267 lines
9.2 KiB
Python
267 lines
9.2 KiB
Python
|
"""Generic feature selection mixin"""
|
||
|
|
||
|
# Authors: G. Varoquaux, A. Gramfort, L. Buitinck, J. Nothman
|
||
|
# License: BSD 3 clause
|
||
|
|
||
|
import warnings
|
||
|
from abc import ABCMeta, abstractmethod
|
||
|
from operator import attrgetter
|
||
|
|
||
|
import numpy as np
|
||
|
from scipy.sparse import csc_matrix, issparse
|
||
|
|
||
|
from ..base import TransformerMixin
|
||
|
from ..utils import (
|
||
|
_is_pandas_df,
|
||
|
_safe_indexing,
|
||
|
check_array,
|
||
|
safe_sqr,
|
||
|
)
|
||
|
from ..utils._set_output import _get_output_config
|
||
|
from ..utils._tags import _safe_tags
|
||
|
from ..utils.validation import _check_feature_names_in, check_is_fitted
|
||
|
|
||
|
|
||
|
class SelectorMixin(TransformerMixin, metaclass=ABCMeta):
|
||
|
"""
|
||
|
Transformer mixin that performs feature selection given a support mask
|
||
|
|
||
|
This mixin provides a feature selector implementation with `transform` and
|
||
|
`inverse_transform` functionality given an implementation of
|
||
|
`_get_support_mask`.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from sklearn.datasets import load_iris
|
||
|
>>> from sklearn.base import BaseEstimator
|
||
|
>>> from sklearn.feature_selection import SelectorMixin
|
||
|
>>> class FeatureSelector(SelectorMixin, BaseEstimator):
|
||
|
... def fit(self, X, y=None):
|
||
|
... self.n_features_in_ = X.shape[1]
|
||
|
... return self
|
||
|
... def _get_support_mask(self):
|
||
|
... mask = np.zeros(self.n_features_in_, dtype=bool)
|
||
|
... mask[:2] = True # select the first two features
|
||
|
... return mask
|
||
|
>>> X, y = load_iris(return_X_y=True)
|
||
|
>>> FeatureSelector().fit_transform(X, y).shape
|
||
|
(150, 2)
|
||
|
"""
|
||
|
|
||
|
def get_support(self, indices=False):
|
||
|
"""
|
||
|
Get a mask, or integer index, of the features selected.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
indices : bool, default=False
|
||
|
If True, the return value will be an array of integers, rather
|
||
|
than a boolean mask.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
support : array
|
||
|
An index that selects the retained features from a feature vector.
|
||
|
If `indices` is False, this is a boolean array of shape
|
||
|
[# input features], in which an element is True iff its
|
||
|
corresponding feature is selected for retention. If `indices` is
|
||
|
True, this is an integer array of shape [# output features] whose
|
||
|
values are indices into the input feature vector.
|
||
|
"""
|
||
|
mask = self._get_support_mask()
|
||
|
return mask if not indices else np.where(mask)[0]
|
||
|
|
||
|
@abstractmethod
|
||
|
def _get_support_mask(self):
|
||
|
"""
|
||
|
Get the boolean mask indicating which features are selected
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
support : boolean array of shape [# input features]
|
||
|
An element is True iff its corresponding feature is selected for
|
||
|
retention.
|
||
|
"""
|
||
|
|
||
|
def transform(self, X):
|
||
|
"""Reduce X to the selected features.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : array of shape [n_samples, n_features]
|
||
|
The input samples.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
X_r : array of shape [n_samples, n_selected_features]
|
||
|
The input samples with only the selected features.
|
||
|
"""
|
||
|
# Preserve X when X is a dataframe and the output is configured to
|
||
|
# be pandas.
|
||
|
output_config_dense = _get_output_config("transform", estimator=self)["dense"]
|
||
|
preserve_X = output_config_dense != "default" and _is_pandas_df(X)
|
||
|
|
||
|
# note: we use _safe_tags instead of _get_tags because this is a
|
||
|
# public Mixin.
|
||
|
X = self._validate_data(
|
||
|
X,
|
||
|
dtype=None,
|
||
|
accept_sparse="csr",
|
||
|
force_all_finite=not _safe_tags(self, key="allow_nan"),
|
||
|
cast_to_ndarray=not preserve_X,
|
||
|
reset=False,
|
||
|
)
|
||
|
return self._transform(X)
|
||
|
|
||
|
def _transform(self, X):
|
||
|
"""Reduce X to the selected features."""
|
||
|
mask = self.get_support()
|
||
|
if not mask.any():
|
||
|
warnings.warn(
|
||
|
(
|
||
|
"No features were selected: either the data is"
|
||
|
" too noisy or the selection test too strict."
|
||
|
),
|
||
|
UserWarning,
|
||
|
)
|
||
|
if hasattr(X, "iloc"):
|
||
|
return X.iloc[:, :0]
|
||
|
return np.empty(0, dtype=X.dtype).reshape((X.shape[0], 0))
|
||
|
return _safe_indexing(X, mask, axis=1)
|
||
|
|
||
|
def inverse_transform(self, X):
|
||
|
"""Reverse the transformation operation.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : array of shape [n_samples, n_selected_features]
|
||
|
The input samples.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
X_r : array of shape [n_samples, n_original_features]
|
||
|
`X` with columns of zeros inserted where features would have
|
||
|
been removed by :meth:`transform`.
|
||
|
"""
|
||
|
if issparse(X):
|
||
|
X = X.tocsc()
|
||
|
# insert additional entries in indptr:
|
||
|
# e.g. if transform changed indptr from [0 2 6 7] to [0 2 3]
|
||
|
# col_nonzeros here will be [2 0 1] so indptr becomes [0 2 2 3]
|
||
|
it = self.inverse_transform(np.diff(X.indptr).reshape(1, -1))
|
||
|
col_nonzeros = it.ravel()
|
||
|
indptr = np.concatenate([[0], np.cumsum(col_nonzeros)])
|
||
|
Xt = csc_matrix(
|
||
|
(X.data, X.indices, indptr),
|
||
|
shape=(X.shape[0], len(indptr) - 1),
|
||
|
dtype=X.dtype,
|
||
|
)
|
||
|
return Xt
|
||
|
|
||
|
support = self.get_support()
|
||
|
X = check_array(X, dtype=None)
|
||
|
if support.sum() != X.shape[1]:
|
||
|
raise ValueError("X has a different shape than during fitting.")
|
||
|
|
||
|
if X.ndim == 1:
|
||
|
X = X[None, :]
|
||
|
Xt = np.zeros((X.shape[0], support.size), dtype=X.dtype)
|
||
|
Xt[:, support] = X
|
||
|
return Xt
|
||
|
|
||
|
def get_feature_names_out(self, input_features=None):
|
||
|
"""Mask feature names according to selected features.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
input_features : array-like of str or None, default=None
|
||
|
Input features.
|
||
|
|
||
|
- If `input_features` is `None`, then `feature_names_in_` is
|
||
|
used as feature names in. If `feature_names_in_` is not defined,
|
||
|
then the following input feature names are generated:
|
||
|
`["x0", "x1", ..., "x(n_features_in_ - 1)"]`.
|
||
|
- If `input_features` is an array-like, then `input_features` must
|
||
|
match `feature_names_in_` if `feature_names_in_` is defined.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
feature_names_out : ndarray of str objects
|
||
|
Transformed feature names.
|
||
|
"""
|
||
|
check_is_fitted(self)
|
||
|
input_features = _check_feature_names_in(self, input_features)
|
||
|
return input_features[self.get_support()]
|
||
|
|
||
|
|
||
|
def _get_feature_importances(estimator, getter, transform_func=None, norm_order=1):
|
||
|
"""
|
||
|
Retrieve and aggregate (ndim > 1) the feature importances
|
||
|
from an estimator. Also optionally applies transformation.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
estimator : estimator
|
||
|
A scikit-learn estimator from which we want to get the feature
|
||
|
importances.
|
||
|
|
||
|
getter : "auto", str or callable
|
||
|
An attribute or a callable to get the feature importance. If `"auto"`,
|
||
|
`estimator` is expected to expose `coef_` or `feature_importances`.
|
||
|
|
||
|
transform_func : {"norm", "square"}, default=None
|
||
|
The transform to apply to the feature importances. By default (`None`)
|
||
|
no transformation is applied.
|
||
|
|
||
|
norm_order : int, default=1
|
||
|
The norm order to apply when `transform_func="norm"`. Only applied
|
||
|
when `importances.ndim > 1`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
importances : ndarray of shape (n_features,)
|
||
|
The features importances, optionally transformed.
|
||
|
"""
|
||
|
if isinstance(getter, str):
|
||
|
if getter == "auto":
|
||
|
if hasattr(estimator, "coef_"):
|
||
|
getter = attrgetter("coef_")
|
||
|
elif hasattr(estimator, "feature_importances_"):
|
||
|
getter = attrgetter("feature_importances_")
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
"when `importance_getter=='auto'`, the underlying "
|
||
|
f"estimator {estimator.__class__.__name__} should have "
|
||
|
"`coef_` or `feature_importances_` attribute. Either "
|
||
|
"pass a fitted estimator to feature selector or call fit "
|
||
|
"before calling transform."
|
||
|
)
|
||
|
else:
|
||
|
getter = attrgetter(getter)
|
||
|
elif not callable(getter):
|
||
|
raise ValueError("`importance_getter` has to be a string or `callable`")
|
||
|
|
||
|
importances = getter(estimator)
|
||
|
|
||
|
if transform_func is None:
|
||
|
return importances
|
||
|
elif transform_func == "norm":
|
||
|
if importances.ndim == 1:
|
||
|
importances = np.abs(importances)
|
||
|
else:
|
||
|
importances = np.linalg.norm(importances, axis=0, ord=norm_order)
|
||
|
elif transform_func == "square":
|
||
|
if importances.ndim == 1:
|
||
|
importances = safe_sqr(importances)
|
||
|
else:
|
||
|
importances = safe_sqr(importances).sum(axis=0)
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
"Valid values for `transform_func` are "
|
||
|
+ "None, 'norm' and 'square'. Those two "
|
||
|
+ "transformation are only supported now"
|
||
|
)
|
||
|
|
||
|
return importances
|