ai-content-maker/.venv/Lib/site-packages/sklearn/covariance/tests/test_covariance.py

378 lines
14 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Gael Varoquaux <gael.varoquaux@normalesup.org>
# Virgile Fritsch <virgile.fritsch@inria.fr>
#
# License: BSD 3 clause
import numpy as np
import pytest
from sklearn import datasets
from sklearn.covariance import (
OAS,
EmpiricalCovariance,
LedoitWolf,
ShrunkCovariance,
empirical_covariance,
ledoit_wolf,
ledoit_wolf_shrinkage,
oas,
shrunk_covariance,
)
from sklearn.covariance._shrunk_covariance import _ledoit_wolf
from sklearn.utils._testing import (
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
)
from .._shrunk_covariance import _oas
X, _ = datasets.load_diabetes(return_X_y=True)
X_1d = X[:, 0]
n_samples, n_features = X.shape
def test_covariance():
# Tests Covariance module on a simple dataset.
# test covariance fit from data
cov = EmpiricalCovariance()
cov.fit(X)
emp_cov = empirical_covariance(X)
assert_array_almost_equal(emp_cov, cov.covariance_, 4)
assert_almost_equal(cov.error_norm(emp_cov), 0)
assert_almost_equal(cov.error_norm(emp_cov, norm="spectral"), 0)
assert_almost_equal(cov.error_norm(emp_cov, norm="frobenius"), 0)
assert_almost_equal(cov.error_norm(emp_cov, scaling=False), 0)
assert_almost_equal(cov.error_norm(emp_cov, squared=False), 0)
with pytest.raises(NotImplementedError):
cov.error_norm(emp_cov, norm="foo")
# Mahalanobis distances computation test
mahal_dist = cov.mahalanobis(X)
assert np.amin(mahal_dist) > 0
# test with n_features = 1
X_1d = X[:, 0].reshape((-1, 1))
cov = EmpiricalCovariance()
cov.fit(X_1d)
assert_array_almost_equal(empirical_covariance(X_1d), cov.covariance_, 4)
assert_almost_equal(cov.error_norm(empirical_covariance(X_1d)), 0)
assert_almost_equal(cov.error_norm(empirical_covariance(X_1d), norm="spectral"), 0)
# test with one sample
# Create X with 1 sample and 5 features
X_1sample = np.arange(5).reshape(1, 5)
cov = EmpiricalCovariance()
warn_msg = "Only one sample available. You may want to reshape your data array"
with pytest.warns(UserWarning, match=warn_msg):
cov.fit(X_1sample)
assert_array_almost_equal(cov.covariance_, np.zeros(shape=(5, 5), dtype=np.float64))
# test integer type
X_integer = np.asarray([[0, 1], [1, 0]])
result = np.asarray([[0.25, -0.25], [-0.25, 0.25]])
assert_array_almost_equal(empirical_covariance(X_integer), result)
# test centered case
cov = EmpiricalCovariance(assume_centered=True)
cov.fit(X)
assert_array_equal(cov.location_, np.zeros(X.shape[1]))
@pytest.mark.parametrize("n_matrices", [1, 3])
def test_shrunk_covariance_func(n_matrices):
"""Check `shrunk_covariance` function."""
n_features = 2
cov = np.ones((n_features, n_features))
cov_target = np.array([[1, 0.5], [0.5, 1]])
if n_matrices > 1:
cov = np.repeat(cov[np.newaxis, ...], n_matrices, axis=0)
cov_target = np.repeat(cov_target[np.newaxis, ...], n_matrices, axis=0)
cov_shrunk = shrunk_covariance(cov, 0.5)
assert_allclose(cov_shrunk, cov_target)
def test_shrunk_covariance():
"""Check consistency between `ShrunkCovariance` and `shrunk_covariance`."""
# Tests ShrunkCovariance module on a simple dataset.
# compare shrunk covariance obtained from data and from MLE estimate
cov = ShrunkCovariance(shrinkage=0.5)
cov.fit(X)
assert_array_almost_equal(
shrunk_covariance(empirical_covariance(X), shrinkage=0.5), cov.covariance_, 4
)
# same test with shrinkage not provided
cov = ShrunkCovariance()
cov.fit(X)
assert_array_almost_equal(
shrunk_covariance(empirical_covariance(X)), cov.covariance_, 4
)
# same test with shrinkage = 0 (<==> empirical_covariance)
cov = ShrunkCovariance(shrinkage=0.0)
cov.fit(X)
assert_array_almost_equal(empirical_covariance(X), cov.covariance_, 4)
# test with n_features = 1
X_1d = X[:, 0].reshape((-1, 1))
cov = ShrunkCovariance(shrinkage=0.3)
cov.fit(X_1d)
assert_array_almost_equal(empirical_covariance(X_1d), cov.covariance_, 4)
# test shrinkage coeff on a simple data set (without saving precision)
cov = ShrunkCovariance(shrinkage=0.5, store_precision=False)
cov.fit(X)
assert cov.precision_ is None
def test_ledoit_wolf():
# Tests LedoitWolf module on a simple dataset.
# test shrinkage coeff on a simple data set
X_centered = X - X.mean(axis=0)
lw = LedoitWolf(assume_centered=True)
lw.fit(X_centered)
shrinkage_ = lw.shrinkage_
score_ = lw.score(X_centered)
assert_almost_equal(
ledoit_wolf_shrinkage(X_centered, assume_centered=True), shrinkage_
)
assert_almost_equal(
ledoit_wolf_shrinkage(X_centered, assume_centered=True, block_size=6),
shrinkage_,
)
# compare shrunk covariance obtained from data and from MLE estimate
lw_cov_from_mle, lw_shrinkage_from_mle = ledoit_wolf(
X_centered, assume_centered=True
)
assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4)
assert_almost_equal(lw_shrinkage_from_mle, lw.shrinkage_)
# compare estimates given by LW and ShrunkCovariance
scov = ShrunkCovariance(shrinkage=lw.shrinkage_, assume_centered=True)
scov.fit(X_centered)
assert_array_almost_equal(scov.covariance_, lw.covariance_, 4)
# test with n_features = 1
X_1d = X[:, 0].reshape((-1, 1))
lw = LedoitWolf(assume_centered=True)
lw.fit(X_1d)
lw_cov_from_mle, lw_shrinkage_from_mle = ledoit_wolf(X_1d, assume_centered=True)
assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4)
assert_almost_equal(lw_shrinkage_from_mle, lw.shrinkage_)
assert_array_almost_equal((X_1d**2).sum() / n_samples, lw.covariance_, 4)
# test shrinkage coeff on a simple data set (without saving precision)
lw = LedoitWolf(store_precision=False, assume_centered=True)
lw.fit(X_centered)
assert_almost_equal(lw.score(X_centered), score_, 4)
assert lw.precision_ is None
# Same tests without assuming centered data
# test shrinkage coeff on a simple data set
lw = LedoitWolf()
lw.fit(X)
assert_almost_equal(lw.shrinkage_, shrinkage_, 4)
assert_almost_equal(lw.shrinkage_, ledoit_wolf_shrinkage(X))
assert_almost_equal(lw.shrinkage_, ledoit_wolf(X)[1])
assert_almost_equal(
lw.shrinkage_, _ledoit_wolf(X=X, assume_centered=False, block_size=10000)[1]
)
assert_almost_equal(lw.score(X), score_, 4)
# compare shrunk covariance obtained from data and from MLE estimate
lw_cov_from_mle, lw_shrinkage_from_mle = ledoit_wolf(X)
assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4)
assert_almost_equal(lw_shrinkage_from_mle, lw.shrinkage_)
# compare estimates given by LW and ShrunkCovariance
scov = ShrunkCovariance(shrinkage=lw.shrinkage_)
scov.fit(X)
assert_array_almost_equal(scov.covariance_, lw.covariance_, 4)
# test with n_features = 1
X_1d = X[:, 0].reshape((-1, 1))
lw = LedoitWolf()
lw.fit(X_1d)
assert_allclose(
X_1d.var(ddof=0),
_ledoit_wolf(X=X_1d, assume_centered=False, block_size=10000)[0],
)
lw_cov_from_mle, lw_shrinkage_from_mle = ledoit_wolf(X_1d)
assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4)
assert_almost_equal(lw_shrinkage_from_mle, lw.shrinkage_)
assert_array_almost_equal(empirical_covariance(X_1d), lw.covariance_, 4)
# test with one sample
# warning should be raised when using only 1 sample
X_1sample = np.arange(5).reshape(1, 5)
lw = LedoitWolf()
warn_msg = "Only one sample available. You may want to reshape your data array"
with pytest.warns(UserWarning, match=warn_msg):
lw.fit(X_1sample)
assert_array_almost_equal(lw.covariance_, np.zeros(shape=(5, 5), dtype=np.float64))
# test shrinkage coeff on a simple data set (without saving precision)
lw = LedoitWolf(store_precision=False)
lw.fit(X)
assert_almost_equal(lw.score(X), score_, 4)
assert lw.precision_ is None
def _naive_ledoit_wolf_shrinkage(X):
# A simple implementation of the formulas from Ledoit & Wolf
# The computation below achieves the following computations of the
# "O. Ledoit and M. Wolf, A Well-Conditioned Estimator for
# Large-Dimensional Covariance Matrices"
# beta and delta are given in the beginning of section 3.2
n_samples, n_features = X.shape
emp_cov = empirical_covariance(X, assume_centered=False)
mu = np.trace(emp_cov) / n_features
delta_ = emp_cov.copy()
delta_.flat[:: n_features + 1] -= mu
delta = (delta_**2).sum() / n_features
X2 = X**2
beta_ = (
1.0
/ (n_features * n_samples)
* np.sum(np.dot(X2.T, X2) / n_samples - emp_cov**2)
)
beta = min(beta_, delta)
shrinkage = beta / delta
return shrinkage
def test_ledoit_wolf_small():
# Compare our blocked implementation to the naive implementation
X_small = X[:, :4]
lw = LedoitWolf()
lw.fit(X_small)
shrinkage_ = lw.shrinkage_
assert_almost_equal(shrinkage_, _naive_ledoit_wolf_shrinkage(X_small))
def test_ledoit_wolf_large():
# test that ledoit_wolf doesn't error on data that is wider than block_size
rng = np.random.RandomState(0)
# use a number of features that is larger than the block-size
X = rng.normal(size=(10, 20))
lw = LedoitWolf(block_size=10).fit(X)
# check that covariance is about diagonal (random normal noise)
assert_almost_equal(lw.covariance_, np.eye(20), 0)
cov = lw.covariance_
# check that the result is consistent with not splitting data into blocks.
lw = LedoitWolf(block_size=25).fit(X)
assert_almost_equal(lw.covariance_, cov)
@pytest.mark.parametrize(
"ledoit_wolf_fitting_function", [LedoitWolf().fit, ledoit_wolf_shrinkage]
)
def test_ledoit_wolf_empty_array(ledoit_wolf_fitting_function):
"""Check that we validate X and raise proper error with 0-sample array."""
X_empty = np.zeros((0, 2))
with pytest.raises(ValueError, match="Found array with 0 sample"):
ledoit_wolf_fitting_function(X_empty)
def test_oas():
# Tests OAS module on a simple dataset.
# test shrinkage coeff on a simple data set
X_centered = X - X.mean(axis=0)
oa = OAS(assume_centered=True)
oa.fit(X_centered)
shrinkage_ = oa.shrinkage_
score_ = oa.score(X_centered)
# compare shrunk covariance obtained from data and from MLE estimate
oa_cov_from_mle, oa_shrinkage_from_mle = oas(X_centered, assume_centered=True)
assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4)
assert_almost_equal(oa_shrinkage_from_mle, oa.shrinkage_)
# compare estimates given by OAS and ShrunkCovariance
scov = ShrunkCovariance(shrinkage=oa.shrinkage_, assume_centered=True)
scov.fit(X_centered)
assert_array_almost_equal(scov.covariance_, oa.covariance_, 4)
# test with n_features = 1
X_1d = X[:, 0:1]
oa = OAS(assume_centered=True)
oa.fit(X_1d)
oa_cov_from_mle, oa_shrinkage_from_mle = oas(X_1d, assume_centered=True)
assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4)
assert_almost_equal(oa_shrinkage_from_mle, oa.shrinkage_)
assert_array_almost_equal((X_1d**2).sum() / n_samples, oa.covariance_, 4)
# test shrinkage coeff on a simple data set (without saving precision)
oa = OAS(store_precision=False, assume_centered=True)
oa.fit(X_centered)
assert_almost_equal(oa.score(X_centered), score_, 4)
assert oa.precision_ is None
# Same tests without assuming centered data--------------------------------
# test shrinkage coeff on a simple data set
oa = OAS()
oa.fit(X)
assert_almost_equal(oa.shrinkage_, shrinkage_, 4)
assert_almost_equal(oa.score(X), score_, 4)
# compare shrunk covariance obtained from data and from MLE estimate
oa_cov_from_mle, oa_shrinkage_from_mle = oas(X)
assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4)
assert_almost_equal(oa_shrinkage_from_mle, oa.shrinkage_)
# compare estimates given by OAS and ShrunkCovariance
scov = ShrunkCovariance(shrinkage=oa.shrinkage_)
scov.fit(X)
assert_array_almost_equal(scov.covariance_, oa.covariance_, 4)
# test with n_features = 1
X_1d = X[:, 0].reshape((-1, 1))
oa = OAS()
oa.fit(X_1d)
oa_cov_from_mle, oa_shrinkage_from_mle = oas(X_1d)
assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4)
assert_almost_equal(oa_shrinkage_from_mle, oa.shrinkage_)
assert_array_almost_equal(empirical_covariance(X_1d), oa.covariance_, 4)
# test with one sample
# warning should be raised when using only 1 sample
X_1sample = np.arange(5).reshape(1, 5)
oa = OAS()
warn_msg = "Only one sample available. You may want to reshape your data array"
with pytest.warns(UserWarning, match=warn_msg):
oa.fit(X_1sample)
assert_array_almost_equal(oa.covariance_, np.zeros(shape=(5, 5), dtype=np.float64))
# test shrinkage coeff on a simple data set (without saving precision)
oa = OAS(store_precision=False)
oa.fit(X)
assert_almost_equal(oa.score(X), score_, 4)
assert oa.precision_ is None
# test function _oas without assuming centered data
X_1f = X[:, 0:1]
oa = OAS()
oa.fit(X_1f)
# compare shrunk covariance obtained from data and from MLE estimate
_oa_cov_from_mle, _oa_shrinkage_from_mle = _oas(X_1f)
assert_array_almost_equal(_oa_cov_from_mle, oa.covariance_, 4)
assert_almost_equal(_oa_shrinkage_from_mle, oa.shrinkage_)
assert_array_almost_equal((X_1f**2).sum() / n_samples, oa.covariance_, 4)
def test_EmpiricalCovariance_validates_mahalanobis():
"""Checks that EmpiricalCovariance validates data with mahalanobis."""
cov = EmpiricalCovariance().fit(X)
msg = f"X has 2 features, but \\w+ is expecting {X.shape[1]} features as input"
with pytest.raises(ValueError, match=msg):
cov.mahalanobis(X[:, :2])