ai-content-maker/.venv/Lib/site-packages/sklearn/decomposition/tests/test_incremental_pca.py

453 lines
15 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
"""Tests for Incremental PCA."""
import warnings
import numpy as np
import pytest
from numpy.testing import assert_array_equal
from sklearn import datasets
from sklearn.decomposition import PCA, IncrementalPCA
from sklearn.utils._testing import (
assert_allclose_dense_sparse,
assert_almost_equal,
assert_array_almost_equal,
)
from sklearn.utils.fixes import CSC_CONTAINERS, CSR_CONTAINERS, LIL_CONTAINERS
iris = datasets.load_iris()
def test_incremental_pca():
# Incremental PCA on dense arrays.
X = iris.data
batch_size = X.shape[0] // 3
ipca = IncrementalPCA(n_components=2, batch_size=batch_size)
pca = PCA(n_components=2)
pca.fit_transform(X)
X_transformed = ipca.fit_transform(X)
assert X_transformed.shape == (X.shape[0], 2)
np.testing.assert_allclose(
ipca.explained_variance_ratio_.sum(),
pca.explained_variance_ratio_.sum(),
rtol=1e-3,
)
for n_components in [1, 2, X.shape[1]]:
ipca = IncrementalPCA(n_components, batch_size=batch_size)
ipca.fit(X)
cov = ipca.get_covariance()
precision = ipca.get_precision()
np.testing.assert_allclose(
np.dot(cov, precision), np.eye(X.shape[1]), atol=1e-13
)
@pytest.mark.parametrize(
"sparse_container", CSC_CONTAINERS + CSR_CONTAINERS + LIL_CONTAINERS
)
def test_incremental_pca_sparse(sparse_container):
# Incremental PCA on sparse arrays.
X = iris.data
pca = PCA(n_components=2)
pca.fit_transform(X)
X_sparse = sparse_container(X)
batch_size = X_sparse.shape[0] // 3
ipca = IncrementalPCA(n_components=2, batch_size=batch_size)
X_transformed = ipca.fit_transform(X_sparse)
assert X_transformed.shape == (X_sparse.shape[0], 2)
np.testing.assert_allclose(
ipca.explained_variance_ratio_.sum(),
pca.explained_variance_ratio_.sum(),
rtol=1e-3,
)
for n_components in [1, 2, X.shape[1]]:
ipca = IncrementalPCA(n_components, batch_size=batch_size)
ipca.fit(X_sparse)
cov = ipca.get_covariance()
precision = ipca.get_precision()
np.testing.assert_allclose(
np.dot(cov, precision), np.eye(X_sparse.shape[1]), atol=1e-13
)
with pytest.raises(
TypeError,
match=(
"IncrementalPCA.partial_fit does not support "
"sparse input. Either convert data to dense "
"or use IncrementalPCA.fit to do so in batches."
),
):
ipca.partial_fit(X_sparse)
def test_incremental_pca_check_projection():
# Test that the projection of data is correct.
rng = np.random.RandomState(1999)
n, p = 100, 3
X = rng.randn(n, p) * 0.1
X[:10] += np.array([3, 4, 5])
Xt = 0.1 * rng.randn(1, p) + np.array([3, 4, 5])
# Get the reconstruction of the generated data X
# Note that Xt has the same "components" as X, just separated
# This is what we want to ensure is recreated correctly
Yt = IncrementalPCA(n_components=2).fit(X).transform(Xt)
# Normalize
Yt /= np.sqrt((Yt**2).sum())
# Make sure that the first element of Yt is ~1, this means
# the reconstruction worked as expected
assert_almost_equal(np.abs(Yt[0][0]), 1.0, 1)
def test_incremental_pca_inverse():
# Test that the projection of data can be inverted.
rng = np.random.RandomState(1999)
n, p = 50, 3
X = rng.randn(n, p) # spherical data
X[:, 1] *= 0.00001 # make middle component relatively small
X += [5, 4, 3] # make a large mean
# same check that we can find the original data from the transformed
# signal (since the data is almost of rank n_components)
ipca = IncrementalPCA(n_components=2, batch_size=10).fit(X)
Y = ipca.transform(X)
Y_inverse = ipca.inverse_transform(Y)
assert_almost_equal(X, Y_inverse, decimal=3)
def test_incremental_pca_validation():
# Test that n_components is <= n_features.
X = np.array([[0, 1, 0], [1, 0, 0]])
n_samples, n_features = X.shape
n_components = 4
with pytest.raises(
ValueError,
match=(
"n_components={} invalid"
" for n_features={}, need more rows than"
" columns for IncrementalPCA"
" processing".format(n_components, n_features)
),
):
IncrementalPCA(n_components, batch_size=10).fit(X)
# Tests that n_components is also <= n_samples.
n_components = 3
with pytest.raises(
ValueError,
match=(
"n_components={} must be"
" less or equal to the batch number of"
" samples {}".format(n_components, n_samples)
),
):
IncrementalPCA(n_components=n_components).partial_fit(X)
def test_n_samples_equal_n_components():
# Ensures no warning is raised when n_samples==n_components
# Non-regression test for gh-19050
ipca = IncrementalPCA(n_components=5)
with warnings.catch_warnings():
warnings.simplefilter("error", RuntimeWarning)
ipca.partial_fit(np.random.randn(5, 7))
with warnings.catch_warnings():
warnings.simplefilter("error", RuntimeWarning)
ipca.fit(np.random.randn(5, 7))
def test_n_components_none():
# Ensures that n_components == None is handled correctly
rng = np.random.RandomState(1999)
for n_samples, n_features in [(50, 10), (10, 50)]:
X = rng.rand(n_samples, n_features)
ipca = IncrementalPCA(n_components=None)
# First partial_fit call, ipca.n_components_ is inferred from
# min(X.shape)
ipca.partial_fit(X)
assert ipca.n_components_ == min(X.shape)
# Second partial_fit call, ipca.n_components_ is inferred from
# ipca.components_ computed from the first partial_fit call
ipca.partial_fit(X)
assert ipca.n_components_ == ipca.components_.shape[0]
def test_incremental_pca_set_params():
# Test that components_ sign is stable over batch sizes.
rng = np.random.RandomState(1999)
n_samples = 100
n_features = 20
X = rng.randn(n_samples, n_features)
X2 = rng.randn(n_samples, n_features)
X3 = rng.randn(n_samples, n_features)
ipca = IncrementalPCA(n_components=20)
ipca.fit(X)
# Decreasing number of components
ipca.set_params(n_components=10)
with pytest.raises(ValueError):
ipca.partial_fit(X2)
# Increasing number of components
ipca.set_params(n_components=15)
with pytest.raises(ValueError):
ipca.partial_fit(X3)
# Returning to original setting
ipca.set_params(n_components=20)
ipca.partial_fit(X)
def test_incremental_pca_num_features_change():
# Test that changing n_components will raise an error.
rng = np.random.RandomState(1999)
n_samples = 100
X = rng.randn(n_samples, 20)
X2 = rng.randn(n_samples, 50)
ipca = IncrementalPCA(n_components=None)
ipca.fit(X)
with pytest.raises(ValueError):
ipca.partial_fit(X2)
def test_incremental_pca_batch_signs():
# Test that components_ sign is stable over batch sizes.
rng = np.random.RandomState(1999)
n_samples = 100
n_features = 3
X = rng.randn(n_samples, n_features)
all_components = []
batch_sizes = np.arange(10, 20)
for batch_size in batch_sizes:
ipca = IncrementalPCA(n_components=None, batch_size=batch_size).fit(X)
all_components.append(ipca.components_)
for i, j in zip(all_components[:-1], all_components[1:]):
assert_almost_equal(np.sign(i), np.sign(j), decimal=6)
def test_incremental_pca_batch_values():
# Test that components_ values are stable over batch sizes.
rng = np.random.RandomState(1999)
n_samples = 100
n_features = 3
X = rng.randn(n_samples, n_features)
all_components = []
batch_sizes = np.arange(20, 40, 3)
for batch_size in batch_sizes:
ipca = IncrementalPCA(n_components=None, batch_size=batch_size).fit(X)
all_components.append(ipca.components_)
for i, j in zip(all_components[:-1], all_components[1:]):
assert_almost_equal(i, j, decimal=1)
def test_incremental_pca_batch_rank():
# Test sample size in each batch is always larger or equal to n_components
rng = np.random.RandomState(1999)
n_samples = 100
n_features = 20
X = rng.randn(n_samples, n_features)
all_components = []
batch_sizes = np.arange(20, 90, 3)
for batch_size in batch_sizes:
ipca = IncrementalPCA(n_components=20, batch_size=batch_size).fit(X)
all_components.append(ipca.components_)
for components_i, components_j in zip(all_components[:-1], all_components[1:]):
assert_allclose_dense_sparse(components_i, components_j)
def test_incremental_pca_partial_fit():
# Test that fit and partial_fit get equivalent results.
rng = np.random.RandomState(1999)
n, p = 50, 3
X = rng.randn(n, p) # spherical data
X[:, 1] *= 0.00001 # make middle component relatively small
X += [5, 4, 3] # make a large mean
# same check that we can find the original data from the transformed
# signal (since the data is almost of rank n_components)
batch_size = 10
ipca = IncrementalPCA(n_components=2, batch_size=batch_size).fit(X)
pipca = IncrementalPCA(n_components=2, batch_size=batch_size)
# Add one to make sure endpoint is included
batch_itr = np.arange(0, n + 1, batch_size)
for i, j in zip(batch_itr[:-1], batch_itr[1:]):
pipca.partial_fit(X[i:j, :])
assert_almost_equal(ipca.components_, pipca.components_, decimal=3)
def test_incremental_pca_against_pca_iris():
# Test that IncrementalPCA and PCA are approximate (to a sign flip).
X = iris.data
Y_pca = PCA(n_components=2).fit_transform(X)
Y_ipca = IncrementalPCA(n_components=2, batch_size=25).fit_transform(X)
assert_almost_equal(np.abs(Y_pca), np.abs(Y_ipca), 1)
def test_incremental_pca_against_pca_random_data():
# Test that IncrementalPCA and PCA are approximate (to a sign flip).
rng = np.random.RandomState(1999)
n_samples = 100
n_features = 3
X = rng.randn(n_samples, n_features) + 5 * rng.rand(1, n_features)
Y_pca = PCA(n_components=3).fit_transform(X)
Y_ipca = IncrementalPCA(n_components=3, batch_size=25).fit_transform(X)
assert_almost_equal(np.abs(Y_pca), np.abs(Y_ipca), 1)
def test_explained_variances():
# Test that PCA and IncrementalPCA calculations match
X = datasets.make_low_rank_matrix(
1000, 100, tail_strength=0.0, effective_rank=10, random_state=1999
)
prec = 3
n_samples, n_features = X.shape
for nc in [None, 99]:
pca = PCA(n_components=nc).fit(X)
ipca = IncrementalPCA(n_components=nc, batch_size=100).fit(X)
assert_almost_equal(
pca.explained_variance_, ipca.explained_variance_, decimal=prec
)
assert_almost_equal(
pca.explained_variance_ratio_, ipca.explained_variance_ratio_, decimal=prec
)
assert_almost_equal(pca.noise_variance_, ipca.noise_variance_, decimal=prec)
def test_singular_values():
# Check that the IncrementalPCA output has the correct singular values
rng = np.random.RandomState(0)
n_samples = 1000
n_features = 100
X = datasets.make_low_rank_matrix(
n_samples, n_features, tail_strength=0.0, effective_rank=10, random_state=rng
)
pca = PCA(n_components=10, svd_solver="full", random_state=rng).fit(X)
ipca = IncrementalPCA(n_components=10, batch_size=100).fit(X)
assert_array_almost_equal(pca.singular_values_, ipca.singular_values_, 2)
# Compare to the Frobenius norm
X_pca = pca.transform(X)
X_ipca = ipca.transform(X)
assert_array_almost_equal(
np.sum(pca.singular_values_**2.0), np.linalg.norm(X_pca, "fro") ** 2.0, 12
)
assert_array_almost_equal(
np.sum(ipca.singular_values_**2.0), np.linalg.norm(X_ipca, "fro") ** 2.0, 2
)
# Compare to the 2-norms of the score vectors
assert_array_almost_equal(
pca.singular_values_, np.sqrt(np.sum(X_pca**2.0, axis=0)), 12
)
assert_array_almost_equal(
ipca.singular_values_, np.sqrt(np.sum(X_ipca**2.0, axis=0)), 2
)
# Set the singular values and see what we get back
rng = np.random.RandomState(0)
n_samples = 100
n_features = 110
X = datasets.make_low_rank_matrix(
n_samples, n_features, tail_strength=0.0, effective_rank=3, random_state=rng
)
pca = PCA(n_components=3, svd_solver="full", random_state=rng)
ipca = IncrementalPCA(n_components=3, batch_size=100)
X_pca = pca.fit_transform(X)
X_pca /= np.sqrt(np.sum(X_pca**2.0, axis=0))
X_pca[:, 0] *= 3.142
X_pca[:, 1] *= 2.718
X_hat = np.dot(X_pca, pca.components_)
pca.fit(X_hat)
ipca.fit(X_hat)
assert_array_almost_equal(pca.singular_values_, [3.142, 2.718, 1.0], 14)
assert_array_almost_equal(ipca.singular_values_, [3.142, 2.718, 1.0], 14)
def test_whitening():
# Test that PCA and IncrementalPCA transforms match to sign flip.
X = datasets.make_low_rank_matrix(
1000, 10, tail_strength=0.0, effective_rank=2, random_state=1999
)
prec = 3
n_samples, n_features = X.shape
for nc in [None, 9]:
pca = PCA(whiten=True, n_components=nc).fit(X)
ipca = IncrementalPCA(whiten=True, n_components=nc, batch_size=250).fit(X)
Xt_pca = pca.transform(X)
Xt_ipca = ipca.transform(X)
assert_almost_equal(np.abs(Xt_pca), np.abs(Xt_ipca), decimal=prec)
Xinv_ipca = ipca.inverse_transform(Xt_ipca)
Xinv_pca = pca.inverse_transform(Xt_pca)
assert_almost_equal(X, Xinv_ipca, decimal=prec)
assert_almost_equal(X, Xinv_pca, decimal=prec)
assert_almost_equal(Xinv_pca, Xinv_ipca, decimal=prec)
def test_incremental_pca_partial_fit_float_division():
# Test to ensure float division is used in all versions of Python
# (non-regression test for issue #9489)
rng = np.random.RandomState(0)
A = rng.randn(5, 3) + 2
B = rng.randn(7, 3) + 5
pca = IncrementalPCA(n_components=2)
pca.partial_fit(A)
# Set n_samples_seen_ to be a floating point number instead of an int
pca.n_samples_seen_ = float(pca.n_samples_seen_)
pca.partial_fit(B)
singular_vals_float_samples_seen = pca.singular_values_
pca2 = IncrementalPCA(n_components=2)
pca2.partial_fit(A)
pca2.partial_fit(B)
singular_vals_int_samples_seen = pca2.singular_values_
np.testing.assert_allclose(
singular_vals_float_samples_seen, singular_vals_int_samples_seen
)
def test_incremental_pca_fit_overflow_error():
# Test for overflow error on Windows OS
# (non-regression test for issue #17693)
rng = np.random.RandomState(0)
A = rng.rand(500000, 2)
ipca = IncrementalPCA(n_components=2, batch_size=10000)
ipca.fit(A)
pca = PCA(n_components=2)
pca.fit(A)
np.testing.assert_allclose(ipca.singular_values_, pca.singular_values_)
def test_incremental_pca_feature_names_out():
"""Check feature names out for IncrementalPCA."""
ipca = IncrementalPCA(n_components=2).fit(iris.data)
names = ipca.get_feature_names_out()
assert_array_equal([f"incrementalpca{i}" for i in range(2)], names)