def test_crystalball_function():
|
||
|
"""
|
||
|
All values are calculated using the independent implementation of the
|
||
|
ROOT framework (see https://root.cern.ch/).
|
||
|
Corresponding ROOT code is given in the comments.
|
||
|
"""
|
||
|
X = np.linspace(-5.0, 5.0, 21)[:-1]
|
||
|
|
||
|
# for(float x = -5.0; x < 5.0; x+=0.5)
|
||
|
# std::cout << ROOT::Math::crystalball_pdf(x, 1.0, 2.0, 1.0) << ", ";
|
||
|
calculated = stats.crystalball.pdf(X, beta=1.0, m=2.0)
|
||
|
expected = np.array([0.0202867, 0.0241428, 0.0292128, 0.0360652, 0.045645,
|
||
|
0.059618, 0.0811467, 0.116851, 0.18258, 0.265652,
|
||
|
0.301023, 0.265652, 0.18258, 0.097728, 0.0407391,
|
||
|
0.013226, 0.00334407, 0.000658486, 0.000100982,
|
||
|
1.20606e-05])
|
||
|
assert_allclose(expected, calculated, rtol=0.001)
|
||
|
|
||
|
# for(float x = -5.0; x < 5.0; x+=0.5)
|
||
|
# std::cout << ROOT::Math::crystalball_pdf(x, 2.0, 3.0, 1.0) << ", ";
|
||
|
calculated = stats.crystalball.pdf(X, beta=2.0, m=3.0)
|
||
|
expected = np.array([0.0019648, 0.00279754, 0.00417592, 0.00663121,
|
||
|
0.0114587, 0.0223803, 0.0530497, 0.12726, 0.237752,
|
||
|
0.345928, 0.391987, 0.345928, 0.237752, 0.12726,
|
||
|
0.0530497, 0.0172227, 0.00435458, 0.000857469,
|
||
|
0.000131497, 1.57051e-05])
|
||
|
assert_allclose(expected, calculated, rtol=0.001)
|
||
|
|
||
|
# for(float x = -5.0; x < 5.0; x+=0.5) {
|
||
|
# std::cout << ROOT::Math::crystalball_pdf(x, 2.0, 3.0, 2.0, 0.5);
|
||
|
# std::cout << ", ";
|
||
|
# }
|
||
|
calculated = stats.crystalball.pdf(X, beta=2.0, m=3.0, loc=0.5, scale=2.0)
|
||
|
expected = np.array([0.00785921, 0.0111902, 0.0167037, 0.0265249,
|
||
|
0.0423866, 0.0636298, 0.0897324, 0.118876, 0.147944,
|
||
|
0.172964, 0.189964, 0.195994, 0.189964, 0.172964,
|
||
|
0.147944, 0.118876, 0.0897324, 0.0636298, 0.0423866,
|
||
|
0.0265249])
|
||
|
assert_allclose(expected, calculated, rtol=0.001)
|
||
|
|
||
|
# for(float x = -5.0; x < 5.0; x+=0.5)
|
||
|
# std::cout << ROOT::Math::crystalball_cdf(x, 1.0, 2.0, 1.0) << ", ";
|
||
|
calculated = stats.crystalball.cdf(X, beta=1.0, m=2.0)
|
||
|
expected = np.array([0.12172, 0.132785, 0.146064, 0.162293, 0.18258,
|
||
|
0.208663, 0.24344, 0.292128, 0.36516, 0.478254,
|
||
|
0.622723, 0.767192, 0.880286, 0.94959, 0.982834,
|
||
|
0.995314, 0.998981, 0.999824, 0.999976, 0.999997])
|
||
|
assert_allclose(expected, calculated, rtol=0.001)
|
||
|
|
||
|
# for(float x = -5.0; x < 5.0; x+=0.5)
|
||
|
# std::cout << ROOT::Math::crystalball_cdf(x, 2.0, 3.0, 1.0) << ", ";
|
||
|
calculated = stats.crystalball.cdf(X, beta=2.0, m=3.0)
|
||
|
expected = np.array([0.00442081, 0.00559509, 0.00730787, 0.00994682,
|
||
|
0.0143234, 0.0223803, 0.0397873, 0.0830763, 0.173323,
|
||
|
0.320592, 0.508717, 0.696841, 0.844111, 0.934357,
|
||
|
0.977646, 0.993899, 0.998674, 0.999771, 0.999969,
|
||
|
0.999997])
|
||
|
assert_allclose(expected, calculated, rtol=0.001)
|
||
|
|
||
|
# for(float x = -5.0; x < 5.0; x+=0.5) {
|
||
|
# std::cout << ROOT::Math::crystalball_cdf(x, 2.0, 3.0, 2.0, 0.5);
|
||
|
# std::cout << ", ";
|
||
|
# }
|
||
|
calculated = stats.crystalball.cdf(X, beta=2.0, m=3.0, loc=0.5, scale=2.0)
|
||
|
expected = np.array([0.0176832, 0.0223803, 0.0292315, 0.0397873, 0.0567945,
|
||
|
0.0830763, 0.121242, 0.173323, 0.24011, 0.320592,
|
||
|
0.411731, 0.508717, 0.605702, 0.696841, 0.777324,
|
||
|
0.844111, 0.896192, 0.934357, 0.960639, 0.977646])
|
||
|
assert_allclose(expected, calculated, rtol=0.001)
|
||
|
|
||
|
|
||
|
def test_crystalball_function_moments():
|
||
|
"""
|
||
|
All values are calculated using the pdf formula and the integrate function
|
||
|
of Mathematica
|
||
|
"""
|
||
|
# The Last two (alpha, n) pairs test the special case n == alpha**2
|
||
|
beta = np.array([2.0, 1.0, 3.0, 2.0, 3.0])
|
||
|
m = np.array([3.0, 3.0, 2.0, 4.0, 9.0])
|
||
|
|
||
|
# The distribution should be correctly normalised
|
||
|
expected_0th_moment = np.array([1.0, 1.0, 1.0, 1.0, 1.0])
|
||
|
calculated_0th_moment = stats.crystalball._munp(0, beta, m)
|
||
|
assert_allclose(expected_0th_moment, calculated_0th_moment, rtol=0.001)
|
||
|
|
||
|
# calculated using wolframalpha.com
|
||
|
# e.g. for beta = 2 and m = 3 we calculate the norm like this:
|
||
|
# integrate exp(-x^2/2) from -2 to infinity +
|
||
|
# integrate (3/2)^3*exp(-2^2/2)*(3/2-2-x)^(-3) from -infinity to -2
|
||
|
norm = np.array([2.5511, 3.01873, 2.51065, 2.53983, 2.507410455])
|
||
|
|
||
|
a = np.array([-0.21992, -3.03265, np.inf, -0.135335, -0.003174])
|
||
|
expected_1th_moment = a / norm
|
||
|
calculated_1th_moment = stats.crystalball._munp(1, beta, m)
|
||
|
assert_allclose(expected_1th_moment, calculated_1th_moment, rtol=0.001)
|
||
|
|
||
|
a = np.array([np.inf, np.inf, np.inf, 3.2616, 2.519908])
|
||
|
expected_2th_moment = a / norm
|
||
|
calculated_2th_moment = stats.crystalball._munp(2, beta, m)
|
||
|
assert_allclose(expected_2th_moment, calculated_2th_moment, rtol=0.001)
|
||
|
|
||
|
a = np.array([np.inf, np.inf, np.inf, np.inf, -0.0577668])
|
||
|
expected_3th_moment = a / norm
|
||
|
calculated_3th_moment = stats.crystalball._munp(3, beta, m)
|
||
|
assert_allclose(expected_3th_moment, calculated_3th_moment, rtol=0.001)
|
||
|
|
||
|
a = np.array([np.inf, np.inf, np.inf, np.inf, 7.78468])
|
||
|
expected_4th_moment = a / norm
|
||
|
calculated_4th_moment = stats.crystalball._munp(4, beta, m)
|
||
|
assert_allclose(expected_4th_moment, calculated_4th_moment, rtol=0.001)
|
||
|
|
||
|
a = np.array([np.inf, np.inf, np.inf, np.inf, -1.31086])
|
||
|
expected_5th_moment = a / norm
|
||
|
calculated_5th_moment = stats.crystalball._munp(5, beta, m)
|
||
|
assert_allclose(expected_5th_moment, calculated_5th_moment, rtol=0.001)
|
||
|
|
||
|
|
||
|
def test_crystalball_entropy():
|
||
|
# regression test for gh-13602
|
||
|
cb = stats.crystalball(2, 3)
|
||
|
res1 = cb.entropy()
|
||
|
# -20000 and 30 are negative and positive infinity, respectively
|
||
|
lo, hi, N = -20000, 30, 200000
|
||
|
x = np.linspace(lo, hi, N)
|
||
|
res2 = trapezoid(entr(cb.pdf(x)), x)
|
||
|
assert_allclose(res1, res2, rtol=1e-7)
|
||
|
|
||
|
|
||
|
def test_invweibull_fit():
|
||
|
"""
|
||
|
Test fitting invweibull to data.
|
||
|
|
||
|
Here is a the same calculation in R:
|
||
|
|
||
|
> library(evd)
|
||
|
> library(fitdistrplus)
|
||
|
> x = c(1, 1.25, 2, 2.5, 2.8, 3, 3.8, 4, 5, 8, 10, 12, 64, 99)
|
||
|
> result = fitdist(x, 'frechet', control=list(reltol=1e-13),
|
||
|
+ fix.arg=list(loc=0), start=list(shape=2, scale=3))
|
||
|
> result
|
||
|
Fitting of the distribution ' frechet ' by maximum likelihood
|
||
|
Parameters:
|
||
|
estimate Std. Error
|
||
|
shape 1.048482 0.2261815
|
||
|
scale 3.099456 0.8292887
|
||
|
Fixed parameters:
|
||
|
value
|
||
|
loc 0
|
||
|
|
||
|
"""
|
||
|
|
||
|
def optimizer(func, x0, args=(), disp=0):
|
||
|
return fmin(func, x0, args=args, disp=disp, xtol=1e-12, ftol=1e-12)
|
||
|
|
||
|
x = np.array([1, 1.25, 2, 2.5, 2.8, 3, 3.8, 4, 5, 8, 10, 12, 64, 99])
|
||
|
c, loc, scale = stats.invweibull.fit(x, floc=0, optimizer=optimizer)
|
||
|
assert_allclose(c, 1.048482, rtol=5e-6)
|
||
|
assert loc == 0
|
||
|
assert_allclose(scale, 3.099456, rtol=5e-6)
|
||
|
|
||
|
|
||
|
# Expected values were computed with mpmath.
|
||
|
@pytest.mark.parametrize('x, c, expected',
|
||
|
[(3, 1.5, 0.175064510070713299327),
|
||
|
(2000, 1.5, 1.11802773877318715787e-5),
|
||
|
(2000, 9.25, 2.92060308832269637092e-31),
|
||
|
(1e15, 1.5, 3.16227766016837933199884e-23)])
|
||
|
def test_invweibull_sf(x, c, expected):
|
||
|
computed = stats.invweibull.sf(x, c)
|
||
|
assert_allclose(computed, expected, rtol=1e-15)
|
||
|
|
||
|
|
||
|
# Expected values were computed with mpmath.
|
||
|
@pytest.mark.parametrize('p, c, expected',
|
||
|
[(0.5, 2.5, 1.15789669836468183976),
|
||
|
(3e-18, 5, 3195.77171838060906447)])
|
||
|
def test_invweibull_isf(p, c, expected):
|
||
|
computed = stats.invweibull.isf(p, c)
|
||
|
assert_allclose(computed, expected, rtol=1e-15)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
'df1,df2,x',
|
||
|
[(2, 2, [-0.5, 0.2, 1.0, 2.3]),
|
||
|
(4, 11, [-0.5, 0.2, 1.0, 2.3]),
|
||
|
(7, 17, [1, 2, 3, 4, 5])]
|
||
|
)
|
||
|
def test_ncf_edge_case(df1, df2, x):
|
||
|
# Test for edge case described in gh-11660.
|
||
|
# Non-central Fisher distribution when nc = 0
|
||
|
# should be the same as Fisher distribution.
|
||
|
nc = 0
|
||
|
expected_cdf = stats.f.cdf(x, df1, df2)
|
||
|
calculated_cdf = stats.ncf.cdf(x, df1, df2, nc)
|
||
|
assert_allclose(expected_cdf, calculated_cdf, rtol=1e-14)
|
||
|
|
||
|
# when ncf_gen._skip_pdf will be used instead of generic pdf,
|
||
|
# this additional test will be useful.
|
||
|
expected_pdf = stats.f.pdf(x, df1, df2)
|
||
|
calculated_pdf = stats.ncf.pdf(x, df1, df2, nc)
|
||
|
assert_allclose(expected_pdf, calculated_pdf, rtol=1e-6)
|
||
|
|
||
|
|
||
|
def test_ncf_variance():
|
||
|
# Regression test for gh-10658 (incorrect variance formula for ncf).
|
||
|
# The correct value of ncf.var(2, 6, 4), 42.75, can be verified with, for
|
||
|
# example, Wolfram Alpha with the expression
|
||
|
# Variance[NoncentralFRatioDistribution[2, 6, 4]]
|
||
|
# or with the implementation of the noncentral F distribution in the C++
|
||
|
# library Boost.
|
||
|
v = stats.ncf.var(2, 6, 4)
|
||
|
assert_allclose(v, 42.75, rtol=1e-14)
|
||
|
|
||
|
|
||
|
def test_ncf_cdf_spotcheck():
|
||
|
# Regression test for gh-15582 testing against values from R/MATLAB
|
||
|
# Generate check_val from R or MATLAB as follows:
|
||
|
# R: pf(20, df1 = 6, df2 = 33, ncp = 30.4) = 0.998921
|
||
|
# MATLAB: ncfcdf(20, 6, 33, 30.4) = 0.998921
|
||
|
scipy_val = stats.ncf.cdf(20, 6, 33, 30.4)
|
||
|
check_val = 0.998921
|
||
|
assert_allclose(check_val, np.round(scipy_val, decimals=6))
|
||
|
|
||
|
|
||
|
@pytest.mark.skipif(sys.maxsize <= 2**32,
|
||
|
reason="On some 32-bit the warning is not raised")
|
||
|
def test_ncf_ppf_issue_17026():
|
||
|
# Regression test for gh-17026
|
||
|
x = np.linspace(0, 1, 600)
|
||
|
x[0] = 1e-16
|
||
|
par = (0.1, 2, 5, 0, 1)
|
||
|
with pytest.warns(RuntimeWarning):
|
||
|
q = stats.ncf.ppf(x, *par)
|
||
|
q0 = [stats.ncf.ppf(xi, *par) for xi in x]
|
||
|
assert_allclose(q, q0)
|
||
|
|
||
|
|
||
|
class TestHistogram:
|
||
|
def setup_method(self):
|
||
|
np.random.seed(1234)
|
||
|
|
||
|
# We have 8 bins
|
||
|
# [1,2), [2,3), [3,4), [4,5), [5,6), [6,7), [7,8), [8,9)
|
||
|
# But actually np.histogram will put the last 9 also in the [8,9) bin!
|
||
|
# Therefore there is a slight difference below for the last bin, from
|
||
|
# what you might have expected.
|
||
|
histogram = np.histogram([1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5,
|
||
|
6, 6, 6, 6, 7, 7, 7, 8, 8, 9], bins=8)
|
||
|
self.template = stats.rv_histogram(histogram)
|
||
|
|
||
|
data = stats.norm.rvs(loc=1.0, scale=2.5, size=10000, random_state=123)
|
||
|
norm_histogram = np.histogram(data, bins=50)
|
||
|
self.norm_template = stats.rv_histogram(norm_histogram)
|
||
|
|
||
|
def test_pdf(self):
|
||
|
values = np.array([0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5,
|
||
|
5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5])
|
||
|
pdf_values = np.asarray([0.0/25.0, 0.0/25.0, 1.0/25.0, 1.0/25.0,
|
||
|
2.0/25.0, 2.0/25.0, 3.0/25.0, 3.0/25.0,
|
||
|
4.0/25.0, 4.0/25.0, 5.0/25.0, 5.0/25.0,
|
||
|
4.0/25.0, 4.0/25.0, 3.0/25.0, 3.0/25.0,
|
||
|
3.0/25.0, 3.0/25.0, 0.0/25.0, 0.0/25.0])
|
||
|
assert_allclose(self.template.pdf(values), pdf_values)
|
||
|
|
||
|
# Test explicitly the corner cases:
|
||
|
# As stated above the pdf in the bin [8,9) is greater than
|
||
|
# one would naively expect because np.histogram putted the 9
|
||
|
# into the [8,9) bin.
|
||
|
assert_almost_equal(self.template.pdf(8.0), 3.0/25.0)
|
||
|
assert_almost_equal(self.template.pdf(8.5), 3.0/25.0)
|
||
|
# 9 is outside our defined bins [8,9) hence the pdf is already 0
|
||
|
# for a continuous distribution this is fine, because a single value
|
||
|
# does not have a finite probability!
|
||
|
assert_almost_equal(self.template.pdf(9.0), 0.0/25.0)
|
||
|
assert_almost_equal(self.template.pdf(10.0), 0.0/25.0)
|
||
|
|
||
|
x = np.linspace(-2, 2, 10)
|
||
|
assert_allclose(self.norm_template.pdf(x),
|
||
|
stats.norm.pdf(x, loc=1.0, scale=2.5), rtol=0.1)
|
||
|
|
||
|
def test_cdf_ppf(self):
|
||
|
values = np.array([0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5,
|
||
|
5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5])
|
||
|
cdf_values = np.asarray([0.0/25.0, 0.0/25.0, 0.0/25.0, 0.5/25.0,
|
||
|
1.0/25.0, 2.0/25.0, 3.0/25.0, 4.5/25.0,
|
||
|
6.0/25.0, 8.0/25.0, 10.0/25.0, 12.5/25.0,
|
||
|
15.0/25.0, 17.0/25.0, 19.0/25.0, 20.5/25.0,
|
||
|
22.0/25.0, 23.5/25.0, 25.0/25.0, 25.0/25.0])
|
||
|
assert_allclose(self.template.cdf(values), cdf_values)
|
||
|
# First three and last two values in cdf_value are not unique
|
||
|
assert_allclose(self.template.ppf(cdf_values[2:-1]), values[2:-1])
|
||
|
|
||
|
# Test of cdf and ppf are inverse functions
|
||
|
x = np.linspace(1.0, 9.0, 100)
|
||
|
assert_allclose(self.template.ppf(self.template.cdf(x)), x)
|
||
|
x = np.linspace(0.0, 1.0, 100)
|
||
|
assert_allclose(self.template.cdf(self.template.ppf(x)), x)
|
||
|
|
||
|
x = np.linspace(-2, 2, 10)
|
||
|
assert_allclose(self.norm_template.cdf(x),
|
||
|
stats.norm.cdf(x, loc=1.0, scale=2.5), rtol=0.1)
|
||
|
|
||
|
def test_rvs(self):
|
||
|
N = 10000
|
||
|
sample = self.template.rvs(size=N, random_state=123)
|
||
|
assert_equal(np.sum(sample < 1.0), 0.0)
|
||
|
assert_allclose(np.sum(sample <= 2.0), 1.0/25.0 * N, rtol=0.2)
|
||
|
assert_allclose(np.sum(sample <= 2.5), 2.0/25.0 * N, rtol=0.2)
|
||
|
assert_allclose(np.sum(sample <= 3.0), 3.0/25.0 * N, rtol=0.1)
|
||
|
assert_allclose(np.sum(sample <= 3.5), 4.5/25.0 * N, rtol=0.1)
|
||
|
assert_allclose(np.sum(sample <= 4.0), 6.0/25.0 * N, rtol=0.1)
|
||
|
assert_allclose(np.sum(sample <= 4.5), 8.0/25.0 * N, rtol=0.1)
|
||
|
assert_allclose(np.sum(sample <= 5.0), 10.0/25.0 * N, rtol=0.05)
|
||
|
assert_allclose(np.sum(sample <= 5.5), 12.5/25.0 * N, rtol=0.05)
|
||
|
assert_allclose(np.sum(sample <= 6.0), 15.0/25.0 * N, rtol=0.05)
|
||
|
assert_allclose(np.sum(sample <= 6.5), 17.0/25.0 * N, rtol=0.05)
|
||
|
assert_allclose(np.sum(sample <= 7.0), 19.0/25.0 * N, rtol=0.05)
|
||
|
assert_allclose(np.sum(sample <= 7.5), 20.5/25.0 * N, rtol=0.05)
|
||
|
assert_allclose(np.sum(sample <= 8.0), 22.0/25.0 * N, rtol=0.05)
|
||
|
assert_allclose(np.sum(sample <= 8.5), 23.5/25.0 * N, rtol=0.05)
|
||
|
assert_allclose(np.sum(sample <= 9.0), 25.0/25.0 * N, rtol=0.05)
|
||
|
assert_allclose(np.sum(sample <= 9.0), 25.0/25.0 * N, rtol=0.05)
|
||
|
assert_equal(np.sum(sample > 9.0), 0.0)
|
||
|
|
||
|
def test_munp(self):
|
||
|
for n in range(4):
|
||
|
assert_allclose(self.norm_template._munp(n),
|
||
|
stats.norm(1.0, 2.5).moment(n), rtol=0.05)
|
||
|
|
||
|
def test_entropy(self):
|
||
|
assert_allclose(self.norm_template.entropy(),
|
||
|
stats.norm.entropy(loc=1.0, scale=2.5), rtol=0.05)
|
||
|
|
||
|
|
||
|
def test_histogram_non_uniform():
|
||
|
# Tests rv_histogram works even for non-uniform bin widths
|
||
|
counts, bins = ([1, 1], [0, 1, 1001])
|
||
|
|
||
|
dist = stats.rv_histogram((counts, bins), density=False)
|
||
|
np.testing.assert_allclose(dist.pdf([0.5, 200]), [0.5, 0.0005])
|
||
|
assert dist.median() == 1
|
||
|
|
||
|
dist = stats.rv_histogram((counts, bins), density=True)
|
||
|
np.testing.assert_allclose(dist.pdf([0.5, 200]), 1/1001)
|
||
|
assert dist.median() == 1001/2
|
||
|
|
||
|
# Omitting density produces a warning for non-uniform bins...
|
||
|
message = "Bin widths are not constant. Assuming..."
|
||
|
with pytest.warns(RuntimeWarning, match=message):
|
||
|
dist = stats.rv_histogram((counts, bins))
|
||
|
assert dist.median() == 1001/2 # default is like `density=True`
|
||
|
|
||
|
# ... but not for uniform bins
|
||
|
dist = stats.rv_histogram((counts, [0, 1, 2]))
|
||
|
assert dist.median() == 1
|
||
|
|
||
|
|
||
|
class TestLogUniform:
|
||
|
def test_alias(self):
|
||
|
# This test makes sure that "reciprocal" and "loguniform" are
|
||
|
# aliases of the same distribution and that both are log-uniform
|
||
|
rng = np.random.default_rng(98643218961)
|
||
|
rv = stats.loguniform(10 ** -3, 10 ** 0)
|
||
|
rvs = rv.rvs(size=10000, random_state=rng)
|
||
|
|
||
|
rng = np.random.default_rng(98643218961)
|
||
|
rv2 = stats.reciprocal(10 ** -3, 10 ** 0)
|
||
|
rvs2 = rv2.rvs(size=10000, random_state=rng)
|
||
|
|
||
|
assert_allclose(rvs2, rvs)
|
||
|
|
||
|
vals, _ = np.histogram(np.log10(rvs), bins=10)
|
||
|
assert 900 <= vals.min() <= vals.max() <= 1100
|
||
|
assert np.abs(np.median(vals) - 1000) <= 10
|
||
|
|
||
|
@pytest.mark.parametrize("method", ['mle', 'mm'])
|
||
|
def test_fit_override(self, method):
|
||
|
# loguniform is overparameterized, so check that fit override enforces
|
||
|
# scale=1 unless fscale is provided by the user
|
||
|
rng = np.random.default_rng(98643218961)
|
||
|
rvs = stats.loguniform.rvs(0.1, 1, size=1000, random_state=rng)
|
||
|
|
||
|
a, b, loc, scale = stats.loguniform.fit(rvs, method=method)
|
||
|
assert scale == 1
|
||
|
|
||
|
a, b, loc, scale = stats.loguniform.fit(rvs, fscale=2, method=method)
|
||
|
assert scale == 2
|
||
|
|
||
|
def test_overflow(self):
|
||
|
# original formulation had overflow issues; check that this is resolved
|
||
|
# Extensive accuracy tests elsewhere, no need to test all methods
|
||
|
rng = np.random.default_rng(7136519550773909093)
|
||
|
a, b = 1e-200, 1e200
|
||
|
dist = stats.loguniform(a, b)
|
||
|
|
||
|
# test roundtrip error
|
||
|
cdf = rng.uniform(0, 1, size=1000)
|
||
|
assert_allclose(dist.cdf(dist.ppf(cdf)), cdf)
|
||
|
rvs = dist.rvs(size=1000)
|
||
|
assert_allclose(dist.ppf(dist.cdf(rvs)), rvs)
|
||
|
|
||
|
# test a property of the pdf (and that there is no overflow)
|
||
|
x = 10.**np.arange(-200, 200)
|
||
|
pdf = dist.pdf(x) # no overflow
|
||
|
assert_allclose(pdf[:-1]/pdf[1:], 10)
|
||
|
|
||
|
# check munp against wikipedia reference
|
||
|
mean = (b - a)/(np.log(b) - np.log(a))
|
||
|
assert_allclose(dist.mean(), mean)
|
||
|
|
||
|
|
||
|
class TestArgus:
|
||
|
def test_argus_rvs_large_chi(self):
|
||
|
# test that the algorithm can handle large values of chi
|
||
|
x = stats.argus.rvs(50, size=500, random_state=325)
|
||
|
assert_almost_equal(stats.argus(50).mean(), x.mean(), decimal=4)
|
||
|
|
||
|
@pytest.mark.parametrize('chi, random_state', [
|
||
|
[0.1, 325], # chi <= 0.5: rejection method case 1
|
||
|
[1.3, 155], # 0.5 < chi <= 1.8: rejection method case 2
|
||
|
[3.5, 135] # chi > 1.8: transform conditional Gamma distribution
|
||
|
])
|
||
|
def test_rvs(self, chi, random_state):
|
||
|
x = stats.argus.rvs(chi, size=500, random_state=random_state)
|
||
|
_, p = stats.kstest(x, "argus", (chi, ))
|
||
|
assert_(p > 0.05)
|
||
|
|
||
|
@pytest.mark.parametrize('chi', [1e-9, 1e-6])
|
||
|
def test_rvs_small_chi(self, chi):
|
||
|
# test for gh-11699 => rejection method case 1 can even handle chi=0
|
||
|
# the CDF of the distribution for chi=0 is 1 - (1 - x**2)**(3/2)
|
||
|
# test rvs against distribution of limit chi=0
|
||
|
r = stats.argus.rvs(chi, size=500, random_state=890981)
|
||
|
_, p = stats.kstest(r, lambda x: 1 - (1 - x**2)**(3/2))
|
||
|
assert_(p > 0.05)
|
||
|
|
||
|
# Expected values were computed with mpmath.
|
||
|
@pytest.mark.parametrize('chi, expected_mean',
|
||
|
[(1, 0.6187026683551835),
|
||
|
(10, 0.984805536783744),
|
||
|
(40, 0.9990617659702923),
|
||
|
(60, 0.9995831885165300),
|
||
|
(99, 0.9998469348663028)])
|
||
|
def test_mean(self, chi, expected_mean):
|
||
|
m = stats.argus.mean(chi, scale=1)
|
||
|
assert_allclose(m, expected_mean, rtol=1e-13)
|
||
|
|
||
|
# Expected values were computed with mpmath.
|
||
|
@pytest.mark.parametrize('chi, expected_var, rtol',
|
||
|
[(1, 0.05215651254197807, 1e-13),
|
||
|
(10, 0.00015805472008165595, 1e-11),
|
||
|
(40, 5.877763210262901e-07, 1e-8),
|
||
|
(60, 1.1590179389611416e-07, 1e-8),
|
||
|
(99, 1.5623277006064666e-08, 1e-8)])
|
||
|
def test_var(self, chi, expected_var, rtol):
|
||
|
v = stats.argus.var(chi, scale=1)
|
||
|
assert_allclose(v, expected_var, rtol=rtol)
|
||
|
|
||
|
# Expected values were computed with mpmath (code: see gh-13370).
|
||
|
@pytest.mark.parametrize('chi, expected, rtol',
|
||
|
[(0.9, 0.07646314974436118, 1e-14),
|
||
|
(0.5, 0.015429797891863365, 1e-14),
|
||
|
(0.1, 0.0001325825293278049, 1e-14),
|
||
|
(0.01, 1.3297677078224565e-07, 1e-15),
|
||
|
(1e-3, 1.3298072023958999e-10, 1e-14),
|
||
|
(1e-4, 1.3298075973486862e-13, 1e-14),
|
||
|
(1e-6, 1.32980760133771e-19, 1e-14),
|
||
|
(1e-9, 1.329807601338109e-28, 1e-15)])
|
||
|
def test_argus_phi_small_chi(self, chi, expected, rtol):
|
||
|
assert_allclose(_argus_phi(chi), expected, rtol=rtol)
|
||
|
|
||
|
# Expected values were computed with mpmath (code: see gh-13370).
|
||
|
@pytest.mark.parametrize(
|
||
|
'chi, expected',
|
||
|
[(0.5, (0.28414073302940573, 1.2742227939992954, 1.2381254688255896)),
|
||
|
(0.2, (0.296172952995264, 1.2951290588110516, 1.1865767100877576)),
|
||
|
(0.1, (0.29791447523536274, 1.29806307956989, 1.1793168289857412)),
|
||
|
(0.01, (0.2984904104866452, 1.2990283628160553, 1.1769268414080531)),
|
||
|
(1e-3, (0.298496172925224, 1.2990380082487925, 1.176902956021053)),
|
||
|
(1e-4, (0.29849623054991836, 1.2990381047023793, 1.1769027171686324)),
|
||
|
(1e-6, (0.2984962311319278, 1.2990381056765605, 1.1769027147562232)),
|
||
|
(1e-9, (0.298496231131986, 1.299038105676658, 1.1769027147559818))])
|
||
|
def test_pdf_small_chi(self, chi, expected):
|
||
|
x = np.array([0.1, 0.5, 0.9])
|
||
|
assert_allclose(stats.argus.pdf(x, chi), expected, rtol=1e-13)
|
||
|
|
||
|
# Expected values were computed with mpmath (code: see gh-13370).
|
||
|
@pytest.mark.parametrize(
|
||
|
'chi, expected',
|
||
|
[(0.5, (0.9857660526895221, 0.6616565930168475, 0.08796070398429937)),
|
||
|
(0.2, (0.9851555052359501, 0.6514666238985464, 0.08362690023746594)),
|
||
|
(0.1, (0.9850670974995661, 0.6500061310508574, 0.08302050640683846)),
|
||
|
(0.01, (0.9850378582451867, 0.6495239242251358, 0.08282109244852445)),
|
||
|
(1e-3, (0.9850375656906663, 0.6495191015522573, 0.08281910005231098)),
|
||
|
(1e-4, (0.9850375627651049, 0.6495190533254682, 0.08281908012852317)),
|
||
|
(1e-6, (0.9850375627355568, 0.6495190528383777, 0.08281907992729293)),
|
||
|
(1e-9, (0.9850375627355538, 0.649519052838329, 0.0828190799272728))])
|
||
|
def test_sf_small_chi(self, chi, expected):
|
||
|
x = np.array([0.1, 0.5, 0.9])
|
||
|
assert_allclose(stats.argus.sf(x, chi), expected, rtol=1e-14)
|
||
|
|
||
|
# Expected values were computed with mpmath (code: see gh-13370).
|
||
|
@pytest.mark.parametrize(
|
||
|
'chi, expected',
|
||
|
[(0.5, (0.0142339473104779, 0.3383434069831524, 0.9120392960157007)),
|
||
|
(0.2, (0.014844494764049919, 0.34853337610145363, 0.916373099762534)),
|
||
|
(0.1, (0.014932902500433911, 0.34999386894914264, 0.9169794935931616)),
|
||
|
(0.01, (0.014962141754813293, 0.35047607577486417, 0.9171789075514756)),
|
||
|
(1e-3, (0.01496243430933372, 0.35048089844774266, 0.917180899947689)),
|
||
|
(1e-4, (0.014962437234895118, 0.3504809466745317, 0.9171809198714769)),
|
||
|
(1e-6, (0.01496243726444329, 0.3504809471616223, 0.9171809200727071)),
|
||
|
(1e-9, (0.014962437264446245, 0.350480947161671, 0.9171809200727272))])
|
||
|
def test_cdf_small_chi(self, chi, expected):
|
||
|
x = np.array([0.1, 0.5, 0.9])
|
||
|
assert_allclose(stats.argus.cdf(x, chi), expected, rtol=1e-12)
|
||
|
|
||
|
# Expected values were computed with mpmath (code: see gh-13370).
|
||
|
@pytest.mark.parametrize(
|
||
|
'chi, expected, rtol',
|
||
|
[(0.5, (0.5964284712757741, 0.052890651988588604), 1e-12),
|
||
|
(0.101, (0.5893490968089076, 0.053017469847275685), 1e-11),
|
||
|
(0.1, (0.5893431757009437, 0.05301755449499372), 1e-13),
|
||
|
(0.01, (0.5890515677940915, 0.05302167905837031), 1e-13),
|
||
|
(1e-3, (0.5890486520005177, 0.053021719862088104), 1e-13),
|
||
|
(1e-4, (0.5890486228426105, 0.0530217202700811), 1e-13),
|
||
|
(1e-6, (0.5890486225481156, 0.05302172027420182), 1e-13),
|
||
|
(1e-9, (0.5890486225480862, 0.05302172027420224), 1e-13)])
|
||
|
def test_stats_small_chi(self, chi, expected, rtol):
|
||
|
val = stats.argus.stats(chi, moments='mv')
|
||
|
assert_allclose(val, expected, rtol=rtol)
|
||
|
|
||
|
|
||
|
class TestNakagami:
|
||
|
|
||
|
def test_logpdf(self):
|
||
|
# Test nakagami logpdf for an input where the PDF is smaller
|
||
|
# than can be represented with 64 bit floating point.
|
||
|
# The expected value of logpdf was computed with mpmath:
|
||
|
#
|
||
|
# def logpdf(x, nu):
|
||
|
# x = mpmath.mpf(x)
|
||
|
# nu = mpmath.mpf(nu)
|
||
|
# return (mpmath.log(2) + nu*mpmath.log(nu) -
|
||
|
# mpmath.loggamma(nu) + (2*nu - 1)*mpmath.log(x) -
|
||
|
# nu*x**2)
|
||
|
#
|
||
|
nu = 2.5
|
||
|
x = 25
|
||
|
logp = stats.nakagami.logpdf(x, nu)
|
||
|
assert_allclose(logp, -1546.9253055607549)
|
||
|
|
||
|
def test_sf_isf(self):
|
||
|
# Test nakagami sf and isf when the survival function
|
||
|
# value is very small.
|
||
|
# The expected value of the survival function was computed
|
||
|
# with mpmath:
|
||
|
#
|
||
|
# def sf(x, nu):
|
||
|
# x = mpmath.mpf(x)
|
||
|
# nu = mpmath.mpf(nu)
|
||
|
# return mpmath.gammainc(nu, nu*x*x, regularized=True)
|
||
|
#
|
||
|
nu = 2.5
|
||
|
x0 = 5.0
|
||
|
sf = stats.nakagami.sf(x0, nu)
|
||
|
assert_allclose(sf, 2.736273158588307e-25, rtol=1e-13)
|
||
|
# Check round trip back to x0.
|
||
|
x1 = stats.nakagami.isf(sf, nu)
|
||
|
assert_allclose(x1, x0, rtol=1e-13)
|
||
|
|
||
|
@pytest.mark.parametrize("m, ref",
|
||
|
[(5, -0.097341814372152),
|
||
|
(0.5, 0.7257913526447274),
|
||
|
(10, -0.43426184310934907)])
|
||
|
def test_entropy(self, m, ref):
|
||
|
# from sympy import *
|
||
|
# from mpmath import mp
|
||
|
# import numpy as np
|
||
|
# v, x = symbols('v, x', real=True, positive=True)
|
||
|
# pdf = 2 * v ** v / gamma(v) * x ** (2 * v - 1) * exp(-v * x ** 2)
|
||
|
# h = simplify(simplify(integrate(-pdf * log(pdf), (x, 0, oo))))
|
||
|
# entropy = lambdify(v, h, 'mpmath')
|
||
|
# mp.dps = 200
|
||
|
# nu = 5
|
||
|
# ref = np.float64(entropy(mp.mpf(nu)))
|
||
|
# print(ref)
|
||
|
assert_allclose(stats.nakagami.entropy(m), ref, rtol=1.1e-14)
|
||
|
|
||
|
@pytest.mark.parametrize("m, ref",
|
||
|
[(1e-100, -5.0e+99), (1e-10, -4999999965.442979),
|
||
|
(9.999e6, -7.333206478668433), (1.001e7, -7.3337562313259825),
|
||
|
(1e10, -10.787134112333835), (1e100, -114.40346329705756)])
|
||
|
def test_extreme_nu(self, m, ref):
|
||
|
assert_allclose(stats.nakagami.entropy(m), ref)
|
||
|
|
||
|
def test_entropy_overflow(self):
|
||
|
assert np.isfinite(stats.nakagami._entropy(1e100))
|
||
|
assert np.isfinite(stats.nakagami._entropy(1e-100))
|
||
|
|
||
|
@pytest.mark.parametrize("nu, ref",
|
||
|
[(1e10, 0.9999999999875),
|
||
|
(1e3, 0.9998750078173821),
|
||
|
(1e-10, 1.772453850659802e-05)])
|
||
|
def test_mean(self, nu, ref):
|
||
|
# reference values were computed with mpmath
|
||
|
# from mpmath import mp
|
||
|
# mp.dps = 500
|
||
|
# nu = mp.mpf(1e10)
|
||
|
# float(mp.rf(nu, mp.mpf(0.5))/mp.sqrt(nu))
|
||
|
assert_allclose(stats.nakagami.mean(nu), ref, rtol=1e-12)
|
||
|
|
||
|
@pytest.mark.xfail(reason="Fit of nakagami not reliable, see gh-10908.")
|
||
|
@pytest.mark.parametrize('nu', [1.6, 2.5, 3.9])
|
||
|
@pytest.mark.parametrize('loc', [25.0, 10, 35])
|
||
|
@pytest.mark.parametrize('scale', [13, 5, 20])
|
||
|
def test_fit(self, nu, loc, scale):
|
||
|
# Regression test for gh-13396 (21/27 cases failed previously)
|
||
|
# The first tuple of the parameters' values is discussed in gh-10908
|
||
|
N = 100
|
||
|
samples = stats.nakagami.rvs(size=N, nu=nu, loc=loc,
|
||
|
scale=scale, random_state=1337)
|
||
|
nu_est, loc_est, scale_est = stats.nakagami.fit(samples)
|
||
|
assert_allclose(nu_est, nu, rtol=0.2)
|
||
|
assert_allclose(loc_est, loc, rtol=0.2)
|
||
|
assert_allclose(scale_est, scale, rtol=0.2)
|
||
|
|
||
|
def dlogl_dnu(nu, loc, scale):
|
||
|
return ((-2*nu + 1) * np.sum(1/(samples - loc))
|
||
|
+ 2*nu/scale**2 * np.sum(samples - loc))
|
||
|
|
||
|
def dlogl_dloc(nu, loc, scale):
|
||
|
return (N * (1 + np.log(nu) - polygamma(0, nu)) +
|
||
|
2 * np.sum(np.log((samples - loc) / scale))
|
||
|
- np.sum(((samples - loc) / scale)**2))
|
||
|
|
||
|
def dlogl_dscale(nu, loc, scale):
|
||
|
return (- 2 * N * nu / scale
|
||
|
+ 2 * nu / scale ** 3 * np.sum((samples - loc) ** 2))
|
||
|
|
||
|
assert_allclose(dlogl_dnu(nu_est, loc_est, scale_est), 0, atol=1e-3)
|
||
|
assert_allclose(dlogl_dloc(nu_est, loc_est, scale_est), 0, atol=1e-3)
|
||
|
assert_allclose(dlogl_dscale(nu_est, loc_est, scale_est), 0, atol=1e-3)
|
||
|
|
||
|
@pytest.mark.parametrize('loc', [25.0, 10, 35])
|
||
|
@pytest.mark.parametrize('scale', [13, 5, 20])
|
||
|
def test_fit_nu(self, loc, scale):
|
||
|
# For nu = 0.5, we have analytical values for
|
||
|
# the MLE of the loc and the scale
|
||
|
nu = 0.5
|
||
|
n = 100
|
||
|
samples = stats.nakagami.rvs(size=n, nu=nu, loc=loc,
|
||
|
scale=scale, random_state=1337)
|
||
|
nu_est, loc_est, scale_est = stats.nakagami.fit(samples, f0=nu)
|
||
|
|
||
|
# Analytical values
|
||
|
loc_theo = np.min(samples)
|
||
|
scale_theo = np.sqrt(np.mean((samples - loc_est) ** 2))
|
||
|
|
||
|
assert_allclose(nu_est, nu, rtol=1e-7)
|
||
|
assert_allclose(loc_est, loc_theo, rtol=1e-7)
|
||
|
assert_allclose(scale_est, scale_theo, rtol=1e-7)
|
||
|
|
||
|
|
||
|
class TestWrapCauchy:
|
||
|
|
||
|
def test_cdf_shape_broadcasting(self):
|
||
|
# Regression test for gh-13791.
|
||
|
# Check that wrapcauchy.cdf broadcasts the shape parameter
|
||
|
# correctly.
|
||
|
c = np.array([[0.03, 0.25], [0.5, 0.75]])
|
||
|
x = np.array([[1.0], [4.0]])
|
||
|
p = stats.wrapcauchy.cdf(x, c)
|
||
|
assert p.shape == (2, 2)
|
||
|
scalar_values = [stats.wrapcauchy.cdf(x1, c1)
|
||
|
for (x1, c1) in np.nditer((x, c))]
|
||
|
assert_allclose(p.ravel(), scalar_values, rtol=1e-13)
|
||
|
|
||
|
def test_cdf_center(self):
|
||
|
p = stats.wrapcauchy.cdf(np.pi, 0.03)
|
||
|
assert_allclose(p, 0.5, rtol=1e-14)
|
||
|
|
||
|
def test_cdf(self):
|
||
|
x1 = 1.0 # less than pi
|
||
|
x2 = 4.0 # greater than pi
|
||
|
c = 0.75
|
||
|
p = stats.wrapcauchy.cdf([x1, x2], c)
|
||
|
cr = (1 + c)/(1 - c)
|
||
|
assert_allclose(p[0], np.arctan(cr*np.tan(x1/2))/np.pi)
|
||
|
assert_allclose(p[1], 1 - np.arctan(cr*np.tan(np.pi - x2/2))/np.pi)
|
||
|
|
||
|
|
||
|
def test_rvs_no_size_error():
|
||
|
# _rvs methods must have parameter `size`; see gh-11394
|
||
|
class rvs_no_size_gen(stats.rv_continuous):
|
||
|
def _rvs(self):
|
||
|
return 1
|
||
|
|
||
|
rvs_no_size = rvs_no_size_gen(name='rvs_no_size')
|
||
|
|
||
|
with assert_raises(TypeError, match=r"_rvs\(\) got (an|\d) unexpected"):
|
||
|
rvs_no_size.rvs()
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('distname, args', invdistdiscrete + invdistcont)
|
||
|
def test_support_gh13294_regression(distname, args):
|
||
|
if distname in skip_test_support_gh13294_regression:
|
||
|
pytest.skip(f"skipping test for the support method for "
|
||
|
f"distribution {distname}.")
|
||
|
dist = getattr(stats, distname)
|
||
|
# test support method with invalid arguments
|
||
|
if isinstance(dist, stats.rv_continuous):
|
||
|
# test with valid scale
|
||
|
if len(args) != 0:
|
||
|
a0, b0 = dist.support(*args)
|
||
|
assert_equal(a0, np.nan)
|
||
|
assert_equal(b0, np.nan)
|
||
|
# test with invalid scale
|
||
|
# For some distributions, that take no parameters,
|
||
|
# the case of only invalid scale occurs and hence,
|
||
|
# it is implicitly tested in this test case.
|
||
|
loc1, scale1 = 0, -1
|
||
|
a1, b1 = dist.support(*args, loc1, scale1)
|
||
|
assert_equal(a1, np.nan)
|
||
|
assert_equal(b1, np.nan)
|
||
|
else:
|
||
|
a, b = dist.support(*args)
|
||
|
assert_equal(a, np.nan)
|
||
|
assert_equal(b, np.nan)
|
||
|
|
||
|
|
||
|
def test_support_broadcasting_gh13294_regression():
|
||
|
a0, b0 = stats.norm.support([0, 0, 0, 1], [1, 1, 1, -1])
|
||
|
ex_a0 = np.array([-np.inf, -np.inf, -np.inf, np.nan])
|
||
|
ex_b0 = np.array([np.inf, np.inf, np.inf, np.nan])
|
||
|
assert_equal(a0, ex_a0)
|
||
|
assert_equal(b0, ex_b0)
|
||
|
assert a0.shape == ex_a0.shape
|
||
|
assert b0.shape == ex_b0.shape
|
||
|
|
||
|
a1, b1 = stats.norm.support([], [])
|
||
|
ex_a1, ex_b1 = np.array([]), np.array([])
|
||
|
assert_equal(a1, ex_a1)
|
||
|
assert_equal(b1, ex_b1)
|
||
|
assert a1.shape == ex_a1.shape
|
||
|
assert b1.shape == ex_b1.shape
|
||
|
|
||
|
a2, b2 = stats.norm.support([0, 0, 0, 1], [-1])
|
||
|
ex_a2 = np.array(4*[np.nan])
|
||
|
ex_b2 = np.array(4*[np.nan])
|
||
|
assert_equal(a2, ex_a2)
|
||
|
assert_equal(b2, ex_b2)
|
||
|
assert a2.shape == ex_a2.shape
|
||
|
assert b2.shape == ex_b2.shape
|
||
|
|
||
|
|
||
|
def test_stats_broadcasting_gh14953_regression():
|
||
|
# test case in gh14953
|
||
|
loc = [0., 0.]
|
||
|
scale = [[1.], [2.], [3.]]
|
||
|
assert_equal(stats.norm.var(loc, scale), [[1., 1.], [4., 4.], [9., 9.]])
|
||
|
# test some edge cases
|
||
|
loc = np.empty((0, ))
|
||
|
scale = np.empty((1, 0))
|
||
|
assert stats.norm.var(loc, scale).shape == (1, 0)
|
||
|
|
||
|
|
||
|
# Check a few values of the cosine distribution's cdf, sf, ppf and
|
||
|
# isf methods. Expected values were computed with mpmath.
|
||
|
|
||
|
@pytest.mark.parametrize('x, expected',
|
||
|
[(-3.14159, 4.956444476505336e-19),
|
||
|
(3.14, 0.9999999998928399)])
|
||
|
def test_cosine_cdf_sf(x, expected):
|
||
|
assert_allclose(stats.cosine.cdf(x), expected)
|
||
|
assert_allclose(stats.cosine.sf(-x), expected)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('p, expected',
|
||
|
[(1e-6, -3.1080612413765905),
|
||
|
(1e-17, -3.141585429601399),
|
||
|
(0.975, 2.1447547020964923)])
|
||
|
def test_cosine_ppf_isf(p, expected):
|
||
|
assert_allclose(stats.cosine.ppf(p), expected)
|
||
|
assert_allclose(stats.cosine.isf(p), -expected)
|
||
|
|
||
|
|
||
|
def test_cosine_logpdf_endpoints():
|
||
|
logp = stats.cosine.logpdf([-np.pi, np.pi])
|
||
|
# reference value calculated using mpmath assuming `np.cos(-1)` is four
|
||
|
# floating point numbers too high. See gh-18382.
|
||
|
assert_array_less(logp, -37.18838327496655)
|
||
|
|
||
|
|
||
|
def test_distr_params_lists():
|
||
|
# distribution objects are extra distributions added in
|
||
|
# test_discrete_basic. All other distributions are strings (names)
|
||
|
# and so we only choose those to compare whether both lists match.
|
||
|
discrete_distnames = {name for name, _ in distdiscrete
|
||
|
if isinstance(name, str)}
|
||
|
invdiscrete_distnames = {name for name, _ in invdistdiscrete}
|
||
|
assert discrete_distnames == invdiscrete_distnames
|
||
|
|
||
|
cont_distnames = {name for name, _ in distcont}
|
||
|
invcont_distnames = {name for name, _ in invdistcont}
|
||
|
assert cont_distnames == invcont_distnames
|
||
|
|
||
|
|
||
|
def test_moment_order_4():
|
||
|
# gh-13655 reported that if a distribution has a `_stats` method that
|
||
|
# accepts the `moments` parameter, then if the distribution's `moment`
|
||
|
# method is called with `order=4`, the faster/more accurate`_stats` gets
|
||
|
# called, but the results aren't used, and the generic `_munp` method is
|
||
|
# called to calculate the moment anyway. This tests that the issue has
|
||
|
# been fixed.
|
||
|
# stats.skewnorm._stats accepts the `moments` keyword
|
||
|
stats.skewnorm._stats(a=0, moments='k') # no failure = has `moments`
|
||
|
# When `moment` is called, `_stats` is used, so the moment is very accurate
|
||
|
# (exactly equal to Pearson's kurtosis of the normal distribution, 3)
|
||
|
assert stats.skewnorm.moment(order=4, a=0) == 3.0
|
||
|
# At the time of gh-13655, skewnorm._munp() used the generic method
|
||
|
# to compute its result, which was inefficient and not very accurate.
|
||
|
# At that time, the following assertion would fail. skewnorm._munp()
|
||
|
# has since been made more accurate and efficient, so now this test
|
||
|
# is expected to pass.
|
||
|
assert stats.skewnorm._munp(4, 0) == 3.0
|
||
|
|
||
|
|
||
|
class TestRelativisticBW:
|
||
|
@pytest.fixture
|
||
|
def ROOT_pdf_sample_data(self):
|
||
|
"""Sample data points for pdf computed with CERN's ROOT
|
||
|
|
||
|
See - https://root.cern/
|
||
|
|
||
|
Uses ROOT.TMath.BreitWignerRelativistic, available in ROOT
|
||
|
versions 6.27+
|
||
|
|
||
|
pdf calculated for Z0 Boson, W Boson, and Higgs Boson for
|
||
|
x in `np.linspace(0, 200, 401)`.
|
||
|
"""
|
||
|
data = np.load(
|
||
|
Path(__file__).parent /
|
||
|
'data/rel_breitwigner_pdf_sample_data_ROOT.npy'
|
||
|
)
|
||
|
data = np.rec.fromarrays(data.T, names='x,pdf,rho,gamma')
|
||
|
return data
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"rho,gamma,rtol", [
|
||
|
(36.545206797050334, 2.4952, 5e-14), # Z0 Boson
|
||
|
(38.55107913669065, 2.085, 1e-14), # W Boson
|
||
|
(96292.3076923077, 0.0013, 5e-13), # Higgs Boson
|
||
|
]
|
||
|
)
|
||
|
def test_pdf_against_ROOT(self, ROOT_pdf_sample_data, rho, gamma, rtol):
|
||
|
data = ROOT_pdf_sample_data[
|
||
|
(ROOT_pdf_sample_data['rho'] == rho)
|
||
|
& (ROOT_pdf_sample_data['gamma'] == gamma)
|
||
|
]
|
||
|
x, pdf = data['x'], data['pdf']
|
||
|
assert_allclose(
|
||
|
pdf, stats.rel_breitwigner.pdf(x, rho, scale=gamma), rtol=rtol
|
||
|
)
|
||
|
|
||
|
@pytest.mark.parametrize("rho, Gamma, rtol", [
|
||
|
(36.545206797050334, 2.4952, 5e-13), # Z0 Boson
|
||
|
(38.55107913669065, 2.085, 5e-13), # W Boson
|
||
|
(96292.3076923077, 0.0013, 5e-10), # Higgs Boson
|
||
|
]
|
||
|
)
|
||
|
def test_pdf_against_simple_implementation(self, rho, Gamma, rtol):
|
||
|
# reference implementation straight from formulas on Wikipedia [1]
|
||
|
def pdf(E, M, Gamma):
|
||
|
gamma = np.sqrt(M**2 * (M**2 + Gamma**2))
|
||
|
k = (2 * np.sqrt(2) * M * Gamma * gamma
|
||
|
/ (np.pi * np.sqrt(M**2 + gamma)))
|
||
|
return k / ((E**2 - M**2)**2 + M**2*Gamma**2)
|
||
|
# get reasonable values at which to evaluate the CDF
|
||
|
p = np.linspace(0.05, 0.95, 10)
|
||
|
x = stats.rel_breitwigner.ppf(p, rho, scale=Gamma)
|
||
|
res = stats.rel_breitwigner.pdf(x, rho, scale=Gamma)
|
||
|
ref = pdf(x, rho*Gamma, Gamma)
|
||
|
assert_allclose(res, ref, rtol=rtol)
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"rho,gamma", [
|
||
|
pytest.param(
|
||
|
36.545206797050334, 2.4952, marks=pytest.mark.slow
|
||
|
), # Z0 Boson
|
||
|
pytest.param(
|
||
|
38.55107913669065, 2.085, marks=pytest.mark.xslow
|
||
|
), # W Boson
|
||
|
pytest.param(
|
||
|
96292.3076923077, 0.0013, marks=pytest.mark.xslow
|
||
|
), # Higgs Boson
|
||
|
]
|
||
|
)
|
||
|
def test_fit_floc(self, rho, gamma):
|
||
|
"""Tests fit for cases where floc is set.
|
||
|
|
||
|
`rel_breitwigner` has special handling for these cases.
|
||
|
"""
|
||
|
seed = 6936804688480013683
|
||
|
rng = np.random.default_rng(seed)
|
||
|
data = stats.rel_breitwigner.rvs(
|
||
|
rho, scale=gamma, size=1000, random_state=rng
|
||
|
)
|
||
|
fit = stats.rel_breitwigner.fit(data, floc=0)
|
||
|
assert_allclose((fit[0], fit[2]), (rho, gamma), rtol=2e-1)
|
||
|
assert fit[1] == 0
|
||
|
# Check again with fscale set.
|
||
|
fit = stats.rel_breitwigner.fit(data, floc=0, fscale=gamma)
|
||
|
assert_allclose(fit[0], rho, rtol=1e-2)
|
||
|
assert (fit[1], fit[2]) == (0, gamma)
|
||
|
|
||
|
|
||
|
class TestJohnsonSU:
|
||
|
@pytest.mark.parametrize("case", [ # a, b, loc, scale, m1, m2, g1, g2
|
||
|
(-0.01, 1.1, 0.02, 0.0001, 0.02000137427557091,
|
||
|
2.1112742956578063e-08, 0.05989781342460999, 20.36324408592951-3),
|
||
|
(2.554395574161155, 2.2482281679651965, 0, 1, -1.54215386737391,
|
||
|
0.7629882028469993, -1.256656139406788, 6.303058419339775-3)])
|
||
|
def test_moment_gh18071(self, case):
|
||
|
# gh-18071 reported an IntegrationWarning emitted by johnsonsu.stats
|
||
|
# Check that the warning is no longer emitted and that the values
|
||
|
# are accurate compared against results from Mathematica.
|
||
|
# Reference values from Mathematica, e.g.
|
||
|
# Mean[JohnsonDistribution["SU",-0.01, 1.1, 0.02, 0.0001]]
|
||
|
res = stats.johnsonsu.stats(*case[:4], moments='mvsk')
|
||
|
assert_allclose(res, case[4:], rtol=1e-14)
|
||
|
|
||
|
|
||
|
class TestTruncPareto:
|
||
|
def test_pdf(self):
|
||
|
# PDF is that of the truncated pareto distribution
|
||
|
b, c = 1.8, 5.3
|
||
|
x = np.linspace(1.8, 5.3)
|
||
|
res = stats.truncpareto(b, c).pdf(x)
|
||
|
ref = stats.pareto(b).pdf(x) / stats.pareto(b).cdf(c)
|
||
|
assert_allclose(res, ref)
|
||
|
|
||
|
@pytest.mark.parametrize('fix_loc', [True, False])
|
||
|
@pytest.mark.parametrize('fix_scale', [True, False])
|
||
|
@pytest.mark.parametrize('fix_b', [True, False])
|
||
|
@pytest.mark.parametrize('fix_c', [True, False])
|
||
|
def test_fit(self, fix_loc, fix_scale, fix_b, fix_c):
|
||
|
|
||
|
rng = np.random.default_rng(6747363148258237171)
|
||
|
b, c, loc, scale = 1.8, 5.3, 1, 2.5
|
||
|
dist = stats.truncpareto(b, c, loc=loc, scale=scale)
|
||
|
data = dist.rvs(size=500, random_state=rng)
|
||
|
|
||
|
kwds = {}
|
||
|
if fix_loc:
|
||
|
kwds['floc'] = loc
|
||
|
if fix_scale:
|
||
|
kwds['fscale'] = scale
|
||
|
if fix_b:
|
||
|
kwds['f0'] = b
|
||
|
if fix_c:
|
||
|
kwds['f1'] = c
|
||
|
|
||
|
if fix_loc and fix_scale and fix_b and fix_c:
|
||
|
message = "All parameters fixed. There is nothing to optimize."
|
||
|
with pytest.raises(RuntimeError, match=message):
|
||
|
stats.truncpareto.fit(data, **kwds)
|
||
|
else:
|
||
|
_assert_less_or_close_loglike(stats.truncpareto, data, **kwds)
|
||
|
|
||
|
|
||
|
class TestKappa3:
|
||
|
def test_sf(self):
|
||
|
# During development of gh-18822, we found that the override of
|
||
|
# kappa3.sf could experience overflow where the version in main did
|
||
|
# not. Check that this does not happen in final implementation.
|
||
|
sf0 = 1 - stats.kappa3.cdf(0.5, 1e5)
|
||
|
sf1 = stats.kappa3.sf(0.5, 1e5)
|
||
|
assert_allclose(sf1, sf0)
|
||
|
|
||
|
|
||
|
# Cases are (distribution name, log10 of smallest probability mass to test,
|
||
|
# log10 of the complement of the largest probability mass to test, atol,
|
||
|
# rtol). None uses default values.
|
||
|
@pytest.mark.parametrize("case", [("kappa3", None, None, None, None),
|
||
|
("loglaplace", None, None, None, None),
|
||
|
("lognorm", None, None, None, None),
|
||
|
("lomax", None, None, None, None),
|
||
|
("pareto", None, None, None, None),])
|
||
|
def test_sf_isf_overrides(case):
|
||
|
# Test that SF is the inverse of ISF. Supplements
|
||
|
# `test_continuous_basic.check_sf_isf` for distributions with overridden
|
||
|
# `sf` and `isf` methods.
|
||
|
distname, lp1, lp2, atol, rtol = case
|
||
|
|
||
|
lpm = np.log10(0.5) # log10 of the probability mass at the median
|
||
|
lp1 = lp1 or -290
|
||
|
lp2 = lp2 or -14
|
||
|
atol = atol or 0
|
||
|
rtol = rtol or 1e-12
|
||
|
dist = getattr(stats, distname)
|
||
|
params = dict(distcont)[distname]
|
||
|
dist_frozen = dist(*params)
|
||
|
|
||
|
# Test (very deep) right tail to median. We can benchmark with random
|
||
|
# (loguniform) points, but strictly logspaced points are fine for tests.
|
||
|
ref = np.logspace(lp1, lpm)
|
||
|
res = dist_frozen.sf(dist_frozen.isf(ref))
|
||
|
assert_allclose(res, ref, atol=atol, rtol=rtol)
|
||
|
|
||
|
# test median to left tail
|
||
|
ref = 1 - np.logspace(lp2, lpm, 20)
|
||
|
res = dist_frozen.sf(dist_frozen.isf(ref))
|
||
|
assert_allclose(res, ref, atol=atol, rtol=rtol)
|