274 lines
9.0 KiB
Python
274 lines
9.0 KiB
Python
|
"""
|
||
|
=============================
|
||
|
Species distribution dataset
|
||
|
=============================
|
||
|
|
||
|
This dataset represents the geographic distribution of species.
|
||
|
The dataset is provided by Phillips et. al. (2006).
|
||
|
|
||
|
The two species are:
|
||
|
|
||
|
- `"Bradypus variegatus"
|
||
|
<http://www.iucnredlist.org/details/3038/0>`_ ,
|
||
|
the Brown-throated Sloth.
|
||
|
|
||
|
- `"Microryzomys minutus"
|
||
|
<http://www.iucnredlist.org/details/13408/0>`_ ,
|
||
|
also known as the Forest Small Rice Rat, a rodent that lives in Peru,
|
||
|
Colombia, Ecuador, Peru, and Venezuela.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
|
||
|
`"Maximum entropy modeling of species geographic distributions"
|
||
|
<http://rob.schapire.net/papers/ecolmod.pdf>`_ S. J. Phillips,
|
||
|
R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
|
||
|
For an example of using this dataset, see
|
||
|
:ref:`examples/applications/plot_species_distribution_modeling.py
|
||
|
<sphx_glr_auto_examples_applications_plot_species_distribution_modeling.py>`.
|
||
|
"""
|
||
|
|
||
|
# Authors: Peter Prettenhofer <peter.prettenhofer@gmail.com>
|
||
|
# Jake Vanderplas <vanderplas@astro.washington.edu>
|
||
|
#
|
||
|
# License: BSD 3 clause
|
||
|
|
||
|
import logging
|
||
|
from io import BytesIO
|
||
|
from os import PathLike, makedirs, remove
|
||
|
from os.path import exists
|
||
|
|
||
|
import joblib
|
||
|
import numpy as np
|
||
|
|
||
|
from ..utils import Bunch
|
||
|
from ..utils._param_validation import validate_params
|
||
|
from . import get_data_home
|
||
|
from ._base import RemoteFileMetadata, _fetch_remote, _pkl_filepath
|
||
|
|
||
|
# The original data can be found at:
|
||
|
# https://biodiversityinformatics.amnh.org/open_source/maxent/samples.zip
|
||
|
SAMPLES = RemoteFileMetadata(
|
||
|
filename="samples.zip",
|
||
|
url="https://ndownloader.figshare.com/files/5976075",
|
||
|
checksum="abb07ad284ac50d9e6d20f1c4211e0fd3c098f7f85955e89d321ee8efe37ac28",
|
||
|
)
|
||
|
|
||
|
# The original data can be found at:
|
||
|
# https://biodiversityinformatics.amnh.org/open_source/maxent/coverages.zip
|
||
|
COVERAGES = RemoteFileMetadata(
|
||
|
filename="coverages.zip",
|
||
|
url="https://ndownloader.figshare.com/files/5976078",
|
||
|
checksum="4d862674d72e79d6cee77e63b98651ec7926043ba7d39dcb31329cf3f6073807",
|
||
|
)
|
||
|
|
||
|
DATA_ARCHIVE_NAME = "species_coverage.pkz"
|
||
|
|
||
|
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
def _load_coverage(F, header_length=6, dtype=np.int16):
|
||
|
"""Load a coverage file from an open file object.
|
||
|
|
||
|
This will return a numpy array of the given dtype
|
||
|
"""
|
||
|
header = [F.readline() for _ in range(header_length)]
|
||
|
make_tuple = lambda t: (t.split()[0], float(t.split()[1]))
|
||
|
header = dict([make_tuple(line) for line in header])
|
||
|
|
||
|
M = np.loadtxt(F, dtype=dtype)
|
||
|
nodata = int(header[b"NODATA_value"])
|
||
|
if nodata != -9999:
|
||
|
M[nodata] = -9999
|
||
|
return M
|
||
|
|
||
|
|
||
|
def _load_csv(F):
|
||
|
"""Load csv file.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
F : file object
|
||
|
CSV file open in byte mode.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
rec : np.ndarray
|
||
|
record array representing the data
|
||
|
"""
|
||
|
names = F.readline().decode("ascii").strip().split(",")
|
||
|
|
||
|
rec = np.loadtxt(F, skiprows=0, delimiter=",", dtype="S22,f4,f4")
|
||
|
rec.dtype.names = names
|
||
|
return rec
|
||
|
|
||
|
|
||
|
def construct_grids(batch):
|
||
|
"""Construct the map grid from the batch object
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
batch : Batch object
|
||
|
The object returned by :func:`fetch_species_distributions`
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
(xgrid, ygrid) : 1-D arrays
|
||
|
The grid corresponding to the values in batch.coverages
|
||
|
"""
|
||
|
# x,y coordinates for corner cells
|
||
|
xmin = batch.x_left_lower_corner + batch.grid_size
|
||
|
xmax = xmin + (batch.Nx * batch.grid_size)
|
||
|
ymin = batch.y_left_lower_corner + batch.grid_size
|
||
|
ymax = ymin + (batch.Ny * batch.grid_size)
|
||
|
|
||
|
# x coordinates of the grid cells
|
||
|
xgrid = np.arange(xmin, xmax, batch.grid_size)
|
||
|
# y coordinates of the grid cells
|
||
|
ygrid = np.arange(ymin, ymax, batch.grid_size)
|
||
|
|
||
|
return (xgrid, ygrid)
|
||
|
|
||
|
|
||
|
@validate_params(
|
||
|
{"data_home": [str, PathLike, None], "download_if_missing": ["boolean"]},
|
||
|
prefer_skip_nested_validation=True,
|
||
|
)
|
||
|
def fetch_species_distributions(*, data_home=None, download_if_missing=True):
|
||
|
"""Loader for species distribution dataset from Phillips et. al. (2006).
|
||
|
|
||
|
Read more in the :ref:`User Guide <species_distribution_dataset>`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
data_home : str or path-like, default=None
|
||
|
Specify another download and cache folder for the datasets. By default
|
||
|
all scikit-learn data is stored in '~/scikit_learn_data' subfolders.
|
||
|
|
||
|
download_if_missing : bool, default=True
|
||
|
If False, raise an OSError if the data is not locally available
|
||
|
instead of trying to download the data from the source site.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
data : :class:`~sklearn.utils.Bunch`
|
||
|
Dictionary-like object, with the following attributes.
|
||
|
|
||
|
coverages : array, shape = [14, 1592, 1212]
|
||
|
These represent the 14 features measured
|
||
|
at each point of the map grid.
|
||
|
The latitude/longitude values for the grid are discussed below.
|
||
|
Missing data is represented by the value -9999.
|
||
|
train : record array, shape = (1624,)
|
||
|
The training points for the data. Each point has three fields:
|
||
|
|
||
|
- train['species'] is the species name
|
||
|
- train['dd long'] is the longitude, in degrees
|
||
|
- train['dd lat'] is the latitude, in degrees
|
||
|
test : record array, shape = (620,)
|
||
|
The test points for the data. Same format as the training data.
|
||
|
Nx, Ny : integers
|
||
|
The number of longitudes (x) and latitudes (y) in the grid
|
||
|
x_left_lower_corner, y_left_lower_corner : floats
|
||
|
The (x,y) position of the lower-left corner, in degrees
|
||
|
grid_size : float
|
||
|
The spacing between points of the grid, in degrees
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
|
||
|
This dataset represents the geographic distribution of species.
|
||
|
The dataset is provided by Phillips et. al. (2006).
|
||
|
|
||
|
The two species are:
|
||
|
|
||
|
- `"Bradypus variegatus"
|
||
|
<http://www.iucnredlist.org/details/3038/0>`_ ,
|
||
|
the Brown-throated Sloth.
|
||
|
|
||
|
- `"Microryzomys minutus"
|
||
|
<http://www.iucnredlist.org/details/13408/0>`_ ,
|
||
|
also known as the Forest Small Rice Rat, a rodent that lives in Peru,
|
||
|
Colombia, Ecuador, Peru, and Venezuela.
|
||
|
|
||
|
- For an example of using this dataset with scikit-learn, see
|
||
|
:ref:`examples/applications/plot_species_distribution_modeling.py
|
||
|
<sphx_glr_auto_examples_applications_plot_species_distribution_modeling.py>`.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
|
||
|
* `"Maximum entropy modeling of species geographic distributions"
|
||
|
<http://rob.schapire.net/papers/ecolmod.pdf>`_
|
||
|
S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling,
|
||
|
190:231-259, 2006.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from sklearn.datasets import fetch_species_distributions
|
||
|
>>> species = fetch_species_distributions()
|
||
|
>>> species.train[:5]
|
||
|
array([(b'microryzomys_minutus', -64.7 , -17.85 ),
|
||
|
(b'microryzomys_minutus', -67.8333, -16.3333),
|
||
|
(b'microryzomys_minutus', -67.8833, -16.3 ),
|
||
|
(b'microryzomys_minutus', -67.8 , -16.2667),
|
||
|
(b'microryzomys_minutus', -67.9833, -15.9 )],
|
||
|
dtype=[('species', 'S22'), ('dd long', '<f4'), ('dd lat', '<f4')])
|
||
|
"""
|
||
|
data_home = get_data_home(data_home)
|
||
|
if not exists(data_home):
|
||
|
makedirs(data_home)
|
||
|
|
||
|
# Define parameters for the data files. These should not be changed
|
||
|
# unless the data model changes. They will be saved in the npz file
|
||
|
# with the downloaded data.
|
||
|
extra_params = dict(
|
||
|
x_left_lower_corner=-94.8,
|
||
|
Nx=1212,
|
||
|
y_left_lower_corner=-56.05,
|
||
|
Ny=1592,
|
||
|
grid_size=0.05,
|
||
|
)
|
||
|
dtype = np.int16
|
||
|
|
||
|
archive_path = _pkl_filepath(data_home, DATA_ARCHIVE_NAME)
|
||
|
|
||
|
if not exists(archive_path):
|
||
|
if not download_if_missing:
|
||
|
raise OSError("Data not found and `download_if_missing` is False")
|
||
|
logger.info("Downloading species data from %s to %s" % (SAMPLES.url, data_home))
|
||
|
samples_path = _fetch_remote(SAMPLES, dirname=data_home)
|
||
|
with np.load(samples_path) as X: # samples.zip is a valid npz
|
||
|
for f in X.files:
|
||
|
fhandle = BytesIO(X[f])
|
||
|
if "train" in f:
|
||
|
train = _load_csv(fhandle)
|
||
|
if "test" in f:
|
||
|
test = _load_csv(fhandle)
|
||
|
remove(samples_path)
|
||
|
|
||
|
logger.info(
|
||
|
"Downloading coverage data from %s to %s" % (COVERAGES.url, data_home)
|
||
|
)
|
||
|
coverages_path = _fetch_remote(COVERAGES, dirname=data_home)
|
||
|
with np.load(coverages_path) as X: # coverages.zip is a valid npz
|
||
|
coverages = []
|
||
|
for f in X.files:
|
||
|
fhandle = BytesIO(X[f])
|
||
|
logger.debug(" - converting {}".format(f))
|
||
|
coverages.append(_load_coverage(fhandle))
|
||
|
coverages = np.asarray(coverages, dtype=dtype)
|
||
|
remove(coverages_path)
|
||
|
|
||
|
bunch = Bunch(coverages=coverages, test=test, train=train, **extra_params)
|
||
|
joblib.dump(bunch, archive_path, compress=9)
|
||
|
else:
|
||
|
bunch = joblib.load(archive_path)
|
||
|
|
||
|
return bunch
|