1802 lines
60 KiB
Python
1802 lines
60 KiB
Python
|
"""
|
||
|
Adaptive numerical evaluation of SymPy expressions, using mpmath
|
||
|
for mathematical functions.
|
||
|
"""
|
||
|
from __future__ import annotations
|
||
|
from typing import Tuple as tTuple, Optional, Union as tUnion, Callable, List, Dict as tDict, Type, TYPE_CHECKING, \
|
||
|
Any, overload
|
||
|
|
||
|
import math
|
||
|
|
||
|
import mpmath.libmp as libmp
|
||
|
from mpmath import (
|
||
|
make_mpc, make_mpf, mp, mpc, mpf, nsum, quadts, quadosc, workprec)
|
||
|
from mpmath import inf as mpmath_inf
|
||
|
from mpmath.libmp import (from_int, from_man_exp, from_rational, fhalf,
|
||
|
fnan, finf, fninf, fnone, fone, fzero, mpf_abs, mpf_add,
|
||
|
mpf_atan, mpf_atan2, mpf_cmp, mpf_cos, mpf_e, mpf_exp, mpf_log, mpf_lt,
|
||
|
mpf_mul, mpf_neg, mpf_pi, mpf_pow, mpf_pow_int, mpf_shift, mpf_sin,
|
||
|
mpf_sqrt, normalize, round_nearest, to_int, to_str)
|
||
|
from mpmath.libmp import bitcount as mpmath_bitcount
|
||
|
from mpmath.libmp.backend import MPZ
|
||
|
from mpmath.libmp.libmpc import _infs_nan
|
||
|
from mpmath.libmp.libmpf import dps_to_prec, prec_to_dps
|
||
|
|
||
|
from .sympify import sympify
|
||
|
from .singleton import S
|
||
|
from sympy.external.gmpy import SYMPY_INTS
|
||
|
from sympy.utilities.iterables import is_sequence
|
||
|
from sympy.utilities.lambdify import lambdify
|
||
|
from sympy.utilities.misc import as_int
|
||
|
|
||
|
if TYPE_CHECKING:
|
||
|
from sympy.core.expr import Expr
|
||
|
from sympy.core.add import Add
|
||
|
from sympy.core.mul import Mul
|
||
|
from sympy.core.power import Pow
|
||
|
from sympy.core.symbol import Symbol
|
||
|
from sympy.integrals.integrals import Integral
|
||
|
from sympy.concrete.summations import Sum
|
||
|
from sympy.concrete.products import Product
|
||
|
from sympy.functions.elementary.exponential import exp, log
|
||
|
from sympy.functions.elementary.complexes import Abs, re, im
|
||
|
from sympy.functions.elementary.integers import ceiling, floor
|
||
|
from sympy.functions.elementary.trigonometric import atan
|
||
|
from .numbers import Float, Rational, Integer, AlgebraicNumber, Number
|
||
|
|
||
|
LG10 = math.log(10, 2)
|
||
|
rnd = round_nearest
|
||
|
|
||
|
|
||
|
def bitcount(n):
|
||
|
"""Return smallest integer, b, such that |n|/2**b < 1.
|
||
|
"""
|
||
|
return mpmath_bitcount(abs(int(n)))
|
||
|
|
||
|
# Used in a few places as placeholder values to denote exponents and
|
||
|
# precision levels, e.g. of exact numbers. Must be careful to avoid
|
||
|
# passing these to mpmath functions or returning them in final results.
|
||
|
INF = float(mpmath_inf)
|
||
|
MINUS_INF = float(-mpmath_inf)
|
||
|
|
||
|
# ~= 100 digits. Real men set this to INF.
|
||
|
DEFAULT_MAXPREC = 333
|
||
|
|
||
|
|
||
|
class PrecisionExhausted(ArithmeticError):
|
||
|
pass
|
||
|
|
||
|
#----------------------------------------------------------------------------#
|
||
|
# #
|
||
|
# Helper functions for arithmetic and complex parts #
|
||
|
# #
|
||
|
#----------------------------------------------------------------------------#
|
||
|
|
||
|
"""
|
||
|
An mpf value tuple is a tuple of integers (sign, man, exp, bc)
|
||
|
representing a floating-point number: [1, -1][sign]*man*2**exp where
|
||
|
sign is 0 or 1 and bc should correspond to the number of bits used to
|
||
|
represent the mantissa (man) in binary notation, e.g.
|
||
|
"""
|
||
|
MPF_TUP = tTuple[int, int, int, int] # mpf value tuple
|
||
|
|
||
|
"""
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
>>> from sympy.core.evalf import bitcount
|
||
|
>>> sign, man, exp, bc = 0, 5, 1, 3
|
||
|
>>> n = [1, -1][sign]*man*2**exp
|
||
|
>>> n, bitcount(man)
|
||
|
(10, 3)
|
||
|
|
||
|
A temporary result is a tuple (re, im, re_acc, im_acc) where
|
||
|
re and im are nonzero mpf value tuples representing approximate
|
||
|
numbers, or None to denote exact zeros.
|
||
|
|
||
|
re_acc, im_acc are integers denoting log2(e) where e is the estimated
|
||
|
relative accuracy of the respective complex part, but may be anything
|
||
|
if the corresponding complex part is None.
|
||
|
|
||
|
"""
|
||
|
TMP_RES = Any # temporary result, should be some variant of
|
||
|
# tUnion[tTuple[Optional[MPF_TUP], Optional[MPF_TUP],
|
||
|
# Optional[int], Optional[int]],
|
||
|
# 'ComplexInfinity']
|
||
|
# but mypy reports error because it doesn't know as we know
|
||
|
# 1. re and re_acc are either both None or both MPF_TUP
|
||
|
# 2. sometimes the result can't be zoo
|
||
|
|
||
|
# type of the "options" parameter in internal evalf functions
|
||
|
OPT_DICT = tDict[str, Any]
|
||
|
|
||
|
|
||
|
def fastlog(x: Optional[MPF_TUP]) -> tUnion[int, Any]:
|
||
|
"""Fast approximation of log2(x) for an mpf value tuple x.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
Calculated as exponent + width of mantissa. This is an
|
||
|
approximation for two reasons: 1) it gives the ceil(log2(abs(x)))
|
||
|
value and 2) it is too high by 1 in the case that x is an exact
|
||
|
power of 2. Although this is easy to remedy by testing to see if
|
||
|
the odd mpf mantissa is 1 (indicating that one was dealing with
|
||
|
an exact power of 2) that would decrease the speed and is not
|
||
|
necessary as this is only being used as an approximation for the
|
||
|
number of bits in x. The correct return value could be written as
|
||
|
"x[2] + (x[3] if x[1] != 1 else 0)".
|
||
|
Since mpf tuples always have an odd mantissa, no check is done
|
||
|
to see if the mantissa is a multiple of 2 (in which case the
|
||
|
result would be too large by 1).
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import log
|
||
|
>>> from sympy.core.evalf import fastlog, bitcount
|
||
|
>>> s, m, e = 0, 5, 1
|
||
|
>>> bc = bitcount(m)
|
||
|
>>> n = [1, -1][s]*m*2**e
|
||
|
>>> n, (log(n)/log(2)).evalf(2), fastlog((s, m, e, bc))
|
||
|
(10, 3.3, 4)
|
||
|
"""
|
||
|
|
||
|
if not x or x == fzero:
|
||
|
return MINUS_INF
|
||
|
return x[2] + x[3]
|
||
|
|
||
|
|
||
|
def pure_complex(v: 'Expr', or_real=False) -> tuple['Number', 'Number'] | None:
|
||
|
"""Return a and b if v matches a + I*b where b is not zero and
|
||
|
a and b are Numbers, else None. If `or_real` is True then 0 will
|
||
|
be returned for `b` if `v` is a real number.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.core.evalf import pure_complex
|
||
|
>>> from sympy import sqrt, I, S
|
||
|
>>> a, b, surd = S(2), S(3), sqrt(2)
|
||
|
>>> pure_complex(a)
|
||
|
>>> pure_complex(a, or_real=True)
|
||
|
(2, 0)
|
||
|
>>> pure_complex(surd)
|
||
|
>>> pure_complex(a + b*I)
|
||
|
(2, 3)
|
||
|
>>> pure_complex(I)
|
||
|
(0, 1)
|
||
|
"""
|
||
|
h, t = v.as_coeff_Add()
|
||
|
if t:
|
||
|
c, i = t.as_coeff_Mul()
|
||
|
if i is S.ImaginaryUnit:
|
||
|
return h, c
|
||
|
elif or_real:
|
||
|
return h, S.Zero
|
||
|
return None
|
||
|
|
||
|
|
||
|
# I don't know what this is, see function scaled_zero below
|
||
|
SCALED_ZERO_TUP = tTuple[List[int], int, int, int]
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def scaled_zero(mag: SCALED_ZERO_TUP, sign=1) -> MPF_TUP:
|
||
|
...
|
||
|
@overload
|
||
|
def scaled_zero(mag: int, sign=1) -> tTuple[SCALED_ZERO_TUP, int]:
|
||
|
...
|
||
|
def scaled_zero(mag: tUnion[SCALED_ZERO_TUP, int], sign=1) -> \
|
||
|
tUnion[MPF_TUP, tTuple[SCALED_ZERO_TUP, int]]:
|
||
|
"""Return an mpf representing a power of two with magnitude ``mag``
|
||
|
and -1 for precision. Or, if ``mag`` is a scaled_zero tuple, then just
|
||
|
remove the sign from within the list that it was initially wrapped
|
||
|
in.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.core.evalf import scaled_zero
|
||
|
>>> from sympy import Float
|
||
|
>>> z, p = scaled_zero(100)
|
||
|
>>> z, p
|
||
|
(([0], 1, 100, 1), -1)
|
||
|
>>> ok = scaled_zero(z)
|
||
|
>>> ok
|
||
|
(0, 1, 100, 1)
|
||
|
>>> Float(ok)
|
||
|
1.26765060022823e+30
|
||
|
>>> Float(ok, p)
|
||
|
0.e+30
|
||
|
>>> ok, p = scaled_zero(100, -1)
|
||
|
>>> Float(scaled_zero(ok), p)
|
||
|
-0.e+30
|
||
|
"""
|
||
|
if isinstance(mag, tuple) and len(mag) == 4 and iszero(mag, scaled=True):
|
||
|
return (mag[0][0],) + mag[1:]
|
||
|
elif isinstance(mag, SYMPY_INTS):
|
||
|
if sign not in [-1, 1]:
|
||
|
raise ValueError('sign must be +/-1')
|
||
|
rv, p = mpf_shift(fone, mag), -1
|
||
|
s = 0 if sign == 1 else 1
|
||
|
rv = ([s],) + rv[1:]
|
||
|
return rv, p
|
||
|
else:
|
||
|
raise ValueError('scaled zero expects int or scaled_zero tuple.')
|
||
|
|
||
|
|
||
|
def iszero(mpf: tUnion[MPF_TUP, SCALED_ZERO_TUP, None], scaled=False) -> Optional[bool]:
|
||
|
if not scaled:
|
||
|
return not mpf or not mpf[1] and not mpf[-1]
|
||
|
return mpf and isinstance(mpf[0], list) and mpf[1] == mpf[-1] == 1
|
||
|
|
||
|
|
||
|
def complex_accuracy(result: TMP_RES) -> tUnion[int, Any]:
|
||
|
"""
|
||
|
Returns relative accuracy of a complex number with given accuracies
|
||
|
for the real and imaginary parts. The relative accuracy is defined
|
||
|
in the complex norm sense as ||z|+|error|| / |z| where error
|
||
|
is equal to (real absolute error) + (imag absolute error)*i.
|
||
|
|
||
|
The full expression for the (logarithmic) error can be approximated
|
||
|
easily by using the max norm to approximate the complex norm.
|
||
|
|
||
|
In the worst case (re and im equal), this is wrong by a factor
|
||
|
sqrt(2), or by log2(sqrt(2)) = 0.5 bit.
|
||
|
"""
|
||
|
if result is S.ComplexInfinity:
|
||
|
return INF
|
||
|
re, im, re_acc, im_acc = result
|
||
|
if not im:
|
||
|
if not re:
|
||
|
return INF
|
||
|
return re_acc
|
||
|
if not re:
|
||
|
return im_acc
|
||
|
re_size = fastlog(re)
|
||
|
im_size = fastlog(im)
|
||
|
absolute_error = max(re_size - re_acc, im_size - im_acc)
|
||
|
relative_error = absolute_error - max(re_size, im_size)
|
||
|
return -relative_error
|
||
|
|
||
|
|
||
|
def get_abs(expr: 'Expr', prec: int, options: OPT_DICT) -> TMP_RES:
|
||
|
result = evalf(expr, prec + 2, options)
|
||
|
if result is S.ComplexInfinity:
|
||
|
return finf, None, prec, None
|
||
|
re, im, re_acc, im_acc = result
|
||
|
if not re:
|
||
|
re, re_acc, im, im_acc = im, im_acc, re, re_acc
|
||
|
if im:
|
||
|
if expr.is_number:
|
||
|
abs_expr, _, acc, _ = evalf(abs(N(expr, prec + 2)),
|
||
|
prec + 2, options)
|
||
|
return abs_expr, None, acc, None
|
||
|
else:
|
||
|
if 'subs' in options:
|
||
|
return libmp.mpc_abs((re, im), prec), None, re_acc, None
|
||
|
return abs(expr), None, prec, None
|
||
|
elif re:
|
||
|
return mpf_abs(re), None, re_acc, None
|
||
|
else:
|
||
|
return None, None, None, None
|
||
|
|
||
|
|
||
|
def get_complex_part(expr: 'Expr', no: int, prec: int, options: OPT_DICT) -> TMP_RES:
|
||
|
"""no = 0 for real part, no = 1 for imaginary part"""
|
||
|
workprec = prec
|
||
|
i = 0
|
||
|
while 1:
|
||
|
res = evalf(expr, workprec, options)
|
||
|
if res is S.ComplexInfinity:
|
||
|
return fnan, None, prec, None
|
||
|
value, accuracy = res[no::2]
|
||
|
# XXX is the last one correct? Consider re((1+I)**2).n()
|
||
|
if (not value) or accuracy >= prec or -value[2] > prec:
|
||
|
return value, None, accuracy, None
|
||
|
workprec += max(30, 2**i)
|
||
|
i += 1
|
||
|
|
||
|
|
||
|
def evalf_abs(expr: 'Abs', prec: int, options: OPT_DICT) -> TMP_RES:
|
||
|
return get_abs(expr.args[0], prec, options)
|
||
|
|
||
|
|
||
|
def evalf_re(expr: 're', prec: int, options: OPT_DICT) -> TMP_RES:
|
||
|
return get_complex_part(expr.args[0], 0, prec, options)
|
||
|
|
||
|
|
||
|
def evalf_im(expr: 'im', prec: int, options: OPT_DICT) -> TMP_RES:
|
||
|
return get_complex_part(expr.args[0], 1, prec, options)
|
||
|
|
||
|
|
||
|
def finalize_complex(re: MPF_TUP, im: MPF_TUP, prec: int) -> TMP_RES:
|
||
|
if re == fzero and im == fzero:
|
||
|
raise ValueError("got complex zero with unknown accuracy")
|
||
|
elif re == fzero:
|
||
|
return None, im, None, prec
|
||
|
elif im == fzero:
|
||
|
return re, None, prec, None
|
||
|
|
||
|
size_re = fastlog(re)
|
||
|
size_im = fastlog(im)
|
||
|
if size_re > size_im:
|
||
|
re_acc = prec
|
||
|
im_acc = prec + min(-(size_re - size_im), 0)
|
||
|
else:
|
||
|
im_acc = prec
|
||
|
re_acc = prec + min(-(size_im - size_re), 0)
|
||
|
return re, im, re_acc, im_acc
|
||
|
|
||
|
|
||
|
def chop_parts(value: TMP_RES, prec: int) -> TMP_RES:
|
||
|
"""
|
||
|
Chop off tiny real or complex parts.
|
||
|
"""
|
||
|
if value is S.ComplexInfinity:
|
||
|
return value
|
||
|
re, im, re_acc, im_acc = value
|
||
|
# Method 1: chop based on absolute value
|
||
|
if re and re not in _infs_nan and (fastlog(re) < -prec + 4):
|
||
|
re, re_acc = None, None
|
||
|
if im and im not in _infs_nan and (fastlog(im) < -prec + 4):
|
||
|
im, im_acc = None, None
|
||
|
# Method 2: chop if inaccurate and relatively small
|
||
|
if re and im:
|
||
|
delta = fastlog(re) - fastlog(im)
|
||
|
if re_acc < 2 and (delta - re_acc <= -prec + 4):
|
||
|
re, re_acc = None, None
|
||
|
if im_acc < 2 and (delta - im_acc >= prec - 4):
|
||
|
im, im_acc = None, None
|
||
|
return re, im, re_acc, im_acc
|
||
|
|
||
|
|
||
|
def check_target(expr: 'Expr', result: TMP_RES, prec: int):
|
||
|
a = complex_accuracy(result)
|
||
|
if a < prec:
|
||
|
raise PrecisionExhausted("Failed to distinguish the expression: \n\n%s\n\n"
|
||
|
"from zero. Try simplifying the input, using chop=True, or providing "
|
||
|
"a higher maxn for evalf" % (expr))
|
||
|
|
||
|
|
||
|
def get_integer_part(expr: 'Expr', no: int, options: OPT_DICT, return_ints=False) -> \
|
||
|
tUnion[TMP_RES, tTuple[int, int]]:
|
||
|
"""
|
||
|
With no = 1, computes ceiling(expr)
|
||
|
With no = -1, computes floor(expr)
|
||
|
|
||
|
Note: this function either gives the exact result or signals failure.
|
||
|
"""
|
||
|
from sympy.functions.elementary.complexes import re, im
|
||
|
# The expression is likely less than 2^30 or so
|
||
|
assumed_size = 30
|
||
|
result = evalf(expr, assumed_size, options)
|
||
|
if result is S.ComplexInfinity:
|
||
|
raise ValueError("Cannot get integer part of Complex Infinity")
|
||
|
ire, iim, ire_acc, iim_acc = result
|
||
|
|
||
|
# We now know the size, so we can calculate how much extra precision
|
||
|
# (if any) is needed to get within the nearest integer
|
||
|
if ire and iim:
|
||
|
gap = max(fastlog(ire) - ire_acc, fastlog(iim) - iim_acc)
|
||
|
elif ire:
|
||
|
gap = fastlog(ire) - ire_acc
|
||
|
elif iim:
|
||
|
gap = fastlog(iim) - iim_acc
|
||
|
else:
|
||
|
# ... or maybe the expression was exactly zero
|
||
|
if return_ints:
|
||
|
return 0, 0
|
||
|
else:
|
||
|
return None, None, None, None
|
||
|
|
||
|
margin = 10
|
||
|
|
||
|
if gap >= -margin:
|
||
|
prec = margin + assumed_size + gap
|
||
|
ire, iim, ire_acc, iim_acc = evalf(
|
||
|
expr, prec, options)
|
||
|
else:
|
||
|
prec = assumed_size
|
||
|
|
||
|
# We can now easily find the nearest integer, but to find floor/ceil, we
|
||
|
# must also calculate whether the difference to the nearest integer is
|
||
|
# positive or negative (which may fail if very close).
|
||
|
def calc_part(re_im: 'Expr', nexpr: MPF_TUP):
|
||
|
from .add import Add
|
||
|
_, _, exponent, _ = nexpr
|
||
|
is_int = exponent == 0
|
||
|
nint = int(to_int(nexpr, rnd))
|
||
|
if is_int:
|
||
|
# make sure that we had enough precision to distinguish
|
||
|
# between nint and the re or im part (re_im) of expr that
|
||
|
# was passed to calc_part
|
||
|
ire, iim, ire_acc, iim_acc = evalf(
|
||
|
re_im - nint, 10, options) # don't need much precision
|
||
|
assert not iim
|
||
|
size = -fastlog(ire) + 2 # -ve b/c ire is less than 1
|
||
|
if size > prec:
|
||
|
ire, iim, ire_acc, iim_acc = evalf(
|
||
|
re_im, size, options)
|
||
|
assert not iim
|
||
|
nexpr = ire
|
||
|
nint = int(to_int(nexpr, rnd))
|
||
|
_, _, new_exp, _ = ire
|
||
|
is_int = new_exp == 0
|
||
|
if not is_int:
|
||
|
# if there are subs and they all contain integer re/im parts
|
||
|
# then we can (hopefully) safely substitute them into the
|
||
|
# expression
|
||
|
s = options.get('subs', False)
|
||
|
if s:
|
||
|
doit = True
|
||
|
# use strict=False with as_int because we take
|
||
|
# 2.0 == 2
|
||
|
for v in s.values():
|
||
|
try:
|
||
|
as_int(v, strict=False)
|
||
|
except ValueError:
|
||
|
try:
|
||
|
[as_int(i, strict=False) for i in v.as_real_imag()]
|
||
|
continue
|
||
|
except (ValueError, AttributeError):
|
||
|
doit = False
|
||
|
break
|
||
|
if doit:
|
||
|
re_im = re_im.subs(s)
|
||
|
|
||
|
re_im = Add(re_im, -nint, evaluate=False)
|
||
|
x, _, x_acc, _ = evalf(re_im, 10, options)
|
||
|
try:
|
||
|
check_target(re_im, (x, None, x_acc, None), 3)
|
||
|
except PrecisionExhausted:
|
||
|
if not re_im.equals(0):
|
||
|
raise PrecisionExhausted
|
||
|
x = fzero
|
||
|
nint += int(no*(mpf_cmp(x or fzero, fzero) == no))
|
||
|
nint = from_int(nint)
|
||
|
return nint, INF
|
||
|
|
||
|
re_, im_, re_acc, im_acc = None, None, None, None
|
||
|
|
||
|
if ire:
|
||
|
re_, re_acc = calc_part(re(expr, evaluate=False), ire)
|
||
|
if iim:
|
||
|
im_, im_acc = calc_part(im(expr, evaluate=False), iim)
|
||
|
|
||
|
if return_ints:
|
||
|
return int(to_int(re_ or fzero)), int(to_int(im_ or fzero))
|
||
|
return re_, im_, re_acc, im_acc
|
||
|
|
||
|
|
||
|
def evalf_ceiling(expr: 'ceiling', prec: int, options: OPT_DICT) -> TMP_RES:
|
||
|
return get_integer_part(expr.args[0], 1, options)
|
||
|
|
||
|
|
||
|
def evalf_floor(expr: 'floor', prec: int, options: OPT_DICT) -> TMP_RES:
|
||
|
return get_integer_part(expr.args[0], -1, options)
|
||
|
|
||
|
|
||
|
def evalf_float(expr: 'Float', prec: int, options: OPT_DICT) -> TMP_RES:
|
||
|
return expr._mpf_, None, prec, None
|
||
|
|
||
|
|
||
|
def evalf_rational(expr: 'Rational', prec: int, options: OPT_DICT) -> TMP_RES:
|
||
|
return from_rational(expr.p, expr.q, prec), None, prec, None
|
||
|
|
||
|
|
||
|
def evalf_integer(expr: 'Integer', prec: int, options: OPT_DICT) -> TMP_RES:
|
||
|
return from_int(expr.p, prec), None, prec, None
|
||
|
|
||
|
#----------------------------------------------------------------------------#
|
||
|
# #
|
||
|
# Arithmetic operations #
|
||
|
# #
|
||
|
#----------------------------------------------------------------------------#
|
||
|
|
||
|
|
||
|
def add_terms(terms: list, prec: int, target_prec: int) -> \
|
||
|
tTuple[tUnion[MPF_TUP, SCALED_ZERO_TUP, None], Optional[int]]:
|
||
|
"""
|
||
|
Helper for evalf_add. Adds a list of (mpfval, accuracy) terms.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
- None, None if there are no non-zero terms;
|
||
|
- terms[0] if there is only 1 term;
|
||
|
- scaled_zero if the sum of the terms produces a zero by cancellation
|
||
|
e.g. mpfs representing 1 and -1 would produce a scaled zero which need
|
||
|
special handling since they are not actually zero and they are purposely
|
||
|
malformed to ensure that they cannot be used in anything but accuracy
|
||
|
calculations;
|
||
|
- a tuple that is scaled to target_prec that corresponds to the
|
||
|
sum of the terms.
|
||
|
|
||
|
The returned mpf tuple will be normalized to target_prec; the input
|
||
|
prec is used to define the working precision.
|
||
|
|
||
|
XXX explain why this is needed and why one cannot just loop using mpf_add
|
||
|
"""
|
||
|
|
||
|
terms = [t for t in terms if not iszero(t[0])]
|
||
|
if not terms:
|
||
|
return None, None
|
||
|
elif len(terms) == 1:
|
||
|
return terms[0]
|
||
|
|
||
|
# see if any argument is NaN or oo and thus warrants a special return
|
||
|
special = []
|
||
|
from .numbers import Float
|
||
|
for t in terms:
|
||
|
arg = Float._new(t[0], 1)
|
||
|
if arg is S.NaN or arg.is_infinite:
|
||
|
special.append(arg)
|
||
|
if special:
|
||
|
from .add import Add
|
||
|
rv = evalf(Add(*special), prec + 4, {})
|
||
|
return rv[0], rv[2]
|
||
|
|
||
|
working_prec = 2*prec
|
||
|
sum_man, sum_exp = 0, 0
|
||
|
absolute_err: List[int] = []
|
||
|
|
||
|
for x, accuracy in terms:
|
||
|
sign, man, exp, bc = x
|
||
|
if sign:
|
||
|
man = -man
|
||
|
absolute_err.append(bc + exp - accuracy)
|
||
|
delta = exp - sum_exp
|
||
|
if exp >= sum_exp:
|
||
|
# x much larger than existing sum?
|
||
|
# first: quick test
|
||
|
if ((delta > working_prec) and
|
||
|
((not sum_man) or
|
||
|
delta - bitcount(abs(sum_man)) > working_prec)):
|
||
|
sum_man = man
|
||
|
sum_exp = exp
|
||
|
else:
|
||
|
sum_man += (man << delta)
|
||
|
else:
|
||
|
delta = -delta
|
||
|
# x much smaller than existing sum?
|
||
|
if delta - bc > working_prec:
|
||
|
if not sum_man:
|
||
|
sum_man, sum_exp = man, exp
|
||
|
else:
|
||
|
sum_man = (sum_man << delta) + man
|
||
|
sum_exp = exp
|
||
|
absolute_error = max(absolute_err)
|
||
|
if not sum_man:
|
||
|
return scaled_zero(absolute_error)
|
||
|
if sum_man < 0:
|
||
|
sum_sign = 1
|
||
|
sum_man = -sum_man
|
||
|
else:
|
||
|
sum_sign = 0
|
||
|
sum_bc = bitcount(sum_man)
|
||
|
sum_accuracy = sum_exp + sum_bc - absolute_error
|
||
|
r = normalize(sum_sign, sum_man, sum_exp, sum_bc, target_prec,
|
||
|
rnd), sum_accuracy
|
||
|
return r
|
||
|
|
||
|
|
||
|
def evalf_add(v: 'Add', prec: int, options: OPT_DICT) -> TMP_RES:
|
||
|
res = pure_complex(v)
|
||
|
if res:
|
||
|
h, c = res
|
||
|
re, _, re_acc, _ = evalf(h, prec, options)
|
||
|
im, _, im_acc, _ = evalf(c, prec, options)
|
||
|
return re, im, re_acc, im_acc
|
||
|
|
||
|
oldmaxprec = options.get('maxprec', DEFAULT_MAXPREC)
|
||
|
|
||
|
i = 0
|
||
|
target_prec = prec
|
||
|
while 1:
|
||
|
options['maxprec'] = min(oldmaxprec, 2*prec)
|
||
|
|
||
|
terms = [evalf(arg, prec + 10, options) for arg in v.args]
|
||
|
n = terms.count(S.ComplexInfinity)
|
||
|
if n >= 2:
|
||
|
return fnan, None, prec, None
|
||
|
re, re_acc = add_terms(
|
||
|
[a[0::2] for a in terms if isinstance(a, tuple) and a[0]], prec, target_prec)
|
||
|
im, im_acc = add_terms(
|
||
|
[a[1::2] for a in terms if isinstance(a, tuple) and a[1]], prec, target_prec)
|
||
|
if n == 1:
|
||
|
if re in (finf, fninf, fnan) or im in (finf, fninf, fnan):
|
||
|
return fnan, None, prec, None
|
||
|
return S.ComplexInfinity
|
||
|
acc = complex_accuracy((re, im, re_acc, im_acc))
|
||
|
if acc >= target_prec:
|
||
|
if options.get('verbose'):
|
||
|
print("ADD: wanted", target_prec, "accurate bits, got", re_acc, im_acc)
|
||
|
break
|
||
|
else:
|
||
|
if (prec - target_prec) > options['maxprec']:
|
||
|
break
|
||
|
|
||
|
prec = prec + max(10 + 2**i, target_prec - acc)
|
||
|
i += 1
|
||
|
if options.get('verbose'):
|
||
|
print("ADD: restarting with prec", prec)
|
||
|
|
||
|
options['maxprec'] = oldmaxprec
|
||
|
if iszero(re, scaled=True):
|
||
|
re = scaled_zero(re)
|
||
|
if iszero(im, scaled=True):
|
||
|
im = scaled_zero(im)
|
||
|
return re, im, re_acc, im_acc
|
||
|
|
||
|
|
||
|
def evalf_mul(v: 'Mul', prec: int, options: OPT_DICT) -> TMP_RES:
|
||
|
res = pure_complex(v)
|
||
|
if res:
|
||
|
# the only pure complex that is a mul is h*I
|
||
|
_, h = res
|
||
|
im, _, im_acc, _ = evalf(h, prec, options)
|
||
|
return None, im, None, im_acc
|
||
|
args = list(v.args)
|
||
|
|
||
|
# see if any argument is NaN or oo and thus warrants a special return
|
||
|
has_zero = False
|
||
|
special = []
|
||
|
from .numbers import Float
|
||
|
for arg in args:
|
||
|
result = evalf(arg, prec, options)
|
||
|
if result is S.ComplexInfinity:
|
||
|
special.append(result)
|
||
|
continue
|
||
|
if result[0] is None:
|
||
|
if result[1] is None:
|
||
|
has_zero = True
|
||
|
continue
|
||
|
num = Float._new(result[0], 1)
|
||
|
if num is S.NaN:
|
||
|
return fnan, None, prec, None
|
||
|
if num.is_infinite:
|
||
|
special.append(num)
|
||
|
if special:
|
||
|
if has_zero:
|
||
|
return fnan, None, prec, None
|
||
|
from .mul import Mul
|
||
|
return evalf(Mul(*special), prec + 4, {})
|
||
|
if has_zero:
|
||
|
return None, None, None, None
|
||
|
|
||
|
# With guard digits, multiplication in the real case does not destroy
|
||
|
# accuracy. This is also true in the complex case when considering the
|
||
|
# total accuracy; however accuracy for the real or imaginary parts
|
||
|
# separately may be lower.
|
||
|
acc = prec
|
||
|
|
||
|
# XXX: big overestimate
|
||
|
working_prec = prec + len(args) + 5
|
||
|
|
||
|
# Empty product is 1
|
||
|
start = man, exp, bc = MPZ(1), 0, 1
|
||
|
|
||
|
# First, we multiply all pure real or pure imaginary numbers.
|
||
|
# direction tells us that the result should be multiplied by
|
||
|
# I**direction; all other numbers get put into complex_factors
|
||
|
# to be multiplied out after the first phase.
|
||
|
last = len(args)
|
||
|
direction = 0
|
||
|
args.append(S.One)
|
||
|
complex_factors = []
|
||
|
|
||
|
for i, arg in enumerate(args):
|
||
|
if i != last and pure_complex(arg):
|
||
|
args[-1] = (args[-1]*arg).expand()
|
||
|
continue
|
||
|
elif i == last and arg is S.One:
|
||
|
continue
|
||
|
re, im, re_acc, im_acc = evalf(arg, working_prec, options)
|
||
|
if re and im:
|
||
|
complex_factors.append((re, im, re_acc, im_acc))
|
||
|
continue
|
||
|
elif re:
|
||
|
(s, m, e, b), w_acc = re, re_acc
|
||
|
elif im:
|
||
|
(s, m, e, b), w_acc = im, im_acc
|
||
|
direction += 1
|
||
|
else:
|
||
|
return None, None, None, None
|
||
|
direction += 2*s
|
||
|
man *= m
|
||
|
exp += e
|
||
|
bc += b
|
||
|
while bc > 3*working_prec:
|
||
|
man >>= working_prec
|
||
|
exp += working_prec
|
||
|
bc -= working_prec
|
||
|
acc = min(acc, w_acc)
|
||
|
sign = (direction & 2) >> 1
|
||
|
if not complex_factors:
|
||
|
v = normalize(sign, man, exp, bitcount(man), prec, rnd)
|
||
|
# multiply by i
|
||
|
if direction & 1:
|
||
|
return None, v, None, acc
|
||
|
else:
|
||
|
return v, None, acc, None
|
||
|
else:
|
||
|
# initialize with the first term
|
||
|
if (man, exp, bc) != start:
|
||
|
# there was a real part; give it an imaginary part
|
||
|
re, im = (sign, man, exp, bitcount(man)), (0, MPZ(0), 0, 0)
|
||
|
i0 = 0
|
||
|
else:
|
||
|
# there is no real part to start (other than the starting 1)
|
||
|
wre, wim, wre_acc, wim_acc = complex_factors[0]
|
||
|
acc = min(acc,
|
||
|
complex_accuracy((wre, wim, wre_acc, wim_acc)))
|
||
|
re = wre
|
||
|
im = wim
|
||
|
i0 = 1
|
||
|
|
||
|
for wre, wim, wre_acc, wim_acc in complex_factors[i0:]:
|
||
|
# acc is the overall accuracy of the product; we aren't
|
||
|
# computing exact accuracies of the product.
|
||
|
acc = min(acc,
|
||
|
complex_accuracy((wre, wim, wre_acc, wim_acc)))
|
||
|
|
||
|
use_prec = working_prec
|
||
|
A = mpf_mul(re, wre, use_prec)
|
||
|
B = mpf_mul(mpf_neg(im), wim, use_prec)
|
||
|
C = mpf_mul(re, wim, use_prec)
|
||
|
D = mpf_mul(im, wre, use_prec)
|
||
|
re = mpf_add(A, B, use_prec)
|
||
|
im = mpf_add(C, D, use_prec)
|
||
|
if options.get('verbose'):
|
||
|
print("MUL: wanted", prec, "accurate bits, got", acc)
|
||
|
# multiply by I
|
||
|
if direction & 1:
|
||
|
re, im = mpf_neg(im), re
|
||
|
return re, im, acc, acc
|
||
|
|
||
|
|
||
|
def evalf_pow(v: 'Pow', prec: int, options) -> TMP_RES:
|
||
|
|
||
|
target_prec = prec
|
||
|
base, exp = v.args
|
||
|
|
||
|
# We handle x**n separately. This has two purposes: 1) it is much
|
||
|
# faster, because we avoid calling evalf on the exponent, and 2) it
|
||
|
# allows better handling of real/imaginary parts that are exactly zero
|
||
|
if exp.is_Integer:
|
||
|
p: int = exp.p # type: ignore
|
||
|
# Exact
|
||
|
if not p:
|
||
|
return fone, None, prec, None
|
||
|
# Exponentiation by p magnifies relative error by |p|, so the
|
||
|
# base must be evaluated with increased precision if p is large
|
||
|
prec += int(math.log(abs(p), 2))
|
||
|
result = evalf(base, prec + 5, options)
|
||
|
if result is S.ComplexInfinity:
|
||
|
if p < 0:
|
||
|
return None, None, None, None
|
||
|
return result
|
||
|
re, im, re_acc, im_acc = result
|
||
|
# Real to integer power
|
||
|
if re and not im:
|
||
|
return mpf_pow_int(re, p, target_prec), None, target_prec, None
|
||
|
# (x*I)**n = I**n * x**n
|
||
|
if im and not re:
|
||
|
z = mpf_pow_int(im, p, target_prec)
|
||
|
case = p % 4
|
||
|
if case == 0:
|
||
|
return z, None, target_prec, None
|
||
|
if case == 1:
|
||
|
return None, z, None, target_prec
|
||
|
if case == 2:
|
||
|
return mpf_neg(z), None, target_prec, None
|
||
|
if case == 3:
|
||
|
return None, mpf_neg(z), None, target_prec
|
||
|
# Zero raised to an integer power
|
||
|
if not re:
|
||
|
if p < 0:
|
||
|
return S.ComplexInfinity
|
||
|
return None, None, None, None
|
||
|
# General complex number to arbitrary integer power
|
||
|
re, im = libmp.mpc_pow_int((re, im), p, prec)
|
||
|
# Assumes full accuracy in input
|
||
|
return finalize_complex(re, im, target_prec)
|
||
|
|
||
|
result = evalf(base, prec + 5, options)
|
||
|
if result is S.ComplexInfinity:
|
||
|
if exp.is_Rational:
|
||
|
if exp < 0:
|
||
|
return None, None, None, None
|
||
|
return result
|
||
|
raise NotImplementedError
|
||
|
|
||
|
# Pure square root
|
||
|
if exp is S.Half:
|
||
|
xre, xim, _, _ = result
|
||
|
# General complex square root
|
||
|
if xim:
|
||
|
re, im = libmp.mpc_sqrt((xre or fzero, xim), prec)
|
||
|
return finalize_complex(re, im, prec)
|
||
|
if not xre:
|
||
|
return None, None, None, None
|
||
|
# Square root of a negative real number
|
||
|
if mpf_lt(xre, fzero):
|
||
|
return None, mpf_sqrt(mpf_neg(xre), prec), None, prec
|
||
|
# Positive square root
|
||
|
return mpf_sqrt(xre, prec), None, prec, None
|
||
|
|
||
|
# We first evaluate the exponent to find its magnitude
|
||
|
# This determines the working precision that must be used
|
||
|
prec += 10
|
||
|
result = evalf(exp, prec, options)
|
||
|
if result is S.ComplexInfinity:
|
||
|
return fnan, None, prec, None
|
||
|
yre, yim, _, _ = result
|
||
|
# Special cases: x**0
|
||
|
if not (yre or yim):
|
||
|
return fone, None, prec, None
|
||
|
|
||
|
ysize = fastlog(yre)
|
||
|
# Restart if too big
|
||
|
# XXX: prec + ysize might exceed maxprec
|
||
|
if ysize > 5:
|
||
|
prec += ysize
|
||
|
yre, yim, _, _ = evalf(exp, prec, options)
|
||
|
|
||
|
# Pure exponential function; no need to evalf the base
|
||
|
if base is S.Exp1:
|
||
|
if yim:
|
||
|
re, im = libmp.mpc_exp((yre or fzero, yim), prec)
|
||
|
return finalize_complex(re, im, target_prec)
|
||
|
return mpf_exp(yre, target_prec), None, target_prec, None
|
||
|
|
||
|
xre, xim, _, _ = evalf(base, prec + 5, options)
|
||
|
# 0**y
|
||
|
if not (xre or xim):
|
||
|
if yim:
|
||
|
return fnan, None, prec, None
|
||
|
if yre[0] == 1: # y < 0
|
||
|
return S.ComplexInfinity
|
||
|
return None, None, None, None
|
||
|
|
||
|
# (real ** complex) or (complex ** complex)
|
||
|
if yim:
|
||
|
re, im = libmp.mpc_pow(
|
||
|
(xre or fzero, xim or fzero), (yre or fzero, yim),
|
||
|
target_prec)
|
||
|
return finalize_complex(re, im, target_prec)
|
||
|
# complex ** real
|
||
|
if xim:
|
||
|
re, im = libmp.mpc_pow_mpf((xre or fzero, xim), yre, target_prec)
|
||
|
return finalize_complex(re, im, target_prec)
|
||
|
# negative ** real
|
||
|
elif mpf_lt(xre, fzero):
|
||
|
re, im = libmp.mpc_pow_mpf((xre, fzero), yre, target_prec)
|
||
|
return finalize_complex(re, im, target_prec)
|
||
|
# positive ** real
|
||
|
else:
|
||
|
return mpf_pow(xre, yre, target_prec), None, target_prec, None
|
||
|
|
||
|
|
||
|
#----------------------------------------------------------------------------#
|
||
|
# #
|
||
|
# Special functions #
|
||
|
# #
|
||
|
#----------------------------------------------------------------------------#
|
||
|
|
||
|
|
||
|
def evalf_exp(expr: 'exp', prec: int, options: OPT_DICT) -> TMP_RES:
|
||
|
from .power import Pow
|
||
|
return evalf_pow(Pow(S.Exp1, expr.exp, evaluate=False), prec, options)
|
||
|
|
||
|
|
||
|
def evalf_trig(v: 'Expr', prec: int, options: OPT_DICT) -> TMP_RES:
|
||
|
"""
|
||
|
This function handles sin and cos of complex arguments.
|
||
|
|
||
|
TODO: should also handle tan of complex arguments.
|
||
|
"""
|
||
|
from sympy.functions.elementary.trigonometric import cos, sin
|
||
|
if isinstance(v, cos):
|
||
|
func = mpf_cos
|
||
|
elif isinstance(v, sin):
|
||
|
func = mpf_sin
|
||
|
else:
|
||
|
raise NotImplementedError
|
||
|
arg = v.args[0]
|
||
|
# 20 extra bits is possibly overkill. It does make the need
|
||
|
# to restart very unlikely
|
||
|
xprec = prec + 20
|
||
|
re, im, re_acc, im_acc = evalf(arg, xprec, options)
|
||
|
if im:
|
||
|
if 'subs' in options:
|
||
|
v = v.subs(options['subs'])
|
||
|
return evalf(v._eval_evalf(prec), prec, options)
|
||
|
if not re:
|
||
|
if isinstance(v, cos):
|
||
|
return fone, None, prec, None
|
||
|
elif isinstance(v, sin):
|
||
|
return None, None, None, None
|
||
|
else:
|
||
|
raise NotImplementedError
|
||
|
# For trigonometric functions, we are interested in the
|
||
|
# fixed-point (absolute) accuracy of the argument.
|
||
|
xsize = fastlog(re)
|
||
|
# Magnitude <= 1.0. OK to compute directly, because there is no
|
||
|
# danger of hitting the first root of cos (with sin, magnitude
|
||
|
# <= 2.0 would actually be ok)
|
||
|
if xsize < 1:
|
||
|
return func(re, prec, rnd), None, prec, None
|
||
|
# Very large
|
||
|
if xsize >= 10:
|
||
|
xprec = prec + xsize
|
||
|
re, im, re_acc, im_acc = evalf(arg, xprec, options)
|
||
|
# Need to repeat in case the argument is very close to a
|
||
|
# multiple of pi (or pi/2), hitting close to a root
|
||
|
while 1:
|
||
|
y = func(re, prec, rnd)
|
||
|
ysize = fastlog(y)
|
||
|
gap = -ysize
|
||
|
accuracy = (xprec - xsize) - gap
|
||
|
if accuracy < prec:
|
||
|
if options.get('verbose'):
|
||
|
print("SIN/COS", accuracy, "wanted", prec, "gap", gap)
|
||
|
print(to_str(y, 10))
|
||
|
if xprec > options.get('maxprec', DEFAULT_MAXPREC):
|
||
|
return y, None, accuracy, None
|
||
|
xprec += gap
|
||
|
re, im, re_acc, im_acc = evalf(arg, xprec, options)
|
||
|
continue
|
||
|
else:
|
||
|
return y, None, prec, None
|
||
|
|
||
|
|
||
|
def evalf_log(expr: 'log', prec: int, options: OPT_DICT) -> TMP_RES:
|
||
|
if len(expr.args)>1:
|
||
|
expr = expr.doit()
|
||
|
return evalf(expr, prec, options)
|
||
|
arg = expr.args[0]
|
||
|
workprec = prec + 10
|
||
|
result = evalf(arg, workprec, options)
|
||
|
if result is S.ComplexInfinity:
|
||
|
return result
|
||
|
xre, xim, xacc, _ = result
|
||
|
|
||
|
# evalf can return NoneTypes if chop=True
|
||
|
# issue 18516, 19623
|
||
|
if xre is xim is None:
|
||
|
# Dear reviewer, I do not know what -inf is;
|
||
|
# it looks to be (1, 0, -789, -3)
|
||
|
# but I'm not sure in general,
|
||
|
# so we just let mpmath figure
|
||
|
# it out by taking log of 0 directly.
|
||
|
# It would be better to return -inf instead.
|
||
|
xre = fzero
|
||
|
|
||
|
if xim:
|
||
|
from sympy.functions.elementary.complexes import Abs
|
||
|
from sympy.functions.elementary.exponential import log
|
||
|
|
||
|
# XXX: use get_abs etc instead
|
||
|
re = evalf_log(
|
||
|
log(Abs(arg, evaluate=False), evaluate=False), prec, options)
|
||
|
im = mpf_atan2(xim, xre or fzero, prec)
|
||
|
return re[0], im, re[2], prec
|
||
|
|
||
|
imaginary_term = (mpf_cmp(xre, fzero) < 0)
|
||
|
|
||
|
re = mpf_log(mpf_abs(xre), prec, rnd)
|
||
|
size = fastlog(re)
|
||
|
if prec - size > workprec and re != fzero:
|
||
|
from .add import Add
|
||
|
# We actually need to compute 1+x accurately, not x
|
||
|
add = Add(S.NegativeOne, arg, evaluate=False)
|
||
|
xre, xim, _, _ = evalf_add(add, prec, options)
|
||
|
prec2 = workprec - fastlog(xre)
|
||
|
# xre is now x - 1 so we add 1 back here to calculate x
|
||
|
re = mpf_log(mpf_abs(mpf_add(xre, fone, prec2)), prec, rnd)
|
||
|
|
||
|
re_acc = prec
|
||
|
|
||
|
if imaginary_term:
|
||
|
return re, mpf_pi(prec), re_acc, prec
|
||
|
else:
|
||
|
return re, None, re_acc, None
|
||
|
|
||
|
|
||
|
def evalf_atan(v: 'atan', prec: int, options: OPT_DICT) -> TMP_RES:
|
||
|
arg = v.args[0]
|
||
|
xre, xim, reacc, imacc = evalf(arg, prec + 5, options)
|
||
|
if xre is xim is None:
|
||
|
return (None,)*4
|
||
|
if xim:
|
||
|
raise NotImplementedError
|
||
|
return mpf_atan(xre, prec, rnd), None, prec, None
|
||
|
|
||
|
|
||
|
def evalf_subs(prec: int, subs: dict) -> dict:
|
||
|
""" Change all Float entries in `subs` to have precision prec. """
|
||
|
newsubs = {}
|
||
|
for a, b in subs.items():
|
||
|
b = S(b)
|
||
|
if b.is_Float:
|
||
|
b = b._eval_evalf(prec)
|
||
|
newsubs[a] = b
|
||
|
return newsubs
|
||
|
|
||
|
|
||
|
def evalf_piecewise(expr: 'Expr', prec: int, options: OPT_DICT) -> TMP_RES:
|
||
|
from .numbers import Float, Integer
|
||
|
if 'subs' in options:
|
||
|
expr = expr.subs(evalf_subs(prec, options['subs']))
|
||
|
newopts = options.copy()
|
||
|
del newopts['subs']
|
||
|
if hasattr(expr, 'func'):
|
||
|
return evalf(expr, prec, newopts)
|
||
|
if isinstance(expr, float):
|
||
|
return evalf(Float(expr), prec, newopts)
|
||
|
if isinstance(expr, int):
|
||
|
return evalf(Integer(expr), prec, newopts)
|
||
|
|
||
|
# We still have undefined symbols
|
||
|
raise NotImplementedError
|
||
|
|
||
|
|
||
|
def evalf_alg_num(a: 'AlgebraicNumber', prec: int, options: OPT_DICT) -> TMP_RES:
|
||
|
return evalf(a.to_root(), prec, options)
|
||
|
|
||
|
#----------------------------------------------------------------------------#
|
||
|
# #
|
||
|
# High-level operations #
|
||
|
# #
|
||
|
#----------------------------------------------------------------------------#
|
||
|
|
||
|
|
||
|
def as_mpmath(x: Any, prec: int, options: OPT_DICT) -> tUnion[mpc, mpf]:
|
||
|
from .numbers import Infinity, NegativeInfinity, Zero
|
||
|
x = sympify(x)
|
||
|
if isinstance(x, Zero) or x == 0.0:
|
||
|
return mpf(0)
|
||
|
if isinstance(x, Infinity):
|
||
|
return mpf('inf')
|
||
|
if isinstance(x, NegativeInfinity):
|
||
|
return mpf('-inf')
|
||
|
# XXX
|
||
|
result = evalf(x, prec, options)
|
||
|
return quad_to_mpmath(result)
|
||
|
|
||
|
|
||
|
def do_integral(expr: 'Integral', prec: int, options: OPT_DICT) -> TMP_RES:
|
||
|
func = expr.args[0]
|
||
|
x, xlow, xhigh = expr.args[1]
|
||
|
if xlow == xhigh:
|
||
|
xlow = xhigh = 0
|
||
|
elif x not in func.free_symbols:
|
||
|
# only the difference in limits matters in this case
|
||
|
# so if there is a symbol in common that will cancel
|
||
|
# out when taking the difference, then use that
|
||
|
# difference
|
||
|
if xhigh.free_symbols & xlow.free_symbols:
|
||
|
diff = xhigh - xlow
|
||
|
if diff.is_number:
|
||
|
xlow, xhigh = 0, diff
|
||
|
|
||
|
oldmaxprec = options.get('maxprec', DEFAULT_MAXPREC)
|
||
|
options['maxprec'] = min(oldmaxprec, 2*prec)
|
||
|
|
||
|
with workprec(prec + 5):
|
||
|
xlow = as_mpmath(xlow, prec + 15, options)
|
||
|
xhigh = as_mpmath(xhigh, prec + 15, options)
|
||
|
|
||
|
# Integration is like summation, and we can phone home from
|
||
|
# the integrand function to update accuracy summation style
|
||
|
# Note that this accuracy is inaccurate, since it fails
|
||
|
# to account for the variable quadrature weights,
|
||
|
# but it is better than nothing
|
||
|
|
||
|
from sympy.functions.elementary.trigonometric import cos, sin
|
||
|
from .symbol import Wild
|
||
|
|
||
|
have_part = [False, False]
|
||
|
max_real_term: tUnion[float, int] = MINUS_INF
|
||
|
max_imag_term: tUnion[float, int] = MINUS_INF
|
||
|
|
||
|
def f(t: 'Expr') -> tUnion[mpc, mpf]:
|
||
|
nonlocal max_real_term, max_imag_term
|
||
|
re, im, re_acc, im_acc = evalf(func, mp.prec, {'subs': {x: t}})
|
||
|
|
||
|
have_part[0] = re or have_part[0]
|
||
|
have_part[1] = im or have_part[1]
|
||
|
|
||
|
max_real_term = max(max_real_term, fastlog(re))
|
||
|
max_imag_term = max(max_imag_term, fastlog(im))
|
||
|
|
||
|
if im:
|
||
|
return mpc(re or fzero, im)
|
||
|
return mpf(re or fzero)
|
||
|
|
||
|
if options.get('quad') == 'osc':
|
||
|
A = Wild('A', exclude=[x])
|
||
|
B = Wild('B', exclude=[x])
|
||
|
D = Wild('D')
|
||
|
m = func.match(cos(A*x + B)*D)
|
||
|
if not m:
|
||
|
m = func.match(sin(A*x + B)*D)
|
||
|
if not m:
|
||
|
raise ValueError("An integrand of the form sin(A*x+B)*f(x) "
|
||
|
"or cos(A*x+B)*f(x) is required for oscillatory quadrature")
|
||
|
period = as_mpmath(2*S.Pi/m[A], prec + 15, options)
|
||
|
result = quadosc(f, [xlow, xhigh], period=period)
|
||
|
# XXX: quadosc does not do error detection yet
|
||
|
quadrature_error = MINUS_INF
|
||
|
else:
|
||
|
result, quadrature_err = quadts(f, [xlow, xhigh], error=1)
|
||
|
quadrature_error = fastlog(quadrature_err._mpf_)
|
||
|
|
||
|
options['maxprec'] = oldmaxprec
|
||
|
|
||
|
if have_part[0]:
|
||
|
re: Optional[MPF_TUP] = result.real._mpf_
|
||
|
re_acc: Optional[int]
|
||
|
if re == fzero:
|
||
|
re_s, re_acc = scaled_zero(int(-max(prec, max_real_term, quadrature_error)))
|
||
|
re = scaled_zero(re_s) # handled ok in evalf_integral
|
||
|
else:
|
||
|
re_acc = int(-max(max_real_term - fastlog(re) - prec, quadrature_error))
|
||
|
else:
|
||
|
re, re_acc = None, None
|
||
|
|
||
|
if have_part[1]:
|
||
|
im: Optional[MPF_TUP] = result.imag._mpf_
|
||
|
im_acc: Optional[int]
|
||
|
if im == fzero:
|
||
|
im_s, im_acc = scaled_zero(int(-max(prec, max_imag_term, quadrature_error)))
|
||
|
im = scaled_zero(im_s) # handled ok in evalf_integral
|
||
|
else:
|
||
|
im_acc = int(-max(max_imag_term - fastlog(im) - prec, quadrature_error))
|
||
|
else:
|
||
|
im, im_acc = None, None
|
||
|
|
||
|
result = re, im, re_acc, im_acc
|
||
|
return result
|
||
|
|
||
|
|
||
|
def evalf_integral(expr: 'Integral', prec: int, options: OPT_DICT) -> TMP_RES:
|
||
|
limits = expr.limits
|
||
|
if len(limits) != 1 or len(limits[0]) != 3:
|
||
|
raise NotImplementedError
|
||
|
workprec = prec
|
||
|
i = 0
|
||
|
maxprec = options.get('maxprec', INF)
|
||
|
while 1:
|
||
|
result = do_integral(expr, workprec, options)
|
||
|
accuracy = complex_accuracy(result)
|
||
|
if accuracy >= prec: # achieved desired precision
|
||
|
break
|
||
|
if workprec >= maxprec: # can't increase accuracy any more
|
||
|
break
|
||
|
if accuracy == -1:
|
||
|
# maybe the answer really is zero and maybe we just haven't increased
|
||
|
# the precision enough. So increase by doubling to not take too long
|
||
|
# to get to maxprec.
|
||
|
workprec *= 2
|
||
|
else:
|
||
|
workprec += max(prec, 2**i)
|
||
|
workprec = min(workprec, maxprec)
|
||
|
i += 1
|
||
|
return result
|
||
|
|
||
|
|
||
|
def check_convergence(numer: 'Expr', denom: 'Expr', n: 'Symbol') -> tTuple[int, Any, Any]:
|
||
|
"""
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
(h, g, p) where
|
||
|
-- h is:
|
||
|
> 0 for convergence of rate 1/factorial(n)**h
|
||
|
< 0 for divergence of rate factorial(n)**(-h)
|
||
|
= 0 for geometric or polynomial convergence or divergence
|
||
|
|
||
|
-- abs(g) is:
|
||
|
> 1 for geometric convergence of rate 1/h**n
|
||
|
< 1 for geometric divergence of rate h**n
|
||
|
= 1 for polynomial convergence or divergence
|
||
|
|
||
|
(g < 0 indicates an alternating series)
|
||
|
|
||
|
-- p is:
|
||
|
> 1 for polynomial convergence of rate 1/n**h
|
||
|
<= 1 for polynomial divergence of rate n**(-h)
|
||
|
|
||
|
"""
|
||
|
from sympy.polys.polytools import Poly
|
||
|
npol = Poly(numer, n)
|
||
|
dpol = Poly(denom, n)
|
||
|
p = npol.degree()
|
||
|
q = dpol.degree()
|
||
|
rate = q - p
|
||
|
if rate:
|
||
|
return rate, None, None
|
||
|
constant = dpol.LC() / npol.LC()
|
||
|
from .numbers import equal_valued
|
||
|
if not equal_valued(abs(constant), 1):
|
||
|
return rate, constant, None
|
||
|
if npol.degree() == dpol.degree() == 0:
|
||
|
return rate, constant, 0
|
||
|
pc = npol.all_coeffs()[1]
|
||
|
qc = dpol.all_coeffs()[1]
|
||
|
return rate, constant, (qc - pc)/dpol.LC()
|
||
|
|
||
|
|
||
|
def hypsum(expr: 'Expr', n: 'Symbol', start: int, prec: int) -> mpf:
|
||
|
"""
|
||
|
Sum a rapidly convergent infinite hypergeometric series with
|
||
|
given general term, e.g. e = hypsum(1/factorial(n), n). The
|
||
|
quotient between successive terms must be a quotient of integer
|
||
|
polynomials.
|
||
|
"""
|
||
|
from .numbers import Float, equal_valued
|
||
|
from sympy.simplify.simplify import hypersimp
|
||
|
|
||
|
if prec == float('inf'):
|
||
|
raise NotImplementedError('does not support inf prec')
|
||
|
|
||
|
if start:
|
||
|
expr = expr.subs(n, n + start)
|
||
|
hs = hypersimp(expr, n)
|
||
|
if hs is None:
|
||
|
raise NotImplementedError("a hypergeometric series is required")
|
||
|
num, den = hs.as_numer_denom()
|
||
|
|
||
|
func1 = lambdify(n, num)
|
||
|
func2 = lambdify(n, den)
|
||
|
|
||
|
h, g, p = check_convergence(num, den, n)
|
||
|
|
||
|
if h < 0:
|
||
|
raise ValueError("Sum diverges like (n!)^%i" % (-h))
|
||
|
|
||
|
term = expr.subs(n, 0)
|
||
|
if not term.is_Rational:
|
||
|
raise NotImplementedError("Non rational term functionality is not implemented.")
|
||
|
|
||
|
# Direct summation if geometric or faster
|
||
|
if h > 0 or (h == 0 and abs(g) > 1):
|
||
|
term = (MPZ(term.p) << prec) // term.q
|
||
|
s = term
|
||
|
k = 1
|
||
|
while abs(term) > 5:
|
||
|
term *= MPZ(func1(k - 1))
|
||
|
term //= MPZ(func2(k - 1))
|
||
|
s += term
|
||
|
k += 1
|
||
|
return from_man_exp(s, -prec)
|
||
|
else:
|
||
|
alt = g < 0
|
||
|
if abs(g) < 1:
|
||
|
raise ValueError("Sum diverges like (%i)^n" % abs(1/g))
|
||
|
if p < 1 or (equal_valued(p, 1) and not alt):
|
||
|
raise ValueError("Sum diverges like n^%i" % (-p))
|
||
|
# We have polynomial convergence: use Richardson extrapolation
|
||
|
vold = None
|
||
|
ndig = prec_to_dps(prec)
|
||
|
while True:
|
||
|
# Need to use at least quad precision because a lot of cancellation
|
||
|
# might occur in the extrapolation process; we check the answer to
|
||
|
# make sure that the desired precision has been reached, too.
|
||
|
prec2 = 4*prec
|
||
|
term0 = (MPZ(term.p) << prec2) // term.q
|
||
|
|
||
|
def summand(k, _term=[term0]):
|
||
|
if k:
|
||
|
k = int(k)
|
||
|
_term[0] *= MPZ(func1(k - 1))
|
||
|
_term[0] //= MPZ(func2(k - 1))
|
||
|
return make_mpf(from_man_exp(_term[0], -prec2))
|
||
|
|
||
|
with workprec(prec):
|
||
|
v = nsum(summand, [0, mpmath_inf], method='richardson')
|
||
|
vf = Float(v, ndig)
|
||
|
if vold is not None and vold == vf:
|
||
|
break
|
||
|
prec += prec # double precision each time
|
||
|
vold = vf
|
||
|
|
||
|
return v._mpf_
|
||
|
|
||
|
|
||
|
def evalf_prod(expr: 'Product', prec: int, options: OPT_DICT) -> TMP_RES:
|
||
|
if all((l[1] - l[2]).is_Integer for l in expr.limits):
|
||
|
result = evalf(expr.doit(), prec=prec, options=options)
|
||
|
else:
|
||
|
from sympy.concrete.summations import Sum
|
||
|
result = evalf(expr.rewrite(Sum), prec=prec, options=options)
|
||
|
return result
|
||
|
|
||
|
|
||
|
def evalf_sum(expr: 'Sum', prec: int, options: OPT_DICT) -> TMP_RES:
|
||
|
from .numbers import Float
|
||
|
if 'subs' in options:
|
||
|
expr = expr.subs(options['subs'])
|
||
|
func = expr.function
|
||
|
limits = expr.limits
|
||
|
if len(limits) != 1 or len(limits[0]) != 3:
|
||
|
raise NotImplementedError
|
||
|
if func.is_zero:
|
||
|
return None, None, prec, None
|
||
|
prec2 = prec + 10
|
||
|
try:
|
||
|
n, a, b = limits[0]
|
||
|
if b is not S.Infinity or a is S.NegativeInfinity or a != int(a):
|
||
|
raise NotImplementedError
|
||
|
# Use fast hypergeometric summation if possible
|
||
|
v = hypsum(func, n, int(a), prec2)
|
||
|
delta = prec - fastlog(v)
|
||
|
if fastlog(v) < -10:
|
||
|
v = hypsum(func, n, int(a), delta)
|
||
|
return v, None, min(prec, delta), None
|
||
|
except NotImplementedError:
|
||
|
# Euler-Maclaurin summation for general series
|
||
|
eps = Float(2.0)**(-prec)
|
||
|
for i in range(1, 5):
|
||
|
m = n = 2**i * prec
|
||
|
s, err = expr.euler_maclaurin(m=m, n=n, eps=eps,
|
||
|
eval_integral=False)
|
||
|
err = err.evalf()
|
||
|
if err is S.NaN:
|
||
|
raise NotImplementedError
|
||
|
if err <= eps:
|
||
|
break
|
||
|
err = fastlog(evalf(abs(err), 20, options)[0])
|
||
|
re, im, re_acc, im_acc = evalf(s, prec2, options)
|
||
|
if re_acc is None:
|
||
|
re_acc = -err
|
||
|
if im_acc is None:
|
||
|
im_acc = -err
|
||
|
return re, im, re_acc, im_acc
|
||
|
|
||
|
|
||
|
#----------------------------------------------------------------------------#
|
||
|
# #
|
||
|
# Symbolic interface #
|
||
|
# #
|
||
|
#----------------------------------------------------------------------------#
|
||
|
|
||
|
def evalf_symbol(x: 'Expr', prec: int, options: OPT_DICT) -> TMP_RES:
|
||
|
val = options['subs'][x]
|
||
|
if isinstance(val, mpf):
|
||
|
if not val:
|
||
|
return None, None, None, None
|
||
|
return val._mpf_, None, prec, None
|
||
|
else:
|
||
|
if '_cache' not in options:
|
||
|
options['_cache'] = {}
|
||
|
cache = options['_cache']
|
||
|
cached, cached_prec = cache.get(x, (None, MINUS_INF))
|
||
|
if cached_prec >= prec:
|
||
|
return cached
|
||
|
v = evalf(sympify(val), prec, options)
|
||
|
cache[x] = (v, prec)
|
||
|
return v
|
||
|
|
||
|
|
||
|
evalf_table: tDict[Type['Expr'], Callable[['Expr', int, OPT_DICT], TMP_RES]] = {}
|
||
|
|
||
|
|
||
|
def _create_evalf_table():
|
||
|
global evalf_table
|
||
|
from sympy.concrete.products import Product
|
||
|
from sympy.concrete.summations import Sum
|
||
|
from .add import Add
|
||
|
from .mul import Mul
|
||
|
from .numbers import Exp1, Float, Half, ImaginaryUnit, Integer, NaN, NegativeOne, One, Pi, Rational, \
|
||
|
Zero, ComplexInfinity, AlgebraicNumber
|
||
|
from .power import Pow
|
||
|
from .symbol import Dummy, Symbol
|
||
|
from sympy.functions.elementary.complexes import Abs, im, re
|
||
|
from sympy.functions.elementary.exponential import exp, log
|
||
|
from sympy.functions.elementary.integers import ceiling, floor
|
||
|
from sympy.functions.elementary.piecewise import Piecewise
|
||
|
from sympy.functions.elementary.trigonometric import atan, cos, sin
|
||
|
from sympy.integrals.integrals import Integral
|
||
|
evalf_table = {
|
||
|
Symbol: evalf_symbol,
|
||
|
Dummy: evalf_symbol,
|
||
|
Float: evalf_float,
|
||
|
Rational: evalf_rational,
|
||
|
Integer: evalf_integer,
|
||
|
Zero: lambda x, prec, options: (None, None, prec, None),
|
||
|
One: lambda x, prec, options: (fone, None, prec, None),
|
||
|
Half: lambda x, prec, options: (fhalf, None, prec, None),
|
||
|
Pi: lambda x, prec, options: (mpf_pi(prec), None, prec, None),
|
||
|
Exp1: lambda x, prec, options: (mpf_e(prec), None, prec, None),
|
||
|
ImaginaryUnit: lambda x, prec, options: (None, fone, None, prec),
|
||
|
NegativeOne: lambda x, prec, options: (fnone, None, prec, None),
|
||
|
ComplexInfinity: lambda x, prec, options: S.ComplexInfinity,
|
||
|
NaN: lambda x, prec, options: (fnan, None, prec, None),
|
||
|
|
||
|
exp: evalf_exp,
|
||
|
|
||
|
cos: evalf_trig,
|
||
|
sin: evalf_trig,
|
||
|
|
||
|
Add: evalf_add,
|
||
|
Mul: evalf_mul,
|
||
|
Pow: evalf_pow,
|
||
|
|
||
|
log: evalf_log,
|
||
|
atan: evalf_atan,
|
||
|
Abs: evalf_abs,
|
||
|
|
||
|
re: evalf_re,
|
||
|
im: evalf_im,
|
||
|
floor: evalf_floor,
|
||
|
ceiling: evalf_ceiling,
|
||
|
|
||
|
Integral: evalf_integral,
|
||
|
Sum: evalf_sum,
|
||
|
Product: evalf_prod,
|
||
|
Piecewise: evalf_piecewise,
|
||
|
|
||
|
AlgebraicNumber: evalf_alg_num,
|
||
|
}
|
||
|
|
||
|
|
||
|
def evalf(x: 'Expr', prec: int, options: OPT_DICT) -> TMP_RES:
|
||
|
"""
|
||
|
Evaluate the ``Expr`` instance, ``x``
|
||
|
to a binary precision of ``prec``. This
|
||
|
function is supposed to be used internally.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
x : Expr
|
||
|
The formula to evaluate to a float.
|
||
|
prec : int
|
||
|
The binary precision that the output should have.
|
||
|
options : dict
|
||
|
A dictionary with the same entries as
|
||
|
``EvalfMixin.evalf`` and in addition,
|
||
|
``maxprec`` which is the maximum working precision.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
An optional tuple, ``(re, im, re_acc, im_acc)``
|
||
|
which are the real, imaginary, real accuracy
|
||
|
and imaginary accuracy respectively. ``re`` is
|
||
|
an mpf value tuple and so is ``im``. ``re_acc``
|
||
|
and ``im_acc`` are ints.
|
||
|
|
||
|
NB: all these return values can be ``None``.
|
||
|
If all values are ``None``, then that represents 0.
|
||
|
Note that 0 is also represented as ``fzero = (0, 0, 0, 0)``.
|
||
|
"""
|
||
|
from sympy.functions.elementary.complexes import re as re_, im as im_
|
||
|
try:
|
||
|
rf = evalf_table[type(x)]
|
||
|
r = rf(x, prec, options)
|
||
|
except KeyError:
|
||
|
# Fall back to ordinary evalf if possible
|
||
|
if 'subs' in options:
|
||
|
x = x.subs(evalf_subs(prec, options['subs']))
|
||
|
xe = x._eval_evalf(prec)
|
||
|
if xe is None:
|
||
|
raise NotImplementedError
|
||
|
as_real_imag = getattr(xe, "as_real_imag", None)
|
||
|
if as_real_imag is None:
|
||
|
raise NotImplementedError # e.g. FiniteSet(-1.0, 1.0).evalf()
|
||
|
re, im = as_real_imag()
|
||
|
if re.has(re_) or im.has(im_):
|
||
|
raise NotImplementedError
|
||
|
if re == 0.0:
|
||
|
re = None
|
||
|
reprec = None
|
||
|
elif re.is_number:
|
||
|
re = re._to_mpmath(prec, allow_ints=False)._mpf_
|
||
|
reprec = prec
|
||
|
else:
|
||
|
raise NotImplementedError
|
||
|
if im == 0.0:
|
||
|
im = None
|
||
|
imprec = None
|
||
|
elif im.is_number:
|
||
|
im = im._to_mpmath(prec, allow_ints=False)._mpf_
|
||
|
imprec = prec
|
||
|
else:
|
||
|
raise NotImplementedError
|
||
|
r = re, im, reprec, imprec
|
||
|
|
||
|
if options.get("verbose"):
|
||
|
print("### input", x)
|
||
|
print("### output", to_str(r[0] or fzero, 50) if isinstance(r, tuple) else r)
|
||
|
print("### raw", r) # r[0], r[2]
|
||
|
print()
|
||
|
chop = options.get('chop', False)
|
||
|
if chop:
|
||
|
if chop is True:
|
||
|
chop_prec = prec
|
||
|
else:
|
||
|
# convert (approximately) from given tolerance;
|
||
|
# the formula here will will make 1e-i rounds to 0 for
|
||
|
# i in the range +/-27 while 2e-i will not be chopped
|
||
|
chop_prec = int(round(-3.321*math.log10(chop) + 2.5))
|
||
|
if chop_prec == 3:
|
||
|
chop_prec -= 1
|
||
|
r = chop_parts(r, chop_prec)
|
||
|
if options.get("strict"):
|
||
|
check_target(x, r, prec)
|
||
|
return r
|
||
|
|
||
|
|
||
|
def quad_to_mpmath(q, ctx=None):
|
||
|
"""Turn the quad returned by ``evalf`` into an ``mpf`` or ``mpc``. """
|
||
|
mpc = make_mpc if ctx is None else ctx.make_mpc
|
||
|
mpf = make_mpf if ctx is None else ctx.make_mpf
|
||
|
if q is S.ComplexInfinity:
|
||
|
raise NotImplementedError
|
||
|
re, im, _, _ = q
|
||
|
if im:
|
||
|
if not re:
|
||
|
re = fzero
|
||
|
return mpc((re, im))
|
||
|
elif re:
|
||
|
return mpf(re)
|
||
|
else:
|
||
|
return mpf(fzero)
|
||
|
|
||
|
|
||
|
class EvalfMixin:
|
||
|
"""Mixin class adding evalf capability."""
|
||
|
|
||
|
__slots__ = () # type: tTuple[str, ...]
|
||
|
|
||
|
def evalf(self, n=15, subs=None, maxn=100, chop=False, strict=False, quad=None, verbose=False):
|
||
|
"""
|
||
|
Evaluate the given formula to an accuracy of *n* digits.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
subs : dict, optional
|
||
|
Substitute numerical values for symbols, e.g.
|
||
|
``subs={x:3, y:1+pi}``. The substitutions must be given as a
|
||
|
dictionary.
|
||
|
|
||
|
maxn : int, optional
|
||
|
Allow a maximum temporary working precision of maxn digits.
|
||
|
|
||
|
chop : bool or number, optional
|
||
|
Specifies how to replace tiny real or imaginary parts in
|
||
|
subresults by exact zeros.
|
||
|
|
||
|
When ``True`` the chop value defaults to standard precision.
|
||
|
|
||
|
Otherwise the chop value is used to determine the
|
||
|
magnitude of "small" for purposes of chopping.
|
||
|
|
||
|
>>> from sympy import N
|
||
|
>>> x = 1e-4
|
||
|
>>> N(x, chop=True)
|
||
|
0.000100000000000000
|
||
|
>>> N(x, chop=1e-5)
|
||
|
0.000100000000000000
|
||
|
>>> N(x, chop=1e-4)
|
||
|
0
|
||
|
|
||
|
strict : bool, optional
|
||
|
Raise ``PrecisionExhausted`` if any subresult fails to
|
||
|
evaluate to full accuracy, given the available maxprec.
|
||
|
|
||
|
quad : str, optional
|
||
|
Choose algorithm for numerical quadrature. By default,
|
||
|
tanh-sinh quadrature is used. For oscillatory
|
||
|
integrals on an infinite interval, try ``quad='osc'``.
|
||
|
|
||
|
verbose : bool, optional
|
||
|
Print debug information.
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
When Floats are naively substituted into an expression,
|
||
|
precision errors may adversely affect the result. For example,
|
||
|
adding 1e16 (a Float) to 1 will truncate to 1e16; if 1e16 is
|
||
|
then subtracted, the result will be 0.
|
||
|
That is exactly what happens in the following:
|
||
|
|
||
|
>>> from sympy.abc import x, y, z
|
||
|
>>> values = {x: 1e16, y: 1, z: 1e16}
|
||
|
>>> (x + y - z).subs(values)
|
||
|
0
|
||
|
|
||
|
Using the subs argument for evalf is the accurate way to
|
||
|
evaluate such an expression:
|
||
|
|
||
|
>>> (x + y - z).evalf(subs=values)
|
||
|
1.00000000000000
|
||
|
"""
|
||
|
from .numbers import Float, Number
|
||
|
n = n if n is not None else 15
|
||
|
|
||
|
if subs and is_sequence(subs):
|
||
|
raise TypeError('subs must be given as a dictionary')
|
||
|
|
||
|
# for sake of sage that doesn't like evalf(1)
|
||
|
if n == 1 and isinstance(self, Number):
|
||
|
from .expr import _mag
|
||
|
rv = self.evalf(2, subs, maxn, chop, strict, quad, verbose)
|
||
|
m = _mag(rv)
|
||
|
rv = rv.round(1 - m)
|
||
|
return rv
|
||
|
|
||
|
if not evalf_table:
|
||
|
_create_evalf_table()
|
||
|
prec = dps_to_prec(n)
|
||
|
options = {'maxprec': max(prec, int(maxn*LG10)), 'chop': chop,
|
||
|
'strict': strict, 'verbose': verbose}
|
||
|
if subs is not None:
|
||
|
options['subs'] = subs
|
||
|
if quad is not None:
|
||
|
options['quad'] = quad
|
||
|
try:
|
||
|
result = evalf(self, prec + 4, options)
|
||
|
except NotImplementedError:
|
||
|
# Fall back to the ordinary evalf
|
||
|
if hasattr(self, 'subs') and subs is not None: # issue 20291
|
||
|
v = self.subs(subs)._eval_evalf(prec)
|
||
|
else:
|
||
|
v = self._eval_evalf(prec)
|
||
|
if v is None:
|
||
|
return self
|
||
|
elif not v.is_number:
|
||
|
return v
|
||
|
try:
|
||
|
# If the result is numerical, normalize it
|
||
|
result = evalf(v, prec, options)
|
||
|
except NotImplementedError:
|
||
|
# Probably contains symbols or unknown functions
|
||
|
return v
|
||
|
if result is S.ComplexInfinity:
|
||
|
return result
|
||
|
re, im, re_acc, im_acc = result
|
||
|
if re is S.NaN or im is S.NaN:
|
||
|
return S.NaN
|
||
|
if re:
|
||
|
p = max(min(prec, re_acc), 1)
|
||
|
re = Float._new(re, p)
|
||
|
else:
|
||
|
re = S.Zero
|
||
|
if im:
|
||
|
p = max(min(prec, im_acc), 1)
|
||
|
im = Float._new(im, p)
|
||
|
return re + im*S.ImaginaryUnit
|
||
|
else:
|
||
|
return re
|
||
|
|
||
|
n = evalf
|
||
|
|
||
|
def _evalf(self, prec):
|
||
|
"""Helper for evalf. Does the same thing but takes binary precision"""
|
||
|
r = self._eval_evalf(prec)
|
||
|
if r is None:
|
||
|
r = self
|
||
|
return r
|
||
|
|
||
|
def _eval_evalf(self, prec):
|
||
|
return
|
||
|
|
||
|
def _to_mpmath(self, prec, allow_ints=True):
|
||
|
# mpmath functions accept ints as input
|
||
|
errmsg = "cannot convert to mpmath number"
|
||
|
if allow_ints and self.is_Integer:
|
||
|
return self.p
|
||
|
if hasattr(self, '_as_mpf_val'):
|
||
|
return make_mpf(self._as_mpf_val(prec))
|
||
|
try:
|
||
|
result = evalf(self, prec, {})
|
||
|
return quad_to_mpmath(result)
|
||
|
except NotImplementedError:
|
||
|
v = self._eval_evalf(prec)
|
||
|
if v is None:
|
||
|
raise ValueError(errmsg)
|
||
|
if v.is_Float:
|
||
|
return make_mpf(v._mpf_)
|
||
|
# Number + Number*I is also fine
|
||
|
re, im = v.as_real_imag()
|
||
|
if allow_ints and re.is_Integer:
|
||
|
re = from_int(re.p)
|
||
|
elif re.is_Float:
|
||
|
re = re._mpf_
|
||
|
else:
|
||
|
raise ValueError(errmsg)
|
||
|
if allow_ints and im.is_Integer:
|
||
|
im = from_int(im.p)
|
||
|
elif im.is_Float:
|
||
|
im = im._mpf_
|
||
|
else:
|
||
|
raise ValueError(errmsg)
|
||
|
return make_mpc((re, im))
|
||
|
|
||
|
|
||
|
def N(x, n=15, **options):
|
||
|
r"""
|
||
|
Calls x.evalf(n, \*\*options).
|
||
|
|
||
|
Explanations
|
||
|
============
|
||
|
|
||
|
Both .n() and N() are equivalent to .evalf(); use the one that you like better.
|
||
|
See also the docstring of .evalf() for information on the options.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Sum, oo, N
|
||
|
>>> from sympy.abc import k
|
||
|
>>> Sum(1/k**k, (k, 1, oo))
|
||
|
Sum(k**(-k), (k, 1, oo))
|
||
|
>>> N(_, 4)
|
||
|
1.291
|
||
|
|
||
|
"""
|
||
|
# by using rational=True, any evaluation of a string
|
||
|
# will be done using exact values for the Floats
|
||
|
return sympify(x, rational=True).evalf(n, **options)
|
||
|
|
||
|
|
||
|
def _evalf_with_bounded_error(x: 'Expr', eps: 'Optional[Expr]' = None,
|
||
|
m: int = 0,
|
||
|
options: Optional[OPT_DICT] = None) -> TMP_RES:
|
||
|
"""
|
||
|
Evaluate *x* to within a bounded absolute error.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
x : Expr
|
||
|
The quantity to be evaluated.
|
||
|
eps : Expr, None, optional (default=None)
|
||
|
Positive real upper bound on the acceptable error.
|
||
|
m : int, optional (default=0)
|
||
|
If *eps* is None, then use 2**(-m) as the upper bound on the error.
|
||
|
options: OPT_DICT
|
||
|
As in the ``evalf`` function.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
A tuple ``(re, im, re_acc, im_acc)``, as returned by ``evalf``.
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
evalf
|
||
|
|
||
|
"""
|
||
|
if eps is not None:
|
||
|
if not (eps.is_Rational or eps.is_Float) or not eps > 0:
|
||
|
raise ValueError("eps must be positive")
|
||
|
r, _, _, _ = evalf(1/eps, 1, {})
|
||
|
m = fastlog(r)
|
||
|
|
||
|
c, d, _, _ = evalf(x, 1, {})
|
||
|
# Note: If x = a + b*I, then |a| <= 2|c| and |b| <= 2|d|, with equality
|
||
|
# only in the zero case.
|
||
|
# If a is non-zero, then |c| = 2**nc for some integer nc, and c has
|
||
|
# bitcount 1. Therefore 2**fastlog(c) = 2**(nc+1) = 2|c| is an upper bound
|
||
|
# on |a|. Likewise for b and d.
|
||
|
nr, ni = fastlog(c), fastlog(d)
|
||
|
n = max(nr, ni) + 1
|
||
|
# If x is 0, then n is MINUS_INF, and p will be 1. Otherwise,
|
||
|
# n - 1 bits get us past the integer parts of a and b, and +1 accounts for
|
||
|
# the factor of <= sqrt(2) that is |x|/max(|a|, |b|).
|
||
|
p = max(1, m + n + 1)
|
||
|
|
||
|
options = options or {}
|
||
|
return evalf(x, p, options)
|