ai-content-maker/.venv/Lib/site-packages/sklearn/preprocessing/tests/test_target_encoder.py

717 lines
27 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
import re
import numpy as np
import pytest
from numpy.testing import assert_allclose, assert_array_equal
from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import Ridge
from sklearn.model_selection import (
KFold,
ShuffleSplit,
StratifiedKFold,
cross_val_score,
train_test_split,
)
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import (
KBinsDiscretizer,
LabelBinarizer,
LabelEncoder,
TargetEncoder,
)
def _encode_target(X_ordinal, y_numeric, n_categories, smooth):
"""Simple Python implementation of target encoding."""
cur_encodings = np.zeros(n_categories, dtype=np.float64)
y_mean = np.mean(y_numeric)
if smooth == "auto":
y_variance = np.var(y_numeric)
for c in range(n_categories):
y_subset = y_numeric[X_ordinal == c]
n_i = y_subset.shape[0]
if n_i == 0:
cur_encodings[c] = y_mean
continue
y_subset_variance = np.var(y_subset)
m = y_subset_variance / y_variance
lambda_ = n_i / (n_i + m)
cur_encodings[c] = lambda_ * np.mean(y_subset) + (1 - lambda_) * y_mean
return cur_encodings
else: # float
for c in range(n_categories):
y_subset = y_numeric[X_ordinal == c]
current_sum = np.sum(y_subset) + y_mean * smooth
current_cnt = y_subset.shape[0] + smooth
cur_encodings[c] = current_sum / current_cnt
return cur_encodings
@pytest.mark.parametrize(
"categories, unknown_value",
[
([np.array([0, 1, 2], dtype=np.int64)], 4),
([np.array([1.0, 3.0, np.nan], dtype=np.float64)], 6.0),
([np.array(["cat", "dog", "snake"], dtype=object)], "bear"),
("auto", 3),
],
)
@pytest.mark.parametrize("smooth", [5.0, "auto"])
@pytest.mark.parametrize("target_type", ["binary", "continuous"])
def test_encoding(categories, unknown_value, global_random_seed, smooth, target_type):
"""Check encoding for binary and continuous targets.
Compare the values returned by `TargetEncoder.fit_transform` against the
expected encodings for cv splits from a naive reference Python
implementation in _encode_target.
"""
n_categories = 3
X_train_int_array = np.array([[0] * 20 + [1] * 30 + [2] * 40], dtype=np.int64).T
X_test_int_array = np.array([[0, 1, 2]], dtype=np.int64).T
n_samples = X_train_int_array.shape[0]
if categories == "auto":
X_train = X_train_int_array
X_test = X_test_int_array
else:
X_train = categories[0][X_train_int_array]
X_test = categories[0][X_test_int_array]
X_test = np.concatenate((X_test, [[unknown_value]]))
data_rng = np.random.RandomState(global_random_seed)
n_splits = 3
if target_type == "binary":
y_numeric = data_rng.randint(low=0, high=2, size=n_samples)
target_names = np.array(["cat", "dog"], dtype=object)
y_train = target_names[y_numeric]
else:
assert target_type == "continuous"
y_numeric = data_rng.uniform(low=-10, high=20, size=n_samples)
y_train = y_numeric
shuffled_idx = data_rng.permutation(n_samples)
X_train_int_array = X_train_int_array[shuffled_idx]
X_train = X_train[shuffled_idx]
y_train = y_train[shuffled_idx]
y_numeric = y_numeric[shuffled_idx]
# Define our CV splitting strategy
if target_type == "binary":
cv = StratifiedKFold(
n_splits=n_splits, random_state=global_random_seed, shuffle=True
)
else:
cv = KFold(n_splits=n_splits, random_state=global_random_seed, shuffle=True)
# Compute the expected values using our reference Python implementation of
# target encoding:
expected_X_fit_transform = np.empty_like(X_train_int_array, dtype=np.float64)
for train_idx, test_idx in cv.split(X_train_int_array, y_train):
X_, y_ = X_train_int_array[train_idx, 0], y_numeric[train_idx]
cur_encodings = _encode_target(X_, y_, n_categories, smooth)
expected_X_fit_transform[test_idx, 0] = cur_encodings[
X_train_int_array[test_idx, 0]
]
# Check that we can obtain the same encodings by calling `fit_transform` on
# the estimator with the same CV parameters:
target_encoder = TargetEncoder(
smooth=smooth,
categories=categories,
cv=n_splits,
random_state=global_random_seed,
)
X_fit_transform = target_encoder.fit_transform(X_train, y_train)
assert target_encoder.target_type_ == target_type
assert_allclose(X_fit_transform, expected_X_fit_transform)
assert len(target_encoder.encodings_) == 1
if target_type == "binary":
assert_array_equal(target_encoder.classes_, target_names)
else:
assert target_encoder.classes_ is None
# compute encodings for all data to validate `transform`
y_mean = np.mean(y_numeric)
expected_encodings = _encode_target(
X_train_int_array[:, 0], y_numeric, n_categories, smooth
)
assert_allclose(target_encoder.encodings_[0], expected_encodings)
assert target_encoder.target_mean_ == pytest.approx(y_mean)
# Transform on test data, the last value is unknown so it is encoded as the target
# mean
expected_X_test_transform = np.concatenate(
(expected_encodings, np.array([y_mean]))
).reshape(-1, 1)
X_test_transform = target_encoder.transform(X_test)
assert_allclose(X_test_transform, expected_X_test_transform)
@pytest.mark.parametrize(
"categories, unknown_values",
[
([np.array([0, 1, 2], dtype=np.int64)], "auto"),
([np.array(["cat", "dog", "snake"], dtype=object)], ["bear", "rabbit"]),
],
)
@pytest.mark.parametrize(
"target_labels", [np.array([1, 2, 3]), np.array(["a", "b", "c"])]
)
@pytest.mark.parametrize("smooth", [5.0, "auto"])
def test_encoding_multiclass(
global_random_seed, categories, unknown_values, target_labels, smooth
):
"""Check encoding for multiclass targets."""
rng = np.random.RandomState(global_random_seed)
n_samples = 80
n_features = 2
feat_1_int = np.array(rng.randint(low=0, high=2, size=n_samples))
feat_2_int = np.array(rng.randint(low=0, high=3, size=n_samples))
feat_1 = categories[0][feat_1_int]
feat_2 = categories[0][feat_2_int]
X_train = np.column_stack((feat_1, feat_2))
X_train_int = np.column_stack((feat_1_int, feat_2_int))
categories_ = [[0, 1], [0, 1, 2]]
n_classes = 3
y_train_int = np.array(rng.randint(low=0, high=n_classes, size=n_samples))
y_train = target_labels[y_train_int]
y_train_enc = LabelBinarizer().fit_transform(y_train)
n_splits = 3
cv = StratifiedKFold(
n_splits=n_splits, random_state=global_random_seed, shuffle=True
)
# Manually compute encodings for cv splits to validate `fit_transform`
expected_X_fit_transform = np.empty(
(X_train_int.shape[0], X_train_int.shape[1] * n_classes),
dtype=np.float64,
)
for f_idx, cats in enumerate(categories_):
for c_idx in range(n_classes):
for train_idx, test_idx in cv.split(X_train, y_train):
y_class = y_train_enc[:, c_idx]
X_, y_ = X_train_int[train_idx, f_idx], y_class[train_idx]
current_encoding = _encode_target(X_, y_, len(cats), smooth)
# f_idx: 0, 0, 0, 1, 1, 1
# c_idx: 0, 1, 2, 0, 1, 2
# exp_idx: 0, 1, 2, 3, 4, 5
exp_idx = c_idx + (f_idx * n_classes)
expected_X_fit_transform[test_idx, exp_idx] = current_encoding[
X_train_int[test_idx, f_idx]
]
target_encoder = TargetEncoder(
smooth=smooth,
cv=n_splits,
random_state=global_random_seed,
)
X_fit_transform = target_encoder.fit_transform(X_train, y_train)
assert target_encoder.target_type_ == "multiclass"
assert_allclose(X_fit_transform, expected_X_fit_transform)
# Manually compute encoding to validate `transform`
expected_encodings = []
for f_idx, cats in enumerate(categories_):
for c_idx in range(n_classes):
y_class = y_train_enc[:, c_idx]
current_encoding = _encode_target(
X_train_int[:, f_idx], y_class, len(cats), smooth
)
expected_encodings.append(current_encoding)
assert len(target_encoder.encodings_) == n_features * n_classes
for i in range(n_features * n_classes):
assert_allclose(target_encoder.encodings_[i], expected_encodings[i])
assert_array_equal(target_encoder.classes_, target_labels)
# Include unknown values at the end
X_test_int = np.array([[0, 1], [1, 2], [4, 5]])
if unknown_values == "auto":
X_test = X_test_int
else:
X_test = np.empty_like(X_test_int[:-1, :], dtype=object)
for column_idx in range(X_test_int.shape[1]):
X_test[:, column_idx] = categories[0][X_test_int[:-1, column_idx]]
# Add unknown values at end
X_test = np.vstack((X_test, unknown_values))
y_mean = np.mean(y_train_enc, axis=0)
expected_X_test_transform = np.empty(
(X_test_int.shape[0], X_test_int.shape[1] * n_classes),
dtype=np.float64,
)
n_rows = X_test_int.shape[0]
f_idx = [0, 0, 0, 1, 1, 1]
# Last row are unknowns, dealt with later
for row_idx in range(n_rows - 1):
for i, enc in enumerate(expected_encodings):
expected_X_test_transform[row_idx, i] = enc[X_test_int[row_idx, f_idx[i]]]
# Unknowns encoded as target mean for each class
# `y_mean` contains target mean for each class, thus cycle through mean of
# each class, `n_features` times
mean_idx = [0, 1, 2, 0, 1, 2]
for i in range(n_classes * n_features):
expected_X_test_transform[n_rows - 1, i] = y_mean[mean_idx[i]]
X_test_transform = target_encoder.transform(X_test)
assert_allclose(X_test_transform, expected_X_test_transform)
@pytest.mark.parametrize(
"X, categories",
[
(
np.array([[0] * 10 + [1] * 10 + [3]], dtype=np.int64).T, # 3 is unknown
[[0, 1, 2]],
),
(
np.array(
[["cat"] * 10 + ["dog"] * 10 + ["snake"]], dtype=object
).T, # snake is unknown
[["dog", "cat", "cow"]],
),
],
)
@pytest.mark.parametrize("smooth", [4.0, "auto"])
def test_custom_categories(X, categories, smooth):
"""Custom categories with unknown categories that are not in training data."""
rng = np.random.RandomState(0)
y = rng.uniform(low=-10, high=20, size=X.shape[0])
enc = TargetEncoder(categories=categories, smooth=smooth, random_state=0).fit(X, y)
# The last element is unknown and encoded as the mean
y_mean = y.mean()
X_trans = enc.transform(X[-1:])
assert X_trans[0, 0] == pytest.approx(y_mean)
assert len(enc.encodings_) == 1
# custom category that is not in training data
assert enc.encodings_[0][-1] == pytest.approx(y_mean)
@pytest.mark.parametrize(
"y, msg",
[
([1, 2, 0, 1], "Found input variables with inconsistent"),
(
np.array([[1, 2, 0], [1, 2, 3]]).T,
"Target type was inferred to be 'multiclass-multioutput'",
),
],
)
def test_errors(y, msg):
"""Check invalidate input."""
X = np.array([[1, 0, 1]]).T
enc = TargetEncoder()
with pytest.raises(ValueError, match=msg):
enc.fit_transform(X, y)
def test_use_regression_target():
"""Check inferred and specified `target_type` on regression target."""
X = np.array([[0, 1, 0, 1, 0, 1]]).T
y = np.array([1.0, 2.0, 3.0, 2.0, 3.0, 4.0])
enc = TargetEncoder(cv=2)
with pytest.warns(
UserWarning,
match=re.escape(
"The least populated class in y has only 1 members, which is less than"
" n_splits=2."
),
):
enc.fit_transform(X, y)
assert enc.target_type_ == "multiclass"
enc = TargetEncoder(cv=2, target_type="continuous")
enc.fit_transform(X, y)
assert enc.target_type_ == "continuous"
@pytest.mark.parametrize(
"y, feature_names",
[
([1, 2] * 10, ["A", "B"]),
([1, 2, 3] * 6 + [1, 2], ["A_1", "A_2", "A_3", "B_1", "B_2", "B_3"]),
(
["y1", "y2", "y3"] * 6 + ["y1", "y2"],
["A_y1", "A_y2", "A_y3", "B_y1", "B_y2", "B_y3"],
),
],
)
def test_feature_names_out_set_output(y, feature_names):
"""Check TargetEncoder works with set_output."""
pd = pytest.importorskip("pandas")
X_df = pd.DataFrame({"A": ["a", "b"] * 10, "B": [1, 2] * 10})
enc_default = TargetEncoder(cv=2, smooth=3.0, random_state=0)
enc_default.set_output(transform="default")
enc_pandas = TargetEncoder(cv=2, smooth=3.0, random_state=0)
enc_pandas.set_output(transform="pandas")
X_default = enc_default.fit_transform(X_df, y)
X_pandas = enc_pandas.fit_transform(X_df, y)
assert_allclose(X_pandas.to_numpy(), X_default)
assert_array_equal(enc_pandas.get_feature_names_out(), feature_names)
assert_array_equal(enc_pandas.get_feature_names_out(), X_pandas.columns)
@pytest.mark.parametrize("to_pandas", [True, False])
@pytest.mark.parametrize("smooth", [1.0, "auto"])
@pytest.mark.parametrize("target_type", ["binary-ints", "binary-str", "continuous"])
def test_multiple_features_quick(to_pandas, smooth, target_type):
"""Check target encoder with multiple features."""
X_ordinal = np.array(
[[1, 1], [0, 1], [1, 1], [2, 1], [1, 0], [0, 1], [1, 0], [0, 0]], dtype=np.int64
)
if target_type == "binary-str":
y_train = np.array(["a", "b", "a", "a", "b", "b", "a", "b"])
y_integer = LabelEncoder().fit_transform(y_train)
cv = StratifiedKFold(2, random_state=0, shuffle=True)
elif target_type == "binary-ints":
y_train = np.array([3, 4, 3, 3, 3, 4, 4, 4])
y_integer = LabelEncoder().fit_transform(y_train)
cv = StratifiedKFold(2, random_state=0, shuffle=True)
else:
y_train = np.array([3.0, 5.1, 2.4, 3.5, 4.1, 5.5, 10.3, 7.3], dtype=np.float32)
y_integer = y_train
cv = KFold(2, random_state=0, shuffle=True)
y_mean = np.mean(y_integer)
categories = [[0, 1, 2], [0, 1]]
X_test = np.array(
[
[0, 1],
[3, 0], # 3 is unknown
[1, 10], # 10 is unknown
],
dtype=np.int64,
)
if to_pandas:
pd = pytest.importorskip("pandas")
# convert second feature to an object
X_train = pd.DataFrame(
{
"feat0": X_ordinal[:, 0],
"feat1": np.array(["cat", "dog"], dtype=object)[X_ordinal[:, 1]],
}
)
# "snake" is unknown
X_test = pd.DataFrame({"feat0": X_test[:, 0], "feat1": ["dog", "cat", "snake"]})
else:
X_train = X_ordinal
# manually compute encoding for fit_transform
expected_X_fit_transform = np.empty_like(X_ordinal, dtype=np.float64)
for f_idx, cats in enumerate(categories):
for train_idx, test_idx in cv.split(X_ordinal, y_integer):
X_, y_ = X_ordinal[train_idx, f_idx], y_integer[train_idx]
current_encoding = _encode_target(X_, y_, len(cats), smooth)
expected_X_fit_transform[test_idx, f_idx] = current_encoding[
X_ordinal[test_idx, f_idx]
]
# manually compute encoding for transform
expected_encodings = []
for f_idx, cats in enumerate(categories):
current_encoding = _encode_target(
X_ordinal[:, f_idx], y_integer, len(cats), smooth
)
expected_encodings.append(current_encoding)
expected_X_test_transform = np.array(
[
[expected_encodings[0][0], expected_encodings[1][1]],
[y_mean, expected_encodings[1][0]],
[expected_encodings[0][1], y_mean],
],
dtype=np.float64,
)
enc = TargetEncoder(smooth=smooth, cv=2, random_state=0)
X_fit_transform = enc.fit_transform(X_train, y_train)
assert_allclose(X_fit_transform, expected_X_fit_transform)
assert len(enc.encodings_) == 2
for i in range(2):
assert_allclose(enc.encodings_[i], expected_encodings[i])
X_test_transform = enc.transform(X_test)
assert_allclose(X_test_transform, expected_X_test_transform)
@pytest.mark.parametrize(
"y, y_mean",
[
(np.array([3.4] * 20), 3.4),
(np.array([0] * 20), 0),
(np.array(["a"] * 20, dtype=object), 0),
],
ids=["continuous", "binary", "binary-string"],
)
@pytest.mark.parametrize("smooth", ["auto", 4.0, 0.0])
def test_constant_target_and_feature(y, y_mean, smooth):
"""Check edge case where feature and target is constant."""
X = np.array([[1] * 20]).T
n_samples = X.shape[0]
enc = TargetEncoder(cv=2, smooth=smooth, random_state=0)
X_trans = enc.fit_transform(X, y)
assert_allclose(X_trans, np.repeat([[y_mean]], n_samples, axis=0))
assert enc.encodings_[0][0] == pytest.approx(y_mean)
assert enc.target_mean_ == pytest.approx(y_mean)
X_test = np.array([[1], [0]])
X_test_trans = enc.transform(X_test)
assert_allclose(X_test_trans, np.repeat([[y_mean]], 2, axis=0))
def test_fit_transform_not_associated_with_y_if_ordinal_categorical_is_not(
global_random_seed,
):
cardinality = 30 # not too large, otherwise we need a very large n_samples
n_samples = 3000
rng = np.random.RandomState(global_random_seed)
y_train = rng.normal(size=n_samples)
X_train = rng.randint(0, cardinality, size=n_samples).reshape(-1, 1)
# Sort by y_train to attempt to cause a leak
y_sorted_indices = y_train.argsort()
y_train = y_train[y_sorted_indices]
X_train = X_train[y_sorted_indices]
target_encoder = TargetEncoder(shuffle=True, random_state=global_random_seed)
X_encoded_train_shuffled = target_encoder.fit_transform(X_train, y_train)
target_encoder = TargetEncoder(shuffle=False)
X_encoded_train_no_shuffled = target_encoder.fit_transform(X_train, y_train)
# Check that no information about y_train has leaked into X_train:
regressor = RandomForestRegressor(
n_estimators=10, min_samples_leaf=20, random_state=global_random_seed
)
# It's impossible to learn a good predictive model on the training set when
# using the original representation X_train or the target encoded
# representation with shuffled inner CV. For the latter, no information
# about y_train has inadvertently leaked into the prior used to generate
# `X_encoded_train_shuffled`:
cv = ShuffleSplit(n_splits=50, random_state=global_random_seed)
assert cross_val_score(regressor, X_train, y_train, cv=cv).mean() < 0.1
assert (
cross_val_score(regressor, X_encoded_train_shuffled, y_train, cv=cv).mean()
< 0.1
)
# Without the inner CV shuffling, a lot of information about y_train goes into the
# the per-fold y_train.mean() priors: shrinkage is no longer effective in this
# case and would no longer be able to prevent downstream over-fitting.
assert (
cross_val_score(regressor, X_encoded_train_no_shuffled, y_train, cv=cv).mean()
> 0.5
)
def test_smooth_zero():
"""Check edge case with zero smoothing and cv does not contain category."""
X = np.array([[0, 0, 0, 0, 0, 1, 1, 1, 1, 1]]).T
y = np.array([2.1, 4.3, 1.2, 3.1, 1.0, 9.0, 10.3, 14.2, 13.3, 15.0])
enc = TargetEncoder(smooth=0.0, shuffle=False, cv=2)
X_trans = enc.fit_transform(X, y)
# With cv = 2, category 0 does not exist in the second half, thus
# it will be encoded as the mean of the second half
assert_allclose(X_trans[0], np.mean(y[5:]))
# category 1 does not exist in the first half, thus it will be encoded as
# the mean of the first half
assert_allclose(X_trans[-1], np.mean(y[:5]))
@pytest.mark.parametrize("smooth", [0.0, 1e3, "auto"])
def test_invariance_of_encoding_under_label_permutation(smooth, global_random_seed):
# Check that the encoding does not depend on the integer of the value of
# the integer labels. This is quite a trivial property but it is helpful
# to understand the following test.
rng = np.random.RandomState(global_random_seed)
# Random y and informative categorical X to make the test non-trivial when
# using smoothing.
y = rng.normal(size=1000)
n_categories = 30
X = KBinsDiscretizer(n_bins=n_categories, encode="ordinal").fit_transform(
y.reshape(-1, 1)
)
X_train, X_test, y_train, y_test = train_test_split(
X, y, random_state=global_random_seed
)
# Shuffle the labels to make sure that the encoding is invariant to the
# permutation of the labels
permutated_labels = rng.permutation(n_categories)
X_train_permuted = permutated_labels[X_train.astype(np.int32)]
X_test_permuted = permutated_labels[X_test.astype(np.int32)]
target_encoder = TargetEncoder(smooth=smooth, random_state=global_random_seed)
X_train_encoded = target_encoder.fit_transform(X_train, y_train)
X_test_encoded = target_encoder.transform(X_test)
X_train_permuted_encoded = target_encoder.fit_transform(X_train_permuted, y_train)
X_test_permuted_encoded = target_encoder.transform(X_test_permuted)
assert_allclose(X_train_encoded, X_train_permuted_encoded)
assert_allclose(X_test_encoded, X_test_permuted_encoded)
# TODO(1.5) remove warning filter when kbd's subsample default is changed
@pytest.mark.filterwarnings("ignore:In version 1.5 onwards, subsample=200_000")
@pytest.mark.parametrize("smooth", [0.0, "auto"])
def test_target_encoding_for_linear_regression(smooth, global_random_seed):
# Check some expected statistical properties when fitting a linear
# regression model on target encoded features depending on their relation
# with that target.
# In this test, we use the Ridge class with the "lsqr" solver and a little
# bit of regularization to implement a linear regression model that
# converges quickly for large `n_samples` and robustly in case of
# correlated features. Since we will fit this model on a mean centered
# target, we do not need to fit an intercept and this will help simplify
# the analysis with respect to the expected coefficients.
linear_regression = Ridge(alpha=1e-6, solver="lsqr", fit_intercept=False)
# Construct a random target variable. We need a large number of samples for
# this test to be stable across all values of the random seed.
n_samples = 50_000
rng = np.random.RandomState(global_random_seed)
y = rng.randn(n_samples)
# Generate a single informative ordinal feature with medium cardinality.
# Inject some irreducible noise to make it harder for a multivariate model
# to identify the informative feature from other pure noise features.
noise = 0.8 * rng.randn(n_samples)
n_categories = 100
X_informative = KBinsDiscretizer(
n_bins=n_categories,
encode="ordinal",
strategy="uniform",
random_state=rng,
).fit_transform((y + noise).reshape(-1, 1))
# Let's permute the labels to hide the fact that this feature is
# informative to naive linear regression model trained on the raw ordinal
# values. As highlighted in the previous test, the target encoding should be
# invariant to such a permutation.
permutated_labels = rng.permutation(n_categories)
X_informative = permutated_labels[X_informative.astype(np.int32)]
# Generate a shuffled copy of the informative feature to destroy the
# relationship with the target.
X_shuffled = rng.permutation(X_informative)
# Also include a very high cardinality categorical feature that is by
# itself independent of the target variable: target encoding such a feature
# without internal cross-validation should cause catastrophic overfitting
# for the downstream regressor, even with shrinkage. This kind of features
# typically represents near unique identifiers of samples. In general they
# should be removed from a machine learning datasets but here we want to
# study the ability of the default behavior of TargetEncoder to mitigate
# them automatically.
X_near_unique_categories = rng.choice(
int(0.9 * n_samples), size=n_samples, replace=True
).reshape(-1, 1)
# Assemble the dataset and do a train-test split:
X = np.concatenate(
[X_informative, X_shuffled, X_near_unique_categories],
axis=1,
)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
# Let's first check that a linear regression model trained on the raw
# features underfits because of the meaning-less ordinal encoding of the
# labels.
raw_model = linear_regression.fit(X_train, y_train)
assert raw_model.score(X_train, y_train) < 0.1
assert raw_model.score(X_test, y_test) < 0.1
# Now do the same with target encoding using the internal CV mechanism
# implemented when using fit_transform.
model_with_cv = make_pipeline(
TargetEncoder(smooth=smooth, random_state=rng), linear_regression
).fit(X_train, y_train)
# This model should be able to fit the data well and also generalise to the
# test data (assuming that the binning is fine-grained enough). The R2
# scores are not perfect because of the noise injected during the
# generation of the unique informative feature.
coef = model_with_cv[-1].coef_
assert model_with_cv.score(X_train, y_train) > 0.5, coef
assert model_with_cv.score(X_test, y_test) > 0.5, coef
# The target encoder recovers the linear relationship with slope 1 between
# the target encoded unique informative predictor and the target. Since the
# target encoding of the 2 other features is not informative thanks to the
# use of internal cross-validation, the multivariate linear regressor
# assigns a coef of 1 to the first feature and 0 to the other 2.
assert coef[0] == pytest.approx(1, abs=1e-2)
assert (np.abs(coef[1:]) < 0.2).all()
# Let's now disable the internal cross-validation by calling fit and then
# transform separately on the training set:
target_encoder = TargetEncoder(smooth=smooth, random_state=rng).fit(
X_train, y_train
)
X_enc_no_cv_train = target_encoder.transform(X_train)
X_enc_no_cv_test = target_encoder.transform(X_test)
model_no_cv = linear_regression.fit(X_enc_no_cv_train, y_train)
# The linear regression model should always overfit because it assigns
# too much weight to the extremely high cardinality feature relatively to
# the informative feature. Note that this is the case even when using
# the empirical Bayes smoothing which is not enough to prevent such
# overfitting alone.
coef = model_no_cv.coef_
assert model_no_cv.score(X_enc_no_cv_train, y_train) > 0.7, coef
assert model_no_cv.score(X_enc_no_cv_test, y_test) < 0.5, coef
# The model overfits because it assigns too much weight to the high
# cardinality yet non-informative feature instead of the lower
# cardinality yet informative feature:
assert abs(coef[0]) < abs(coef[2])
def test_pandas_copy_on_write():
"""
Test target-encoder cython code when y is read-only.
The numpy array underlying df["y"] is read-only when copy-on-write is enabled.
Non-regression test for gh-27879.
"""
pd = pytest.importorskip("pandas", minversion="2.0")
with pd.option_context("mode.copy_on_write", True):
df = pd.DataFrame({"x": ["a", "b", "b"], "y": [4.0, 5.0, 6.0]})
TargetEncoder(target_type="continuous").fit(df[["x"]], df["y"])