509 lines
18 KiB
Python
509 lines
18 KiB
Python
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
from sklearn.datasets import make_classification, make_regression
|
||
|
from sklearn.ensemble import (
|
||
|
ExtraTreesClassifier,
|
||
|
ExtraTreesRegressor,
|
||
|
RandomForestClassifier,
|
||
|
RandomForestRegressor,
|
||
|
)
|
||
|
from sklearn.tree import (
|
||
|
DecisionTreeClassifier,
|
||
|
DecisionTreeRegressor,
|
||
|
ExtraTreeClassifier,
|
||
|
ExtraTreeRegressor,
|
||
|
)
|
||
|
from sklearn.utils._testing import assert_allclose
|
||
|
from sklearn.utils.fixes import CSC_CONTAINERS
|
||
|
|
||
|
TREE_CLASSIFIER_CLASSES = [DecisionTreeClassifier, ExtraTreeClassifier]
|
||
|
TREE_REGRESSOR_CLASSES = [DecisionTreeRegressor, ExtraTreeRegressor]
|
||
|
TREE_BASED_CLASSIFIER_CLASSES = TREE_CLASSIFIER_CLASSES + [
|
||
|
RandomForestClassifier,
|
||
|
ExtraTreesClassifier,
|
||
|
]
|
||
|
TREE_BASED_REGRESSOR_CLASSES = TREE_REGRESSOR_CLASSES + [
|
||
|
RandomForestRegressor,
|
||
|
ExtraTreesRegressor,
|
||
|
]
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("TreeClassifier", TREE_BASED_CLASSIFIER_CLASSES)
|
||
|
@pytest.mark.parametrize("depth_first_builder", (True, False))
|
||
|
@pytest.mark.parametrize("sparse_splitter", (True, False))
|
||
|
@pytest.mark.parametrize("csc_container", CSC_CONTAINERS)
|
||
|
def test_monotonic_constraints_classifications(
|
||
|
TreeClassifier,
|
||
|
depth_first_builder,
|
||
|
sparse_splitter,
|
||
|
global_random_seed,
|
||
|
csc_container,
|
||
|
):
|
||
|
n_samples = 1000
|
||
|
n_samples_train = 900
|
||
|
X, y = make_classification(
|
||
|
n_samples=n_samples,
|
||
|
n_classes=2,
|
||
|
n_features=5,
|
||
|
n_informative=5,
|
||
|
n_redundant=0,
|
||
|
random_state=global_random_seed,
|
||
|
)
|
||
|
X_train, y_train = X[:n_samples_train], y[:n_samples_train]
|
||
|
X_test, _ = X[n_samples_train:], y[n_samples_train:]
|
||
|
|
||
|
X_test_0incr, X_test_0decr = np.copy(X_test), np.copy(X_test)
|
||
|
X_test_1incr, X_test_1decr = np.copy(X_test), np.copy(X_test)
|
||
|
X_test_0incr[:, 0] += 10
|
||
|
X_test_0decr[:, 0] -= 10
|
||
|
X_test_1incr[:, 1] += 10
|
||
|
X_test_1decr[:, 1] -= 10
|
||
|
monotonic_cst = np.zeros(X.shape[1])
|
||
|
monotonic_cst[0] = 1
|
||
|
monotonic_cst[1] = -1
|
||
|
|
||
|
if depth_first_builder:
|
||
|
est = TreeClassifier(max_depth=None, monotonic_cst=monotonic_cst)
|
||
|
else:
|
||
|
est = TreeClassifier(
|
||
|
max_depth=None,
|
||
|
monotonic_cst=monotonic_cst,
|
||
|
max_leaf_nodes=n_samples_train,
|
||
|
)
|
||
|
if hasattr(est, "random_state"):
|
||
|
est.set_params(**{"random_state": global_random_seed})
|
||
|
if hasattr(est, "n_estimators"):
|
||
|
est.set_params(**{"n_estimators": 5})
|
||
|
if sparse_splitter:
|
||
|
X_train = csc_container(X_train)
|
||
|
est.fit(X_train, y_train)
|
||
|
proba_test = est.predict_proba(X_test)
|
||
|
|
||
|
assert np.logical_and(
|
||
|
proba_test >= 0.0, proba_test <= 1.0
|
||
|
).all(), "Probability should always be in [0, 1] range."
|
||
|
assert_allclose(proba_test.sum(axis=1), 1.0)
|
||
|
|
||
|
# Monotonic increase constraint, it applies to the positive class
|
||
|
assert np.all(est.predict_proba(X_test_0incr)[:, 1] >= proba_test[:, 1])
|
||
|
assert np.all(est.predict_proba(X_test_0decr)[:, 1] <= proba_test[:, 1])
|
||
|
|
||
|
# Monotonic decrease constraint, it applies to the positive class
|
||
|
assert np.all(est.predict_proba(X_test_1incr)[:, 1] <= proba_test[:, 1])
|
||
|
assert np.all(est.predict_proba(X_test_1decr)[:, 1] >= proba_test[:, 1])
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("TreeRegressor", TREE_BASED_REGRESSOR_CLASSES)
|
||
|
@pytest.mark.parametrize("depth_first_builder", (True, False))
|
||
|
@pytest.mark.parametrize("sparse_splitter", (True, False))
|
||
|
@pytest.mark.parametrize("criterion", ("absolute_error", "squared_error"))
|
||
|
@pytest.mark.parametrize("csc_container", CSC_CONTAINERS)
|
||
|
def test_monotonic_constraints_regressions(
|
||
|
TreeRegressor,
|
||
|
depth_first_builder,
|
||
|
sparse_splitter,
|
||
|
criterion,
|
||
|
global_random_seed,
|
||
|
csc_container,
|
||
|
):
|
||
|
n_samples = 1000
|
||
|
n_samples_train = 900
|
||
|
# Build a regression task using 5 informative features
|
||
|
X, y = make_regression(
|
||
|
n_samples=n_samples,
|
||
|
n_features=5,
|
||
|
n_informative=5,
|
||
|
random_state=global_random_seed,
|
||
|
)
|
||
|
train = np.arange(n_samples_train)
|
||
|
test = np.arange(n_samples_train, n_samples)
|
||
|
X_train = X[train]
|
||
|
y_train = y[train]
|
||
|
X_test = np.copy(X[test])
|
||
|
X_test_incr = np.copy(X_test)
|
||
|
X_test_decr = np.copy(X_test)
|
||
|
X_test_incr[:, 0] += 10
|
||
|
X_test_decr[:, 1] += 10
|
||
|
monotonic_cst = np.zeros(X.shape[1])
|
||
|
monotonic_cst[0] = 1
|
||
|
monotonic_cst[1] = -1
|
||
|
|
||
|
if depth_first_builder:
|
||
|
est = TreeRegressor(
|
||
|
max_depth=None,
|
||
|
monotonic_cst=monotonic_cst,
|
||
|
criterion=criterion,
|
||
|
)
|
||
|
else:
|
||
|
est = TreeRegressor(
|
||
|
max_depth=8,
|
||
|
monotonic_cst=monotonic_cst,
|
||
|
criterion=criterion,
|
||
|
max_leaf_nodes=n_samples_train,
|
||
|
)
|
||
|
if hasattr(est, "random_state"):
|
||
|
est.set_params(random_state=global_random_seed)
|
||
|
if hasattr(est, "n_estimators"):
|
||
|
est.set_params(**{"n_estimators": 5})
|
||
|
if sparse_splitter:
|
||
|
X_train = csc_container(X_train)
|
||
|
est.fit(X_train, y_train)
|
||
|
y = est.predict(X_test)
|
||
|
# Monotonic increase constraint
|
||
|
y_incr = est.predict(X_test_incr)
|
||
|
# y_incr should always be greater than y
|
||
|
assert np.all(y_incr >= y)
|
||
|
|
||
|
# Monotonic decrease constraint
|
||
|
y_decr = est.predict(X_test_decr)
|
||
|
# y_decr should always be lower than y
|
||
|
assert np.all(y_decr <= y)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("TreeClassifier", TREE_BASED_CLASSIFIER_CLASSES)
|
||
|
def test_multiclass_raises(TreeClassifier):
|
||
|
X, y = make_classification(
|
||
|
n_samples=100, n_features=5, n_classes=3, n_informative=3, random_state=0
|
||
|
)
|
||
|
y[0] = 0
|
||
|
monotonic_cst = np.zeros(X.shape[1])
|
||
|
monotonic_cst[0] = -1
|
||
|
monotonic_cst[1] = 1
|
||
|
est = TreeClassifier(max_depth=None, monotonic_cst=monotonic_cst, random_state=0)
|
||
|
|
||
|
msg = "Monotonicity constraints are not supported with multiclass classification"
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
est.fit(X, y)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("TreeClassifier", TREE_BASED_CLASSIFIER_CLASSES)
|
||
|
def test_multiple_output_raises(TreeClassifier):
|
||
|
X = [[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]]
|
||
|
y = [[1, 0, 1, 0, 1], [1, 0, 1, 0, 1]]
|
||
|
|
||
|
est = TreeClassifier(
|
||
|
max_depth=None, monotonic_cst=np.array([-1, 1]), random_state=0
|
||
|
)
|
||
|
msg = "Monotonicity constraints are not supported with multiple output"
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
est.fit(X, y)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"DecisionTreeEstimator", [DecisionTreeClassifier, DecisionTreeRegressor]
|
||
|
)
|
||
|
def test_missing_values_raises(DecisionTreeEstimator):
|
||
|
X, y = make_classification(
|
||
|
n_samples=100, n_features=5, n_classes=2, n_informative=3, random_state=0
|
||
|
)
|
||
|
X[0, 0] = np.nan
|
||
|
monotonic_cst = np.zeros(X.shape[1])
|
||
|
monotonic_cst[0] = 1
|
||
|
est = DecisionTreeEstimator(
|
||
|
max_depth=None, monotonic_cst=monotonic_cst, random_state=0
|
||
|
)
|
||
|
|
||
|
msg = "Input X contains NaN"
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
est.fit(X, y)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("TreeClassifier", TREE_BASED_CLASSIFIER_CLASSES)
|
||
|
def test_bad_monotonic_cst_raises(TreeClassifier):
|
||
|
X = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]]
|
||
|
y = [1, 0, 1, 0, 1]
|
||
|
|
||
|
msg = "monotonic_cst has shape 3 but the input data X has 2 features."
|
||
|
est = TreeClassifier(
|
||
|
max_depth=None, monotonic_cst=np.array([-1, 1, 0]), random_state=0
|
||
|
)
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
est.fit(X, y)
|
||
|
|
||
|
msg = "monotonic_cst must be None or an array-like of -1, 0 or 1."
|
||
|
est = TreeClassifier(
|
||
|
max_depth=None, monotonic_cst=np.array([-2, 2]), random_state=0
|
||
|
)
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
est.fit(X, y)
|
||
|
|
||
|
est = TreeClassifier(
|
||
|
max_depth=None, monotonic_cst=np.array([-1, 0.8]), random_state=0
|
||
|
)
|
||
|
with pytest.raises(ValueError, match=msg + "(.*)0.8]"):
|
||
|
est.fit(X, y)
|
||
|
|
||
|
|
||
|
def assert_1d_reg_tree_children_monotonic_bounded(tree_, monotonic_sign):
|
||
|
values = tree_.value
|
||
|
for i in range(tree_.node_count):
|
||
|
if tree_.children_left[i] > i and tree_.children_right[i] > i:
|
||
|
# Check monotonicity on children
|
||
|
i_left = tree_.children_left[i]
|
||
|
i_right = tree_.children_right[i]
|
||
|
if monotonic_sign == 1:
|
||
|
assert values[i_left] <= values[i_right]
|
||
|
elif monotonic_sign == -1:
|
||
|
assert values[i_left] >= values[i_right]
|
||
|
val_middle = (values[i_left] + values[i_right]) / 2
|
||
|
# Check bounds on grand-children, filtering out leaf nodes
|
||
|
if tree_.feature[i_left] >= 0:
|
||
|
i_left_right = tree_.children_right[i_left]
|
||
|
if monotonic_sign == 1:
|
||
|
assert values[i_left_right] <= val_middle
|
||
|
elif monotonic_sign == -1:
|
||
|
assert values[i_left_right] >= val_middle
|
||
|
if tree_.feature[i_right] >= 0:
|
||
|
i_right_left = tree_.children_left[i_right]
|
||
|
if monotonic_sign == 1:
|
||
|
assert val_middle <= values[i_right_left]
|
||
|
elif monotonic_sign == -1:
|
||
|
assert val_middle >= values[i_right_left]
|
||
|
|
||
|
|
||
|
def test_assert_1d_reg_tree_children_monotonic_bounded():
|
||
|
X = np.linspace(-1, 1, 7).reshape(-1, 1)
|
||
|
y = np.sin(2 * np.pi * X.ravel())
|
||
|
|
||
|
reg = DecisionTreeRegressor(max_depth=None, random_state=0).fit(X, y)
|
||
|
|
||
|
with pytest.raises(AssertionError):
|
||
|
assert_1d_reg_tree_children_monotonic_bounded(reg.tree_, 1)
|
||
|
|
||
|
with pytest.raises(AssertionError):
|
||
|
assert_1d_reg_tree_children_monotonic_bounded(reg.tree_, -1)
|
||
|
|
||
|
|
||
|
def assert_1d_reg_monotonic(clf, monotonic_sign, min_x, max_x, n_steps):
|
||
|
X_grid = np.linspace(min_x, max_x, n_steps).reshape(-1, 1)
|
||
|
y_pred_grid = clf.predict(X_grid)
|
||
|
if monotonic_sign == 1:
|
||
|
assert (np.diff(y_pred_grid) >= 0.0).all()
|
||
|
elif monotonic_sign == -1:
|
||
|
assert (np.diff(y_pred_grid) <= 0.0).all()
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("TreeRegressor", TREE_REGRESSOR_CLASSES)
|
||
|
def test_1d_opposite_monotonicity_cst_data(TreeRegressor):
|
||
|
# Check that positive monotonic data with negative monotonic constraint
|
||
|
# yield constant predictions, equal to the average of target values
|
||
|
X = np.linspace(-2, 2, 10).reshape(-1, 1)
|
||
|
y = X.ravel()
|
||
|
clf = TreeRegressor(monotonic_cst=[-1])
|
||
|
clf.fit(X, y)
|
||
|
assert clf.tree_.node_count == 1
|
||
|
assert clf.tree_.value[0] == 0.0
|
||
|
|
||
|
# Swap monotonicity
|
||
|
clf = TreeRegressor(monotonic_cst=[1])
|
||
|
clf.fit(X, -y)
|
||
|
assert clf.tree_.node_count == 1
|
||
|
assert clf.tree_.value[0] == 0.0
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("TreeRegressor", TREE_REGRESSOR_CLASSES)
|
||
|
@pytest.mark.parametrize("monotonic_sign", (-1, 1))
|
||
|
@pytest.mark.parametrize("depth_first_builder", (True, False))
|
||
|
@pytest.mark.parametrize("criterion", ("absolute_error", "squared_error"))
|
||
|
def test_1d_tree_nodes_values(
|
||
|
TreeRegressor, monotonic_sign, depth_first_builder, criterion, global_random_seed
|
||
|
):
|
||
|
# Adaptation from test_nodes_values in test_monotonic_constraints.py
|
||
|
# in sklearn.ensemble._hist_gradient_boosting
|
||
|
# Build a single tree with only one feature, and make sure the node
|
||
|
# values respect the monotonicity constraints.
|
||
|
|
||
|
# Considering the following tree with a monotonic +1 constraint, we
|
||
|
# should have:
|
||
|
#
|
||
|
# root
|
||
|
# / \
|
||
|
# a b
|
||
|
# / \ / \
|
||
|
# c d e f
|
||
|
#
|
||
|
# a <= root <= b
|
||
|
# c <= d <= (a + b) / 2 <= e <= f
|
||
|
|
||
|
rng = np.random.RandomState(global_random_seed)
|
||
|
n_samples = 1000
|
||
|
n_features = 1
|
||
|
X = rng.rand(n_samples, n_features)
|
||
|
y = rng.rand(n_samples)
|
||
|
|
||
|
if depth_first_builder:
|
||
|
# No max_leaf_nodes, default depth first tree builder
|
||
|
clf = TreeRegressor(
|
||
|
monotonic_cst=[monotonic_sign],
|
||
|
criterion=criterion,
|
||
|
random_state=global_random_seed,
|
||
|
)
|
||
|
else:
|
||
|
# max_leaf_nodes triggers best first tree builder
|
||
|
clf = TreeRegressor(
|
||
|
monotonic_cst=[monotonic_sign],
|
||
|
max_leaf_nodes=n_samples,
|
||
|
criterion=criterion,
|
||
|
random_state=global_random_seed,
|
||
|
)
|
||
|
clf.fit(X, y)
|
||
|
|
||
|
assert_1d_reg_tree_children_monotonic_bounded(clf.tree_, monotonic_sign)
|
||
|
assert_1d_reg_monotonic(clf, monotonic_sign, np.min(X), np.max(X), 100)
|
||
|
|
||
|
|
||
|
def assert_nd_reg_tree_children_monotonic_bounded(tree_, monotonic_cst):
|
||
|
upper_bound = np.full(tree_.node_count, np.inf)
|
||
|
lower_bound = np.full(tree_.node_count, -np.inf)
|
||
|
for i in range(tree_.node_count):
|
||
|
feature = tree_.feature[i]
|
||
|
node_value = tree_.value[i][0][0] # unpack value from nx1x1 array
|
||
|
# While building the tree, the computed middle value is slightly
|
||
|
# different from the average of the siblings values, because
|
||
|
# sum_right / weighted_n_right
|
||
|
# is slightly different from the value of the right sibling.
|
||
|
# This can cause a discrepancy up to numerical noise when clipping,
|
||
|
# which is resolved by comparing with some loss of precision.
|
||
|
assert np.float32(node_value) <= np.float32(upper_bound[i])
|
||
|
assert np.float32(node_value) >= np.float32(lower_bound[i])
|
||
|
|
||
|
if feature < 0:
|
||
|
# Leaf: nothing to do
|
||
|
continue
|
||
|
|
||
|
# Split node: check and update bounds for the children.
|
||
|
i_left = tree_.children_left[i]
|
||
|
i_right = tree_.children_right[i]
|
||
|
# unpack value from nx1x1 array
|
||
|
middle_value = (tree_.value[i_left][0][0] + tree_.value[i_right][0][0]) / 2
|
||
|
|
||
|
if monotonic_cst[feature] == 0:
|
||
|
# Feature without monotonicity constraint: propagate bounds
|
||
|
# down the tree to both children.
|
||
|
# Otherwise, with 2 features and a monotonic increase constraint
|
||
|
# (encoded by +1) on feature 0, the following tree can be accepted,
|
||
|
# although it does not respect the monotonic increase constraint:
|
||
|
#
|
||
|
# X[0] <= 0
|
||
|
# value = 100
|
||
|
# / \
|
||
|
# X[0] <= -1 X[1] <= 0
|
||
|
# value = 50 value = 150
|
||
|
# / \ / \
|
||
|
# leaf leaf leaf leaf
|
||
|
# value = 25 value = 75 value = 50 value = 250
|
||
|
|
||
|
lower_bound[i_left] = lower_bound[i]
|
||
|
upper_bound[i_left] = upper_bound[i]
|
||
|
lower_bound[i_right] = lower_bound[i]
|
||
|
upper_bound[i_right] = upper_bound[i]
|
||
|
|
||
|
elif monotonic_cst[feature] == 1:
|
||
|
# Feature with constraint: check monotonicity
|
||
|
assert tree_.value[i_left] <= tree_.value[i_right]
|
||
|
|
||
|
# Propagate bounds down the tree to both children.
|
||
|
lower_bound[i_left] = lower_bound[i]
|
||
|
upper_bound[i_left] = middle_value
|
||
|
lower_bound[i_right] = middle_value
|
||
|
upper_bound[i_right] = upper_bound[i]
|
||
|
|
||
|
elif monotonic_cst[feature] == -1:
|
||
|
# Feature with constraint: check monotonicity
|
||
|
assert tree_.value[i_left] >= tree_.value[i_right]
|
||
|
|
||
|
# Update and propagate bounds down the tree to both children.
|
||
|
lower_bound[i_left] = middle_value
|
||
|
upper_bound[i_left] = upper_bound[i]
|
||
|
lower_bound[i_right] = lower_bound[i]
|
||
|
upper_bound[i_right] = middle_value
|
||
|
|
||
|
else: # pragma: no cover
|
||
|
raise ValueError(f"monotonic_cst[{feature}]={monotonic_cst[feature]}")
|
||
|
|
||
|
|
||
|
def test_assert_nd_reg_tree_children_monotonic_bounded():
|
||
|
# Check that assert_nd_reg_tree_children_monotonic_bounded can detect
|
||
|
# non-monotonic tree predictions.
|
||
|
X = np.linspace(0, 2 * np.pi, 30).reshape(-1, 1)
|
||
|
y = np.sin(X).ravel()
|
||
|
reg = DecisionTreeRegressor(max_depth=None, random_state=0).fit(X, y)
|
||
|
|
||
|
with pytest.raises(AssertionError):
|
||
|
assert_nd_reg_tree_children_monotonic_bounded(reg.tree_, [1])
|
||
|
|
||
|
with pytest.raises(AssertionError):
|
||
|
assert_nd_reg_tree_children_monotonic_bounded(reg.tree_, [-1])
|
||
|
|
||
|
assert_nd_reg_tree_children_monotonic_bounded(reg.tree_, [0])
|
||
|
|
||
|
# Check that assert_nd_reg_tree_children_monotonic_bounded raises
|
||
|
# when the data (and therefore the model) is naturally monotonic in the
|
||
|
# opposite direction.
|
||
|
X = np.linspace(-5, 5, 5).reshape(-1, 1)
|
||
|
y = X.ravel() ** 3
|
||
|
reg = DecisionTreeRegressor(max_depth=None, random_state=0).fit(X, y)
|
||
|
|
||
|
with pytest.raises(AssertionError):
|
||
|
assert_nd_reg_tree_children_monotonic_bounded(reg.tree_, [-1])
|
||
|
|
||
|
# For completeness, check that the converse holds when swapping the sign.
|
||
|
reg = DecisionTreeRegressor(max_depth=None, random_state=0).fit(X, -y)
|
||
|
|
||
|
with pytest.raises(AssertionError):
|
||
|
assert_nd_reg_tree_children_monotonic_bounded(reg.tree_, [1])
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("TreeRegressor", TREE_REGRESSOR_CLASSES)
|
||
|
@pytest.mark.parametrize("monotonic_sign", (-1, 1))
|
||
|
@pytest.mark.parametrize("depth_first_builder", (True, False))
|
||
|
@pytest.mark.parametrize("criterion", ("absolute_error", "squared_error"))
|
||
|
def test_nd_tree_nodes_values(
|
||
|
TreeRegressor, monotonic_sign, depth_first_builder, criterion, global_random_seed
|
||
|
):
|
||
|
# Build tree with several features, and make sure the nodes
|
||
|
# values respect the monotonicity constraints.
|
||
|
|
||
|
# Considering the following tree with a monotonic increase constraint on X[0],
|
||
|
# we should have:
|
||
|
#
|
||
|
# root
|
||
|
# X[0]<=t
|
||
|
# / \
|
||
|
# a b
|
||
|
# X[0]<=u X[1]<=v
|
||
|
# / \ / \
|
||
|
# c d e f
|
||
|
#
|
||
|
# i) a <= root <= b
|
||
|
# ii) c <= a <= d <= (a+b)/2
|
||
|
# iii) (a+b)/2 <= min(e,f)
|
||
|
# For iii) we check that each node value is within the proper lower and
|
||
|
# upper bounds.
|
||
|
|
||
|
rng = np.random.RandomState(global_random_seed)
|
||
|
n_samples = 1000
|
||
|
n_features = 2
|
||
|
monotonic_cst = [monotonic_sign, 0]
|
||
|
X = rng.rand(n_samples, n_features)
|
||
|
y = rng.rand(n_samples)
|
||
|
|
||
|
if depth_first_builder:
|
||
|
# No max_leaf_nodes, default depth first tree builder
|
||
|
clf = TreeRegressor(
|
||
|
monotonic_cst=monotonic_cst,
|
||
|
criterion=criterion,
|
||
|
random_state=global_random_seed,
|
||
|
)
|
||
|
else:
|
||
|
# max_leaf_nodes triggers best first tree builder
|
||
|
clf = TreeRegressor(
|
||
|
monotonic_cst=monotonic_cst,
|
||
|
max_leaf_nodes=n_samples,
|
||
|
criterion=criterion,
|
||
|
random_state=global_random_seed,
|
||
|
)
|
||
|
clf.fit(X, y)
|
||
|
assert_nd_reg_tree_children_monotonic_bounded(clf.tree_, monotonic_cst)
|