ai-content-maker/.venv/Lib/site-packages/sklearn/utils/tests/test_pprint.py

681 lines
27 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
import re
from pprint import PrettyPrinter
import numpy as np
from sklearn.utils._pprint import _EstimatorPrettyPrinter
from sklearn.linear_model import LogisticRegressionCV
from sklearn.pipeline import make_pipeline
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.feature_selection import SelectKBest, chi2
from sklearn import config_context
# Ignore flake8 (lots of line too long issues)
# ruff: noqa
# Constructors excerpted to test pprinting
class LogisticRegression(BaseEstimator):
def __init__(
self,
penalty="l2",
dual=False,
tol=1e-4,
C=1.0,
fit_intercept=True,
intercept_scaling=1,
class_weight=None,
random_state=None,
solver="warn",
max_iter=100,
multi_class="warn",
verbose=0,
warm_start=False,
n_jobs=None,
l1_ratio=None,
):
self.penalty = penalty
self.dual = dual
self.tol = tol
self.C = C
self.fit_intercept = fit_intercept
self.intercept_scaling = intercept_scaling
self.class_weight = class_weight
self.random_state = random_state
self.solver = solver
self.max_iter = max_iter
self.multi_class = multi_class
self.verbose = verbose
self.warm_start = warm_start
self.n_jobs = n_jobs
self.l1_ratio = l1_ratio
def fit(self, X, y):
return self
class StandardScaler(TransformerMixin, BaseEstimator):
def __init__(self, copy=True, with_mean=True, with_std=True):
self.with_mean = with_mean
self.with_std = with_std
self.copy = copy
def transform(self, X, copy=None):
return self
class RFE(BaseEstimator):
def __init__(self, estimator, n_features_to_select=None, step=1, verbose=0):
self.estimator = estimator
self.n_features_to_select = n_features_to_select
self.step = step
self.verbose = verbose
class GridSearchCV(BaseEstimator):
def __init__(
self,
estimator,
param_grid,
scoring=None,
n_jobs=None,
iid="warn",
refit=True,
cv="warn",
verbose=0,
pre_dispatch="2*n_jobs",
error_score="raise-deprecating",
return_train_score=False,
):
self.estimator = estimator
self.param_grid = param_grid
self.scoring = scoring
self.n_jobs = n_jobs
self.iid = iid
self.refit = refit
self.cv = cv
self.verbose = verbose
self.pre_dispatch = pre_dispatch
self.error_score = error_score
self.return_train_score = return_train_score
class CountVectorizer(BaseEstimator):
def __init__(
self,
input="content",
encoding="utf-8",
decode_error="strict",
strip_accents=None,
lowercase=True,
preprocessor=None,
tokenizer=None,
stop_words=None,
token_pattern=r"(?u)\b\w\w+\b",
ngram_range=(1, 1),
analyzer="word",
max_df=1.0,
min_df=1,
max_features=None,
vocabulary=None,
binary=False,
dtype=np.int64,
):
self.input = input
self.encoding = encoding
self.decode_error = decode_error
self.strip_accents = strip_accents
self.preprocessor = preprocessor
self.tokenizer = tokenizer
self.analyzer = analyzer
self.lowercase = lowercase
self.token_pattern = token_pattern
self.stop_words = stop_words
self.max_df = max_df
self.min_df = min_df
self.max_features = max_features
self.ngram_range = ngram_range
self.vocabulary = vocabulary
self.binary = binary
self.dtype = dtype
class Pipeline(BaseEstimator):
def __init__(self, steps, memory=None):
self.steps = steps
self.memory = memory
class SVC(BaseEstimator):
def __init__(
self,
C=1.0,
kernel="rbf",
degree=3,
gamma="auto_deprecated",
coef0=0.0,
shrinking=True,
probability=False,
tol=1e-3,
cache_size=200,
class_weight=None,
verbose=False,
max_iter=-1,
decision_function_shape="ovr",
random_state=None,
):
self.kernel = kernel
self.degree = degree
self.gamma = gamma
self.coef0 = coef0
self.tol = tol
self.C = C
self.shrinking = shrinking
self.probability = probability
self.cache_size = cache_size
self.class_weight = class_weight
self.verbose = verbose
self.max_iter = max_iter
self.decision_function_shape = decision_function_shape
self.random_state = random_state
class PCA(BaseEstimator):
def __init__(
self,
n_components=None,
copy=True,
whiten=False,
svd_solver="auto",
tol=0.0,
iterated_power="auto",
random_state=None,
):
self.n_components = n_components
self.copy = copy
self.whiten = whiten
self.svd_solver = svd_solver
self.tol = tol
self.iterated_power = iterated_power
self.random_state = random_state
class NMF(BaseEstimator):
def __init__(
self,
n_components=None,
init=None,
solver="cd",
beta_loss="frobenius",
tol=1e-4,
max_iter=200,
random_state=None,
alpha=0.0,
l1_ratio=0.0,
verbose=0,
shuffle=False,
):
self.n_components = n_components
self.init = init
self.solver = solver
self.beta_loss = beta_loss
self.tol = tol
self.max_iter = max_iter
self.random_state = random_state
self.alpha = alpha
self.l1_ratio = l1_ratio
self.verbose = verbose
self.shuffle = shuffle
class SimpleImputer(BaseEstimator):
def __init__(
self,
missing_values=np.nan,
strategy="mean",
fill_value=None,
verbose=0,
copy=True,
):
self.missing_values = missing_values
self.strategy = strategy
self.fill_value = fill_value
self.verbose = verbose
self.copy = copy
def test_basic(print_changed_only_false):
# Basic pprint test
lr = LogisticRegression()
expected = """
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
intercept_scaling=1, l1_ratio=None, max_iter=100,
multi_class='warn', n_jobs=None, penalty='l2',
random_state=None, solver='warn', tol=0.0001, verbose=0,
warm_start=False)"""
expected = expected[1:] # remove first \n
assert lr.__repr__() == expected
def test_changed_only():
# Make sure the changed_only param is correctly used when True (default)
lr = LogisticRegression(C=99)
expected = """LogisticRegression(C=99)"""
assert lr.__repr__() == expected
# Check with a repr that doesn't fit on a single line
lr = LogisticRegression(
C=99, class_weight=0.4, fit_intercept=False, tol=1234, verbose=True
)
expected = """
LogisticRegression(C=99, class_weight=0.4, fit_intercept=False, tol=1234,
verbose=True)"""
expected = expected[1:] # remove first \n
assert lr.__repr__() == expected
imputer = SimpleImputer(missing_values=0)
expected = """SimpleImputer(missing_values=0)"""
assert imputer.__repr__() == expected
# Defaults to np.nan, trying with float('NaN')
imputer = SimpleImputer(missing_values=float("NaN"))
expected = """SimpleImputer()"""
assert imputer.__repr__() == expected
# make sure array parameters don't throw error (see #13583)
repr(LogisticRegressionCV(Cs=np.array([0.1, 1])))
def test_pipeline(print_changed_only_false):
# Render a pipeline object
pipeline = make_pipeline(StandardScaler(), LogisticRegression(C=999))
expected = """
Pipeline(memory=None,
steps=[('standardscaler',
StandardScaler(copy=True, with_mean=True, with_std=True)),
('logisticregression',
LogisticRegression(C=999, class_weight=None, dual=False,
fit_intercept=True, intercept_scaling=1,
l1_ratio=None, max_iter=100,
multi_class='warn', n_jobs=None,
penalty='l2', random_state=None,
solver='warn', tol=0.0001, verbose=0,
warm_start=False))],
verbose=False)"""
expected = expected[1:] # remove first \n
assert pipeline.__repr__() == expected
def test_deeply_nested(print_changed_only_false):
# Render a deeply nested estimator
rfe = RFE(RFE(RFE(RFE(RFE(RFE(RFE(LogisticRegression())))))))
expected = """
RFE(estimator=RFE(estimator=RFE(estimator=RFE(estimator=RFE(estimator=RFE(estimator=RFE(estimator=LogisticRegression(C=1.0,
class_weight=None,
dual=False,
fit_intercept=True,
intercept_scaling=1,
l1_ratio=None,
max_iter=100,
multi_class='warn',
n_jobs=None,
penalty='l2',
random_state=None,
solver='warn',
tol=0.0001,
verbose=0,
warm_start=False),
n_features_to_select=None,
step=1,
verbose=0),
n_features_to_select=None,
step=1,
verbose=0),
n_features_to_select=None,
step=1, verbose=0),
n_features_to_select=None, step=1,
verbose=0),
n_features_to_select=None, step=1, verbose=0),
n_features_to_select=None, step=1, verbose=0),
n_features_to_select=None, step=1, verbose=0)"""
expected = expected[1:] # remove first \n
assert rfe.__repr__() == expected
def test_gridsearch(print_changed_only_false):
# render a gridsearch
param_grid = [
{"kernel": ["rbf"], "gamma": [1e-3, 1e-4], "C": [1, 10, 100, 1000]},
{"kernel": ["linear"], "C": [1, 10, 100, 1000]},
]
gs = GridSearchCV(SVC(), param_grid, cv=5)
expected = """
GridSearchCV(cv=5, error_score='raise-deprecating',
estimator=SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape='ovr', degree=3,
gamma='auto_deprecated', kernel='rbf', max_iter=-1,
probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False),
iid='warn', n_jobs=None,
param_grid=[{'C': [1, 10, 100, 1000], 'gamma': [0.001, 0.0001],
'kernel': ['rbf']},
{'C': [1, 10, 100, 1000], 'kernel': ['linear']}],
pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
scoring=None, verbose=0)"""
expected = expected[1:] # remove first \n
assert gs.__repr__() == expected
def test_gridsearch_pipeline(print_changed_only_false):
# render a pipeline inside a gridsearch
pp = _EstimatorPrettyPrinter(compact=True, indent=1, indent_at_name=True)
pipeline = Pipeline([("reduce_dim", PCA()), ("classify", SVC())])
N_FEATURES_OPTIONS = [2, 4, 8]
C_OPTIONS = [1, 10, 100, 1000]
param_grid = [
{
"reduce_dim": [PCA(iterated_power=7), NMF()],
"reduce_dim__n_components": N_FEATURES_OPTIONS,
"classify__C": C_OPTIONS,
},
{
"reduce_dim": [SelectKBest(chi2)],
"reduce_dim__k": N_FEATURES_OPTIONS,
"classify__C": C_OPTIONS,
},
]
gspipline = GridSearchCV(pipeline, cv=3, n_jobs=1, param_grid=param_grid)
expected = """
GridSearchCV(cv=3, error_score='raise-deprecating',
estimator=Pipeline(memory=None,
steps=[('reduce_dim',
PCA(copy=True, iterated_power='auto',
n_components=None,
random_state=None,
svd_solver='auto', tol=0.0,
whiten=False)),
('classify',
SVC(C=1.0, cache_size=200,
class_weight=None, coef0=0.0,
decision_function_shape='ovr',
degree=3, gamma='auto_deprecated',
kernel='rbf', max_iter=-1,
probability=False,
random_state=None, shrinking=True,
tol=0.001, verbose=False))]),
iid='warn', n_jobs=1,
param_grid=[{'classify__C': [1, 10, 100, 1000],
'reduce_dim': [PCA(copy=True, iterated_power=7,
n_components=None,
random_state=None,
svd_solver='auto', tol=0.0,
whiten=False),
NMF(alpha=0.0, beta_loss='frobenius',
init=None, l1_ratio=0.0,
max_iter=200, n_components=None,
random_state=None, shuffle=False,
solver='cd', tol=0.0001,
verbose=0)],
'reduce_dim__n_components': [2, 4, 8]},
{'classify__C': [1, 10, 100, 1000],
'reduce_dim': [SelectKBest(k=10,
score_func=<function chi2 at some_address>)],
'reduce_dim__k': [2, 4, 8]}],
pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
scoring=None, verbose=0)"""
expected = expected[1:] # remove first \n
repr_ = pp.pformat(gspipline)
# Remove address of '<function chi2 at 0x.....>' for reproducibility
repr_ = re.sub("function chi2 at 0x.*>", "function chi2 at some_address>", repr_)
assert repr_ == expected
def test_n_max_elements_to_show(print_changed_only_false):
n_max_elements_to_show = 30
pp = _EstimatorPrettyPrinter(
compact=True,
indent=1,
indent_at_name=True,
n_max_elements_to_show=n_max_elements_to_show,
)
# No ellipsis
vocabulary = {i: i for i in range(n_max_elements_to_show)}
vectorizer = CountVectorizer(vocabulary=vocabulary)
expected = r"""
CountVectorizer(analyzer='word', binary=False, decode_error='strict',
dtype=<class 'numpy.int64'>, encoding='utf-8', input='content',
lowercase=True, max_df=1.0, max_features=None, min_df=1,
ngram_range=(1, 1), preprocessor=None, stop_words=None,
strip_accents=None, token_pattern='(?u)\\b\\w\\w+\\b',
tokenizer=None,
vocabulary={0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7,
8: 8, 9: 9, 10: 10, 11: 11, 12: 12, 13: 13, 14: 14,
15: 15, 16: 16, 17: 17, 18: 18, 19: 19, 20: 20,
21: 21, 22: 22, 23: 23, 24: 24, 25: 25, 26: 26,
27: 27, 28: 28, 29: 29})"""
expected = expected[1:] # remove first \n
assert pp.pformat(vectorizer) == expected
# Now with ellipsis
vocabulary = {i: i for i in range(n_max_elements_to_show + 1)}
vectorizer = CountVectorizer(vocabulary=vocabulary)
expected = r"""
CountVectorizer(analyzer='word', binary=False, decode_error='strict',
dtype=<class 'numpy.int64'>, encoding='utf-8', input='content',
lowercase=True, max_df=1.0, max_features=None, min_df=1,
ngram_range=(1, 1), preprocessor=None, stop_words=None,
strip_accents=None, token_pattern='(?u)\\b\\w\\w+\\b',
tokenizer=None,
vocabulary={0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7,
8: 8, 9: 9, 10: 10, 11: 11, 12: 12, 13: 13, 14: 14,
15: 15, 16: 16, 17: 17, 18: 18, 19: 19, 20: 20,
21: 21, 22: 22, 23: 23, 24: 24, 25: 25, 26: 26,
27: 27, 28: 28, 29: 29, ...})"""
expected = expected[1:] # remove first \n
assert pp.pformat(vectorizer) == expected
# Also test with lists
param_grid = {"C": list(range(n_max_elements_to_show))}
gs = GridSearchCV(SVC(), param_grid)
expected = """
GridSearchCV(cv='warn', error_score='raise-deprecating',
estimator=SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape='ovr', degree=3,
gamma='auto_deprecated', kernel='rbf', max_iter=-1,
probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False),
iid='warn', n_jobs=None,
param_grid={'C': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29]},
pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
scoring=None, verbose=0)"""
expected = expected[1:] # remove first \n
assert pp.pformat(gs) == expected
# Now with ellipsis
param_grid = {"C": list(range(n_max_elements_to_show + 1))}
gs = GridSearchCV(SVC(), param_grid)
expected = """
GridSearchCV(cv='warn', error_score='raise-deprecating',
estimator=SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape='ovr', degree=3,
gamma='auto_deprecated', kernel='rbf', max_iter=-1,
probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False),
iid='warn', n_jobs=None,
param_grid={'C': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, ...]},
pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
scoring=None, verbose=0)"""
expected = expected[1:] # remove first \n
assert pp.pformat(gs) == expected
def test_bruteforce_ellipsis(print_changed_only_false):
# Check that the bruteforce ellipsis (used when the number of non-blank
# characters exceeds N_CHAR_MAX) renders correctly.
lr = LogisticRegression()
# test when the left and right side of the ellipsis aren't on the same
# line.
expected = """
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
in...
multi_class='warn', n_jobs=None, penalty='l2',
random_state=None, solver='warn', tol=0.0001, verbose=0,
warm_start=False)"""
expected = expected[1:] # remove first \n
assert expected == lr.__repr__(N_CHAR_MAX=150)
# test with very small N_CHAR_MAX
# Note that N_CHAR_MAX is not strictly enforced, but it's normal: to avoid
# weird reprs we still keep the whole line of the right part (after the
# ellipsis).
expected = """
Lo...
warm_start=False)"""
expected = expected[1:] # remove first \n
assert expected == lr.__repr__(N_CHAR_MAX=4)
# test with N_CHAR_MAX == number of non-blank characters: In this case we
# don't want ellipsis
full_repr = lr.__repr__(N_CHAR_MAX=float("inf"))
n_nonblank = len("".join(full_repr.split()))
assert lr.__repr__(N_CHAR_MAX=n_nonblank) == full_repr
assert "..." not in full_repr
# test with N_CHAR_MAX == number of non-blank characters - 10: the left and
# right side of the ellispsis are on different lines. In this case we
# want to expend the whole line of the right side
expected = """
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
intercept_scaling=1, l1_ratio=None, max_i...
multi_class='warn', n_jobs=None, penalty='l2',
random_state=None, solver='warn', tol=0.0001, verbose=0,
warm_start=False)"""
expected = expected[1:] # remove first \n
assert expected == lr.__repr__(N_CHAR_MAX=n_nonblank - 10)
# test with N_CHAR_MAX == number of non-blank characters - 10: the left and
# right side of the ellispsis are on the same line. In this case we don't
# want to expend the whole line of the right side, just add the ellispsis
# between the 2 sides.
expected = """
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
intercept_scaling=1, l1_ratio=None, max_iter...,
multi_class='warn', n_jobs=None, penalty='l2',
random_state=None, solver='warn', tol=0.0001, verbose=0,
warm_start=False)"""
expected = expected[1:] # remove first \n
assert expected == lr.__repr__(N_CHAR_MAX=n_nonblank - 4)
# test with N_CHAR_MAX == number of non-blank characters - 2: the left and
# right side of the ellispsis are on the same line, but adding the ellipsis
# would actually make the repr longer. So we don't add the ellipsis.
expected = """
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
intercept_scaling=1, l1_ratio=None, max_iter=100,
multi_class='warn', n_jobs=None, penalty='l2',
random_state=None, solver='warn', tol=0.0001, verbose=0,
warm_start=False)"""
expected = expected[1:] # remove first \n
assert expected == lr.__repr__(N_CHAR_MAX=n_nonblank - 2)
def test_builtin_prettyprinter():
# non regression test than ensures we can still use the builtin
# PrettyPrinter class for estimators (as done e.g. by joblib).
# Used to be a bug
PrettyPrinter().pprint(LogisticRegression())
def test_kwargs_in_init():
# Make sure the changed_only=True mode is OK when an argument is passed as
# kwargs.
# Non-regression test for
# https://github.com/scikit-learn/scikit-learn/issues/17206
class WithKWargs(BaseEstimator):
# Estimator with a kwargs argument. These need to hack around
# set_params and get_params. Here we mimic what LightGBM does.
def __init__(self, a="willchange", b="unchanged", **kwargs):
self.a = a
self.b = b
self._other_params = {}
self.set_params(**kwargs)
def get_params(self, deep=True):
params = super().get_params(deep=deep)
params.update(self._other_params)
return params
def set_params(self, **params):
for key, value in params.items():
setattr(self, key, value)
self._other_params[key] = value
return self
est = WithKWargs(a="something", c="abcd", d=None)
expected = "WithKWargs(a='something', c='abcd', d=None)"
assert expected == est.__repr__()
with config_context(print_changed_only=False):
expected = "WithKWargs(a='something', b='unchanged', c='abcd', d=None)"
assert expected == est.__repr__()
def test_complexity_print_changed_only():
# Make sure `__repr__` is called the same amount of times
# whether `print_changed_only` is True or False
# Non-regression test for
# https://github.com/scikit-learn/scikit-learn/issues/18490
class DummyEstimator(TransformerMixin, BaseEstimator):
nb_times_repr_called = 0
def __init__(self, estimator=None):
self.estimator = estimator
def __repr__(self):
DummyEstimator.nb_times_repr_called += 1
return super().__repr__()
def transform(self, X, copy=None): # pragma: no cover
return X
estimator = DummyEstimator(
make_pipeline(DummyEstimator(DummyEstimator()), DummyEstimator(), "passthrough")
)
with config_context(print_changed_only=False):
repr(estimator)
nb_repr_print_changed_only_false = DummyEstimator.nb_times_repr_called
DummyEstimator.nb_times_repr_called = 0
with config_context(print_changed_only=True):
repr(estimator)
nb_repr_print_changed_only_true = DummyEstimator.nb_times_repr_called
assert nb_repr_print_changed_only_false == nb_repr_print_changed_only_true