ai-content-maker/.venv/Lib/site-packages/spacy_legacy/architectures/parser.py

91 lines
3.1 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
from typing import Optional, List
from thinc.types import Floats2d
from thinc.api import Model, zero_init, use_ops
from spacy.tokens import Doc
from spacy.compat import Literal
from spacy.errors import Errors
from spacy.util import registry
def TransitionBasedParser_v1(
tok2vec: Model[List[Doc], List[Floats2d]],
state_type: Literal["parser", "ner"],
extra_state_tokens: bool,
hidden_width: int,
maxout_pieces: int,
use_upper: bool = True,
nO: Optional[int] = None,
) -> Model:
chain = registry.get("layers", "chain.v1")
list2array = registry.get("layers", "list2array.v1")
Linear = registry.get("layers", "Linear.v1")
TransitionModel = registry.get("layers", "spacy.TransitionModel.v1")
PrecomputableAffine = registry.get("layers", "spacy.PrecomputableAffine.v1")
if state_type == "parser":
nr_feature_tokens = 13 if extra_state_tokens else 8
elif state_type == "ner":
nr_feature_tokens = 6 if extra_state_tokens else 3
else:
raise ValueError(Errors.E917.format(value=state_type))
t2v_width = tok2vec.get_dim("nO") if tok2vec.has_dim("nO") else None
tok2vec = chain(tok2vec, list2array(), Linear(hidden_width, t2v_width))
tok2vec.set_dim("nO", hidden_width)
lower = PrecomputableAffine(
nO=hidden_width if use_upper else nO,
nF=nr_feature_tokens,
nI=tok2vec.get_dim("nO"),
nP=maxout_pieces,
)
if use_upper:
with use_ops("numpy"):
# Initialize weights at zero, as it's a classification layer.
upper = Linear(nO=nO, init_W=zero_init)
else:
upper = None
return TransitionModel(tok2vec, lower, upper, resize_output=resize_output_v1)
def resize_output_v1(model, new_nO):
Linear = registry.get("layers", "Linear.v1")
lower = model.get_ref("lower")
upper = model.get_ref("upper")
if not model.attrs["has_upper"]:
if lower.has_dim("nO") is None:
lower.set_dim("nO", new_nO)
return
elif upper.has_dim("nO") is None:
upper.set_dim("nO", new_nO)
return
elif new_nO == upper.get_dim("nO"):
return
smaller = upper
nI = None
if smaller.has_dim("nI"):
nI = smaller.get_dim("nI")
with use_ops("numpy"):
larger = Linear(nO=new_nO, nI=nI)
larger.init = smaller.init
# it could be that the model is not initialized yet, then skip this bit
if nI:
larger_W = larger.ops.alloc2f(new_nO, nI)
larger_b = larger.ops.alloc1f(new_nO)
smaller_W = smaller.get_param("W")
smaller_b = smaller.get_param("b")
# Weights are stored in (nr_out, nr_in) format, so we're basically
# just adding rows here.
if smaller.has_dim("nO"):
larger_W[: smaller.get_dim("nO")] = smaller_W
larger_b[: smaller.get_dim("nO")] = smaller_b
for i in range(smaller.get_dim("nO"), new_nO):
model.attrs["unseen_classes"].add(i)
larger.set_param("W", larger_W)
larger.set_param("b", larger_b)
model._layers[-1] = larger
model.set_ref("upper", larger)
return model