2361 lines
86 KiB
Python
2361 lines
86 KiB
Python
|
"""
|
||
|
The :mod:`sklearn.model_selection._validation` module includes classes and
|
||
|
functions to validate the model.
|
||
|
"""
|
||
|
|
||
|
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
|
||
|
# Gael Varoquaux <gael.varoquaux@normalesup.org>
|
||
|
# Olivier Grisel <olivier.grisel@ensta.org>
|
||
|
# Raghav RV <rvraghav93@gmail.com>
|
||
|
# Michal Karbownik <michakarbownik@gmail.com>
|
||
|
# License: BSD 3 clause
|
||
|
|
||
|
|
||
|
import numbers
|
||
|
import time
|
||
|
import warnings
|
||
|
from collections import Counter
|
||
|
from contextlib import suppress
|
||
|
from functools import partial
|
||
|
from numbers import Real
|
||
|
from traceback import format_exc
|
||
|
|
||
|
import numpy as np
|
||
|
import scipy.sparse as sp
|
||
|
from joblib import logger
|
||
|
|
||
|
from ..base import clone, is_classifier
|
||
|
from ..exceptions import FitFailedWarning, UnsetMetadataPassedError
|
||
|
from ..metrics import check_scoring, get_scorer_names
|
||
|
from ..metrics._scorer import _check_multimetric_scoring, _MultimetricScorer
|
||
|
from ..preprocessing import LabelEncoder
|
||
|
from ..utils import Bunch, _safe_indexing, check_random_state, indexable
|
||
|
from ..utils._param_validation import (
|
||
|
HasMethods,
|
||
|
Integral,
|
||
|
Interval,
|
||
|
StrOptions,
|
||
|
validate_params,
|
||
|
)
|
||
|
from ..utils.metadata_routing import (
|
||
|
MetadataRouter,
|
||
|
MethodMapping,
|
||
|
_routing_enabled,
|
||
|
process_routing,
|
||
|
)
|
||
|
from ..utils.metaestimators import _safe_split
|
||
|
from ..utils.parallel import Parallel, delayed
|
||
|
from ..utils.validation import _check_method_params, _num_samples
|
||
|
from ._split import check_cv
|
||
|
|
||
|
__all__ = [
|
||
|
"cross_validate",
|
||
|
"cross_val_score",
|
||
|
"cross_val_predict",
|
||
|
"permutation_test_score",
|
||
|
"learning_curve",
|
||
|
"validation_curve",
|
||
|
]
|
||
|
|
||
|
|
||
|
def _check_params_groups_deprecation(fit_params, params, groups):
|
||
|
"""A helper function to check deprecations on `groups` and `fit_params`.
|
||
|
|
||
|
To be removed when set_config(enable_metadata_routing=False) is not possible.
|
||
|
"""
|
||
|
if params is not None and fit_params is not None:
|
||
|
raise ValueError(
|
||
|
"`params` and `fit_params` cannot both be provided. Pass parameters "
|
||
|
"via `params`. `fit_params` is deprecated and will be removed in "
|
||
|
"version 1.6."
|
||
|
)
|
||
|
elif fit_params is not None:
|
||
|
warnings.warn(
|
||
|
(
|
||
|
"`fit_params` is deprecated and will be removed in version 1.6. "
|
||
|
"Pass parameters via `params` instead."
|
||
|
),
|
||
|
FutureWarning,
|
||
|
)
|
||
|
params = fit_params
|
||
|
|
||
|
params = {} if params is None else params
|
||
|
|
||
|
if groups is not None and _routing_enabled():
|
||
|
raise ValueError(
|
||
|
"`groups` can only be passed if metadata routing is not enabled via"
|
||
|
" `sklearn.set_config(enable_metadata_routing=True)`. When routing is"
|
||
|
" enabled, pass `groups` alongside other metadata via the `params` argument"
|
||
|
" instead."
|
||
|
)
|
||
|
|
||
|
return params
|
||
|
|
||
|
|
||
|
@validate_params(
|
||
|
{
|
||
|
"estimator": [HasMethods("fit")],
|
||
|
"X": ["array-like", "sparse matrix"],
|
||
|
"y": ["array-like", None],
|
||
|
"groups": ["array-like", None],
|
||
|
"scoring": [
|
||
|
StrOptions(set(get_scorer_names())),
|
||
|
callable,
|
||
|
list,
|
||
|
tuple,
|
||
|
dict,
|
||
|
None,
|
||
|
],
|
||
|
"cv": ["cv_object"],
|
||
|
"n_jobs": [Integral, None],
|
||
|
"verbose": ["verbose"],
|
||
|
"fit_params": [dict, None],
|
||
|
"params": [dict, None],
|
||
|
"pre_dispatch": [Integral, str],
|
||
|
"return_train_score": ["boolean"],
|
||
|
"return_estimator": ["boolean"],
|
||
|
"return_indices": ["boolean"],
|
||
|
"error_score": [StrOptions({"raise"}), Real],
|
||
|
},
|
||
|
prefer_skip_nested_validation=False, # estimator is not validated yet
|
||
|
)
|
||
|
def cross_validate(
|
||
|
estimator,
|
||
|
X,
|
||
|
y=None,
|
||
|
*,
|
||
|
groups=None,
|
||
|
scoring=None,
|
||
|
cv=None,
|
||
|
n_jobs=None,
|
||
|
verbose=0,
|
||
|
fit_params=None,
|
||
|
params=None,
|
||
|
pre_dispatch="2*n_jobs",
|
||
|
return_train_score=False,
|
||
|
return_estimator=False,
|
||
|
return_indices=False,
|
||
|
error_score=np.nan,
|
||
|
):
|
||
|
"""Evaluate metric(s) by cross-validation and also record fit/score times.
|
||
|
|
||
|
Read more in the :ref:`User Guide <multimetric_cross_validation>`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
estimator : estimator object implementing 'fit'
|
||
|
The object to use to fit the data.
|
||
|
|
||
|
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||
|
The data to fit. Can be for example a list, or an array.
|
||
|
|
||
|
y : array-like of shape (n_samples,) or (n_samples, n_outputs), default=None
|
||
|
The target variable to try to predict in the case of
|
||
|
supervised learning.
|
||
|
|
||
|
groups : array-like of shape (n_samples,), default=None
|
||
|
Group labels for the samples used while splitting the dataset into
|
||
|
train/test set. Only used in conjunction with a "Group" :term:`cv`
|
||
|
instance (e.g., :class:`GroupKFold`).
|
||
|
|
||
|
.. versionchanged:: 1.4
|
||
|
``groups`` can only be passed if metadata routing is not enabled
|
||
|
via ``sklearn.set_config(enable_metadata_routing=True)``. When routing
|
||
|
is enabled, pass ``groups`` alongside other metadata via the ``params``
|
||
|
argument instead. E.g.:
|
||
|
``cross_validate(..., params={'groups': groups})``.
|
||
|
|
||
|
scoring : str, callable, list, tuple, or dict, default=None
|
||
|
Strategy to evaluate the performance of the cross-validated model on
|
||
|
the test set.
|
||
|
|
||
|
If `scoring` represents a single score, one can use:
|
||
|
|
||
|
- a single string (see :ref:`scoring_parameter`);
|
||
|
- a callable (see :ref:`scoring`) that returns a single value.
|
||
|
|
||
|
If `scoring` represents multiple scores, one can use:
|
||
|
|
||
|
- a list or tuple of unique strings;
|
||
|
- a callable returning a dictionary where the keys are the metric
|
||
|
names and the values are the metric scores;
|
||
|
- a dictionary with metric names as keys and callables a values.
|
||
|
|
||
|
See :ref:`multimetric_grid_search` for an example.
|
||
|
|
||
|
cv : int, cross-validation generator or an iterable, default=None
|
||
|
Determines the cross-validation splitting strategy.
|
||
|
Possible inputs for cv are:
|
||
|
|
||
|
- None, to use the default 5-fold cross validation,
|
||
|
- int, to specify the number of folds in a `(Stratified)KFold`,
|
||
|
- :term:`CV splitter`,
|
||
|
- An iterable yielding (train, test) splits as arrays of indices.
|
||
|
|
||
|
For int/None inputs, if the estimator is a classifier and ``y`` is
|
||
|
either binary or multiclass, :class:`StratifiedKFold` is used. In all
|
||
|
other cases, :class:`KFold` is used. These splitters are instantiated
|
||
|
with `shuffle=False` so the splits will be the same across calls.
|
||
|
|
||
|
Refer :ref:`User Guide <cross_validation>` for the various
|
||
|
cross-validation strategies that can be used here.
|
||
|
|
||
|
.. versionchanged:: 0.22
|
||
|
``cv`` default value if None changed from 3-fold to 5-fold.
|
||
|
|
||
|
n_jobs : int, default=None
|
||
|
Number of jobs to run in parallel. Training the estimator and computing
|
||
|
the score are parallelized over the cross-validation splits.
|
||
|
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
||
|
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
||
|
for more details.
|
||
|
|
||
|
verbose : int, default=0
|
||
|
The verbosity level.
|
||
|
|
||
|
fit_params : dict, default=None
|
||
|
Parameters to pass to the fit method of the estimator.
|
||
|
|
||
|
.. deprecated:: 1.4
|
||
|
This parameter is deprecated and will be removed in version 1.6. Use
|
||
|
``params`` instead.
|
||
|
|
||
|
params : dict, default=None
|
||
|
Parameters to pass to the underlying estimator's ``fit``, the scorer,
|
||
|
and the CV splitter.
|
||
|
|
||
|
.. versionadded:: 1.4
|
||
|
|
||
|
pre_dispatch : int or str, default='2*n_jobs'
|
||
|
Controls the number of jobs that get dispatched during parallel
|
||
|
execution. Reducing this number can be useful to avoid an
|
||
|
explosion of memory consumption when more jobs get dispatched
|
||
|
than CPUs can process. This parameter can be:
|
||
|
|
||
|
- An int, giving the exact number of total jobs that are
|
||
|
spawned
|
||
|
|
||
|
- A str, giving an expression as a function of n_jobs,
|
||
|
as in '2*n_jobs'
|
||
|
|
||
|
return_train_score : bool, default=False
|
||
|
Whether to include train scores.
|
||
|
Computing training scores is used to get insights on how different
|
||
|
parameter settings impact the overfitting/underfitting trade-off.
|
||
|
However computing the scores on the training set can be computationally
|
||
|
expensive and is not strictly required to select the parameters that
|
||
|
yield the best generalization performance.
|
||
|
|
||
|
.. versionadded:: 0.19
|
||
|
|
||
|
.. versionchanged:: 0.21
|
||
|
Default value was changed from ``True`` to ``False``
|
||
|
|
||
|
return_estimator : bool, default=False
|
||
|
Whether to return the estimators fitted on each split.
|
||
|
|
||
|
.. versionadded:: 0.20
|
||
|
|
||
|
return_indices : bool, default=False
|
||
|
Whether to return the train-test indices selected for each split.
|
||
|
|
||
|
.. versionadded:: 1.3
|
||
|
|
||
|
error_score : 'raise' or numeric, default=np.nan
|
||
|
Value to assign to the score if an error occurs in estimator fitting.
|
||
|
If set to 'raise', the error is raised.
|
||
|
If a numeric value is given, FitFailedWarning is raised.
|
||
|
|
||
|
.. versionadded:: 0.20
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scores : dict of float arrays of shape (n_splits,)
|
||
|
Array of scores of the estimator for each run of the cross validation.
|
||
|
|
||
|
A dict of arrays containing the score/time arrays for each scorer is
|
||
|
returned. The possible keys for this ``dict`` are:
|
||
|
|
||
|
``test_score``
|
||
|
The score array for test scores on each cv split.
|
||
|
Suffix ``_score`` in ``test_score`` changes to a specific
|
||
|
metric like ``test_r2`` or ``test_auc`` if there are
|
||
|
multiple scoring metrics in the scoring parameter.
|
||
|
``train_score``
|
||
|
The score array for train scores on each cv split.
|
||
|
Suffix ``_score`` in ``train_score`` changes to a specific
|
||
|
metric like ``train_r2`` or ``train_auc`` if there are
|
||
|
multiple scoring metrics in the scoring parameter.
|
||
|
This is available only if ``return_train_score`` parameter
|
||
|
is ``True``.
|
||
|
``fit_time``
|
||
|
The time for fitting the estimator on the train
|
||
|
set for each cv split.
|
||
|
``score_time``
|
||
|
The time for scoring the estimator on the test set for each
|
||
|
cv split. (Note time for scoring on the train set is not
|
||
|
included even if ``return_train_score`` is set to ``True``
|
||
|
``estimator``
|
||
|
The estimator objects for each cv split.
|
||
|
This is available only if ``return_estimator`` parameter
|
||
|
is set to ``True``.
|
||
|
``indices``
|
||
|
The train/test positional indices for each cv split. A dictionary
|
||
|
is returned where the keys are either `"train"` or `"test"`
|
||
|
and the associated values are a list of integer-dtyped NumPy
|
||
|
arrays with the indices. Available only if `return_indices=True`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
cross_val_score : Run cross-validation for single metric evaluation.
|
||
|
|
||
|
cross_val_predict : Get predictions from each split of cross-validation for
|
||
|
diagnostic purposes.
|
||
|
|
||
|
sklearn.metrics.make_scorer : Make a scorer from a performance metric or
|
||
|
loss function.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from sklearn import datasets, linear_model
|
||
|
>>> from sklearn.model_selection import cross_validate
|
||
|
>>> from sklearn.metrics import make_scorer
|
||
|
>>> from sklearn.metrics import confusion_matrix
|
||
|
>>> from sklearn.svm import LinearSVC
|
||
|
>>> diabetes = datasets.load_diabetes()
|
||
|
>>> X = diabetes.data[:150]
|
||
|
>>> y = diabetes.target[:150]
|
||
|
>>> lasso = linear_model.Lasso()
|
||
|
|
||
|
Single metric evaluation using ``cross_validate``
|
||
|
|
||
|
>>> cv_results = cross_validate(lasso, X, y, cv=3)
|
||
|
>>> sorted(cv_results.keys())
|
||
|
['fit_time', 'score_time', 'test_score']
|
||
|
>>> cv_results['test_score']
|
||
|
array([0.3315057 , 0.08022103, 0.03531816])
|
||
|
|
||
|
Multiple metric evaluation using ``cross_validate``
|
||
|
(please refer the ``scoring`` parameter doc for more information)
|
||
|
|
||
|
>>> scores = cross_validate(lasso, X, y, cv=3,
|
||
|
... scoring=('r2', 'neg_mean_squared_error'),
|
||
|
... return_train_score=True)
|
||
|
>>> print(scores['test_neg_mean_squared_error'])
|
||
|
[-3635.5... -3573.3... -6114.7...]
|
||
|
>>> print(scores['train_r2'])
|
||
|
[0.28009951 0.3908844 0.22784907]
|
||
|
"""
|
||
|
params = _check_params_groups_deprecation(fit_params, params, groups)
|
||
|
|
||
|
X, y = indexable(X, y)
|
||
|
|
||
|
cv = check_cv(cv, y, classifier=is_classifier(estimator))
|
||
|
|
||
|
if callable(scoring):
|
||
|
scorers = scoring
|
||
|
elif scoring is None or isinstance(scoring, str):
|
||
|
scorers = check_scoring(estimator, scoring)
|
||
|
else:
|
||
|
scorers = _check_multimetric_scoring(estimator, scoring)
|
||
|
|
||
|
if _routing_enabled():
|
||
|
# `cross_validate` will create a `_MultiMetricScorer` if `scoring` is a
|
||
|
# dict at a later stage. We need the same object for the purpose of
|
||
|
# routing. However, creating it here and passing it around would create
|
||
|
# a much larger diff since the dict is used in many places.
|
||
|
if isinstance(scorers, dict):
|
||
|
_scorer = _MultimetricScorer(
|
||
|
scorers=scorers, raise_exc=(error_score == "raise")
|
||
|
)
|
||
|
else:
|
||
|
_scorer = scorers
|
||
|
# For estimators, a MetadataRouter is created in get_metadata_routing
|
||
|
# methods. For these router methods, we create the router to use
|
||
|
# `process_routing` on it.
|
||
|
router = (
|
||
|
MetadataRouter(owner="cross_validate")
|
||
|
.add(
|
||
|
splitter=cv,
|
||
|
method_mapping=MethodMapping().add(caller="fit", callee="split"),
|
||
|
)
|
||
|
.add(
|
||
|
estimator=estimator,
|
||
|
# TODO(SLEP6): also pass metadata to the predict method for
|
||
|
# scoring?
|
||
|
method_mapping=MethodMapping().add(caller="fit", callee="fit"),
|
||
|
)
|
||
|
.add(
|
||
|
scorer=_scorer,
|
||
|
method_mapping=MethodMapping().add(caller="fit", callee="score"),
|
||
|
)
|
||
|
)
|
||
|
try:
|
||
|
routed_params = process_routing(router, "fit", **params)
|
||
|
except UnsetMetadataPassedError as e:
|
||
|
# The default exception would mention `fit` since in the above
|
||
|
# `process_routing` code, we pass `fit` as the caller. However,
|
||
|
# the user is not calling `fit` directly, so we change the message
|
||
|
# to make it more suitable for this case.
|
||
|
unrequested_params = sorted(e.unrequested_params)
|
||
|
raise UnsetMetadataPassedError(
|
||
|
message=(
|
||
|
f"{unrequested_params} are passed to cross validation but are not"
|
||
|
" explicitly set as requested or not requested for cross_validate's"
|
||
|
f" estimator: {estimator.__class__.__name__}. Call"
|
||
|
" `.set_fit_request({{metadata}}=True)` on the estimator for"
|
||
|
f" each metadata in {unrequested_params} that you"
|
||
|
" want to use and `metadata=False` for not using it. See the"
|
||
|
" Metadata Routing User guide"
|
||
|
" <https://scikit-learn.org/stable/metadata_routing.html> for more"
|
||
|
" information."
|
||
|
),
|
||
|
unrequested_params=e.unrequested_params,
|
||
|
routed_params=e.routed_params,
|
||
|
)
|
||
|
else:
|
||
|
routed_params = Bunch()
|
||
|
routed_params.splitter = Bunch(split={"groups": groups})
|
||
|
routed_params.estimator = Bunch(fit=params)
|
||
|
routed_params.scorer = Bunch(score={})
|
||
|
|
||
|
indices = cv.split(X, y, **routed_params.splitter.split)
|
||
|
if return_indices:
|
||
|
# materialize the indices since we need to store them in the returned dict
|
||
|
indices = list(indices)
|
||
|
|
||
|
# We clone the estimator to make sure that all the folds are
|
||
|
# independent, and that it is pickle-able.
|
||
|
parallel = Parallel(n_jobs=n_jobs, verbose=verbose, pre_dispatch=pre_dispatch)
|
||
|
results = parallel(
|
||
|
delayed(_fit_and_score)(
|
||
|
clone(estimator),
|
||
|
X,
|
||
|
y,
|
||
|
scorer=scorers,
|
||
|
train=train,
|
||
|
test=test,
|
||
|
verbose=verbose,
|
||
|
parameters=None,
|
||
|
fit_params=routed_params.estimator.fit,
|
||
|
score_params=routed_params.scorer.score,
|
||
|
return_train_score=return_train_score,
|
||
|
return_times=True,
|
||
|
return_estimator=return_estimator,
|
||
|
error_score=error_score,
|
||
|
)
|
||
|
for train, test in indices
|
||
|
)
|
||
|
|
||
|
_warn_or_raise_about_fit_failures(results, error_score)
|
||
|
|
||
|
# For callable scoring, the return type is only know after calling. If the
|
||
|
# return type is a dictionary, the error scores can now be inserted with
|
||
|
# the correct key.
|
||
|
if callable(scoring):
|
||
|
_insert_error_scores(results, error_score)
|
||
|
|
||
|
results = _aggregate_score_dicts(results)
|
||
|
|
||
|
ret = {}
|
||
|
ret["fit_time"] = results["fit_time"]
|
||
|
ret["score_time"] = results["score_time"]
|
||
|
|
||
|
if return_estimator:
|
||
|
ret["estimator"] = results["estimator"]
|
||
|
|
||
|
if return_indices:
|
||
|
ret["indices"] = {}
|
||
|
ret["indices"]["train"], ret["indices"]["test"] = zip(*indices)
|
||
|
|
||
|
test_scores_dict = _normalize_score_results(results["test_scores"])
|
||
|
if return_train_score:
|
||
|
train_scores_dict = _normalize_score_results(results["train_scores"])
|
||
|
|
||
|
for name in test_scores_dict:
|
||
|
ret["test_%s" % name] = test_scores_dict[name]
|
||
|
if return_train_score:
|
||
|
key = "train_%s" % name
|
||
|
ret[key] = train_scores_dict[name]
|
||
|
|
||
|
return ret
|
||
|
|
||
|
|
||
|
def _insert_error_scores(results, error_score):
|
||
|
"""Insert error in `results` by replacing them inplace with `error_score`.
|
||
|
|
||
|
This only applies to multimetric scores because `_fit_and_score` will
|
||
|
handle the single metric case.
|
||
|
"""
|
||
|
successful_score = None
|
||
|
failed_indices = []
|
||
|
for i, result in enumerate(results):
|
||
|
if result["fit_error"] is not None:
|
||
|
failed_indices.append(i)
|
||
|
elif successful_score is None:
|
||
|
successful_score = result["test_scores"]
|
||
|
|
||
|
if isinstance(successful_score, dict):
|
||
|
formatted_error = {name: error_score for name in successful_score}
|
||
|
for i in failed_indices:
|
||
|
results[i]["test_scores"] = formatted_error.copy()
|
||
|
if "train_scores" in results[i]:
|
||
|
results[i]["train_scores"] = formatted_error.copy()
|
||
|
|
||
|
|
||
|
def _normalize_score_results(scores, scaler_score_key="score"):
|
||
|
"""Creates a scoring dictionary based on the type of `scores`"""
|
||
|
if isinstance(scores[0], dict):
|
||
|
# multimetric scoring
|
||
|
return _aggregate_score_dicts(scores)
|
||
|
# scaler
|
||
|
return {scaler_score_key: scores}
|
||
|
|
||
|
|
||
|
def _warn_or_raise_about_fit_failures(results, error_score):
|
||
|
fit_errors = [
|
||
|
result["fit_error"] for result in results if result["fit_error"] is not None
|
||
|
]
|
||
|
if fit_errors:
|
||
|
num_failed_fits = len(fit_errors)
|
||
|
num_fits = len(results)
|
||
|
fit_errors_counter = Counter(fit_errors)
|
||
|
delimiter = "-" * 80 + "\n"
|
||
|
fit_errors_summary = "\n".join(
|
||
|
f"{delimiter}{n} fits failed with the following error:\n{error}"
|
||
|
for error, n in fit_errors_counter.items()
|
||
|
)
|
||
|
|
||
|
if num_failed_fits == num_fits:
|
||
|
all_fits_failed_message = (
|
||
|
f"\nAll the {num_fits} fits failed.\n"
|
||
|
"It is very likely that your model is misconfigured.\n"
|
||
|
"You can try to debug the error by setting error_score='raise'.\n\n"
|
||
|
f"Below are more details about the failures:\n{fit_errors_summary}"
|
||
|
)
|
||
|
raise ValueError(all_fits_failed_message)
|
||
|
|
||
|
else:
|
||
|
some_fits_failed_message = (
|
||
|
f"\n{num_failed_fits} fits failed out of a total of {num_fits}.\n"
|
||
|
"The score on these train-test partitions for these parameters"
|
||
|
f" will be set to {error_score}.\n"
|
||
|
"If these failures are not expected, you can try to debug them "
|
||
|
"by setting error_score='raise'.\n\n"
|
||
|
f"Below are more details about the failures:\n{fit_errors_summary}"
|
||
|
)
|
||
|
warnings.warn(some_fits_failed_message, FitFailedWarning)
|
||
|
|
||
|
|
||
|
@validate_params(
|
||
|
{
|
||
|
"estimator": [HasMethods("fit")],
|
||
|
"X": ["array-like", "sparse matrix"],
|
||
|
"y": ["array-like", None],
|
||
|
"groups": ["array-like", None],
|
||
|
"scoring": [StrOptions(set(get_scorer_names())), callable, None],
|
||
|
"cv": ["cv_object"],
|
||
|
"n_jobs": [Integral, None],
|
||
|
"verbose": ["verbose"],
|
||
|
"fit_params": [dict, None],
|
||
|
"params": [dict, None],
|
||
|
"pre_dispatch": [Integral, str, None],
|
||
|
"error_score": [StrOptions({"raise"}), Real],
|
||
|
},
|
||
|
prefer_skip_nested_validation=False, # estimator is not validated yet
|
||
|
)
|
||
|
def cross_val_score(
|
||
|
estimator,
|
||
|
X,
|
||
|
y=None,
|
||
|
*,
|
||
|
groups=None,
|
||
|
scoring=None,
|
||
|
cv=None,
|
||
|
n_jobs=None,
|
||
|
verbose=0,
|
||
|
fit_params=None,
|
||
|
params=None,
|
||
|
pre_dispatch="2*n_jobs",
|
||
|
error_score=np.nan,
|
||
|
):
|
||
|
"""Evaluate a score by cross-validation.
|
||
|
|
||
|
Read more in the :ref:`User Guide <cross_validation>`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
estimator : estimator object implementing 'fit'
|
||
|
The object to use to fit the data.
|
||
|
|
||
|
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||
|
The data to fit. Can be for example a list, or an array.
|
||
|
|
||
|
y : array-like of shape (n_samples,) or (n_samples, n_outputs), \
|
||
|
default=None
|
||
|
The target variable to try to predict in the case of
|
||
|
supervised learning.
|
||
|
|
||
|
groups : array-like of shape (n_samples,), default=None
|
||
|
Group labels for the samples used while splitting the dataset into
|
||
|
train/test set. Only used in conjunction with a "Group" :term:`cv`
|
||
|
instance (e.g., :class:`GroupKFold`).
|
||
|
|
||
|
.. versionchanged:: 1.4
|
||
|
``groups`` can only be passed if metadata routing is not enabled
|
||
|
via ``sklearn.set_config(enable_metadata_routing=True)``. When routing
|
||
|
is enabled, pass ``groups`` alongside other metadata via the ``params``
|
||
|
argument instead. E.g.:
|
||
|
``cross_val_score(..., params={'groups': groups})``.
|
||
|
|
||
|
scoring : str or callable, default=None
|
||
|
A str (see model evaluation documentation) or
|
||
|
a scorer callable object / function with signature
|
||
|
``scorer(estimator, X, y)`` which should return only
|
||
|
a single value.
|
||
|
|
||
|
Similar to :func:`cross_validate`
|
||
|
but only a single metric is permitted.
|
||
|
|
||
|
If `None`, the estimator's default scorer (if available) is used.
|
||
|
|
||
|
cv : int, cross-validation generator or an iterable, default=None
|
||
|
Determines the cross-validation splitting strategy.
|
||
|
Possible inputs for cv are:
|
||
|
|
||
|
- `None`, to use the default 5-fold cross validation,
|
||
|
- int, to specify the number of folds in a `(Stratified)KFold`,
|
||
|
- :term:`CV splitter`,
|
||
|
- An iterable that generates (train, test) splits as arrays of indices.
|
||
|
|
||
|
For `int`/`None` inputs, if the estimator is a classifier and `y` is
|
||
|
either binary or multiclass, :class:`StratifiedKFold` is used. In all
|
||
|
other cases, :class:`KFold` is used. These splitters are instantiated
|
||
|
with `shuffle=False` so the splits will be the same across calls.
|
||
|
|
||
|
Refer :ref:`User Guide <cross_validation>` for the various
|
||
|
cross-validation strategies that can be used here.
|
||
|
|
||
|
.. versionchanged:: 0.22
|
||
|
`cv` default value if `None` changed from 3-fold to 5-fold.
|
||
|
|
||
|
n_jobs : int, default=None
|
||
|
Number of jobs to run in parallel. Training the estimator and computing
|
||
|
the score are parallelized over the cross-validation splits.
|
||
|
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
||
|
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
||
|
for more details.
|
||
|
|
||
|
verbose : int, default=0
|
||
|
The verbosity level.
|
||
|
|
||
|
fit_params : dict, default=None
|
||
|
Parameters to pass to the fit method of the estimator.
|
||
|
|
||
|
.. deprecated:: 1.4
|
||
|
This parameter is deprecated and will be removed in version 1.6. Use
|
||
|
``params`` instead.
|
||
|
|
||
|
params : dict, default=None
|
||
|
Parameters to pass to the underlying estimator's ``fit``, the scorer,
|
||
|
and the CV splitter.
|
||
|
|
||
|
.. versionadded:: 1.4
|
||
|
|
||
|
pre_dispatch : int or str, default='2*n_jobs'
|
||
|
Controls the number of jobs that get dispatched during parallel
|
||
|
execution. Reducing this number can be useful to avoid an
|
||
|
explosion of memory consumption when more jobs get dispatched
|
||
|
than CPUs can process. This parameter can be:
|
||
|
|
||
|
- ``None``, in which case all the jobs are immediately
|
||
|
created and spawned. Use this for lightweight and
|
||
|
fast-running jobs, to avoid delays due to on-demand
|
||
|
spawning of the jobs
|
||
|
|
||
|
- An int, giving the exact number of total jobs that are
|
||
|
spawned
|
||
|
|
||
|
- A str, giving an expression as a function of n_jobs,
|
||
|
as in '2*n_jobs'
|
||
|
|
||
|
error_score : 'raise' or numeric, default=np.nan
|
||
|
Value to assign to the score if an error occurs in estimator fitting.
|
||
|
If set to 'raise', the error is raised.
|
||
|
If a numeric value is given, FitFailedWarning is raised.
|
||
|
|
||
|
.. versionadded:: 0.20
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scores : ndarray of float of shape=(len(list(cv)),)
|
||
|
Array of scores of the estimator for each run of the cross validation.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
cross_validate : To run cross-validation on multiple metrics and also to
|
||
|
return train scores, fit times and score times.
|
||
|
|
||
|
cross_val_predict : Get predictions from each split of cross-validation for
|
||
|
diagnostic purposes.
|
||
|
|
||
|
sklearn.metrics.make_scorer : Make a scorer from a performance metric or
|
||
|
loss function.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from sklearn import datasets, linear_model
|
||
|
>>> from sklearn.model_selection import cross_val_score
|
||
|
>>> diabetes = datasets.load_diabetes()
|
||
|
>>> X = diabetes.data[:150]
|
||
|
>>> y = diabetes.target[:150]
|
||
|
>>> lasso = linear_model.Lasso()
|
||
|
>>> print(cross_val_score(lasso, X, y, cv=3))
|
||
|
[0.3315057 0.08022103 0.03531816]
|
||
|
"""
|
||
|
# To ensure multimetric format is not supported
|
||
|
scorer = check_scoring(estimator, scoring=scoring)
|
||
|
|
||
|
cv_results = cross_validate(
|
||
|
estimator=estimator,
|
||
|
X=X,
|
||
|
y=y,
|
||
|
groups=groups,
|
||
|
scoring={"score": scorer},
|
||
|
cv=cv,
|
||
|
n_jobs=n_jobs,
|
||
|
verbose=verbose,
|
||
|
fit_params=fit_params,
|
||
|
params=params,
|
||
|
pre_dispatch=pre_dispatch,
|
||
|
error_score=error_score,
|
||
|
)
|
||
|
return cv_results["test_score"]
|
||
|
|
||
|
|
||
|
def _fit_and_score(
|
||
|
estimator,
|
||
|
X,
|
||
|
y,
|
||
|
*,
|
||
|
scorer,
|
||
|
train,
|
||
|
test,
|
||
|
verbose,
|
||
|
parameters,
|
||
|
fit_params,
|
||
|
score_params,
|
||
|
return_train_score=False,
|
||
|
return_parameters=False,
|
||
|
return_n_test_samples=False,
|
||
|
return_times=False,
|
||
|
return_estimator=False,
|
||
|
split_progress=None,
|
||
|
candidate_progress=None,
|
||
|
error_score=np.nan,
|
||
|
):
|
||
|
"""Fit estimator and compute scores for a given dataset split.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
estimator : estimator object implementing 'fit'
|
||
|
The object to use to fit the data.
|
||
|
|
||
|
X : array-like of shape (n_samples, n_features)
|
||
|
The data to fit.
|
||
|
|
||
|
y : array-like of shape (n_samples,) or (n_samples, n_outputs) or None
|
||
|
The target variable to try to predict in the case of
|
||
|
supervised learning.
|
||
|
|
||
|
scorer : A single callable or dict mapping scorer name to the callable
|
||
|
If it is a single callable, the return value for ``train_scores`` and
|
||
|
``test_scores`` is a single float.
|
||
|
|
||
|
For a dict, it should be one mapping the scorer name to the scorer
|
||
|
callable object / function.
|
||
|
|
||
|
The callable object / fn should have signature
|
||
|
``scorer(estimator, X, y)``.
|
||
|
|
||
|
train : array-like of shape (n_train_samples,)
|
||
|
Indices of training samples.
|
||
|
|
||
|
test : array-like of shape (n_test_samples,)
|
||
|
Indices of test samples.
|
||
|
|
||
|
verbose : int
|
||
|
The verbosity level.
|
||
|
|
||
|
error_score : 'raise' or numeric, default=np.nan
|
||
|
Value to assign to the score if an error occurs in estimator fitting.
|
||
|
If set to 'raise', the error is raised.
|
||
|
If a numeric value is given, FitFailedWarning is raised.
|
||
|
|
||
|
parameters : dict or None
|
||
|
Parameters to be set on the estimator.
|
||
|
|
||
|
fit_params : dict or None
|
||
|
Parameters that will be passed to ``estimator.fit``.
|
||
|
|
||
|
score_params : dict or None
|
||
|
Parameters that will be passed to the scorer.
|
||
|
|
||
|
return_train_score : bool, default=False
|
||
|
Compute and return score on training set.
|
||
|
|
||
|
return_parameters : bool, default=False
|
||
|
Return parameters that has been used for the estimator.
|
||
|
|
||
|
split_progress : {list, tuple} of int, default=None
|
||
|
A list or tuple of format (<current_split_id>, <total_num_of_splits>).
|
||
|
|
||
|
candidate_progress : {list, tuple} of int, default=None
|
||
|
A list or tuple of format
|
||
|
(<current_candidate_id>, <total_number_of_candidates>).
|
||
|
|
||
|
return_n_test_samples : bool, default=False
|
||
|
Whether to return the ``n_test_samples``.
|
||
|
|
||
|
return_times : bool, default=False
|
||
|
Whether to return the fit/score times.
|
||
|
|
||
|
return_estimator : bool, default=False
|
||
|
Whether to return the fitted estimator.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
result : dict with the following attributes
|
||
|
train_scores : dict of scorer name -> float
|
||
|
Score on training set (for all the scorers),
|
||
|
returned only if `return_train_score` is `True`.
|
||
|
test_scores : dict of scorer name -> float
|
||
|
Score on testing set (for all the scorers).
|
||
|
n_test_samples : int
|
||
|
Number of test samples.
|
||
|
fit_time : float
|
||
|
Time spent for fitting in seconds.
|
||
|
score_time : float
|
||
|
Time spent for scoring in seconds.
|
||
|
parameters : dict or None
|
||
|
The parameters that have been evaluated.
|
||
|
estimator : estimator object
|
||
|
The fitted estimator.
|
||
|
fit_error : str or None
|
||
|
Traceback str if the fit failed, None if the fit succeeded.
|
||
|
"""
|
||
|
if not isinstance(error_score, numbers.Number) and error_score != "raise":
|
||
|
raise ValueError(
|
||
|
"error_score must be the string 'raise' or a numeric value. "
|
||
|
"(Hint: if using 'raise', please make sure that it has been "
|
||
|
"spelled correctly.)"
|
||
|
)
|
||
|
|
||
|
progress_msg = ""
|
||
|
if verbose > 2:
|
||
|
if split_progress is not None:
|
||
|
progress_msg = f" {split_progress[0]+1}/{split_progress[1]}"
|
||
|
if candidate_progress and verbose > 9:
|
||
|
progress_msg += f"; {candidate_progress[0]+1}/{candidate_progress[1]}"
|
||
|
|
||
|
if verbose > 1:
|
||
|
if parameters is None:
|
||
|
params_msg = ""
|
||
|
else:
|
||
|
sorted_keys = sorted(parameters) # Ensure deterministic o/p
|
||
|
params_msg = ", ".join(f"{k}={parameters[k]}" for k in sorted_keys)
|
||
|
if verbose > 9:
|
||
|
start_msg = f"[CV{progress_msg}] START {params_msg}"
|
||
|
print(f"{start_msg}{(80 - len(start_msg)) * '.'}")
|
||
|
|
||
|
# Adjust length of sample weights
|
||
|
fit_params = fit_params if fit_params is not None else {}
|
||
|
fit_params = _check_method_params(X, params=fit_params, indices=train)
|
||
|
score_params = score_params if score_params is not None else {}
|
||
|
score_params_train = _check_method_params(X, params=score_params, indices=train)
|
||
|
score_params_test = _check_method_params(X, params=score_params, indices=test)
|
||
|
|
||
|
if parameters is not None:
|
||
|
# here we clone the parameters, since sometimes the parameters
|
||
|
# themselves might be estimators, e.g. when we search over different
|
||
|
# estimators in a pipeline.
|
||
|
# ref: https://github.com/scikit-learn/scikit-learn/pull/26786
|
||
|
estimator = estimator.set_params(**clone(parameters, safe=False))
|
||
|
|
||
|
start_time = time.time()
|
||
|
|
||
|
X_train, y_train = _safe_split(estimator, X, y, train)
|
||
|
X_test, y_test = _safe_split(estimator, X, y, test, train)
|
||
|
|
||
|
result = {}
|
||
|
try:
|
||
|
if y_train is None:
|
||
|
estimator.fit(X_train, **fit_params)
|
||
|
else:
|
||
|
estimator.fit(X_train, y_train, **fit_params)
|
||
|
|
||
|
except Exception:
|
||
|
# Note fit time as time until error
|
||
|
fit_time = time.time() - start_time
|
||
|
score_time = 0.0
|
||
|
if error_score == "raise":
|
||
|
raise
|
||
|
elif isinstance(error_score, numbers.Number):
|
||
|
if isinstance(scorer, dict):
|
||
|
test_scores = {name: error_score for name in scorer}
|
||
|
if return_train_score:
|
||
|
train_scores = test_scores.copy()
|
||
|
else:
|
||
|
test_scores = error_score
|
||
|
if return_train_score:
|
||
|
train_scores = error_score
|
||
|
result["fit_error"] = format_exc()
|
||
|
else:
|
||
|
result["fit_error"] = None
|
||
|
|
||
|
fit_time = time.time() - start_time
|
||
|
test_scores = _score(
|
||
|
estimator, X_test, y_test, scorer, score_params_test, error_score
|
||
|
)
|
||
|
score_time = time.time() - start_time - fit_time
|
||
|
if return_train_score:
|
||
|
train_scores = _score(
|
||
|
estimator, X_train, y_train, scorer, score_params_train, error_score
|
||
|
)
|
||
|
|
||
|
if verbose > 1:
|
||
|
total_time = score_time + fit_time
|
||
|
end_msg = f"[CV{progress_msg}] END "
|
||
|
result_msg = params_msg + (";" if params_msg else "")
|
||
|
if verbose > 2:
|
||
|
if isinstance(test_scores, dict):
|
||
|
for scorer_name in sorted(test_scores):
|
||
|
result_msg += f" {scorer_name}: ("
|
||
|
if return_train_score:
|
||
|
scorer_scores = train_scores[scorer_name]
|
||
|
result_msg += f"train={scorer_scores:.3f}, "
|
||
|
result_msg += f"test={test_scores[scorer_name]:.3f})"
|
||
|
else:
|
||
|
result_msg += ", score="
|
||
|
if return_train_score:
|
||
|
result_msg += f"(train={train_scores:.3f}, test={test_scores:.3f})"
|
||
|
else:
|
||
|
result_msg += f"{test_scores:.3f}"
|
||
|
result_msg += f" total time={logger.short_format_time(total_time)}"
|
||
|
|
||
|
# Right align the result_msg
|
||
|
end_msg += "." * (80 - len(end_msg) - len(result_msg))
|
||
|
end_msg += result_msg
|
||
|
print(end_msg)
|
||
|
|
||
|
result["test_scores"] = test_scores
|
||
|
if return_train_score:
|
||
|
result["train_scores"] = train_scores
|
||
|
if return_n_test_samples:
|
||
|
result["n_test_samples"] = _num_samples(X_test)
|
||
|
if return_times:
|
||
|
result["fit_time"] = fit_time
|
||
|
result["score_time"] = score_time
|
||
|
if return_parameters:
|
||
|
result["parameters"] = parameters
|
||
|
if return_estimator:
|
||
|
result["estimator"] = estimator
|
||
|
return result
|
||
|
|
||
|
|
||
|
def _score(estimator, X_test, y_test, scorer, score_params, error_score="raise"):
|
||
|
"""Compute the score(s) of an estimator on a given test set.
|
||
|
|
||
|
Will return a dict of floats if `scorer` is a dict, otherwise a single
|
||
|
float is returned.
|
||
|
"""
|
||
|
if isinstance(scorer, dict):
|
||
|
# will cache method calls if needed. scorer() returns a dict
|
||
|
scorer = _MultimetricScorer(scorers=scorer, raise_exc=(error_score == "raise"))
|
||
|
|
||
|
score_params = {} if score_params is None else score_params
|
||
|
|
||
|
try:
|
||
|
if y_test is None:
|
||
|
scores = scorer(estimator, X_test, **score_params)
|
||
|
else:
|
||
|
scores = scorer(estimator, X_test, y_test, **score_params)
|
||
|
except Exception:
|
||
|
if isinstance(scorer, _MultimetricScorer):
|
||
|
# If `_MultimetricScorer` raises exception, the `error_score`
|
||
|
# parameter is equal to "raise".
|
||
|
raise
|
||
|
else:
|
||
|
if error_score == "raise":
|
||
|
raise
|
||
|
else:
|
||
|
scores = error_score
|
||
|
warnings.warn(
|
||
|
(
|
||
|
"Scoring failed. The score on this train-test partition for "
|
||
|
f"these parameters will be set to {error_score}. Details: \n"
|
||
|
f"{format_exc()}"
|
||
|
),
|
||
|
UserWarning,
|
||
|
)
|
||
|
|
||
|
# Check non-raised error messages in `_MultimetricScorer`
|
||
|
if isinstance(scorer, _MultimetricScorer):
|
||
|
exception_messages = [
|
||
|
(name, str_e) for name, str_e in scores.items() if isinstance(str_e, str)
|
||
|
]
|
||
|
if exception_messages:
|
||
|
# error_score != "raise"
|
||
|
for name, str_e in exception_messages:
|
||
|
scores[name] = error_score
|
||
|
warnings.warn(
|
||
|
(
|
||
|
"Scoring failed. The score on this train-test partition for "
|
||
|
f"these parameters will be set to {error_score}. Details: \n"
|
||
|
f"{str_e}"
|
||
|
),
|
||
|
UserWarning,
|
||
|
)
|
||
|
|
||
|
error_msg = "scoring must return a number, got %s (%s) instead. (scorer=%s)"
|
||
|
if isinstance(scores, dict):
|
||
|
for name, score in scores.items():
|
||
|
if hasattr(score, "item"):
|
||
|
with suppress(ValueError):
|
||
|
# e.g. unwrap memmapped scalars
|
||
|
score = score.item()
|
||
|
if not isinstance(score, numbers.Number):
|
||
|
raise ValueError(error_msg % (score, type(score), name))
|
||
|
scores[name] = score
|
||
|
else: # scalar
|
||
|
if hasattr(scores, "item"):
|
||
|
with suppress(ValueError):
|
||
|
# e.g. unwrap memmapped scalars
|
||
|
scores = scores.item()
|
||
|
if not isinstance(scores, numbers.Number):
|
||
|
raise ValueError(error_msg % (scores, type(scores), scorer))
|
||
|
return scores
|
||
|
|
||
|
|
||
|
@validate_params(
|
||
|
{
|
||
|
"estimator": [HasMethods(["fit", "predict"])],
|
||
|
"X": ["array-like", "sparse matrix"],
|
||
|
"y": ["array-like", None],
|
||
|
"groups": ["array-like", None],
|
||
|
"cv": ["cv_object"],
|
||
|
"n_jobs": [Integral, None],
|
||
|
"verbose": ["verbose"],
|
||
|
"fit_params": [dict, None],
|
||
|
"params": [dict, None],
|
||
|
"pre_dispatch": [Integral, str, None],
|
||
|
"method": [
|
||
|
StrOptions(
|
||
|
{
|
||
|
"predict",
|
||
|
"predict_proba",
|
||
|
"predict_log_proba",
|
||
|
"decision_function",
|
||
|
}
|
||
|
)
|
||
|
],
|
||
|
},
|
||
|
prefer_skip_nested_validation=False, # estimator is not validated yet
|
||
|
)
|
||
|
def cross_val_predict(
|
||
|
estimator,
|
||
|
X,
|
||
|
y=None,
|
||
|
*,
|
||
|
groups=None,
|
||
|
cv=None,
|
||
|
n_jobs=None,
|
||
|
verbose=0,
|
||
|
fit_params=None,
|
||
|
params=None,
|
||
|
pre_dispatch="2*n_jobs",
|
||
|
method="predict",
|
||
|
):
|
||
|
"""Generate cross-validated estimates for each input data point.
|
||
|
|
||
|
The data is split according to the cv parameter. Each sample belongs
|
||
|
to exactly one test set, and its prediction is computed with an
|
||
|
estimator fitted on the corresponding training set.
|
||
|
|
||
|
Passing these predictions into an evaluation metric may not be a valid
|
||
|
way to measure generalization performance. Results can differ from
|
||
|
:func:`cross_validate` and :func:`cross_val_score` unless all tests sets
|
||
|
have equal size and the metric decomposes over samples.
|
||
|
|
||
|
Read more in the :ref:`User Guide <cross_validation>`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
estimator : estimator
|
||
|
The estimator instance to use to fit the data. It must implement a `fit`
|
||
|
method and the method given by the `method` parameter.
|
||
|
|
||
|
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||
|
The data to fit. Can be, for example a list, or an array at least 2d.
|
||
|
|
||
|
y : array-like of shape (n_samples,) or (n_samples, n_outputs), \
|
||
|
default=None
|
||
|
The target variable to try to predict in the case of
|
||
|
supervised learning.
|
||
|
|
||
|
groups : array-like of shape (n_samples,), default=None
|
||
|
Group labels for the samples used while splitting the dataset into
|
||
|
train/test set. Only used in conjunction with a "Group" :term:`cv`
|
||
|
instance (e.g., :class:`GroupKFold`).
|
||
|
|
||
|
.. versionchanged:: 1.4
|
||
|
``groups`` can only be passed if metadata routing is not enabled
|
||
|
via ``sklearn.set_config(enable_metadata_routing=True)``. When routing
|
||
|
is enabled, pass ``groups`` alongside other metadata via the ``params``
|
||
|
argument instead. E.g.:
|
||
|
``cross_val_predict(..., params={'groups': groups})``.
|
||
|
|
||
|
cv : int, cross-validation generator or an iterable, default=None
|
||
|
Determines the cross-validation splitting strategy.
|
||
|
Possible inputs for cv are:
|
||
|
|
||
|
- None, to use the default 5-fold cross validation,
|
||
|
- int, to specify the number of folds in a `(Stratified)KFold`,
|
||
|
- :term:`CV splitter`,
|
||
|
- An iterable that generates (train, test) splits as arrays of indices.
|
||
|
|
||
|
For int/None inputs, if the estimator is a classifier and ``y`` is
|
||
|
either binary or multiclass, :class:`StratifiedKFold` is used. In all
|
||
|
other cases, :class:`KFold` is used. These splitters are instantiated
|
||
|
with `shuffle=False` so the splits will be the same across calls.
|
||
|
|
||
|
Refer :ref:`User Guide <cross_validation>` for the various
|
||
|
cross-validation strategies that can be used here.
|
||
|
|
||
|
.. versionchanged:: 0.22
|
||
|
``cv`` default value if None changed from 3-fold to 5-fold.
|
||
|
|
||
|
n_jobs : int, default=None
|
||
|
Number of jobs to run in parallel. Training the estimator and
|
||
|
predicting are parallelized over the cross-validation splits.
|
||
|
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
||
|
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
||
|
for more details.
|
||
|
|
||
|
verbose : int, default=0
|
||
|
The verbosity level.
|
||
|
|
||
|
fit_params : dict, default=None
|
||
|
Parameters to pass to the fit method of the estimator.
|
||
|
|
||
|
.. deprecated:: 1.4
|
||
|
This parameter is deprecated and will be removed in version 1.6. Use
|
||
|
``params`` instead.
|
||
|
|
||
|
params : dict, default=None
|
||
|
Parameters to pass to the underlying estimator's ``fit`` and the CV
|
||
|
splitter.
|
||
|
|
||
|
.. versionadded:: 1.4
|
||
|
|
||
|
pre_dispatch : int or str, default='2*n_jobs'
|
||
|
Controls the number of jobs that get dispatched during parallel
|
||
|
execution. Reducing this number can be useful to avoid an
|
||
|
explosion of memory consumption when more jobs get dispatched
|
||
|
than CPUs can process. This parameter can be:
|
||
|
|
||
|
- None, in which case all the jobs are immediately
|
||
|
created and spawned. Use this for lightweight and
|
||
|
fast-running jobs, to avoid delays due to on-demand
|
||
|
spawning of the jobs
|
||
|
|
||
|
- An int, giving the exact number of total jobs that are
|
||
|
spawned
|
||
|
|
||
|
- A str, giving an expression as a function of n_jobs,
|
||
|
as in '2*n_jobs'
|
||
|
|
||
|
method : {'predict', 'predict_proba', 'predict_log_proba', \
|
||
|
'decision_function'}, default='predict'
|
||
|
The method to be invoked by `estimator`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
predictions : ndarray
|
||
|
This is the result of calling `method`. Shape:
|
||
|
|
||
|
- When `method` is 'predict' and in special case where `method` is
|
||
|
'decision_function' and the target is binary: (n_samples,)
|
||
|
- When `method` is one of {'predict_proba', 'predict_log_proba',
|
||
|
'decision_function'} (unless special case above):
|
||
|
(n_samples, n_classes)
|
||
|
- If `estimator` is :term:`multioutput`, an extra dimension
|
||
|
'n_outputs' is added to the end of each shape above.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
cross_val_score : Calculate score for each CV split.
|
||
|
cross_validate : Calculate one or more scores and timings for each CV
|
||
|
split.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
In the case that one or more classes are absent in a training portion, a
|
||
|
default score needs to be assigned to all instances for that class if
|
||
|
``method`` produces columns per class, as in {'decision_function',
|
||
|
'predict_proba', 'predict_log_proba'}. For ``predict_proba`` this value is
|
||
|
0. In order to ensure finite output, we approximate negative infinity by
|
||
|
the minimum finite float value for the dtype in other cases.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from sklearn import datasets, linear_model
|
||
|
>>> from sklearn.model_selection import cross_val_predict
|
||
|
>>> diabetes = datasets.load_diabetes()
|
||
|
>>> X = diabetes.data[:150]
|
||
|
>>> y = diabetes.target[:150]
|
||
|
>>> lasso = linear_model.Lasso()
|
||
|
>>> y_pred = cross_val_predict(lasso, X, y, cv=3)
|
||
|
"""
|
||
|
params = _check_params_groups_deprecation(fit_params, params, groups)
|
||
|
X, y = indexable(X, y)
|
||
|
|
||
|
if _routing_enabled():
|
||
|
# For estimators, a MetadataRouter is created in get_metadata_routing
|
||
|
# methods. For these router methods, we create the router to use
|
||
|
# `process_routing` on it.
|
||
|
router = (
|
||
|
MetadataRouter(owner="cross_validate")
|
||
|
.add(
|
||
|
splitter=cv,
|
||
|
method_mapping=MethodMapping().add(caller="fit", callee="split"),
|
||
|
)
|
||
|
.add(
|
||
|
estimator=estimator,
|
||
|
# TODO(SLEP6): also pass metadata for the predict method.
|
||
|
method_mapping=MethodMapping().add(caller="fit", callee="fit"),
|
||
|
)
|
||
|
)
|
||
|
try:
|
||
|
routed_params = process_routing(router, "fit", **params)
|
||
|
except UnsetMetadataPassedError as e:
|
||
|
# The default exception would mention `fit` since in the above
|
||
|
# `process_routing` code, we pass `fit` as the caller. However,
|
||
|
# the user is not calling `fit` directly, so we change the message
|
||
|
# to make it more suitable for this case.
|
||
|
unrequested_params = sorted(e.unrequested_params)
|
||
|
raise UnsetMetadataPassedError(
|
||
|
message=(
|
||
|
f"{unrequested_params} are passed to `cross_val_predict` but are"
|
||
|
" not explicitly set as requested or not requested for"
|
||
|
f" cross_validate's estimator: {estimator.__class__.__name__} Call"
|
||
|
" `.set_fit_request({{metadata}}=True)` on the estimator for"
|
||
|
f" each metadata in {unrequested_params} that you want to use and"
|
||
|
" `metadata=False` for not using it. See the Metadata Routing User"
|
||
|
" guide <https://scikit-learn.org/stable/metadata_routing.html>"
|
||
|
" for more information."
|
||
|
),
|
||
|
unrequested_params=e.unrequested_params,
|
||
|
routed_params=e.routed_params,
|
||
|
)
|
||
|
else:
|
||
|
routed_params = Bunch()
|
||
|
routed_params.splitter = Bunch(split={"groups": groups})
|
||
|
routed_params.estimator = Bunch(fit=params)
|
||
|
|
||
|
cv = check_cv(cv, y, classifier=is_classifier(estimator))
|
||
|
splits = list(cv.split(X, y, **routed_params.splitter.split))
|
||
|
|
||
|
test_indices = np.concatenate([test for _, test in splits])
|
||
|
if not _check_is_permutation(test_indices, _num_samples(X)):
|
||
|
raise ValueError("cross_val_predict only works for partitions")
|
||
|
|
||
|
# If classification methods produce multiple columns of output,
|
||
|
# we need to manually encode classes to ensure consistent column ordering.
|
||
|
encode = (
|
||
|
method in ["decision_function", "predict_proba", "predict_log_proba"]
|
||
|
and y is not None
|
||
|
)
|
||
|
if encode:
|
||
|
y = np.asarray(y)
|
||
|
if y.ndim == 1:
|
||
|
le = LabelEncoder()
|
||
|
y = le.fit_transform(y)
|
||
|
elif y.ndim == 2:
|
||
|
y_enc = np.zeros_like(y, dtype=int)
|
||
|
for i_label in range(y.shape[1]):
|
||
|
y_enc[:, i_label] = LabelEncoder().fit_transform(y[:, i_label])
|
||
|
y = y_enc
|
||
|
|
||
|
# We clone the estimator to make sure that all the folds are
|
||
|
# independent, and that it is pickle-able.
|
||
|
parallel = Parallel(n_jobs=n_jobs, verbose=verbose, pre_dispatch=pre_dispatch)
|
||
|
predictions = parallel(
|
||
|
delayed(_fit_and_predict)(
|
||
|
clone(estimator),
|
||
|
X,
|
||
|
y,
|
||
|
train,
|
||
|
test,
|
||
|
routed_params.estimator.fit,
|
||
|
method,
|
||
|
)
|
||
|
for train, test in splits
|
||
|
)
|
||
|
|
||
|
inv_test_indices = np.empty(len(test_indices), dtype=int)
|
||
|
inv_test_indices[test_indices] = np.arange(len(test_indices))
|
||
|
|
||
|
if sp.issparse(predictions[0]):
|
||
|
predictions = sp.vstack(predictions, format=predictions[0].format)
|
||
|
elif encode and isinstance(predictions[0], list):
|
||
|
# `predictions` is a list of method outputs from each fold.
|
||
|
# If each of those is also a list, then treat this as a
|
||
|
# multioutput-multiclass task. We need to separately concatenate
|
||
|
# the method outputs for each label into an `n_labels` long list.
|
||
|
n_labels = y.shape[1]
|
||
|
concat_pred = []
|
||
|
for i_label in range(n_labels):
|
||
|
label_preds = np.concatenate([p[i_label] for p in predictions])
|
||
|
concat_pred.append(label_preds)
|
||
|
predictions = concat_pred
|
||
|
else:
|
||
|
predictions = np.concatenate(predictions)
|
||
|
|
||
|
if isinstance(predictions, list):
|
||
|
return [p[inv_test_indices] for p in predictions]
|
||
|
else:
|
||
|
return predictions[inv_test_indices]
|
||
|
|
||
|
|
||
|
def _fit_and_predict(estimator, X, y, train, test, fit_params, method):
|
||
|
"""Fit estimator and predict values for a given dataset split.
|
||
|
|
||
|
Read more in the :ref:`User Guide <cross_validation>`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
estimator : estimator object implementing 'fit' and 'predict'
|
||
|
The object to use to fit the data.
|
||
|
|
||
|
X : array-like of shape (n_samples, n_features)
|
||
|
The data to fit.
|
||
|
|
||
|
.. versionchanged:: 0.20
|
||
|
X is only required to be an object with finite length or shape now
|
||
|
|
||
|
y : array-like of shape (n_samples,) or (n_samples, n_outputs) or None
|
||
|
The target variable to try to predict in the case of
|
||
|
supervised learning.
|
||
|
|
||
|
train : array-like of shape (n_train_samples,)
|
||
|
Indices of training samples.
|
||
|
|
||
|
test : array-like of shape (n_test_samples,)
|
||
|
Indices of test samples.
|
||
|
|
||
|
fit_params : dict or None
|
||
|
Parameters that will be passed to ``estimator.fit``.
|
||
|
|
||
|
method : str
|
||
|
Invokes the passed method name of the passed estimator.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
predictions : sequence
|
||
|
Result of calling 'estimator.method'
|
||
|
"""
|
||
|
# Adjust length of sample weights
|
||
|
fit_params = fit_params if fit_params is not None else {}
|
||
|
fit_params = _check_method_params(X, params=fit_params, indices=train)
|
||
|
|
||
|
X_train, y_train = _safe_split(estimator, X, y, train)
|
||
|
X_test, _ = _safe_split(estimator, X, y, test, train)
|
||
|
|
||
|
if y_train is None:
|
||
|
estimator.fit(X_train, **fit_params)
|
||
|
else:
|
||
|
estimator.fit(X_train, y_train, **fit_params)
|
||
|
func = getattr(estimator, method)
|
||
|
predictions = func(X_test)
|
||
|
|
||
|
encode = (
|
||
|
method in ["decision_function", "predict_proba", "predict_log_proba"]
|
||
|
and y is not None
|
||
|
)
|
||
|
|
||
|
if encode:
|
||
|
if isinstance(predictions, list):
|
||
|
predictions = [
|
||
|
_enforce_prediction_order(
|
||
|
estimator.classes_[i_label],
|
||
|
predictions[i_label],
|
||
|
n_classes=len(set(y[:, i_label])),
|
||
|
method=method,
|
||
|
)
|
||
|
for i_label in range(len(predictions))
|
||
|
]
|
||
|
else:
|
||
|
# A 2D y array should be a binary label indicator matrix
|
||
|
n_classes = len(set(y)) if y.ndim == 1 else y.shape[1]
|
||
|
predictions = _enforce_prediction_order(
|
||
|
estimator.classes_, predictions, n_classes, method
|
||
|
)
|
||
|
return predictions
|
||
|
|
||
|
|
||
|
def _enforce_prediction_order(classes, predictions, n_classes, method):
|
||
|
"""Ensure that prediction arrays have correct column order
|
||
|
|
||
|
When doing cross-validation, if one or more classes are
|
||
|
not present in the subset of data used for training,
|
||
|
then the output prediction array might not have the same
|
||
|
columns as other folds. Use the list of class names
|
||
|
(assumed to be ints) to enforce the correct column order.
|
||
|
|
||
|
Note that `classes` is the list of classes in this fold
|
||
|
(a subset of the classes in the full training set)
|
||
|
and `n_classes` is the number of classes in the full training set.
|
||
|
"""
|
||
|
if n_classes != len(classes):
|
||
|
recommendation = (
|
||
|
"To fix this, use a cross-validation "
|
||
|
"technique resulting in properly "
|
||
|
"stratified folds"
|
||
|
)
|
||
|
warnings.warn(
|
||
|
"Number of classes in training fold ({}) does "
|
||
|
"not match total number of classes ({}). "
|
||
|
"Results may not be appropriate for your use case. "
|
||
|
"{}".format(len(classes), n_classes, recommendation),
|
||
|
RuntimeWarning,
|
||
|
)
|
||
|
if method == "decision_function":
|
||
|
if predictions.ndim == 2 and predictions.shape[1] != len(classes):
|
||
|
# This handles the case when the shape of predictions
|
||
|
# does not match the number of classes used to train
|
||
|
# it with. This case is found when sklearn.svm.SVC is
|
||
|
# set to `decision_function_shape='ovo'`.
|
||
|
raise ValueError(
|
||
|
"Output shape {} of {} does not match "
|
||
|
"number of classes ({}) in fold. "
|
||
|
"Irregular decision_function outputs "
|
||
|
"are not currently supported by "
|
||
|
"cross_val_predict".format(predictions.shape, method, len(classes))
|
||
|
)
|
||
|
if len(classes) <= 2:
|
||
|
# In this special case, `predictions` contains a 1D array.
|
||
|
raise ValueError(
|
||
|
"Only {} class/es in training fold, but {} "
|
||
|
"in overall dataset. This "
|
||
|
"is not supported for decision_function "
|
||
|
"with imbalanced folds. {}".format(
|
||
|
len(classes), n_classes, recommendation
|
||
|
)
|
||
|
)
|
||
|
|
||
|
float_min = np.finfo(predictions.dtype).min
|
||
|
default_values = {
|
||
|
"decision_function": float_min,
|
||
|
"predict_log_proba": float_min,
|
||
|
"predict_proba": 0,
|
||
|
}
|
||
|
predictions_for_all_classes = np.full(
|
||
|
(_num_samples(predictions), n_classes),
|
||
|
default_values[method],
|
||
|
dtype=predictions.dtype,
|
||
|
)
|
||
|
predictions_for_all_classes[:, classes] = predictions
|
||
|
predictions = predictions_for_all_classes
|
||
|
return predictions
|
||
|
|
||
|
|
||
|
def _check_is_permutation(indices, n_samples):
|
||
|
"""Check whether indices is a reordering of the array np.arange(n_samples)
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
indices : ndarray
|
||
|
int array to test
|
||
|
n_samples : int
|
||
|
number of expected elements
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
is_partition : bool
|
||
|
True iff sorted(indices) is np.arange(n)
|
||
|
"""
|
||
|
if len(indices) != n_samples:
|
||
|
return False
|
||
|
hit = np.zeros(n_samples, dtype=bool)
|
||
|
hit[indices] = True
|
||
|
if not np.all(hit):
|
||
|
return False
|
||
|
return True
|
||
|
|
||
|
|
||
|
@validate_params(
|
||
|
{
|
||
|
"estimator": [HasMethods("fit")],
|
||
|
"X": ["array-like", "sparse matrix"],
|
||
|
"y": ["array-like", None],
|
||
|
"groups": ["array-like", None],
|
||
|
"cv": ["cv_object"],
|
||
|
"n_permutations": [Interval(Integral, 1, None, closed="left")],
|
||
|
"n_jobs": [Integral, None],
|
||
|
"random_state": ["random_state"],
|
||
|
"verbose": ["verbose"],
|
||
|
"scoring": [StrOptions(set(get_scorer_names())), callable, None],
|
||
|
"fit_params": [dict, None],
|
||
|
},
|
||
|
prefer_skip_nested_validation=False, # estimator is not validated yet
|
||
|
)
|
||
|
def permutation_test_score(
|
||
|
estimator,
|
||
|
X,
|
||
|
y,
|
||
|
*,
|
||
|
groups=None,
|
||
|
cv=None,
|
||
|
n_permutations=100,
|
||
|
n_jobs=None,
|
||
|
random_state=0,
|
||
|
verbose=0,
|
||
|
scoring=None,
|
||
|
fit_params=None,
|
||
|
):
|
||
|
"""Evaluate the significance of a cross-validated score with permutations.
|
||
|
|
||
|
Permutes targets to generate 'randomized data' and compute the empirical
|
||
|
p-value against the null hypothesis that features and targets are
|
||
|
independent.
|
||
|
|
||
|
The p-value represents the fraction of randomized data sets where the
|
||
|
estimator performed as well or better than in the original data. A small
|
||
|
p-value suggests that there is a real dependency between features and
|
||
|
targets which has been used by the estimator to give good predictions.
|
||
|
A large p-value may be due to lack of real dependency between features
|
||
|
and targets or the estimator was not able to use the dependency to
|
||
|
give good predictions.
|
||
|
|
||
|
Read more in the :ref:`User Guide <permutation_test_score>`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
estimator : estimator object implementing 'fit'
|
||
|
The object to use to fit the data.
|
||
|
|
||
|
X : array-like of shape at least 2D
|
||
|
The data to fit.
|
||
|
|
||
|
y : array-like of shape (n_samples,) or (n_samples, n_outputs) or None
|
||
|
The target variable to try to predict in the case of
|
||
|
supervised learning.
|
||
|
|
||
|
groups : array-like of shape (n_samples,), default=None
|
||
|
Labels to constrain permutation within groups, i.e. ``y`` values
|
||
|
are permuted among samples with the same group identifier.
|
||
|
When not specified, ``y`` values are permuted among all samples.
|
||
|
|
||
|
When a grouped cross-validator is used, the group labels are
|
||
|
also passed on to the ``split`` method of the cross-validator. The
|
||
|
cross-validator uses them for grouping the samples while splitting
|
||
|
the dataset into train/test set.
|
||
|
|
||
|
cv : int, cross-validation generator or an iterable, default=None
|
||
|
Determines the cross-validation splitting strategy.
|
||
|
Possible inputs for cv are:
|
||
|
|
||
|
- `None`, to use the default 5-fold cross validation,
|
||
|
- int, to specify the number of folds in a `(Stratified)KFold`,
|
||
|
- :term:`CV splitter`,
|
||
|
- An iterable yielding (train, test) splits as arrays of indices.
|
||
|
|
||
|
For `int`/`None` inputs, if the estimator is a classifier and `y` is
|
||
|
either binary or multiclass, :class:`StratifiedKFold` is used. In all
|
||
|
other cases, :class:`KFold` is used. These splitters are instantiated
|
||
|
with `shuffle=False` so the splits will be the same across calls.
|
||
|
|
||
|
Refer :ref:`User Guide <cross_validation>` for the various
|
||
|
cross-validation strategies that can be used here.
|
||
|
|
||
|
.. versionchanged:: 0.22
|
||
|
`cv` default value if `None` changed from 3-fold to 5-fold.
|
||
|
|
||
|
n_permutations : int, default=100
|
||
|
Number of times to permute ``y``.
|
||
|
|
||
|
n_jobs : int, default=None
|
||
|
Number of jobs to run in parallel. Training the estimator and computing
|
||
|
the cross-validated score are parallelized over the permutations.
|
||
|
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
||
|
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
||
|
for more details.
|
||
|
|
||
|
random_state : int, RandomState instance or None, default=0
|
||
|
Pass an int for reproducible output for permutation of
|
||
|
``y`` values among samples. See :term:`Glossary <random_state>`.
|
||
|
|
||
|
verbose : int, default=0
|
||
|
The verbosity level.
|
||
|
|
||
|
scoring : str or callable, default=None
|
||
|
A single str (see :ref:`scoring_parameter`) or a callable
|
||
|
(see :ref:`scoring`) to evaluate the predictions on the test set.
|
||
|
|
||
|
If `None` the estimator's score method is used.
|
||
|
|
||
|
fit_params : dict, default=None
|
||
|
Parameters to pass to the fit method of the estimator.
|
||
|
|
||
|
.. versionadded:: 0.24
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
score : float
|
||
|
The true score without permuting targets.
|
||
|
|
||
|
permutation_scores : array of shape (n_permutations,)
|
||
|
The scores obtained for each permutations.
|
||
|
|
||
|
pvalue : float
|
||
|
The p-value, which approximates the probability that the score would
|
||
|
be obtained by chance. This is calculated as:
|
||
|
|
||
|
`(C + 1) / (n_permutations + 1)`
|
||
|
|
||
|
Where C is the number of permutations whose score >= the true score.
|
||
|
|
||
|
The best possible p-value is 1/(n_permutations + 1), the worst is 1.0.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This function implements Test 1 in:
|
||
|
|
||
|
Ojala and Garriga. `Permutation Tests for Studying Classifier
|
||
|
Performance
|
||
|
<http://www.jmlr.org/papers/volume11/ojala10a/ojala10a.pdf>`_. The
|
||
|
Journal of Machine Learning Research (2010) vol. 11
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from sklearn.datasets import make_classification
|
||
|
>>> from sklearn.linear_model import LogisticRegression
|
||
|
>>> from sklearn.model_selection import permutation_test_score
|
||
|
>>> X, y = make_classification(random_state=0)
|
||
|
>>> estimator = LogisticRegression()
|
||
|
>>> score, permutation_scores, pvalue = permutation_test_score(
|
||
|
... estimator, X, y, random_state=0
|
||
|
... )
|
||
|
>>> print(f"Original Score: {score:.3f}")
|
||
|
Original Score: 0.810
|
||
|
>>> print(
|
||
|
... f"Permutation Scores: {permutation_scores.mean():.3f} +/- "
|
||
|
... f"{permutation_scores.std():.3f}"
|
||
|
... )
|
||
|
Permutation Scores: 0.505 +/- 0.057
|
||
|
>>> print(f"P-value: {pvalue:.3f}")
|
||
|
P-value: 0.010
|
||
|
"""
|
||
|
X, y, groups = indexable(X, y, groups)
|
||
|
|
||
|
cv = check_cv(cv, y, classifier=is_classifier(estimator))
|
||
|
scorer = check_scoring(estimator, scoring=scoring)
|
||
|
random_state = check_random_state(random_state)
|
||
|
|
||
|
# We clone the estimator to make sure that all the folds are
|
||
|
# independent, and that it is pickle-able.
|
||
|
score = _permutation_test_score(
|
||
|
clone(estimator), X, y, groups, cv, scorer, fit_params=fit_params
|
||
|
)
|
||
|
permutation_scores = Parallel(n_jobs=n_jobs, verbose=verbose)(
|
||
|
delayed(_permutation_test_score)(
|
||
|
clone(estimator),
|
||
|
X,
|
||
|
_shuffle(y, groups, random_state),
|
||
|
groups,
|
||
|
cv,
|
||
|
scorer,
|
||
|
fit_params=fit_params,
|
||
|
)
|
||
|
for _ in range(n_permutations)
|
||
|
)
|
||
|
permutation_scores = np.array(permutation_scores)
|
||
|
pvalue = (np.sum(permutation_scores >= score) + 1.0) / (n_permutations + 1)
|
||
|
return score, permutation_scores, pvalue
|
||
|
|
||
|
|
||
|
def _permutation_test_score(estimator, X, y, groups, cv, scorer, fit_params):
|
||
|
"""Auxiliary function for permutation_test_score"""
|
||
|
# Adjust length of sample weights
|
||
|
fit_params = fit_params if fit_params is not None else {}
|
||
|
avg_score = []
|
||
|
for train, test in cv.split(X, y, groups):
|
||
|
X_train, y_train = _safe_split(estimator, X, y, train)
|
||
|
X_test, y_test = _safe_split(estimator, X, y, test, train)
|
||
|
fit_params = _check_method_params(X, params=fit_params, indices=train)
|
||
|
estimator.fit(X_train, y_train, **fit_params)
|
||
|
avg_score.append(scorer(estimator, X_test, y_test))
|
||
|
return np.mean(avg_score)
|
||
|
|
||
|
|
||
|
def _shuffle(y, groups, random_state):
|
||
|
"""Return a shuffled copy of y eventually shuffle among same groups."""
|
||
|
if groups is None:
|
||
|
indices = random_state.permutation(len(y))
|
||
|
else:
|
||
|
indices = np.arange(len(groups))
|
||
|
for group in np.unique(groups):
|
||
|
this_mask = groups == group
|
||
|
indices[this_mask] = random_state.permutation(indices[this_mask])
|
||
|
return _safe_indexing(y, indices)
|
||
|
|
||
|
|
||
|
@validate_params(
|
||
|
{
|
||
|
"estimator": [HasMethods(["fit"])],
|
||
|
"X": ["array-like", "sparse matrix"],
|
||
|
"y": ["array-like", None],
|
||
|
"groups": ["array-like", None],
|
||
|
"train_sizes": ["array-like"],
|
||
|
"cv": ["cv_object"],
|
||
|
"scoring": [StrOptions(set(get_scorer_names())), callable, None],
|
||
|
"exploit_incremental_learning": ["boolean"],
|
||
|
"n_jobs": [Integral, None],
|
||
|
"pre_dispatch": [Integral, str],
|
||
|
"verbose": ["verbose"],
|
||
|
"shuffle": ["boolean"],
|
||
|
"random_state": ["random_state"],
|
||
|
"error_score": [StrOptions({"raise"}), Real],
|
||
|
"return_times": ["boolean"],
|
||
|
"fit_params": [dict, None],
|
||
|
},
|
||
|
prefer_skip_nested_validation=False, # estimator is not validated yet
|
||
|
)
|
||
|
def learning_curve(
|
||
|
estimator,
|
||
|
X,
|
||
|
y,
|
||
|
*,
|
||
|
groups=None,
|
||
|
train_sizes=np.linspace(0.1, 1.0, 5),
|
||
|
cv=None,
|
||
|
scoring=None,
|
||
|
exploit_incremental_learning=False,
|
||
|
n_jobs=None,
|
||
|
pre_dispatch="all",
|
||
|
verbose=0,
|
||
|
shuffle=False,
|
||
|
random_state=None,
|
||
|
error_score=np.nan,
|
||
|
return_times=False,
|
||
|
fit_params=None,
|
||
|
):
|
||
|
"""Learning curve.
|
||
|
|
||
|
Determines cross-validated training and test scores for different training
|
||
|
set sizes.
|
||
|
|
||
|
A cross-validation generator splits the whole dataset k times in training
|
||
|
and test data. Subsets of the training set with varying sizes will be used
|
||
|
to train the estimator and a score for each training subset size and the
|
||
|
test set will be computed. Afterwards, the scores will be averaged over
|
||
|
all k runs for each training subset size.
|
||
|
|
||
|
Read more in the :ref:`User Guide <learning_curve>`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
estimator : object type that implements the "fit" method
|
||
|
An object of that type which is cloned for each validation. It must
|
||
|
also implement "predict" unless `scoring` is a callable that doesn't
|
||
|
rely on "predict" to compute a score.
|
||
|
|
||
|
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||
|
Training vector, where `n_samples` is the number of samples and
|
||
|
`n_features` is the number of features.
|
||
|
|
||
|
y : array-like of shape (n_samples,) or (n_samples, n_outputs) or None
|
||
|
Target relative to X for classification or regression;
|
||
|
None for unsupervised learning.
|
||
|
|
||
|
groups : array-like of shape (n_samples,), default=None
|
||
|
Group labels for the samples used while splitting the dataset into
|
||
|
train/test set. Only used in conjunction with a "Group" :term:`cv`
|
||
|
instance (e.g., :class:`GroupKFold`).
|
||
|
|
||
|
train_sizes : array-like of shape (n_ticks,), \
|
||
|
default=np.linspace(0.1, 1.0, 5)
|
||
|
Relative or absolute numbers of training examples that will be used to
|
||
|
generate the learning curve. If the dtype is float, it is regarded as a
|
||
|
fraction of the maximum size of the training set (that is determined
|
||
|
by the selected validation method), i.e. it has to be within (0, 1].
|
||
|
Otherwise it is interpreted as absolute sizes of the training sets.
|
||
|
Note that for classification the number of samples usually have to
|
||
|
be big enough to contain at least one sample from each class.
|
||
|
|
||
|
cv : int, cross-validation generator or an iterable, default=None
|
||
|
Determines the cross-validation splitting strategy.
|
||
|
Possible inputs for cv are:
|
||
|
|
||
|
- None, to use the default 5-fold cross validation,
|
||
|
- int, to specify the number of folds in a `(Stratified)KFold`,
|
||
|
- :term:`CV splitter`,
|
||
|
- An iterable yielding (train, test) splits as arrays of indices.
|
||
|
|
||
|
For int/None inputs, if the estimator is a classifier and ``y`` is
|
||
|
either binary or multiclass, :class:`StratifiedKFold` is used. In all
|
||
|
other cases, :class:`KFold` is used. These splitters are instantiated
|
||
|
with `shuffle=False` so the splits will be the same across calls.
|
||
|
|
||
|
Refer :ref:`User Guide <cross_validation>` for the various
|
||
|
cross-validation strategies that can be used here.
|
||
|
|
||
|
.. versionchanged:: 0.22
|
||
|
``cv`` default value if None changed from 3-fold to 5-fold.
|
||
|
|
||
|
scoring : str or callable, default=None
|
||
|
A str (see model evaluation documentation) or
|
||
|
a scorer callable object / function with signature
|
||
|
``scorer(estimator, X, y)``.
|
||
|
|
||
|
exploit_incremental_learning : bool, default=False
|
||
|
If the estimator supports incremental learning, this will be
|
||
|
used to speed up fitting for different training set sizes.
|
||
|
|
||
|
n_jobs : int, default=None
|
||
|
Number of jobs to run in parallel. Training the estimator and computing
|
||
|
the score are parallelized over the different training and test sets.
|
||
|
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
||
|
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
||
|
for more details.
|
||
|
|
||
|
pre_dispatch : int or str, default='all'
|
||
|
Number of predispatched jobs for parallel execution (default is
|
||
|
all). The option can reduce the allocated memory. The str can
|
||
|
be an expression like '2*n_jobs'.
|
||
|
|
||
|
verbose : int, default=0
|
||
|
Controls the verbosity: the higher, the more messages.
|
||
|
|
||
|
shuffle : bool, default=False
|
||
|
Whether to shuffle training data before taking prefixes of it
|
||
|
based on``train_sizes``.
|
||
|
|
||
|
random_state : int, RandomState instance or None, default=None
|
||
|
Used when ``shuffle`` is True. Pass an int for reproducible
|
||
|
output across multiple function calls.
|
||
|
See :term:`Glossary <random_state>`.
|
||
|
|
||
|
error_score : 'raise' or numeric, default=np.nan
|
||
|
Value to assign to the score if an error occurs in estimator fitting.
|
||
|
If set to 'raise', the error is raised.
|
||
|
If a numeric value is given, FitFailedWarning is raised.
|
||
|
|
||
|
.. versionadded:: 0.20
|
||
|
|
||
|
return_times : bool, default=False
|
||
|
Whether to return the fit and score times.
|
||
|
|
||
|
fit_params : dict, default=None
|
||
|
Parameters to pass to the fit method of the estimator.
|
||
|
|
||
|
.. versionadded:: 0.24
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
train_sizes_abs : array of shape (n_unique_ticks,)
|
||
|
Numbers of training examples that has been used to generate the
|
||
|
learning curve. Note that the number of ticks might be less
|
||
|
than n_ticks because duplicate entries will be removed.
|
||
|
|
||
|
train_scores : array of shape (n_ticks, n_cv_folds)
|
||
|
Scores on training sets.
|
||
|
|
||
|
test_scores : array of shape (n_ticks, n_cv_folds)
|
||
|
Scores on test set.
|
||
|
|
||
|
fit_times : array of shape (n_ticks, n_cv_folds)
|
||
|
Times spent for fitting in seconds. Only present if ``return_times``
|
||
|
is True.
|
||
|
|
||
|
score_times : array of shape (n_ticks, n_cv_folds)
|
||
|
Times spent for scoring in seconds. Only present if ``return_times``
|
||
|
is True.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from sklearn.datasets import make_classification
|
||
|
>>> from sklearn.tree import DecisionTreeClassifier
|
||
|
>>> from sklearn.model_selection import learning_curve
|
||
|
>>> X, y = make_classification(n_samples=100, n_features=10, random_state=42)
|
||
|
>>> tree = DecisionTreeClassifier(max_depth=4, random_state=42)
|
||
|
>>> train_size_abs, train_scores, test_scores = learning_curve(
|
||
|
... tree, X, y, train_sizes=[0.3, 0.6, 0.9]
|
||
|
... )
|
||
|
>>> for train_size, cv_train_scores, cv_test_scores in zip(
|
||
|
... train_size_abs, train_scores, test_scores
|
||
|
... ):
|
||
|
... print(f"{train_size} samples were used to train the model")
|
||
|
... print(f"The average train accuracy is {cv_train_scores.mean():.2f}")
|
||
|
... print(f"The average test accuracy is {cv_test_scores.mean():.2f}")
|
||
|
24 samples were used to train the model
|
||
|
The average train accuracy is 1.00
|
||
|
The average test accuracy is 0.85
|
||
|
48 samples were used to train the model
|
||
|
The average train accuracy is 1.00
|
||
|
The average test accuracy is 0.90
|
||
|
72 samples were used to train the model
|
||
|
The average train accuracy is 1.00
|
||
|
The average test accuracy is 0.93
|
||
|
"""
|
||
|
if exploit_incremental_learning and not hasattr(estimator, "partial_fit"):
|
||
|
raise ValueError(
|
||
|
"An estimator must support the partial_fit interface "
|
||
|
"to exploit incremental learning"
|
||
|
)
|
||
|
X, y, groups = indexable(X, y, groups)
|
||
|
|
||
|
cv = check_cv(cv, y, classifier=is_classifier(estimator))
|
||
|
# Store it as list as we will be iterating over the list multiple times
|
||
|
cv_iter = list(cv.split(X, y, groups))
|
||
|
|
||
|
scorer = check_scoring(estimator, scoring=scoring)
|
||
|
|
||
|
n_max_training_samples = len(cv_iter[0][0])
|
||
|
# Because the lengths of folds can be significantly different, it is
|
||
|
# not guaranteed that we use all of the available training data when we
|
||
|
# use the first 'n_max_training_samples' samples.
|
||
|
train_sizes_abs = _translate_train_sizes(train_sizes, n_max_training_samples)
|
||
|
n_unique_ticks = train_sizes_abs.shape[0]
|
||
|
if verbose > 0:
|
||
|
print("[learning_curve] Training set sizes: " + str(train_sizes_abs))
|
||
|
|
||
|
parallel = Parallel(n_jobs=n_jobs, pre_dispatch=pre_dispatch, verbose=verbose)
|
||
|
|
||
|
if shuffle:
|
||
|
rng = check_random_state(random_state)
|
||
|
cv_iter = ((rng.permutation(train), test) for train, test in cv_iter)
|
||
|
|
||
|
if exploit_incremental_learning:
|
||
|
classes = np.unique(y) if is_classifier(estimator) else None
|
||
|
out = parallel(
|
||
|
delayed(_incremental_fit_estimator)(
|
||
|
clone(estimator),
|
||
|
X,
|
||
|
y,
|
||
|
classes,
|
||
|
train,
|
||
|
test,
|
||
|
train_sizes_abs,
|
||
|
scorer,
|
||
|
return_times,
|
||
|
error_score=error_score,
|
||
|
fit_params=fit_params,
|
||
|
)
|
||
|
for train, test in cv_iter
|
||
|
)
|
||
|
out = np.asarray(out).transpose((2, 1, 0))
|
||
|
else:
|
||
|
train_test_proportions = []
|
||
|
for train, test in cv_iter:
|
||
|
for n_train_samples in train_sizes_abs:
|
||
|
train_test_proportions.append((train[:n_train_samples], test))
|
||
|
|
||
|
results = parallel(
|
||
|
delayed(_fit_and_score)(
|
||
|
clone(estimator),
|
||
|
X,
|
||
|
y,
|
||
|
scorer=scorer,
|
||
|
train=train,
|
||
|
test=test,
|
||
|
verbose=verbose,
|
||
|
parameters=None,
|
||
|
fit_params=fit_params,
|
||
|
# TODO(SLEP6): support score params here
|
||
|
score_params=None,
|
||
|
return_train_score=True,
|
||
|
error_score=error_score,
|
||
|
return_times=return_times,
|
||
|
)
|
||
|
for train, test in train_test_proportions
|
||
|
)
|
||
|
_warn_or_raise_about_fit_failures(results, error_score)
|
||
|
results = _aggregate_score_dicts(results)
|
||
|
train_scores = results["train_scores"].reshape(-1, n_unique_ticks).T
|
||
|
test_scores = results["test_scores"].reshape(-1, n_unique_ticks).T
|
||
|
out = [train_scores, test_scores]
|
||
|
|
||
|
if return_times:
|
||
|
fit_times = results["fit_time"].reshape(-1, n_unique_ticks).T
|
||
|
score_times = results["score_time"].reshape(-1, n_unique_ticks).T
|
||
|
out.extend([fit_times, score_times])
|
||
|
|
||
|
ret = train_sizes_abs, out[0], out[1]
|
||
|
|
||
|
if return_times:
|
||
|
ret = ret + (out[2], out[3])
|
||
|
|
||
|
return ret
|
||
|
|
||
|
|
||
|
def _translate_train_sizes(train_sizes, n_max_training_samples):
|
||
|
"""Determine absolute sizes of training subsets and validate 'train_sizes'.
|
||
|
|
||
|
Examples:
|
||
|
_translate_train_sizes([0.5, 1.0], 10) -> [5, 10]
|
||
|
_translate_train_sizes([5, 10], 10) -> [5, 10]
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
train_sizes : array-like of shape (n_ticks,)
|
||
|
Numbers of training examples that will be used to generate the
|
||
|
learning curve. If the dtype is float, it is regarded as a
|
||
|
fraction of 'n_max_training_samples', i.e. it has to be within (0, 1].
|
||
|
|
||
|
n_max_training_samples : int
|
||
|
Maximum number of training samples (upper bound of 'train_sizes').
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
train_sizes_abs : array of shape (n_unique_ticks,)
|
||
|
Numbers of training examples that will be used to generate the
|
||
|
learning curve. Note that the number of ticks might be less
|
||
|
than n_ticks because duplicate entries will be removed.
|
||
|
"""
|
||
|
train_sizes_abs = np.asarray(train_sizes)
|
||
|
n_ticks = train_sizes_abs.shape[0]
|
||
|
n_min_required_samples = np.min(train_sizes_abs)
|
||
|
n_max_required_samples = np.max(train_sizes_abs)
|
||
|
if np.issubdtype(train_sizes_abs.dtype, np.floating):
|
||
|
if n_min_required_samples <= 0.0 or n_max_required_samples > 1.0:
|
||
|
raise ValueError(
|
||
|
"train_sizes has been interpreted as fractions "
|
||
|
"of the maximum number of training samples and "
|
||
|
"must be within (0, 1], but is within [%f, %f]."
|
||
|
% (n_min_required_samples, n_max_required_samples)
|
||
|
)
|
||
|
train_sizes_abs = (train_sizes_abs * n_max_training_samples).astype(
|
||
|
dtype=int, copy=False
|
||
|
)
|
||
|
train_sizes_abs = np.clip(train_sizes_abs, 1, n_max_training_samples)
|
||
|
else:
|
||
|
if (
|
||
|
n_min_required_samples <= 0
|
||
|
or n_max_required_samples > n_max_training_samples
|
||
|
):
|
||
|
raise ValueError(
|
||
|
"train_sizes has been interpreted as absolute "
|
||
|
"numbers of training samples and must be within "
|
||
|
"(0, %d], but is within [%d, %d]."
|
||
|
% (
|
||
|
n_max_training_samples,
|
||
|
n_min_required_samples,
|
||
|
n_max_required_samples,
|
||
|
)
|
||
|
)
|
||
|
|
||
|
train_sizes_abs = np.unique(train_sizes_abs)
|
||
|
if n_ticks > train_sizes_abs.shape[0]:
|
||
|
warnings.warn(
|
||
|
"Removed duplicate entries from 'train_sizes'. Number "
|
||
|
"of ticks will be less than the size of "
|
||
|
"'train_sizes': %d instead of %d." % (train_sizes_abs.shape[0], n_ticks),
|
||
|
RuntimeWarning,
|
||
|
)
|
||
|
|
||
|
return train_sizes_abs
|
||
|
|
||
|
|
||
|
def _incremental_fit_estimator(
|
||
|
estimator,
|
||
|
X,
|
||
|
y,
|
||
|
classes,
|
||
|
train,
|
||
|
test,
|
||
|
train_sizes,
|
||
|
scorer,
|
||
|
return_times,
|
||
|
error_score,
|
||
|
fit_params,
|
||
|
):
|
||
|
"""Train estimator on training subsets incrementally and compute scores."""
|
||
|
train_scores, test_scores, fit_times, score_times = [], [], [], []
|
||
|
partitions = zip(train_sizes, np.split(train, train_sizes)[:-1])
|
||
|
if fit_params is None:
|
||
|
fit_params = {}
|
||
|
if classes is None:
|
||
|
partial_fit_func = partial(estimator.partial_fit, **fit_params)
|
||
|
else:
|
||
|
partial_fit_func = partial(estimator.partial_fit, classes=classes, **fit_params)
|
||
|
|
||
|
for n_train_samples, partial_train in partitions:
|
||
|
train_subset = train[:n_train_samples]
|
||
|
X_train, y_train = _safe_split(estimator, X, y, train_subset)
|
||
|
X_partial_train, y_partial_train = _safe_split(estimator, X, y, partial_train)
|
||
|
X_test, y_test = _safe_split(estimator, X, y, test, train_subset)
|
||
|
start_fit = time.time()
|
||
|
if y_partial_train is None:
|
||
|
partial_fit_func(X_partial_train)
|
||
|
else:
|
||
|
partial_fit_func(X_partial_train, y_partial_train)
|
||
|
fit_time = time.time() - start_fit
|
||
|
fit_times.append(fit_time)
|
||
|
|
||
|
start_score = time.time()
|
||
|
|
||
|
# TODO(SLEP6): support score params in the following two calls
|
||
|
test_scores.append(
|
||
|
_score(
|
||
|
estimator,
|
||
|
X_test,
|
||
|
y_test,
|
||
|
scorer,
|
||
|
score_params=None,
|
||
|
error_score=error_score,
|
||
|
)
|
||
|
)
|
||
|
train_scores.append(
|
||
|
_score(
|
||
|
estimator,
|
||
|
X_train,
|
||
|
y_train,
|
||
|
scorer,
|
||
|
score_params=None,
|
||
|
error_score=error_score,
|
||
|
)
|
||
|
)
|
||
|
score_time = time.time() - start_score
|
||
|
score_times.append(score_time)
|
||
|
|
||
|
ret = (
|
||
|
(train_scores, test_scores, fit_times, score_times)
|
||
|
if return_times
|
||
|
else (train_scores, test_scores)
|
||
|
)
|
||
|
|
||
|
return np.array(ret).T
|
||
|
|
||
|
|
||
|
@validate_params(
|
||
|
{
|
||
|
"estimator": [HasMethods(["fit"])],
|
||
|
"X": ["array-like", "sparse matrix"],
|
||
|
"y": ["array-like", None],
|
||
|
"param_name": [str],
|
||
|
"param_range": ["array-like"],
|
||
|
"groups": ["array-like", None],
|
||
|
"cv": ["cv_object"],
|
||
|
"scoring": [StrOptions(set(get_scorer_names())), callable, None],
|
||
|
"n_jobs": [Integral, None],
|
||
|
"pre_dispatch": [Integral, str],
|
||
|
"verbose": ["verbose"],
|
||
|
"error_score": [StrOptions({"raise"}), Real],
|
||
|
"fit_params": [dict, None],
|
||
|
},
|
||
|
prefer_skip_nested_validation=False, # estimator is not validated yet
|
||
|
)
|
||
|
def validation_curve(
|
||
|
estimator,
|
||
|
X,
|
||
|
y,
|
||
|
*,
|
||
|
param_name,
|
||
|
param_range,
|
||
|
groups=None,
|
||
|
cv=None,
|
||
|
scoring=None,
|
||
|
n_jobs=None,
|
||
|
pre_dispatch="all",
|
||
|
verbose=0,
|
||
|
error_score=np.nan,
|
||
|
fit_params=None,
|
||
|
):
|
||
|
"""Validation curve.
|
||
|
|
||
|
Determine training and test scores for varying parameter values.
|
||
|
|
||
|
Compute scores for an estimator with different values of a specified
|
||
|
parameter. This is similar to grid search with one parameter. However, this
|
||
|
will also compute training scores and is merely a utility for plotting the
|
||
|
results.
|
||
|
|
||
|
Read more in the :ref:`User Guide <validation_curve>`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
estimator : object type that implements the "fit" method
|
||
|
An object of that type which is cloned for each validation. It must
|
||
|
also implement "predict" unless `scoring` is a callable that doesn't
|
||
|
rely on "predict" to compute a score.
|
||
|
|
||
|
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||
|
Training vector, where `n_samples` is the number of samples and
|
||
|
`n_features` is the number of features.
|
||
|
|
||
|
y : array-like of shape (n_samples,) or (n_samples, n_outputs) or None
|
||
|
Target relative to X for classification or regression;
|
||
|
None for unsupervised learning.
|
||
|
|
||
|
param_name : str
|
||
|
Name of the parameter that will be varied.
|
||
|
|
||
|
param_range : array-like of shape (n_values,)
|
||
|
The values of the parameter that will be evaluated.
|
||
|
|
||
|
groups : array-like of shape (n_samples,), default=None
|
||
|
Group labels for the samples used while splitting the dataset into
|
||
|
train/test set. Only used in conjunction with a "Group" :term:`cv`
|
||
|
instance (e.g., :class:`GroupKFold`).
|
||
|
|
||
|
cv : int, cross-validation generator or an iterable, default=None
|
||
|
Determines the cross-validation splitting strategy.
|
||
|
Possible inputs for cv are:
|
||
|
|
||
|
- None, to use the default 5-fold cross validation,
|
||
|
- int, to specify the number of folds in a `(Stratified)KFold`,
|
||
|
- :term:`CV splitter`,
|
||
|
- An iterable yielding (train, test) splits as arrays of indices.
|
||
|
|
||
|
For int/None inputs, if the estimator is a classifier and ``y`` is
|
||
|
either binary or multiclass, :class:`StratifiedKFold` is used. In all
|
||
|
other cases, :class:`KFold` is used. These splitters are instantiated
|
||
|
with `shuffle=False` so the splits will be the same across calls.
|
||
|
|
||
|
Refer :ref:`User Guide <cross_validation>` for the various
|
||
|
cross-validation strategies that can be used here.
|
||
|
|
||
|
.. versionchanged:: 0.22
|
||
|
``cv`` default value if None changed from 3-fold to 5-fold.
|
||
|
|
||
|
scoring : str or callable, default=None
|
||
|
A str (see model evaluation documentation) or
|
||
|
a scorer callable object / function with signature
|
||
|
``scorer(estimator, X, y)``.
|
||
|
|
||
|
n_jobs : int, default=None
|
||
|
Number of jobs to run in parallel. Training the estimator and computing
|
||
|
the score are parallelized over the combinations of each parameter
|
||
|
value and each cross-validation split.
|
||
|
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
||
|
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
||
|
for more details.
|
||
|
|
||
|
pre_dispatch : int or str, default='all'
|
||
|
Number of predispatched jobs for parallel execution (default is
|
||
|
all). The option can reduce the allocated memory. The str can
|
||
|
be an expression like '2*n_jobs'.
|
||
|
|
||
|
verbose : int, default=0
|
||
|
Controls the verbosity: the higher, the more messages.
|
||
|
|
||
|
error_score : 'raise' or numeric, default=np.nan
|
||
|
Value to assign to the score if an error occurs in estimator fitting.
|
||
|
If set to 'raise', the error is raised.
|
||
|
If a numeric value is given, FitFailedWarning is raised.
|
||
|
|
||
|
.. versionadded:: 0.20
|
||
|
|
||
|
fit_params : dict, default=None
|
||
|
Parameters to pass to the fit method of the estimator.
|
||
|
|
||
|
.. versionadded:: 0.24
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
train_scores : array of shape (n_ticks, n_cv_folds)
|
||
|
Scores on training sets.
|
||
|
|
||
|
test_scores : array of shape (n_ticks, n_cv_folds)
|
||
|
Scores on test set.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
See :ref:`sphx_glr_auto_examples_model_selection_plot_validation_curve.py`
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from sklearn.datasets import make_classification
|
||
|
>>> from sklearn.model_selection import validation_curve
|
||
|
>>> from sklearn.linear_model import LogisticRegression
|
||
|
>>> X, y = make_classification(n_samples=1_000, random_state=0)
|
||
|
>>> logistic_regression = LogisticRegression()
|
||
|
>>> param_name, param_range = "C", np.logspace(-8, 3, 10)
|
||
|
>>> train_scores, test_scores = validation_curve(
|
||
|
... logistic_regression, X, y, param_name=param_name, param_range=param_range
|
||
|
... )
|
||
|
>>> print(f"The average train accuracy is {train_scores.mean():.2f}")
|
||
|
The average train accuracy is 0.81
|
||
|
>>> print(f"The average test accuracy is {test_scores.mean():.2f}")
|
||
|
The average test accuracy is 0.81
|
||
|
"""
|
||
|
X, y, groups = indexable(X, y, groups)
|
||
|
|
||
|
cv = check_cv(cv, y, classifier=is_classifier(estimator))
|
||
|
scorer = check_scoring(estimator, scoring=scoring)
|
||
|
|
||
|
parallel = Parallel(n_jobs=n_jobs, pre_dispatch=pre_dispatch, verbose=verbose)
|
||
|
results = parallel(
|
||
|
delayed(_fit_and_score)(
|
||
|
clone(estimator),
|
||
|
X,
|
||
|
y,
|
||
|
scorer=scorer,
|
||
|
train=train,
|
||
|
test=test,
|
||
|
verbose=verbose,
|
||
|
parameters={param_name: v},
|
||
|
fit_params=fit_params,
|
||
|
# TODO(SLEP6): support score params here
|
||
|
score_params=None,
|
||
|
return_train_score=True,
|
||
|
error_score=error_score,
|
||
|
)
|
||
|
# NOTE do not change order of iteration to allow one time cv splitters
|
||
|
for train, test in cv.split(X, y, groups)
|
||
|
for v in param_range
|
||
|
)
|
||
|
n_params = len(param_range)
|
||
|
|
||
|
results = _aggregate_score_dicts(results)
|
||
|
train_scores = results["train_scores"].reshape(-1, n_params).T
|
||
|
test_scores = results["test_scores"].reshape(-1, n_params).T
|
||
|
|
||
|
return train_scores, test_scores
|
||
|
|
||
|
|
||
|
def _aggregate_score_dicts(scores):
|
||
|
"""Aggregate the list of dict to dict of np ndarray
|
||
|
|
||
|
The aggregated output of _aggregate_score_dicts will be a list of dict
|
||
|
of form [{'prec': 0.1, 'acc':1.0}, {'prec': 0.1, 'acc':1.0}, ...]
|
||
|
Convert it to a dict of array {'prec': np.array([0.1 ...]), ...}
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
|
||
|
scores : list of dict
|
||
|
List of dicts of the scores for all scorers. This is a flat list,
|
||
|
assumed originally to be of row major order.
|
||
|
|
||
|
Example
|
||
|
-------
|
||
|
|
||
|
>>> scores = [{'a': 1, 'b':10}, {'a': 2, 'b':2}, {'a': 3, 'b':3},
|
||
|
... {'a': 10, 'b': 10}] # doctest: +SKIP
|
||
|
>>> _aggregate_score_dicts(scores) # doctest: +SKIP
|
||
|
{'a': array([1, 2, 3, 10]),
|
||
|
'b': array([10, 2, 3, 10])}
|
||
|
"""
|
||
|
return {
|
||
|
key: (
|
||
|
np.asarray([score[key] for score in scores])
|
||
|
if isinstance(scores[0][key], numbers.Number)
|
||
|
else [score[key] for score in scores]
|
||
|
)
|
||
|
for key in scores[0]
|
||
|
}
|