4166 lines
139 KiB
Python
4166 lines
139 KiB
Python
|
from __future__ import annotations
|
||
|
|
||
|
from typing import TYPE_CHECKING
|
||
|
from collections.abc import Iterable
|
||
|
from functools import reduce
|
||
|
import re
|
||
|
|
||
|
from .sympify import sympify, _sympify
|
||
|
from .basic import Basic, Atom
|
||
|
from .singleton import S
|
||
|
from .evalf import EvalfMixin, pure_complex, DEFAULT_MAXPREC
|
||
|
from .decorators import call_highest_priority, sympify_method_args, sympify_return
|
||
|
from .cache import cacheit
|
||
|
from .sorting import default_sort_key
|
||
|
from .kind import NumberKind
|
||
|
from sympy.utilities.exceptions import sympy_deprecation_warning
|
||
|
from sympy.utilities.misc import as_int, func_name, filldedent
|
||
|
from sympy.utilities.iterables import has_variety, sift
|
||
|
from mpmath.libmp import mpf_log, prec_to_dps
|
||
|
from mpmath.libmp.libintmath import giant_steps
|
||
|
|
||
|
|
||
|
if TYPE_CHECKING:
|
||
|
from .numbers import Number
|
||
|
|
||
|
from collections import defaultdict
|
||
|
|
||
|
|
||
|
def _corem(eq, c): # helper for extract_additively
|
||
|
# return co, diff from co*c + diff
|
||
|
co = []
|
||
|
non = []
|
||
|
for i in Add.make_args(eq):
|
||
|
ci = i.coeff(c)
|
||
|
if not ci:
|
||
|
non.append(i)
|
||
|
else:
|
||
|
co.append(ci)
|
||
|
return Add(*co), Add(*non)
|
||
|
|
||
|
|
||
|
@sympify_method_args
|
||
|
class Expr(Basic, EvalfMixin):
|
||
|
"""
|
||
|
Base class for algebraic expressions.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
Everything that requires arithmetic operations to be defined
|
||
|
should subclass this class, instead of Basic (which should be
|
||
|
used only for argument storage and expression manipulation, i.e.
|
||
|
pattern matching, substitutions, etc).
|
||
|
|
||
|
If you want to override the comparisons of expressions:
|
||
|
Should use _eval_is_ge for inequality, or _eval_is_eq, with multiple dispatch.
|
||
|
_eval_is_ge return true if x >= y, false if x < y, and None if the two types
|
||
|
are not comparable or the comparison is indeterminate
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
sympy.core.basic.Basic
|
||
|
"""
|
||
|
|
||
|
__slots__: tuple[str, ...] = ()
|
||
|
|
||
|
is_scalar = True # self derivative is 1
|
||
|
|
||
|
@property
|
||
|
def _diff_wrt(self):
|
||
|
"""Return True if one can differentiate with respect to this
|
||
|
object, else False.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
Subclasses such as Symbol, Function and Derivative return True
|
||
|
to enable derivatives wrt them. The implementation in Derivative
|
||
|
separates the Symbol and non-Symbol (_diff_wrt=True) variables and
|
||
|
temporarily converts the non-Symbols into Symbols when performing
|
||
|
the differentiation. By default, any object deriving from Expr
|
||
|
will behave like a scalar with self.diff(self) == 1. If this is
|
||
|
not desired then the object must also set `is_scalar = False` or
|
||
|
else define an _eval_derivative routine.
|
||
|
|
||
|
Note, see the docstring of Derivative for how this should work
|
||
|
mathematically. In particular, note that expr.subs(yourclass, Symbol)
|
||
|
should be well-defined on a structural level, or this will lead to
|
||
|
inconsistent results.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Expr
|
||
|
>>> e = Expr()
|
||
|
>>> e._diff_wrt
|
||
|
False
|
||
|
>>> class MyScalar(Expr):
|
||
|
... _diff_wrt = True
|
||
|
...
|
||
|
>>> MyScalar().diff(MyScalar())
|
||
|
1
|
||
|
>>> class MySymbol(Expr):
|
||
|
... _diff_wrt = True
|
||
|
... is_scalar = False
|
||
|
...
|
||
|
>>> MySymbol().diff(MySymbol())
|
||
|
Derivative(MySymbol(), MySymbol())
|
||
|
"""
|
||
|
return False
|
||
|
|
||
|
@cacheit
|
||
|
def sort_key(self, order=None):
|
||
|
|
||
|
coeff, expr = self.as_coeff_Mul()
|
||
|
|
||
|
if expr.is_Pow:
|
||
|
if expr.base is S.Exp1:
|
||
|
# If we remove this, many doctests will go crazy:
|
||
|
# (keeps E**x sorted like the exp(x) function,
|
||
|
# part of exp(x) to E**x transition)
|
||
|
expr, exp = Function("exp")(expr.exp), S.One
|
||
|
else:
|
||
|
expr, exp = expr.args
|
||
|
else:
|
||
|
exp = S.One
|
||
|
|
||
|
if expr.is_Dummy:
|
||
|
args = (expr.sort_key(),)
|
||
|
elif expr.is_Atom:
|
||
|
args = (str(expr),)
|
||
|
else:
|
||
|
if expr.is_Add:
|
||
|
args = expr.as_ordered_terms(order=order)
|
||
|
elif expr.is_Mul:
|
||
|
args = expr.as_ordered_factors(order=order)
|
||
|
else:
|
||
|
args = expr.args
|
||
|
|
||
|
args = tuple(
|
||
|
[ default_sort_key(arg, order=order) for arg in args ])
|
||
|
|
||
|
args = (len(args), tuple(args))
|
||
|
exp = exp.sort_key(order=order)
|
||
|
|
||
|
return expr.class_key(), args, exp, coeff
|
||
|
|
||
|
def _hashable_content(self):
|
||
|
"""Return a tuple of information about self that can be used to
|
||
|
compute the hash. If a class defines additional attributes,
|
||
|
like ``name`` in Symbol, then this method should be updated
|
||
|
accordingly to return such relevant attributes.
|
||
|
Defining more than _hashable_content is necessary if __eq__ has
|
||
|
been defined by a class. See note about this in Basic.__eq__."""
|
||
|
return self._args
|
||
|
|
||
|
# ***************
|
||
|
# * Arithmetics *
|
||
|
# ***************
|
||
|
# Expr and its subclasses use _op_priority to determine which object
|
||
|
# passed to a binary special method (__mul__, etc.) will handle the
|
||
|
# operation. In general, the 'call_highest_priority' decorator will choose
|
||
|
# the object with the highest _op_priority to handle the call.
|
||
|
# Custom subclasses that want to define their own binary special methods
|
||
|
# should set an _op_priority value that is higher than the default.
|
||
|
#
|
||
|
# **NOTE**:
|
||
|
# This is a temporary fix, and will eventually be replaced with
|
||
|
# something better and more powerful. See issue 5510.
|
||
|
_op_priority = 10.0
|
||
|
|
||
|
@property
|
||
|
def _add_handler(self):
|
||
|
return Add
|
||
|
|
||
|
@property
|
||
|
def _mul_handler(self):
|
||
|
return Mul
|
||
|
|
||
|
def __pos__(self):
|
||
|
return self
|
||
|
|
||
|
def __neg__(self):
|
||
|
# Mul has its own __neg__ routine, so we just
|
||
|
# create a 2-args Mul with the -1 in the canonical
|
||
|
# slot 0.
|
||
|
c = self.is_commutative
|
||
|
return Mul._from_args((S.NegativeOne, self), c)
|
||
|
|
||
|
def __abs__(self) -> Expr:
|
||
|
from sympy.functions.elementary.complexes import Abs
|
||
|
return Abs(self)
|
||
|
|
||
|
@sympify_return([('other', 'Expr')], NotImplemented)
|
||
|
@call_highest_priority('__radd__')
|
||
|
def __add__(self, other):
|
||
|
return Add(self, other)
|
||
|
|
||
|
@sympify_return([('other', 'Expr')], NotImplemented)
|
||
|
@call_highest_priority('__add__')
|
||
|
def __radd__(self, other):
|
||
|
return Add(other, self)
|
||
|
|
||
|
@sympify_return([('other', 'Expr')], NotImplemented)
|
||
|
@call_highest_priority('__rsub__')
|
||
|
def __sub__(self, other):
|
||
|
return Add(self, -other)
|
||
|
|
||
|
@sympify_return([('other', 'Expr')], NotImplemented)
|
||
|
@call_highest_priority('__sub__')
|
||
|
def __rsub__(self, other):
|
||
|
return Add(other, -self)
|
||
|
|
||
|
@sympify_return([('other', 'Expr')], NotImplemented)
|
||
|
@call_highest_priority('__rmul__')
|
||
|
def __mul__(self, other):
|
||
|
return Mul(self, other)
|
||
|
|
||
|
@sympify_return([('other', 'Expr')], NotImplemented)
|
||
|
@call_highest_priority('__mul__')
|
||
|
def __rmul__(self, other):
|
||
|
return Mul(other, self)
|
||
|
|
||
|
@sympify_return([('other', 'Expr')], NotImplemented)
|
||
|
@call_highest_priority('__rpow__')
|
||
|
def _pow(self, other):
|
||
|
return Pow(self, other)
|
||
|
|
||
|
def __pow__(self, other, mod=None) -> Expr:
|
||
|
if mod is None:
|
||
|
return self._pow(other)
|
||
|
try:
|
||
|
_self, other, mod = as_int(self), as_int(other), as_int(mod)
|
||
|
if other >= 0:
|
||
|
return _sympify(pow(_self, other, mod))
|
||
|
else:
|
||
|
from .numbers import mod_inverse
|
||
|
return _sympify(mod_inverse(pow(_self, -other, mod), mod))
|
||
|
except ValueError:
|
||
|
power = self._pow(other)
|
||
|
try:
|
||
|
return power%mod
|
||
|
except TypeError:
|
||
|
return NotImplemented
|
||
|
|
||
|
@sympify_return([('other', 'Expr')], NotImplemented)
|
||
|
@call_highest_priority('__pow__')
|
||
|
def __rpow__(self, other):
|
||
|
return Pow(other, self)
|
||
|
|
||
|
@sympify_return([('other', 'Expr')], NotImplemented)
|
||
|
@call_highest_priority('__rtruediv__')
|
||
|
def __truediv__(self, other):
|
||
|
denom = Pow(other, S.NegativeOne)
|
||
|
if self is S.One:
|
||
|
return denom
|
||
|
else:
|
||
|
return Mul(self, denom)
|
||
|
|
||
|
@sympify_return([('other', 'Expr')], NotImplemented)
|
||
|
@call_highest_priority('__truediv__')
|
||
|
def __rtruediv__(self, other):
|
||
|
denom = Pow(self, S.NegativeOne)
|
||
|
if other is S.One:
|
||
|
return denom
|
||
|
else:
|
||
|
return Mul(other, denom)
|
||
|
|
||
|
@sympify_return([('other', 'Expr')], NotImplemented)
|
||
|
@call_highest_priority('__rmod__')
|
||
|
def __mod__(self, other):
|
||
|
return Mod(self, other)
|
||
|
|
||
|
@sympify_return([('other', 'Expr')], NotImplemented)
|
||
|
@call_highest_priority('__mod__')
|
||
|
def __rmod__(self, other):
|
||
|
return Mod(other, self)
|
||
|
|
||
|
@sympify_return([('other', 'Expr')], NotImplemented)
|
||
|
@call_highest_priority('__rfloordiv__')
|
||
|
def __floordiv__(self, other):
|
||
|
from sympy.functions.elementary.integers import floor
|
||
|
return floor(self / other)
|
||
|
|
||
|
@sympify_return([('other', 'Expr')], NotImplemented)
|
||
|
@call_highest_priority('__floordiv__')
|
||
|
def __rfloordiv__(self, other):
|
||
|
from sympy.functions.elementary.integers import floor
|
||
|
return floor(other / self)
|
||
|
|
||
|
|
||
|
@sympify_return([('other', 'Expr')], NotImplemented)
|
||
|
@call_highest_priority('__rdivmod__')
|
||
|
def __divmod__(self, other):
|
||
|
from sympy.functions.elementary.integers import floor
|
||
|
return floor(self / other), Mod(self, other)
|
||
|
|
||
|
@sympify_return([('other', 'Expr')], NotImplemented)
|
||
|
@call_highest_priority('__divmod__')
|
||
|
def __rdivmod__(self, other):
|
||
|
from sympy.functions.elementary.integers import floor
|
||
|
return floor(other / self), Mod(other, self)
|
||
|
|
||
|
def __int__(self):
|
||
|
# Although we only need to round to the units position, we'll
|
||
|
# get one more digit so the extra testing below can be avoided
|
||
|
# unless the rounded value rounded to an integer, e.g. if an
|
||
|
# expression were equal to 1.9 and we rounded to the unit position
|
||
|
# we would get a 2 and would not know if this rounded up or not
|
||
|
# without doing a test (as done below). But if we keep an extra
|
||
|
# digit we know that 1.9 is not the same as 1 and there is no
|
||
|
# need for further testing: our int value is correct. If the value
|
||
|
# were 1.99, however, this would round to 2.0 and our int value is
|
||
|
# off by one. So...if our round value is the same as the int value
|
||
|
# (regardless of how much extra work we do to calculate extra decimal
|
||
|
# places) we need to test whether we are off by one.
|
||
|
from .symbol import Dummy
|
||
|
if not self.is_number:
|
||
|
raise TypeError("Cannot convert symbols to int")
|
||
|
r = self.round(2)
|
||
|
if not r.is_Number:
|
||
|
raise TypeError("Cannot convert complex to int")
|
||
|
if r in (S.NaN, S.Infinity, S.NegativeInfinity):
|
||
|
raise TypeError("Cannot convert %s to int" % r)
|
||
|
i = int(r)
|
||
|
if not i:
|
||
|
return 0
|
||
|
# off-by-one check
|
||
|
if i == r and not (self - i).equals(0):
|
||
|
isign = 1 if i > 0 else -1
|
||
|
x = Dummy()
|
||
|
# in the following (self - i).evalf(2) will not always work while
|
||
|
# (self - r).evalf(2) and the use of subs does; if the test that
|
||
|
# was added when this comment was added passes, it might be safe
|
||
|
# to simply use sign to compute this rather than doing this by hand:
|
||
|
diff_sign = 1 if (self - x).evalf(2, subs={x: i}) > 0 else -1
|
||
|
if diff_sign != isign:
|
||
|
i -= isign
|
||
|
return i
|
||
|
|
||
|
def __float__(self):
|
||
|
# Don't bother testing if it's a number; if it's not this is going
|
||
|
# to fail, and if it is we still need to check that it evalf'ed to
|
||
|
# a number.
|
||
|
result = self.evalf()
|
||
|
if result.is_Number:
|
||
|
return float(result)
|
||
|
if result.is_number and result.as_real_imag()[1]:
|
||
|
raise TypeError("Cannot convert complex to float")
|
||
|
raise TypeError("Cannot convert expression to float")
|
||
|
|
||
|
def __complex__(self):
|
||
|
result = self.evalf()
|
||
|
re, im = result.as_real_imag()
|
||
|
return complex(float(re), float(im))
|
||
|
|
||
|
@sympify_return([('other', 'Expr')], NotImplemented)
|
||
|
def __ge__(self, other):
|
||
|
from .relational import GreaterThan
|
||
|
return GreaterThan(self, other)
|
||
|
|
||
|
@sympify_return([('other', 'Expr')], NotImplemented)
|
||
|
def __le__(self, other):
|
||
|
from .relational import LessThan
|
||
|
return LessThan(self, other)
|
||
|
|
||
|
@sympify_return([('other', 'Expr')], NotImplemented)
|
||
|
def __gt__(self, other):
|
||
|
from .relational import StrictGreaterThan
|
||
|
return StrictGreaterThan(self, other)
|
||
|
|
||
|
@sympify_return([('other', 'Expr')], NotImplemented)
|
||
|
def __lt__(self, other):
|
||
|
from .relational import StrictLessThan
|
||
|
return StrictLessThan(self, other)
|
||
|
|
||
|
def __trunc__(self):
|
||
|
if not self.is_number:
|
||
|
raise TypeError("Cannot truncate symbols and expressions")
|
||
|
else:
|
||
|
return Integer(self)
|
||
|
|
||
|
def __format__(self, format_spec: str):
|
||
|
if self.is_number:
|
||
|
mt = re.match(r'\+?\d*\.(\d+)f', format_spec)
|
||
|
if mt:
|
||
|
prec = int(mt.group(1))
|
||
|
rounded = self.round(prec)
|
||
|
if rounded.is_Integer:
|
||
|
return format(int(rounded), format_spec)
|
||
|
if rounded.is_Float:
|
||
|
return format(rounded, format_spec)
|
||
|
return super().__format__(format_spec)
|
||
|
|
||
|
@staticmethod
|
||
|
def _from_mpmath(x, prec):
|
||
|
if hasattr(x, "_mpf_"):
|
||
|
return Float._new(x._mpf_, prec)
|
||
|
elif hasattr(x, "_mpc_"):
|
||
|
re, im = x._mpc_
|
||
|
re = Float._new(re, prec)
|
||
|
im = Float._new(im, prec)*S.ImaginaryUnit
|
||
|
return re + im
|
||
|
else:
|
||
|
raise TypeError("expected mpmath number (mpf or mpc)")
|
||
|
|
||
|
@property
|
||
|
def is_number(self):
|
||
|
"""Returns True if ``self`` has no free symbols and no
|
||
|
undefined functions (AppliedUndef, to be precise). It will be
|
||
|
faster than ``if not self.free_symbols``, however, since
|
||
|
``is_number`` will fail as soon as it hits a free symbol
|
||
|
or undefined function.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Function, Integral, cos, sin, pi
|
||
|
>>> from sympy.abc import x
|
||
|
>>> f = Function('f')
|
||
|
|
||
|
>>> x.is_number
|
||
|
False
|
||
|
>>> f(1).is_number
|
||
|
False
|
||
|
>>> (2*x).is_number
|
||
|
False
|
||
|
>>> (2 + Integral(2, x)).is_number
|
||
|
False
|
||
|
>>> (2 + Integral(2, (x, 1, 2))).is_number
|
||
|
True
|
||
|
|
||
|
Not all numbers are Numbers in the SymPy sense:
|
||
|
|
||
|
>>> pi.is_number, pi.is_Number
|
||
|
(True, False)
|
||
|
|
||
|
If something is a number it should evaluate to a number with
|
||
|
real and imaginary parts that are Numbers; the result may not
|
||
|
be comparable, however, since the real and/or imaginary part
|
||
|
of the result may not have precision.
|
||
|
|
||
|
>>> cos(1).is_number and cos(1).is_comparable
|
||
|
True
|
||
|
|
||
|
>>> z = cos(1)**2 + sin(1)**2 - 1
|
||
|
>>> z.is_number
|
||
|
True
|
||
|
>>> z.is_comparable
|
||
|
False
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
sympy.core.basic.Basic.is_comparable
|
||
|
"""
|
||
|
return all(obj.is_number for obj in self.args)
|
||
|
|
||
|
def _random(self, n=None, re_min=-1, im_min=-1, re_max=1, im_max=1):
|
||
|
"""Return self evaluated, if possible, replacing free symbols with
|
||
|
random complex values, if necessary.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The random complex value for each free symbol is generated
|
||
|
by the random_complex_number routine giving real and imaginary
|
||
|
parts in the range given by the re_min, re_max, im_min, and im_max
|
||
|
values. The returned value is evaluated to a precision of n
|
||
|
(if given) else the maximum of 15 and the precision needed
|
||
|
to get more than 1 digit of precision. If the expression
|
||
|
could not be evaluated to a number, or could not be evaluated
|
||
|
to more than 1 digit of precision, then None is returned.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import sqrt
|
||
|
>>> from sympy.abc import x, y
|
||
|
>>> x._random() # doctest: +SKIP
|
||
|
0.0392918155679172 + 0.916050214307199*I
|
||
|
>>> x._random(2) # doctest: +SKIP
|
||
|
-0.77 - 0.87*I
|
||
|
>>> (x + y/2)._random(2) # doctest: +SKIP
|
||
|
-0.57 + 0.16*I
|
||
|
>>> sqrt(2)._random(2)
|
||
|
1.4
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
sympy.core.random.random_complex_number
|
||
|
"""
|
||
|
|
||
|
free = self.free_symbols
|
||
|
prec = 1
|
||
|
if free:
|
||
|
from sympy.core.random import random_complex_number
|
||
|
a, c, b, d = re_min, re_max, im_min, im_max
|
||
|
reps = dict(list(zip(free, [random_complex_number(a, b, c, d, rational=True)
|
||
|
for zi in free])))
|
||
|
try:
|
||
|
nmag = abs(self.evalf(2, subs=reps))
|
||
|
except (ValueError, TypeError):
|
||
|
# if an out of range value resulted in evalf problems
|
||
|
# then return None -- XXX is there a way to know how to
|
||
|
# select a good random number for a given expression?
|
||
|
# e.g. when calculating n! negative values for n should not
|
||
|
# be used
|
||
|
return None
|
||
|
else:
|
||
|
reps = {}
|
||
|
nmag = abs(self.evalf(2))
|
||
|
|
||
|
if not hasattr(nmag, '_prec'):
|
||
|
# e.g. exp_polar(2*I*pi) doesn't evaluate but is_number is True
|
||
|
return None
|
||
|
|
||
|
if nmag._prec == 1:
|
||
|
# increase the precision up to the default maximum
|
||
|
# precision to see if we can get any significance
|
||
|
|
||
|
# evaluate
|
||
|
for prec in giant_steps(2, DEFAULT_MAXPREC):
|
||
|
nmag = abs(self.evalf(prec, subs=reps))
|
||
|
if nmag._prec != 1:
|
||
|
break
|
||
|
|
||
|
if nmag._prec != 1:
|
||
|
if n is None:
|
||
|
n = max(prec, 15)
|
||
|
return self.evalf(n, subs=reps)
|
||
|
|
||
|
# never got any significance
|
||
|
return None
|
||
|
|
||
|
def is_constant(self, *wrt, **flags):
|
||
|
"""Return True if self is constant, False if not, or None if
|
||
|
the constancy could not be determined conclusively.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
If an expression has no free symbols then it is a constant. If
|
||
|
there are free symbols it is possible that the expression is a
|
||
|
constant, perhaps (but not necessarily) zero. To test such
|
||
|
expressions, a few strategies are tried:
|
||
|
|
||
|
1) numerical evaluation at two random points. If two such evaluations
|
||
|
give two different values and the values have a precision greater than
|
||
|
1 then self is not constant. If the evaluations agree or could not be
|
||
|
obtained with any precision, no decision is made. The numerical testing
|
||
|
is done only if ``wrt`` is different than the free symbols.
|
||
|
|
||
|
2) differentiation with respect to variables in 'wrt' (or all free
|
||
|
symbols if omitted) to see if the expression is constant or not. This
|
||
|
will not always lead to an expression that is zero even though an
|
||
|
expression is constant (see added test in test_expr.py). If
|
||
|
all derivatives are zero then self is constant with respect to the
|
||
|
given symbols.
|
||
|
|
||
|
3) finding out zeros of denominator expression with free_symbols.
|
||
|
It will not be constant if there are zeros. It gives more negative
|
||
|
answers for expression that are not constant.
|
||
|
|
||
|
If neither evaluation nor differentiation can prove the expression is
|
||
|
constant, None is returned unless two numerical values happened to be
|
||
|
the same and the flag ``failing_number`` is True -- in that case the
|
||
|
numerical value will be returned.
|
||
|
|
||
|
If flag simplify=False is passed, self will not be simplified;
|
||
|
the default is True since self should be simplified before testing.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import cos, sin, Sum, S, pi
|
||
|
>>> from sympy.abc import a, n, x, y
|
||
|
>>> x.is_constant()
|
||
|
False
|
||
|
>>> S(2).is_constant()
|
||
|
True
|
||
|
>>> Sum(x, (x, 1, 10)).is_constant()
|
||
|
True
|
||
|
>>> Sum(x, (x, 1, n)).is_constant()
|
||
|
False
|
||
|
>>> Sum(x, (x, 1, n)).is_constant(y)
|
||
|
True
|
||
|
>>> Sum(x, (x, 1, n)).is_constant(n)
|
||
|
False
|
||
|
>>> Sum(x, (x, 1, n)).is_constant(x)
|
||
|
True
|
||
|
>>> eq = a*cos(x)**2 + a*sin(x)**2 - a
|
||
|
>>> eq.is_constant()
|
||
|
True
|
||
|
>>> eq.subs({x: pi, a: 2}) == eq.subs({x: pi, a: 3}) == 0
|
||
|
True
|
||
|
|
||
|
>>> (0**x).is_constant()
|
||
|
False
|
||
|
>>> x.is_constant()
|
||
|
False
|
||
|
>>> (x**x).is_constant()
|
||
|
False
|
||
|
>>> one = cos(x)**2 + sin(x)**2
|
||
|
>>> one.is_constant()
|
||
|
True
|
||
|
>>> ((one - 1)**(x + 1)).is_constant() in (True, False) # could be 0 or 1
|
||
|
True
|
||
|
"""
|
||
|
|
||
|
def check_denominator_zeros(expression):
|
||
|
from sympy.solvers.solvers import denoms
|
||
|
|
||
|
retNone = False
|
||
|
for den in denoms(expression):
|
||
|
z = den.is_zero
|
||
|
if z is True:
|
||
|
return True
|
||
|
if z is None:
|
||
|
retNone = True
|
||
|
if retNone:
|
||
|
return None
|
||
|
return False
|
||
|
|
||
|
simplify = flags.get('simplify', True)
|
||
|
|
||
|
if self.is_number:
|
||
|
return True
|
||
|
free = self.free_symbols
|
||
|
if not free:
|
||
|
return True # assume f(1) is some constant
|
||
|
|
||
|
# if we are only interested in some symbols and they are not in the
|
||
|
# free symbols then this expression is constant wrt those symbols
|
||
|
wrt = set(wrt)
|
||
|
if wrt and not wrt & free:
|
||
|
return True
|
||
|
wrt = wrt or free
|
||
|
|
||
|
# simplify unless this has already been done
|
||
|
expr = self
|
||
|
if simplify:
|
||
|
expr = expr.simplify()
|
||
|
|
||
|
# is_zero should be a quick assumptions check; it can be wrong for
|
||
|
# numbers (see test_is_not_constant test), giving False when it
|
||
|
# shouldn't, but hopefully it will never give True unless it is sure.
|
||
|
if expr.is_zero:
|
||
|
return True
|
||
|
|
||
|
# Don't attempt substitution or differentiation with non-number symbols
|
||
|
wrt_number = {sym for sym in wrt if sym.kind is NumberKind}
|
||
|
|
||
|
# try numerical evaluation to see if we get two different values
|
||
|
failing_number = None
|
||
|
if wrt_number == free:
|
||
|
# try 0 (for a) and 1 (for b)
|
||
|
try:
|
||
|
a = expr.subs(list(zip(free, [0]*len(free))),
|
||
|
simultaneous=True)
|
||
|
if a is S.NaN:
|
||
|
# evaluation may succeed when substitution fails
|
||
|
a = expr._random(None, 0, 0, 0, 0)
|
||
|
except ZeroDivisionError:
|
||
|
a = None
|
||
|
if a is not None and a is not S.NaN:
|
||
|
try:
|
||
|
b = expr.subs(list(zip(free, [1]*len(free))),
|
||
|
simultaneous=True)
|
||
|
if b is S.NaN:
|
||
|
# evaluation may succeed when substitution fails
|
||
|
b = expr._random(None, 1, 0, 1, 0)
|
||
|
except ZeroDivisionError:
|
||
|
b = None
|
||
|
if b is not None and b is not S.NaN and b.equals(a) is False:
|
||
|
return False
|
||
|
# try random real
|
||
|
b = expr._random(None, -1, 0, 1, 0)
|
||
|
if b is not None and b is not S.NaN and b.equals(a) is False:
|
||
|
return False
|
||
|
# try random complex
|
||
|
b = expr._random()
|
||
|
if b is not None and b is not S.NaN:
|
||
|
if b.equals(a) is False:
|
||
|
return False
|
||
|
failing_number = a if a.is_number else b
|
||
|
|
||
|
# now we will test each wrt symbol (or all free symbols) to see if the
|
||
|
# expression depends on them or not using differentiation. This is
|
||
|
# not sufficient for all expressions, however, so we don't return
|
||
|
# False if we get a derivative other than 0 with free symbols.
|
||
|
for w in wrt_number:
|
||
|
deriv = expr.diff(w)
|
||
|
if simplify:
|
||
|
deriv = deriv.simplify()
|
||
|
if deriv != 0:
|
||
|
if not (pure_complex(deriv, or_real=True)):
|
||
|
if flags.get('failing_number', False):
|
||
|
return failing_number
|
||
|
return False
|
||
|
cd = check_denominator_zeros(self)
|
||
|
if cd is True:
|
||
|
return False
|
||
|
elif cd is None:
|
||
|
return None
|
||
|
return True
|
||
|
|
||
|
def equals(self, other, failing_expression=False):
|
||
|
"""Return True if self == other, False if it does not, or None. If
|
||
|
failing_expression is True then the expression which did not simplify
|
||
|
to a 0 will be returned instead of None.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
If ``self`` is a Number (or complex number) that is not zero, then
|
||
|
the result is False.
|
||
|
|
||
|
If ``self`` is a number and has not evaluated to zero, evalf will be
|
||
|
used to test whether the expression evaluates to zero. If it does so
|
||
|
and the result has significance (i.e. the precision is either -1, for
|
||
|
a Rational result, or is greater than 1) then the evalf value will be
|
||
|
used to return True or False.
|
||
|
|
||
|
"""
|
||
|
from sympy.simplify.simplify import nsimplify, simplify
|
||
|
from sympy.solvers.solvers import solve
|
||
|
from sympy.polys.polyerrors import NotAlgebraic
|
||
|
from sympy.polys.numberfields import minimal_polynomial
|
||
|
|
||
|
other = sympify(other)
|
||
|
if self == other:
|
||
|
return True
|
||
|
|
||
|
# they aren't the same so see if we can make the difference 0;
|
||
|
# don't worry about doing simplification steps one at a time
|
||
|
# because if the expression ever goes to 0 then the subsequent
|
||
|
# simplification steps that are done will be very fast.
|
||
|
diff = factor_terms(simplify(self - other), radical=True)
|
||
|
|
||
|
if not diff:
|
||
|
return True
|
||
|
|
||
|
if not diff.has(Add, Mod):
|
||
|
# if there is no expanding to be done after simplifying
|
||
|
# then this can't be a zero
|
||
|
return False
|
||
|
|
||
|
factors = diff.as_coeff_mul()[1]
|
||
|
if len(factors) > 1: # avoid infinity recursion
|
||
|
fac_zero = [fac.equals(0) for fac in factors]
|
||
|
if None not in fac_zero: # every part can be decided
|
||
|
return any(fac_zero)
|
||
|
|
||
|
constant = diff.is_constant(simplify=False, failing_number=True)
|
||
|
|
||
|
if constant is False:
|
||
|
return False
|
||
|
|
||
|
if not diff.is_number:
|
||
|
if constant is None:
|
||
|
# e.g. unless the right simplification is done, a symbolic
|
||
|
# zero is possible (see expression of issue 6829: without
|
||
|
# simplification constant will be None).
|
||
|
return
|
||
|
|
||
|
if constant is True:
|
||
|
# this gives a number whether there are free symbols or not
|
||
|
ndiff = diff._random()
|
||
|
# is_comparable will work whether the result is real
|
||
|
# or complex; it could be None, however.
|
||
|
if ndiff and ndiff.is_comparable:
|
||
|
return False
|
||
|
|
||
|
# sometimes we can use a simplified result to give a clue as to
|
||
|
# what the expression should be; if the expression is *not* zero
|
||
|
# then we should have been able to compute that and so now
|
||
|
# we can just consider the cases where the approximation appears
|
||
|
# to be zero -- we try to prove it via minimal_polynomial.
|
||
|
#
|
||
|
# removed
|
||
|
# ns = nsimplify(diff)
|
||
|
# if diff.is_number and (not ns or ns == diff):
|
||
|
#
|
||
|
# The thought was that if it nsimplifies to 0 that's a sure sign
|
||
|
# to try the following to prove it; or if it changed but wasn't
|
||
|
# zero that might be a sign that it's not going to be easy to
|
||
|
# prove. But tests seem to be working without that logic.
|
||
|
#
|
||
|
if diff.is_number:
|
||
|
# try to prove via self-consistency
|
||
|
surds = [s for s in diff.atoms(Pow) if s.args[0].is_Integer]
|
||
|
# it seems to work better to try big ones first
|
||
|
surds.sort(key=lambda x: -x.args[0])
|
||
|
for s in surds:
|
||
|
try:
|
||
|
# simplify is False here -- this expression has already
|
||
|
# been identified as being hard to identify as zero;
|
||
|
# we will handle the checking ourselves using nsimplify
|
||
|
# to see if we are in the right ballpark or not and if so
|
||
|
# *then* the simplification will be attempted.
|
||
|
sol = solve(diff, s, simplify=False)
|
||
|
if sol:
|
||
|
if s in sol:
|
||
|
# the self-consistent result is present
|
||
|
return True
|
||
|
if all(si.is_Integer for si in sol):
|
||
|
# perfect powers are removed at instantiation
|
||
|
# so surd s cannot be an integer
|
||
|
return False
|
||
|
if all(i.is_algebraic is False for i in sol):
|
||
|
# a surd is algebraic
|
||
|
return False
|
||
|
if any(si in surds for si in sol):
|
||
|
# it wasn't equal to s but it is in surds
|
||
|
# and different surds are not equal
|
||
|
return False
|
||
|
if any(nsimplify(s - si) == 0 and
|
||
|
simplify(s - si) == 0 for si in sol):
|
||
|
return True
|
||
|
if s.is_real:
|
||
|
if any(nsimplify(si, [s]) == s and simplify(si) == s
|
||
|
for si in sol):
|
||
|
return True
|
||
|
except NotImplementedError:
|
||
|
pass
|
||
|
|
||
|
# try to prove with minimal_polynomial but know when
|
||
|
# *not* to use this or else it can take a long time. e.g. issue 8354
|
||
|
if True: # change True to condition that assures non-hang
|
||
|
try:
|
||
|
mp = minimal_polynomial(diff)
|
||
|
if mp.is_Symbol:
|
||
|
return True
|
||
|
return False
|
||
|
except (NotAlgebraic, NotImplementedError):
|
||
|
pass
|
||
|
|
||
|
# diff has not simplified to zero; constant is either None, True
|
||
|
# or the number with significance (is_comparable) that was randomly
|
||
|
# calculated twice as the same value.
|
||
|
if constant not in (True, None) and constant != 0:
|
||
|
return False
|
||
|
|
||
|
if failing_expression:
|
||
|
return diff
|
||
|
return None
|
||
|
|
||
|
def _eval_is_extended_positive_negative(self, positive):
|
||
|
from sympy.polys.numberfields import minimal_polynomial
|
||
|
from sympy.polys.polyerrors import NotAlgebraic
|
||
|
if self.is_number:
|
||
|
# check to see that we can get a value
|
||
|
try:
|
||
|
n2 = self._eval_evalf(2)
|
||
|
# XXX: This shouldn't be caught here
|
||
|
# Catches ValueError: hypsum() failed to converge to the requested
|
||
|
# 34 bits of accuracy
|
||
|
except ValueError:
|
||
|
return None
|
||
|
if n2 is None:
|
||
|
return None
|
||
|
if getattr(n2, '_prec', 1) == 1: # no significance
|
||
|
return None
|
||
|
if n2 is S.NaN:
|
||
|
return None
|
||
|
|
||
|
f = self.evalf(2)
|
||
|
if f.is_Float:
|
||
|
match = f, S.Zero
|
||
|
else:
|
||
|
match = pure_complex(f)
|
||
|
if match is None:
|
||
|
return False
|
||
|
r, i = match
|
||
|
if not (i.is_Number and r.is_Number):
|
||
|
return False
|
||
|
if r._prec != 1 and i._prec != 1:
|
||
|
return bool(not i and ((r > 0) if positive else (r < 0)))
|
||
|
elif r._prec == 1 and (not i or i._prec == 1) and \
|
||
|
self._eval_is_algebraic() and not self.has(Function):
|
||
|
try:
|
||
|
if minimal_polynomial(self).is_Symbol:
|
||
|
return False
|
||
|
except (NotAlgebraic, NotImplementedError):
|
||
|
pass
|
||
|
|
||
|
def _eval_is_extended_positive(self):
|
||
|
return self._eval_is_extended_positive_negative(positive=True)
|
||
|
|
||
|
def _eval_is_extended_negative(self):
|
||
|
return self._eval_is_extended_positive_negative(positive=False)
|
||
|
|
||
|
def _eval_interval(self, x, a, b):
|
||
|
"""
|
||
|
Returns evaluation over an interval. For most functions this is:
|
||
|
|
||
|
self.subs(x, b) - self.subs(x, a),
|
||
|
|
||
|
possibly using limit() if NaN is returned from subs, or if
|
||
|
singularities are found between a and b.
|
||
|
|
||
|
If b or a is None, it only evaluates -self.subs(x, a) or self.subs(b, x),
|
||
|
respectively.
|
||
|
|
||
|
"""
|
||
|
from sympy.calculus.accumulationbounds import AccumBounds
|
||
|
from sympy.functions.elementary.exponential import log
|
||
|
from sympy.series.limits import limit, Limit
|
||
|
from sympy.sets.sets import Interval
|
||
|
from sympy.solvers.solveset import solveset
|
||
|
|
||
|
if (a is None and b is None):
|
||
|
raise ValueError('Both interval ends cannot be None.')
|
||
|
|
||
|
def _eval_endpoint(left):
|
||
|
c = a if left else b
|
||
|
if c is None:
|
||
|
return S.Zero
|
||
|
else:
|
||
|
C = self.subs(x, c)
|
||
|
if C.has(S.NaN, S.Infinity, S.NegativeInfinity,
|
||
|
S.ComplexInfinity, AccumBounds):
|
||
|
if (a < b) != False:
|
||
|
C = limit(self, x, c, "+" if left else "-")
|
||
|
else:
|
||
|
C = limit(self, x, c, "-" if left else "+")
|
||
|
|
||
|
if isinstance(C, Limit):
|
||
|
raise NotImplementedError("Could not compute limit")
|
||
|
return C
|
||
|
|
||
|
if a == b:
|
||
|
return S.Zero
|
||
|
|
||
|
A = _eval_endpoint(left=True)
|
||
|
if A is S.NaN:
|
||
|
return A
|
||
|
|
||
|
B = _eval_endpoint(left=False)
|
||
|
|
||
|
if (a and b) is None:
|
||
|
return B - A
|
||
|
|
||
|
value = B - A
|
||
|
|
||
|
if a.is_comparable and b.is_comparable:
|
||
|
if a < b:
|
||
|
domain = Interval(a, b)
|
||
|
else:
|
||
|
domain = Interval(b, a)
|
||
|
# check the singularities of self within the interval
|
||
|
# if singularities is a ConditionSet (not iterable), catch the exception and pass
|
||
|
singularities = solveset(self.cancel().as_numer_denom()[1], x,
|
||
|
domain=domain)
|
||
|
for logterm in self.atoms(log):
|
||
|
singularities = singularities | solveset(logterm.args[0], x,
|
||
|
domain=domain)
|
||
|
try:
|
||
|
for s in singularities:
|
||
|
if value is S.NaN:
|
||
|
# no need to keep adding, it will stay NaN
|
||
|
break
|
||
|
if not s.is_comparable:
|
||
|
continue
|
||
|
if (a < s) == (s < b) == True:
|
||
|
value += -limit(self, x, s, "+") + limit(self, x, s, "-")
|
||
|
elif (b < s) == (s < a) == True:
|
||
|
value += limit(self, x, s, "+") - limit(self, x, s, "-")
|
||
|
except TypeError:
|
||
|
pass
|
||
|
|
||
|
return value
|
||
|
|
||
|
def _eval_power(self, other):
|
||
|
# subclass to compute self**other for cases when
|
||
|
# other is not NaN, 0, or 1
|
||
|
return None
|
||
|
|
||
|
def _eval_conjugate(self):
|
||
|
if self.is_extended_real:
|
||
|
return self
|
||
|
elif self.is_imaginary:
|
||
|
return -self
|
||
|
|
||
|
def conjugate(self):
|
||
|
"""Returns the complex conjugate of 'self'."""
|
||
|
from sympy.functions.elementary.complexes import conjugate as c
|
||
|
return c(self)
|
||
|
|
||
|
def dir(self, x, cdir):
|
||
|
if self.is_zero:
|
||
|
return S.Zero
|
||
|
from sympy.functions.elementary.exponential import log
|
||
|
minexp = S.Zero
|
||
|
arg = self
|
||
|
while arg:
|
||
|
minexp += S.One
|
||
|
arg = arg.diff(x)
|
||
|
coeff = arg.subs(x, 0)
|
||
|
if coeff is S.NaN:
|
||
|
coeff = arg.limit(x, 0)
|
||
|
if coeff is S.ComplexInfinity:
|
||
|
try:
|
||
|
coeff, _ = arg.leadterm(x)
|
||
|
if coeff.has(log(x)):
|
||
|
raise ValueError()
|
||
|
except ValueError:
|
||
|
coeff = arg.limit(x, 0)
|
||
|
if coeff != S.Zero:
|
||
|
break
|
||
|
return coeff*cdir**minexp
|
||
|
|
||
|
def _eval_transpose(self):
|
||
|
from sympy.functions.elementary.complexes import conjugate
|
||
|
if (self.is_complex or self.is_infinite):
|
||
|
return self
|
||
|
elif self.is_hermitian:
|
||
|
return conjugate(self)
|
||
|
elif self.is_antihermitian:
|
||
|
return -conjugate(self)
|
||
|
|
||
|
def transpose(self):
|
||
|
from sympy.functions.elementary.complexes import transpose
|
||
|
return transpose(self)
|
||
|
|
||
|
def _eval_adjoint(self):
|
||
|
from sympy.functions.elementary.complexes import conjugate, transpose
|
||
|
if self.is_hermitian:
|
||
|
return self
|
||
|
elif self.is_antihermitian:
|
||
|
return -self
|
||
|
obj = self._eval_conjugate()
|
||
|
if obj is not None:
|
||
|
return transpose(obj)
|
||
|
obj = self._eval_transpose()
|
||
|
if obj is not None:
|
||
|
return conjugate(obj)
|
||
|
|
||
|
def adjoint(self):
|
||
|
from sympy.functions.elementary.complexes import adjoint
|
||
|
return adjoint(self)
|
||
|
|
||
|
@classmethod
|
||
|
def _parse_order(cls, order):
|
||
|
"""Parse and configure the ordering of terms. """
|
||
|
from sympy.polys.orderings import monomial_key
|
||
|
|
||
|
startswith = getattr(order, "startswith", None)
|
||
|
if startswith is None:
|
||
|
reverse = False
|
||
|
else:
|
||
|
reverse = startswith('rev-')
|
||
|
if reverse:
|
||
|
order = order[4:]
|
||
|
|
||
|
monom_key = monomial_key(order)
|
||
|
|
||
|
def neg(monom):
|
||
|
return tuple([neg(m) if isinstance(m, tuple) else -m for m in monom])
|
||
|
|
||
|
def key(term):
|
||
|
_, ((re, im), monom, ncpart) = term
|
||
|
|
||
|
monom = neg(monom_key(monom))
|
||
|
ncpart = tuple([e.sort_key(order=order) for e in ncpart])
|
||
|
coeff = ((bool(im), im), (re, im))
|
||
|
|
||
|
return monom, ncpart, coeff
|
||
|
|
||
|
return key, reverse
|
||
|
|
||
|
def as_ordered_factors(self, order=None):
|
||
|
"""Return list of ordered factors (if Mul) else [self]."""
|
||
|
return [self]
|
||
|
|
||
|
def as_poly(self, *gens, **args):
|
||
|
"""Converts ``self`` to a polynomial or returns ``None``.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
>>> from sympy import sin
|
||
|
>>> from sympy.abc import x, y
|
||
|
|
||
|
>>> print((x**2 + x*y).as_poly())
|
||
|
Poly(x**2 + x*y, x, y, domain='ZZ')
|
||
|
|
||
|
>>> print((x**2 + x*y).as_poly(x, y))
|
||
|
Poly(x**2 + x*y, x, y, domain='ZZ')
|
||
|
|
||
|
>>> print((x**2 + sin(y)).as_poly(x, y))
|
||
|
None
|
||
|
|
||
|
"""
|
||
|
from sympy.polys.polyerrors import PolynomialError, GeneratorsNeeded
|
||
|
from sympy.polys.polytools import Poly
|
||
|
|
||
|
try:
|
||
|
poly = Poly(self, *gens, **args)
|
||
|
|
||
|
if not poly.is_Poly:
|
||
|
return None
|
||
|
else:
|
||
|
return poly
|
||
|
except (PolynomialError, GeneratorsNeeded):
|
||
|
# PolynomialError is caught for e.g. exp(x).as_poly(x)
|
||
|
# GeneratorsNeeded is caught for e.g. S(2).as_poly()
|
||
|
return None
|
||
|
|
||
|
def as_ordered_terms(self, order=None, data=False):
|
||
|
"""
|
||
|
Transform an expression to an ordered list of terms.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import sin, cos
|
||
|
>>> from sympy.abc import x
|
||
|
|
||
|
>>> (sin(x)**2*cos(x) + sin(x)**2 + 1).as_ordered_terms()
|
||
|
[sin(x)**2*cos(x), sin(x)**2, 1]
|
||
|
|
||
|
"""
|
||
|
|
||
|
from .numbers import Number, NumberSymbol
|
||
|
|
||
|
if order is None and self.is_Add:
|
||
|
# Spot the special case of Add(Number, Mul(Number, expr)) with the
|
||
|
# first number positive and the second number negative
|
||
|
key = lambda x:not isinstance(x, (Number, NumberSymbol))
|
||
|
add_args = sorted(Add.make_args(self), key=key)
|
||
|
if (len(add_args) == 2
|
||
|
and isinstance(add_args[0], (Number, NumberSymbol))
|
||
|
and isinstance(add_args[1], Mul)):
|
||
|
mul_args = sorted(Mul.make_args(add_args[1]), key=key)
|
||
|
if (len(mul_args) == 2
|
||
|
and isinstance(mul_args[0], Number)
|
||
|
and add_args[0].is_positive
|
||
|
and mul_args[0].is_negative):
|
||
|
return add_args
|
||
|
|
||
|
key, reverse = self._parse_order(order)
|
||
|
terms, gens = self.as_terms()
|
||
|
|
||
|
if not any(term.is_Order for term, _ in terms):
|
||
|
ordered = sorted(terms, key=key, reverse=reverse)
|
||
|
else:
|
||
|
_terms, _order = [], []
|
||
|
|
||
|
for term, repr in terms:
|
||
|
if not term.is_Order:
|
||
|
_terms.append((term, repr))
|
||
|
else:
|
||
|
_order.append((term, repr))
|
||
|
|
||
|
ordered = sorted(_terms, key=key, reverse=True) \
|
||
|
+ sorted(_order, key=key, reverse=True)
|
||
|
|
||
|
if data:
|
||
|
return ordered, gens
|
||
|
else:
|
||
|
return [term for term, _ in ordered]
|
||
|
|
||
|
def as_terms(self):
|
||
|
"""Transform an expression to a list of terms. """
|
||
|
from .exprtools import decompose_power
|
||
|
|
||
|
gens, terms = set(), []
|
||
|
|
||
|
for term in Add.make_args(self):
|
||
|
coeff, _term = term.as_coeff_Mul()
|
||
|
|
||
|
coeff = complex(coeff)
|
||
|
cpart, ncpart = {}, []
|
||
|
|
||
|
if _term is not S.One:
|
||
|
for factor in Mul.make_args(_term):
|
||
|
if factor.is_number:
|
||
|
try:
|
||
|
coeff *= complex(factor)
|
||
|
except (TypeError, ValueError):
|
||
|
pass
|
||
|
else:
|
||
|
continue
|
||
|
|
||
|
if factor.is_commutative:
|
||
|
base, exp = decompose_power(factor)
|
||
|
|
||
|
cpart[base] = exp
|
||
|
gens.add(base)
|
||
|
else:
|
||
|
ncpart.append(factor)
|
||
|
|
||
|
coeff = coeff.real, coeff.imag
|
||
|
ncpart = tuple(ncpart)
|
||
|
|
||
|
terms.append((term, (coeff, cpart, ncpart)))
|
||
|
|
||
|
gens = sorted(gens, key=default_sort_key)
|
||
|
|
||
|
k, indices = len(gens), {}
|
||
|
|
||
|
for i, g in enumerate(gens):
|
||
|
indices[g] = i
|
||
|
|
||
|
result = []
|
||
|
|
||
|
for term, (coeff, cpart, ncpart) in terms:
|
||
|
monom = [0]*k
|
||
|
|
||
|
for base, exp in cpart.items():
|
||
|
monom[indices[base]] = exp
|
||
|
|
||
|
result.append((term, (coeff, tuple(monom), ncpart)))
|
||
|
|
||
|
return result, gens
|
||
|
|
||
|
def removeO(self):
|
||
|
"""Removes the additive O(..) symbol if there is one"""
|
||
|
return self
|
||
|
|
||
|
def getO(self):
|
||
|
"""Returns the additive O(..) symbol if there is one, else None."""
|
||
|
return None
|
||
|
|
||
|
def getn(self):
|
||
|
"""
|
||
|
Returns the order of the expression.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The order is determined either from the O(...) term. If there
|
||
|
is no O(...) term, it returns None.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import O
|
||
|
>>> from sympy.abc import x
|
||
|
>>> (1 + x + O(x**2)).getn()
|
||
|
2
|
||
|
>>> (1 + x).getn()
|
||
|
|
||
|
"""
|
||
|
o = self.getO()
|
||
|
if o is None:
|
||
|
return None
|
||
|
elif o.is_Order:
|
||
|
o = o.expr
|
||
|
if o is S.One:
|
||
|
return S.Zero
|
||
|
if o.is_Symbol:
|
||
|
return S.One
|
||
|
if o.is_Pow:
|
||
|
return o.args[1]
|
||
|
if o.is_Mul: # x**n*log(x)**n or x**n/log(x)**n
|
||
|
for oi in o.args:
|
||
|
if oi.is_Symbol:
|
||
|
return S.One
|
||
|
if oi.is_Pow:
|
||
|
from .symbol import Dummy, Symbol
|
||
|
syms = oi.atoms(Symbol)
|
||
|
if len(syms) == 1:
|
||
|
x = syms.pop()
|
||
|
oi = oi.subs(x, Dummy('x', positive=True))
|
||
|
if oi.base.is_Symbol and oi.exp.is_Rational:
|
||
|
return abs(oi.exp)
|
||
|
|
||
|
raise NotImplementedError('not sure of order of %s' % o)
|
||
|
|
||
|
def count_ops(self, visual=None):
|
||
|
from .function import count_ops
|
||
|
return count_ops(self, visual)
|
||
|
|
||
|
def args_cnc(self, cset=False, warn=True, split_1=True):
|
||
|
"""Return [commutative factors, non-commutative factors] of self.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
self is treated as a Mul and the ordering of the factors is maintained.
|
||
|
If ``cset`` is True the commutative factors will be returned in a set.
|
||
|
If there were repeated factors (as may happen with an unevaluated Mul)
|
||
|
then an error will be raised unless it is explicitly suppressed by
|
||
|
setting ``warn`` to False.
|
||
|
|
||
|
Note: -1 is always separated from a Number unless split_1 is False.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import symbols, oo
|
||
|
>>> A, B = symbols('A B', commutative=0)
|
||
|
>>> x, y = symbols('x y')
|
||
|
>>> (-2*x*y).args_cnc()
|
||
|
[[-1, 2, x, y], []]
|
||
|
>>> (-2.5*x).args_cnc()
|
||
|
[[-1, 2.5, x], []]
|
||
|
>>> (-2*x*A*B*y).args_cnc()
|
||
|
[[-1, 2, x, y], [A, B]]
|
||
|
>>> (-2*x*A*B*y).args_cnc(split_1=False)
|
||
|
[[-2, x, y], [A, B]]
|
||
|
>>> (-2*x*y).args_cnc(cset=True)
|
||
|
[{-1, 2, x, y}, []]
|
||
|
|
||
|
The arg is always treated as a Mul:
|
||
|
|
||
|
>>> (-2 + x + A).args_cnc()
|
||
|
[[], [x - 2 + A]]
|
||
|
>>> (-oo).args_cnc() # -oo is a singleton
|
||
|
[[-1, oo], []]
|
||
|
"""
|
||
|
|
||
|
if self.is_Mul:
|
||
|
args = list(self.args)
|
||
|
else:
|
||
|
args = [self]
|
||
|
for i, mi in enumerate(args):
|
||
|
if not mi.is_commutative:
|
||
|
c = args[:i]
|
||
|
nc = args[i:]
|
||
|
break
|
||
|
else:
|
||
|
c = args
|
||
|
nc = []
|
||
|
|
||
|
if c and split_1 and (
|
||
|
c[0].is_Number and
|
||
|
c[0].is_extended_negative and
|
||
|
c[0] is not S.NegativeOne):
|
||
|
c[:1] = [S.NegativeOne, -c[0]]
|
||
|
|
||
|
if cset:
|
||
|
clen = len(c)
|
||
|
c = set(c)
|
||
|
if clen and warn and len(c) != clen:
|
||
|
raise ValueError('repeated commutative arguments: %s' %
|
||
|
[ci for ci in c if list(self.args).count(ci) > 1])
|
||
|
return [c, nc]
|
||
|
|
||
|
def coeff(self, x, n=1, right=False, _first=True):
|
||
|
"""
|
||
|
Returns the coefficient from the term(s) containing ``x**n``. If ``n``
|
||
|
is zero then all terms independent of ``x`` will be returned.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
When ``x`` is noncommutative, the coefficient to the left (default) or
|
||
|
right of ``x`` can be returned. The keyword 'right' is ignored when
|
||
|
``x`` is commutative.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import symbols
|
||
|
>>> from sympy.abc import x, y, z
|
||
|
|
||
|
You can select terms that have an explicit negative in front of them:
|
||
|
|
||
|
>>> (-x + 2*y).coeff(-1)
|
||
|
x
|
||
|
>>> (x - 2*y).coeff(-1)
|
||
|
2*y
|
||
|
|
||
|
You can select terms with no Rational coefficient:
|
||
|
|
||
|
>>> (x + 2*y).coeff(1)
|
||
|
x
|
||
|
>>> (3 + 2*x + 4*x**2).coeff(1)
|
||
|
0
|
||
|
|
||
|
You can select terms independent of x by making n=0; in this case
|
||
|
expr.as_independent(x)[0] is returned (and 0 will be returned instead
|
||
|
of None):
|
||
|
|
||
|
>>> (3 + 2*x + 4*x**2).coeff(x, 0)
|
||
|
3
|
||
|
>>> eq = ((x + 1)**3).expand() + 1
|
||
|
>>> eq
|
||
|
x**3 + 3*x**2 + 3*x + 2
|
||
|
>>> [eq.coeff(x, i) for i in reversed(range(4))]
|
||
|
[1, 3, 3, 2]
|
||
|
>>> eq -= 2
|
||
|
>>> [eq.coeff(x, i) for i in reversed(range(4))]
|
||
|
[1, 3, 3, 0]
|
||
|
|
||
|
You can select terms that have a numerical term in front of them:
|
||
|
|
||
|
>>> (-x - 2*y).coeff(2)
|
||
|
-y
|
||
|
>>> from sympy import sqrt
|
||
|
>>> (x + sqrt(2)*x).coeff(sqrt(2))
|
||
|
x
|
||
|
|
||
|
The matching is exact:
|
||
|
|
||
|
>>> (3 + 2*x + 4*x**2).coeff(x)
|
||
|
2
|
||
|
>>> (3 + 2*x + 4*x**2).coeff(x**2)
|
||
|
4
|
||
|
>>> (3 + 2*x + 4*x**2).coeff(x**3)
|
||
|
0
|
||
|
>>> (z*(x + y)**2).coeff((x + y)**2)
|
||
|
z
|
||
|
>>> (z*(x + y)**2).coeff(x + y)
|
||
|
0
|
||
|
|
||
|
In addition, no factoring is done, so 1 + z*(1 + y) is not obtained
|
||
|
from the following:
|
||
|
|
||
|
>>> (x + z*(x + x*y)).coeff(x)
|
||
|
1
|
||
|
|
||
|
If such factoring is desired, factor_terms can be used first:
|
||
|
|
||
|
>>> from sympy import factor_terms
|
||
|
>>> factor_terms(x + z*(x + x*y)).coeff(x)
|
||
|
z*(y + 1) + 1
|
||
|
|
||
|
>>> n, m, o = symbols('n m o', commutative=False)
|
||
|
>>> n.coeff(n)
|
||
|
1
|
||
|
>>> (3*n).coeff(n)
|
||
|
3
|
||
|
>>> (n*m + m*n*m).coeff(n) # = (1 + m)*n*m
|
||
|
1 + m
|
||
|
>>> (n*m + m*n*m).coeff(n, right=True) # = (1 + m)*n*m
|
||
|
m
|
||
|
|
||
|
If there is more than one possible coefficient 0 is returned:
|
||
|
|
||
|
>>> (n*m + m*n).coeff(n)
|
||
|
0
|
||
|
|
||
|
If there is only one possible coefficient, it is returned:
|
||
|
|
||
|
>>> (n*m + x*m*n).coeff(m*n)
|
||
|
x
|
||
|
>>> (n*m + x*m*n).coeff(m*n, right=1)
|
||
|
1
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
as_coefficient: separate the expression into a coefficient and factor
|
||
|
as_coeff_Add: separate the additive constant from an expression
|
||
|
as_coeff_Mul: separate the multiplicative constant from an expression
|
||
|
as_independent: separate x-dependent terms/factors from others
|
||
|
sympy.polys.polytools.Poly.coeff_monomial: efficiently find the single coefficient of a monomial in Poly
|
||
|
sympy.polys.polytools.Poly.nth: like coeff_monomial but powers of monomial terms are used
|
||
|
"""
|
||
|
x = sympify(x)
|
||
|
if not isinstance(x, Basic):
|
||
|
return S.Zero
|
||
|
|
||
|
n = as_int(n)
|
||
|
|
||
|
if not x:
|
||
|
return S.Zero
|
||
|
|
||
|
if x == self:
|
||
|
if n == 1:
|
||
|
return S.One
|
||
|
return S.Zero
|
||
|
|
||
|
if x is S.One:
|
||
|
co = [a for a in Add.make_args(self)
|
||
|
if a.as_coeff_Mul()[0] is S.One]
|
||
|
if not co:
|
||
|
return S.Zero
|
||
|
return Add(*co)
|
||
|
|
||
|
if n == 0:
|
||
|
if x.is_Add and self.is_Add:
|
||
|
c = self.coeff(x, right=right)
|
||
|
if not c:
|
||
|
return S.Zero
|
||
|
if not right:
|
||
|
return self - Add(*[a*x for a in Add.make_args(c)])
|
||
|
return self - Add(*[x*a for a in Add.make_args(c)])
|
||
|
return self.as_independent(x, as_Add=True)[0]
|
||
|
|
||
|
# continue with the full method, looking for this power of x:
|
||
|
x = x**n
|
||
|
|
||
|
def incommon(l1, l2):
|
||
|
if not l1 or not l2:
|
||
|
return []
|
||
|
n = min(len(l1), len(l2))
|
||
|
for i in range(n):
|
||
|
if l1[i] != l2[i]:
|
||
|
return l1[:i]
|
||
|
return l1[:]
|
||
|
|
||
|
def find(l, sub, first=True):
|
||
|
""" Find where list sub appears in list l. When ``first`` is True
|
||
|
the first occurrence from the left is returned, else the last
|
||
|
occurrence is returned. Return None if sub is not in l.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>> l = range(5)*2
|
||
|
>> find(l, [2, 3])
|
||
|
2
|
||
|
>> find(l, [2, 3], first=0)
|
||
|
7
|
||
|
>> find(l, [2, 4])
|
||
|
None
|
||
|
|
||
|
"""
|
||
|
if not sub or not l or len(sub) > len(l):
|
||
|
return None
|
||
|
n = len(sub)
|
||
|
if not first:
|
||
|
l.reverse()
|
||
|
sub.reverse()
|
||
|
for i in range(len(l) - n + 1):
|
||
|
if all(l[i + j] == sub[j] for j in range(n)):
|
||
|
break
|
||
|
else:
|
||
|
i = None
|
||
|
if not first:
|
||
|
l.reverse()
|
||
|
sub.reverse()
|
||
|
if i is not None and not first:
|
||
|
i = len(l) - (i + n)
|
||
|
return i
|
||
|
|
||
|
co = []
|
||
|
args = Add.make_args(self)
|
||
|
self_c = self.is_commutative
|
||
|
x_c = x.is_commutative
|
||
|
if self_c and not x_c:
|
||
|
return S.Zero
|
||
|
if _first and self.is_Add and not self_c and not x_c:
|
||
|
# get the part that depends on x exactly
|
||
|
xargs = Mul.make_args(x)
|
||
|
d = Add(*[i for i in Add.make_args(self.as_independent(x)[1])
|
||
|
if all(xi in Mul.make_args(i) for xi in xargs)])
|
||
|
rv = d.coeff(x, right=right, _first=False)
|
||
|
if not rv.is_Add or not right:
|
||
|
return rv
|
||
|
c_part, nc_part = zip(*[i.args_cnc() for i in rv.args])
|
||
|
if has_variety(c_part):
|
||
|
return rv
|
||
|
return Add(*[Mul._from_args(i) for i in nc_part])
|
||
|
|
||
|
one_c = self_c or x_c
|
||
|
xargs, nx = x.args_cnc(cset=True, warn=bool(not x_c))
|
||
|
# find the parts that pass the commutative terms
|
||
|
for a in args:
|
||
|
margs, nc = a.args_cnc(cset=True, warn=bool(not self_c))
|
||
|
if nc is None:
|
||
|
nc = []
|
||
|
if len(xargs) > len(margs):
|
||
|
continue
|
||
|
resid = margs.difference(xargs)
|
||
|
if len(resid) + len(xargs) == len(margs):
|
||
|
if one_c:
|
||
|
co.append(Mul(*(list(resid) + nc)))
|
||
|
else:
|
||
|
co.append((resid, nc))
|
||
|
if one_c:
|
||
|
if co == []:
|
||
|
return S.Zero
|
||
|
elif co:
|
||
|
return Add(*co)
|
||
|
else: # both nc
|
||
|
# now check the non-comm parts
|
||
|
if not co:
|
||
|
return S.Zero
|
||
|
if all(n == co[0][1] for r, n in co):
|
||
|
ii = find(co[0][1], nx, right)
|
||
|
if ii is not None:
|
||
|
if not right:
|
||
|
return Mul(Add(*[Mul(*r) for r, c in co]), Mul(*co[0][1][:ii]))
|
||
|
else:
|
||
|
return Mul(*co[0][1][ii + len(nx):])
|
||
|
beg = reduce(incommon, (n[1] for n in co))
|
||
|
if beg:
|
||
|
ii = find(beg, nx, right)
|
||
|
if ii is not None:
|
||
|
if not right:
|
||
|
gcdc = co[0][0]
|
||
|
for i in range(1, len(co)):
|
||
|
gcdc = gcdc.intersection(co[i][0])
|
||
|
if not gcdc:
|
||
|
break
|
||
|
return Mul(*(list(gcdc) + beg[:ii]))
|
||
|
else:
|
||
|
m = ii + len(nx)
|
||
|
return Add(*[Mul(*(list(r) + n[m:])) for r, n in co])
|
||
|
end = list(reversed(
|
||
|
reduce(incommon, (list(reversed(n[1])) for n in co))))
|
||
|
if end:
|
||
|
ii = find(end, nx, right)
|
||
|
if ii is not None:
|
||
|
if not right:
|
||
|
return Add(*[Mul(*(list(r) + n[:-len(end) + ii])) for r, n in co])
|
||
|
else:
|
||
|
return Mul(*end[ii + len(nx):])
|
||
|
# look for single match
|
||
|
hit = None
|
||
|
for i, (r, n) in enumerate(co):
|
||
|
ii = find(n, nx, right)
|
||
|
if ii is not None:
|
||
|
if not hit:
|
||
|
hit = ii, r, n
|
||
|
else:
|
||
|
break
|
||
|
else:
|
||
|
if hit:
|
||
|
ii, r, n = hit
|
||
|
if not right:
|
||
|
return Mul(*(list(r) + n[:ii]))
|
||
|
else:
|
||
|
return Mul(*n[ii + len(nx):])
|
||
|
|
||
|
return S.Zero
|
||
|
|
||
|
def as_expr(self, *gens):
|
||
|
"""
|
||
|
Convert a polynomial to a SymPy expression.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import sin
|
||
|
>>> from sympy.abc import x, y
|
||
|
|
||
|
>>> f = (x**2 + x*y).as_poly(x, y)
|
||
|
>>> f.as_expr()
|
||
|
x**2 + x*y
|
||
|
|
||
|
>>> sin(x).as_expr()
|
||
|
sin(x)
|
||
|
|
||
|
"""
|
||
|
return self
|
||
|
|
||
|
def as_coefficient(self, expr):
|
||
|
"""
|
||
|
Extracts symbolic coefficient at the given expression. In
|
||
|
other words, this functions separates 'self' into the product
|
||
|
of 'expr' and 'expr'-free coefficient. If such separation
|
||
|
is not possible it will return None.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import E, pi, sin, I, Poly
|
||
|
>>> from sympy.abc import x
|
||
|
|
||
|
>>> E.as_coefficient(E)
|
||
|
1
|
||
|
>>> (2*E).as_coefficient(E)
|
||
|
2
|
||
|
>>> (2*sin(E)*E).as_coefficient(E)
|
||
|
|
||
|
Two terms have E in them so a sum is returned. (If one were
|
||
|
desiring the coefficient of the term exactly matching E then
|
||
|
the constant from the returned expression could be selected.
|
||
|
Or, for greater precision, a method of Poly can be used to
|
||
|
indicate the desired term from which the coefficient is
|
||
|
desired.)
|
||
|
|
||
|
>>> (2*E + x*E).as_coefficient(E)
|
||
|
x + 2
|
||
|
>>> _.args[0] # just want the exact match
|
||
|
2
|
||
|
>>> p = Poly(2*E + x*E); p
|
||
|
Poly(x*E + 2*E, x, E, domain='ZZ')
|
||
|
>>> p.coeff_monomial(E)
|
||
|
2
|
||
|
>>> p.nth(0, 1)
|
||
|
2
|
||
|
|
||
|
Since the following cannot be written as a product containing
|
||
|
E as a factor, None is returned. (If the coefficient ``2*x`` is
|
||
|
desired then the ``coeff`` method should be used.)
|
||
|
|
||
|
>>> (2*E*x + x).as_coefficient(E)
|
||
|
>>> (2*E*x + x).coeff(E)
|
||
|
2*x
|
||
|
|
||
|
>>> (E*(x + 1) + x).as_coefficient(E)
|
||
|
|
||
|
>>> (2*pi*I).as_coefficient(pi*I)
|
||
|
2
|
||
|
>>> (2*I).as_coefficient(pi*I)
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
coeff: return sum of terms have a given factor
|
||
|
as_coeff_Add: separate the additive constant from an expression
|
||
|
as_coeff_Mul: separate the multiplicative constant from an expression
|
||
|
as_independent: separate x-dependent terms/factors from others
|
||
|
sympy.polys.polytools.Poly.coeff_monomial: efficiently find the single coefficient of a monomial in Poly
|
||
|
sympy.polys.polytools.Poly.nth: like coeff_monomial but powers of monomial terms are used
|
||
|
|
||
|
|
||
|
"""
|
||
|
|
||
|
r = self.extract_multiplicatively(expr)
|
||
|
if r and not r.has(expr):
|
||
|
return r
|
||
|
|
||
|
def as_independent(self, *deps, **hint) -> tuple[Expr, Expr]:
|
||
|
"""
|
||
|
A mostly naive separation of a Mul or Add into arguments that are not
|
||
|
are dependent on deps. To obtain as complete a separation of variables
|
||
|
as possible, use a separation method first, e.g.:
|
||
|
|
||
|
* separatevars() to change Mul, Add and Pow (including exp) into Mul
|
||
|
* .expand(mul=True) to change Add or Mul into Add
|
||
|
* .expand(log=True) to change log expr into an Add
|
||
|
|
||
|
The only non-naive thing that is done here is to respect noncommutative
|
||
|
ordering of variables and to always return (0, 0) for `self` of zero
|
||
|
regardless of hints.
|
||
|
|
||
|
For nonzero `self`, the returned tuple (i, d) has the
|
||
|
following interpretation:
|
||
|
|
||
|
* i will has no variable that appears in deps
|
||
|
* d will either have terms that contain variables that are in deps, or
|
||
|
be equal to 0 (when self is an Add) or 1 (when self is a Mul)
|
||
|
* if self is an Add then self = i + d
|
||
|
* if self is a Mul then self = i*d
|
||
|
* otherwise (self, S.One) or (S.One, self) is returned.
|
||
|
|
||
|
To force the expression to be treated as an Add, use the hint as_Add=True
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
-- self is an Add
|
||
|
|
||
|
>>> from sympy import sin, cos, exp
|
||
|
>>> from sympy.abc import x, y, z
|
||
|
|
||
|
>>> (x + x*y).as_independent(x)
|
||
|
(0, x*y + x)
|
||
|
>>> (x + x*y).as_independent(y)
|
||
|
(x, x*y)
|
||
|
>>> (2*x*sin(x) + y + x + z).as_independent(x)
|
||
|
(y + z, 2*x*sin(x) + x)
|
||
|
>>> (2*x*sin(x) + y + x + z).as_independent(x, y)
|
||
|
(z, 2*x*sin(x) + x + y)
|
||
|
|
||
|
-- self is a Mul
|
||
|
|
||
|
>>> (x*sin(x)*cos(y)).as_independent(x)
|
||
|
(cos(y), x*sin(x))
|
||
|
|
||
|
non-commutative terms cannot always be separated out when self is a Mul
|
||
|
|
||
|
>>> from sympy import symbols
|
||
|
>>> n1, n2, n3 = symbols('n1 n2 n3', commutative=False)
|
||
|
>>> (n1 + n1*n2).as_independent(n2)
|
||
|
(n1, n1*n2)
|
||
|
>>> (n2*n1 + n1*n2).as_independent(n2)
|
||
|
(0, n1*n2 + n2*n1)
|
||
|
>>> (n1*n2*n3).as_independent(n1)
|
||
|
(1, n1*n2*n3)
|
||
|
>>> (n1*n2*n3).as_independent(n2)
|
||
|
(n1, n2*n3)
|
||
|
>>> ((x-n1)*(x-y)).as_independent(x)
|
||
|
(1, (x - y)*(x - n1))
|
||
|
|
||
|
-- self is anything else:
|
||
|
|
||
|
>>> (sin(x)).as_independent(x)
|
||
|
(1, sin(x))
|
||
|
>>> (sin(x)).as_independent(y)
|
||
|
(sin(x), 1)
|
||
|
>>> exp(x+y).as_independent(x)
|
||
|
(1, exp(x + y))
|
||
|
|
||
|
-- force self to be treated as an Add:
|
||
|
|
||
|
>>> (3*x).as_independent(x, as_Add=True)
|
||
|
(0, 3*x)
|
||
|
|
||
|
-- force self to be treated as a Mul:
|
||
|
|
||
|
>>> (3+x).as_independent(x, as_Add=False)
|
||
|
(1, x + 3)
|
||
|
>>> (-3+x).as_independent(x, as_Add=False)
|
||
|
(1, x - 3)
|
||
|
|
||
|
Note how the below differs from the above in making the
|
||
|
constant on the dep term positive.
|
||
|
|
||
|
>>> (y*(-3+x)).as_independent(x)
|
||
|
(y, x - 3)
|
||
|
|
||
|
-- use .as_independent() for true independence testing instead
|
||
|
of .has(). The former considers only symbols in the free
|
||
|
symbols while the latter considers all symbols
|
||
|
|
||
|
>>> from sympy import Integral
|
||
|
>>> I = Integral(x, (x, 1, 2))
|
||
|
>>> I.has(x)
|
||
|
True
|
||
|
>>> x in I.free_symbols
|
||
|
False
|
||
|
>>> I.as_independent(x) == (I, 1)
|
||
|
True
|
||
|
>>> (I + x).as_independent(x) == (I, x)
|
||
|
True
|
||
|
|
||
|
Note: when trying to get independent terms, a separation method
|
||
|
might need to be used first. In this case, it is important to keep
|
||
|
track of what you send to this routine so you know how to interpret
|
||
|
the returned values
|
||
|
|
||
|
>>> from sympy import separatevars, log
|
||
|
>>> separatevars(exp(x+y)).as_independent(x)
|
||
|
(exp(y), exp(x))
|
||
|
>>> (x + x*y).as_independent(y)
|
||
|
(x, x*y)
|
||
|
>>> separatevars(x + x*y).as_independent(y)
|
||
|
(x, y + 1)
|
||
|
>>> (x*(1 + y)).as_independent(y)
|
||
|
(x, y + 1)
|
||
|
>>> (x*(1 + y)).expand(mul=True).as_independent(y)
|
||
|
(x, x*y)
|
||
|
>>> a, b=symbols('a b', positive=True)
|
||
|
>>> (log(a*b).expand(log=True)).as_independent(b)
|
||
|
(log(a), log(b))
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
separatevars
|
||
|
expand_log
|
||
|
sympy.core.add.Add.as_two_terms
|
||
|
sympy.core.mul.Mul.as_two_terms
|
||
|
as_coeff_mul
|
||
|
"""
|
||
|
from .symbol import Symbol
|
||
|
from .add import _unevaluated_Add
|
||
|
from .mul import _unevaluated_Mul
|
||
|
|
||
|
if self is S.Zero:
|
||
|
return (self, self)
|
||
|
|
||
|
func = self.func
|
||
|
if hint.get('as_Add', isinstance(self, Add) ):
|
||
|
want = Add
|
||
|
else:
|
||
|
want = Mul
|
||
|
|
||
|
# sift out deps into symbolic and other and ignore
|
||
|
# all symbols but those that are in the free symbols
|
||
|
sym = set()
|
||
|
other = []
|
||
|
for d in deps:
|
||
|
if isinstance(d, Symbol): # Symbol.is_Symbol is True
|
||
|
sym.add(d)
|
||
|
else:
|
||
|
other.append(d)
|
||
|
|
||
|
def has(e):
|
||
|
"""return the standard has() if there are no literal symbols, else
|
||
|
check to see that symbol-deps are in the free symbols."""
|
||
|
has_other = e.has(*other)
|
||
|
if not sym:
|
||
|
return has_other
|
||
|
return has_other or e.has(*(e.free_symbols & sym))
|
||
|
|
||
|
if (want is not func or
|
||
|
func is not Add and func is not Mul):
|
||
|
if has(self):
|
||
|
return (want.identity, self)
|
||
|
else:
|
||
|
return (self, want.identity)
|
||
|
else:
|
||
|
if func is Add:
|
||
|
args = list(self.args)
|
||
|
else:
|
||
|
args, nc = self.args_cnc()
|
||
|
|
||
|
d = sift(args, has)
|
||
|
depend = d[True]
|
||
|
indep = d[False]
|
||
|
if func is Add: # all terms were treated as commutative
|
||
|
return (Add(*indep), _unevaluated_Add(*depend))
|
||
|
else: # handle noncommutative by stopping at first dependent term
|
||
|
for i, n in enumerate(nc):
|
||
|
if has(n):
|
||
|
depend.extend(nc[i:])
|
||
|
break
|
||
|
indep.append(n)
|
||
|
return Mul(*indep), (
|
||
|
Mul(*depend, evaluate=False) if nc else
|
||
|
_unevaluated_Mul(*depend))
|
||
|
|
||
|
def as_real_imag(self, deep=True, **hints):
|
||
|
"""Performs complex expansion on 'self' and returns a tuple
|
||
|
containing collected both real and imaginary parts. This
|
||
|
method cannot be confused with re() and im() functions,
|
||
|
which does not perform complex expansion at evaluation.
|
||
|
|
||
|
However it is possible to expand both re() and im()
|
||
|
functions and get exactly the same results as with
|
||
|
a single call to this function.
|
||
|
|
||
|
>>> from sympy import symbols, I
|
||
|
|
||
|
>>> x, y = symbols('x,y', real=True)
|
||
|
|
||
|
>>> (x + y*I).as_real_imag()
|
||
|
(x, y)
|
||
|
|
||
|
>>> from sympy.abc import z, w
|
||
|
|
||
|
>>> (z + w*I).as_real_imag()
|
||
|
(re(z) - im(w), re(w) + im(z))
|
||
|
|
||
|
"""
|
||
|
if hints.get('ignore') == self:
|
||
|
return None
|
||
|
else:
|
||
|
from sympy.functions.elementary.complexes import im, re
|
||
|
return (re(self), im(self))
|
||
|
|
||
|
def as_powers_dict(self):
|
||
|
"""Return self as a dictionary of factors with each factor being
|
||
|
treated as a power. The keys are the bases of the factors and the
|
||
|
values, the corresponding exponents. The resulting dictionary should
|
||
|
be used with caution if the expression is a Mul and contains non-
|
||
|
commutative factors since the order that they appeared will be lost in
|
||
|
the dictionary.
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
as_ordered_factors: An alternative for noncommutative applications,
|
||
|
returning an ordered list of factors.
|
||
|
args_cnc: Similar to as_ordered_factors, but guarantees separation
|
||
|
of commutative and noncommutative factors.
|
||
|
"""
|
||
|
d = defaultdict(int)
|
||
|
d.update([self.as_base_exp()])
|
||
|
return d
|
||
|
|
||
|
def as_coefficients_dict(self, *syms):
|
||
|
"""Return a dictionary mapping terms to their Rational coefficient.
|
||
|
Since the dictionary is a defaultdict, inquiries about terms which
|
||
|
were not present will return a coefficient of 0.
|
||
|
|
||
|
If symbols ``syms`` are provided, any multiplicative terms
|
||
|
independent of them will be considered a coefficient and a
|
||
|
regular dictionary of syms-dependent generators as keys and
|
||
|
their corresponding coefficients as values will be returned.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.abc import a, x, y
|
||
|
>>> (3*x + a*x + 4).as_coefficients_dict()
|
||
|
{1: 4, x: 3, a*x: 1}
|
||
|
>>> _[a]
|
||
|
0
|
||
|
>>> (3*a*x).as_coefficients_dict()
|
||
|
{a*x: 3}
|
||
|
>>> (3*a*x).as_coefficients_dict(x)
|
||
|
{x: 3*a}
|
||
|
>>> (3*a*x).as_coefficients_dict(y)
|
||
|
{1: 3*a*x}
|
||
|
|
||
|
"""
|
||
|
d = defaultdict(list)
|
||
|
if not syms:
|
||
|
for ai in Add.make_args(self):
|
||
|
c, m = ai.as_coeff_Mul()
|
||
|
d[m].append(c)
|
||
|
for k, v in d.items():
|
||
|
if len(v) == 1:
|
||
|
d[k] = v[0]
|
||
|
else:
|
||
|
d[k] = Add(*v)
|
||
|
else:
|
||
|
ind, dep = self.as_independent(*syms, as_Add=True)
|
||
|
for i in Add.make_args(dep):
|
||
|
if i.is_Mul:
|
||
|
c, x = i.as_coeff_mul(*syms)
|
||
|
if c is S.One:
|
||
|
d[i].append(c)
|
||
|
else:
|
||
|
d[i._new_rawargs(*x)].append(c)
|
||
|
elif i:
|
||
|
d[i].append(S.One)
|
||
|
d = {k: Add(*d[k]) for k in d}
|
||
|
if ind is not S.Zero:
|
||
|
d.update({S.One: ind})
|
||
|
di = defaultdict(int)
|
||
|
di.update(d)
|
||
|
return di
|
||
|
|
||
|
def as_base_exp(self) -> tuple[Expr, Expr]:
|
||
|
# a -> b ** e
|
||
|
return self, S.One
|
||
|
|
||
|
def as_coeff_mul(self, *deps, **kwargs) -> tuple[Expr, tuple[Expr, ...]]:
|
||
|
"""Return the tuple (c, args) where self is written as a Mul, ``m``.
|
||
|
|
||
|
c should be a Rational multiplied by any factors of the Mul that are
|
||
|
independent of deps.
|
||
|
|
||
|
args should be a tuple of all other factors of m; args is empty
|
||
|
if self is a Number or if self is independent of deps (when given).
|
||
|
|
||
|
This should be used when you do not know if self is a Mul or not but
|
||
|
you want to treat self as a Mul or if you want to process the
|
||
|
individual arguments of the tail of self as a Mul.
|
||
|
|
||
|
- if you know self is a Mul and want only the head, use self.args[0];
|
||
|
- if you do not want to process the arguments of the tail but need the
|
||
|
tail then use self.as_two_terms() which gives the head and tail;
|
||
|
- if you want to split self into an independent and dependent parts
|
||
|
use ``self.as_independent(*deps)``
|
||
|
|
||
|
>>> from sympy import S
|
||
|
>>> from sympy.abc import x, y
|
||
|
>>> (S(3)).as_coeff_mul()
|
||
|
(3, ())
|
||
|
>>> (3*x*y).as_coeff_mul()
|
||
|
(3, (x, y))
|
||
|
>>> (3*x*y).as_coeff_mul(x)
|
||
|
(3*y, (x,))
|
||
|
>>> (3*y).as_coeff_mul(x)
|
||
|
(3*y, ())
|
||
|
"""
|
||
|
if deps:
|
||
|
if not self.has(*deps):
|
||
|
return self, ()
|
||
|
return S.One, (self,)
|
||
|
|
||
|
def as_coeff_add(self, *deps) -> tuple[Expr, tuple[Expr, ...]]:
|
||
|
"""Return the tuple (c, args) where self is written as an Add, ``a``.
|
||
|
|
||
|
c should be a Rational added to any terms of the Add that are
|
||
|
independent of deps.
|
||
|
|
||
|
args should be a tuple of all other terms of ``a``; args is empty
|
||
|
if self is a Number or if self is independent of deps (when given).
|
||
|
|
||
|
This should be used when you do not know if self is an Add or not but
|
||
|
you want to treat self as an Add or if you want to process the
|
||
|
individual arguments of the tail of self as an Add.
|
||
|
|
||
|
- if you know self is an Add and want only the head, use self.args[0];
|
||
|
- if you do not want to process the arguments of the tail but need the
|
||
|
tail then use self.as_two_terms() which gives the head and tail.
|
||
|
- if you want to split self into an independent and dependent parts
|
||
|
use ``self.as_independent(*deps)``
|
||
|
|
||
|
>>> from sympy import S
|
||
|
>>> from sympy.abc import x, y
|
||
|
>>> (S(3)).as_coeff_add()
|
||
|
(3, ())
|
||
|
>>> (3 + x).as_coeff_add()
|
||
|
(3, (x,))
|
||
|
>>> (3 + x + y).as_coeff_add(x)
|
||
|
(y + 3, (x,))
|
||
|
>>> (3 + y).as_coeff_add(x)
|
||
|
(y + 3, ())
|
||
|
|
||
|
"""
|
||
|
if deps:
|
||
|
if not self.has_free(*deps):
|
||
|
return self, ()
|
||
|
return S.Zero, (self,)
|
||
|
|
||
|
def primitive(self):
|
||
|
"""Return the positive Rational that can be extracted non-recursively
|
||
|
from every term of self (i.e., self is treated like an Add). This is
|
||
|
like the as_coeff_Mul() method but primitive always extracts a positive
|
||
|
Rational (never a negative or a Float).
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.abc import x
|
||
|
>>> (3*(x + 1)**2).primitive()
|
||
|
(3, (x + 1)**2)
|
||
|
>>> a = (6*x + 2); a.primitive()
|
||
|
(2, 3*x + 1)
|
||
|
>>> b = (x/2 + 3); b.primitive()
|
||
|
(1/2, x + 6)
|
||
|
>>> (a*b).primitive() == (1, a*b)
|
||
|
True
|
||
|
"""
|
||
|
if not self:
|
||
|
return S.One, S.Zero
|
||
|
c, r = self.as_coeff_Mul(rational=True)
|
||
|
if c.is_negative:
|
||
|
c, r = -c, -r
|
||
|
return c, r
|
||
|
|
||
|
def as_content_primitive(self, radical=False, clear=True):
|
||
|
"""This method should recursively remove a Rational from all arguments
|
||
|
and return that (content) and the new self (primitive). The content
|
||
|
should always be positive and ``Mul(*foo.as_content_primitive()) == foo``.
|
||
|
The primitive need not be in canonical form and should try to preserve
|
||
|
the underlying structure if possible (i.e. expand_mul should not be
|
||
|
applied to self).
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import sqrt
|
||
|
>>> from sympy.abc import x, y, z
|
||
|
|
||
|
>>> eq = 2 + 2*x + 2*y*(3 + 3*y)
|
||
|
|
||
|
The as_content_primitive function is recursive and retains structure:
|
||
|
|
||
|
>>> eq.as_content_primitive()
|
||
|
(2, x + 3*y*(y + 1) + 1)
|
||
|
|
||
|
Integer powers will have Rationals extracted from the base:
|
||
|
|
||
|
>>> ((2 + 6*x)**2).as_content_primitive()
|
||
|
(4, (3*x + 1)**2)
|
||
|
>>> ((2 + 6*x)**(2*y)).as_content_primitive()
|
||
|
(1, (2*(3*x + 1))**(2*y))
|
||
|
|
||
|
Terms may end up joining once their as_content_primitives are added:
|
||
|
|
||
|
>>> ((5*(x*(1 + y)) + 2*x*(3 + 3*y))).as_content_primitive()
|
||
|
(11, x*(y + 1))
|
||
|
>>> ((3*(x*(1 + y)) + 2*x*(3 + 3*y))).as_content_primitive()
|
||
|
(9, x*(y + 1))
|
||
|
>>> ((3*(z*(1 + y)) + 2.0*x*(3 + 3*y))).as_content_primitive()
|
||
|
(1, 6.0*x*(y + 1) + 3*z*(y + 1))
|
||
|
>>> ((5*(x*(1 + y)) + 2*x*(3 + 3*y))**2).as_content_primitive()
|
||
|
(121, x**2*(y + 1)**2)
|
||
|
>>> ((x*(1 + y) + 0.4*x*(3 + 3*y))**2).as_content_primitive()
|
||
|
(1, 4.84*x**2*(y + 1)**2)
|
||
|
|
||
|
Radical content can also be factored out of the primitive:
|
||
|
|
||
|
>>> (2*sqrt(2) + 4*sqrt(10)).as_content_primitive(radical=True)
|
||
|
(2, sqrt(2)*(1 + 2*sqrt(5)))
|
||
|
|
||
|
If clear=False (default is True) then content will not be removed
|
||
|
from an Add if it can be distributed to leave one or more
|
||
|
terms with integer coefficients.
|
||
|
|
||
|
>>> (x/2 + y).as_content_primitive()
|
||
|
(1/2, x + 2*y)
|
||
|
>>> (x/2 + y).as_content_primitive(clear=False)
|
||
|
(1, x/2 + y)
|
||
|
"""
|
||
|
return S.One, self
|
||
|
|
||
|
def as_numer_denom(self):
|
||
|
"""Return the numerator and the denominator of an expression.
|
||
|
|
||
|
expression -> a/b -> a, b
|
||
|
|
||
|
This is just a stub that should be defined by
|
||
|
an object's class methods to get anything else.
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
normal: return ``a/b`` instead of ``(a, b)``
|
||
|
|
||
|
"""
|
||
|
return self, S.One
|
||
|
|
||
|
def normal(self):
|
||
|
"""Return the expression as a fraction.
|
||
|
|
||
|
expression -> a/b
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
as_numer_denom: return ``(a, b)`` instead of ``a/b``
|
||
|
|
||
|
"""
|
||
|
from .mul import _unevaluated_Mul
|
||
|
n, d = self.as_numer_denom()
|
||
|
if d is S.One:
|
||
|
return n
|
||
|
if d.is_Number:
|
||
|
return _unevaluated_Mul(n, 1/d)
|
||
|
else:
|
||
|
return n/d
|
||
|
|
||
|
def extract_multiplicatively(self, c):
|
||
|
"""Return None if it's not possible to make self in the form
|
||
|
c * something in a nice way, i.e. preserving the properties
|
||
|
of arguments of self.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import symbols, Rational
|
||
|
|
||
|
>>> x, y = symbols('x,y', real=True)
|
||
|
|
||
|
>>> ((x*y)**3).extract_multiplicatively(x**2 * y)
|
||
|
x*y**2
|
||
|
|
||
|
>>> ((x*y)**3).extract_multiplicatively(x**4 * y)
|
||
|
|
||
|
>>> (2*x).extract_multiplicatively(2)
|
||
|
x
|
||
|
|
||
|
>>> (2*x).extract_multiplicatively(3)
|
||
|
|
||
|
>>> (Rational(1, 2)*x).extract_multiplicatively(3)
|
||
|
x/6
|
||
|
|
||
|
"""
|
||
|
from sympy.functions.elementary.exponential import exp
|
||
|
from .add import _unevaluated_Add
|
||
|
c = sympify(c)
|
||
|
if self is S.NaN:
|
||
|
return None
|
||
|
if c is S.One:
|
||
|
return self
|
||
|
elif c == self:
|
||
|
return S.One
|
||
|
|
||
|
if c.is_Add:
|
||
|
cc, pc = c.primitive()
|
||
|
if cc is not S.One:
|
||
|
c = Mul(cc, pc, evaluate=False)
|
||
|
|
||
|
if c.is_Mul:
|
||
|
a, b = c.as_two_terms()
|
||
|
x = self.extract_multiplicatively(a)
|
||
|
if x is not None:
|
||
|
return x.extract_multiplicatively(b)
|
||
|
else:
|
||
|
return x
|
||
|
|
||
|
quotient = self / c
|
||
|
if self.is_Number:
|
||
|
if self is S.Infinity:
|
||
|
if c.is_positive:
|
||
|
return S.Infinity
|
||
|
elif self is S.NegativeInfinity:
|
||
|
if c.is_negative:
|
||
|
return S.Infinity
|
||
|
elif c.is_positive:
|
||
|
return S.NegativeInfinity
|
||
|
elif self is S.ComplexInfinity:
|
||
|
if not c.is_zero:
|
||
|
return S.ComplexInfinity
|
||
|
elif self.is_Integer:
|
||
|
if not quotient.is_Integer:
|
||
|
return None
|
||
|
elif self.is_positive and quotient.is_negative:
|
||
|
return None
|
||
|
else:
|
||
|
return quotient
|
||
|
elif self.is_Rational:
|
||
|
if not quotient.is_Rational:
|
||
|
return None
|
||
|
elif self.is_positive and quotient.is_negative:
|
||
|
return None
|
||
|
else:
|
||
|
return quotient
|
||
|
elif self.is_Float:
|
||
|
if not quotient.is_Float:
|
||
|
return None
|
||
|
elif self.is_positive and quotient.is_negative:
|
||
|
return None
|
||
|
else:
|
||
|
return quotient
|
||
|
elif self.is_NumberSymbol or self.is_Symbol or self is S.ImaginaryUnit:
|
||
|
if quotient.is_Mul and len(quotient.args) == 2:
|
||
|
if quotient.args[0].is_Integer and quotient.args[0].is_positive and quotient.args[1] == self:
|
||
|
return quotient
|
||
|
elif quotient.is_Integer and c.is_Number:
|
||
|
return quotient
|
||
|
elif self.is_Add:
|
||
|
cs, ps = self.primitive()
|
||
|
# assert cs >= 1
|
||
|
if c.is_Number and c is not S.NegativeOne:
|
||
|
# assert c != 1 (handled at top)
|
||
|
if cs is not S.One:
|
||
|
if c.is_negative:
|
||
|
xc = -(cs.extract_multiplicatively(-c))
|
||
|
else:
|
||
|
xc = cs.extract_multiplicatively(c)
|
||
|
if xc is not None:
|
||
|
return xc*ps # rely on 2-arg Mul to restore Add
|
||
|
return # |c| != 1 can only be extracted from cs
|
||
|
if c == ps:
|
||
|
return cs
|
||
|
# check args of ps
|
||
|
newargs = []
|
||
|
for arg in ps.args:
|
||
|
newarg = arg.extract_multiplicatively(c)
|
||
|
if newarg is None:
|
||
|
return # all or nothing
|
||
|
newargs.append(newarg)
|
||
|
if cs is not S.One:
|
||
|
args = [cs*t for t in newargs]
|
||
|
# args may be in different order
|
||
|
return _unevaluated_Add(*args)
|
||
|
else:
|
||
|
return Add._from_args(newargs)
|
||
|
elif self.is_Mul:
|
||
|
args = list(self.args)
|
||
|
for i, arg in enumerate(args):
|
||
|
newarg = arg.extract_multiplicatively(c)
|
||
|
if newarg is not None:
|
||
|
args[i] = newarg
|
||
|
return Mul(*args)
|
||
|
elif self.is_Pow or isinstance(self, exp):
|
||
|
sb, se = self.as_base_exp()
|
||
|
cb, ce = c.as_base_exp()
|
||
|
if cb == sb:
|
||
|
new_exp = se.extract_additively(ce)
|
||
|
if new_exp is not None:
|
||
|
return Pow(sb, new_exp)
|
||
|
elif c == sb:
|
||
|
new_exp = self.exp.extract_additively(1)
|
||
|
if new_exp is not None:
|
||
|
return Pow(sb, new_exp)
|
||
|
|
||
|
def extract_additively(self, c):
|
||
|
"""Return self - c if it's possible to subtract c from self and
|
||
|
make all matching coefficients move towards zero, else return None.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.abc import x, y
|
||
|
>>> e = 2*x + 3
|
||
|
>>> e.extract_additively(x + 1)
|
||
|
x + 2
|
||
|
>>> e.extract_additively(3*x)
|
||
|
>>> e.extract_additively(4)
|
||
|
>>> (y*(x + 1)).extract_additively(x + 1)
|
||
|
>>> ((x + 1)*(x + 2*y + 1) + 3).extract_additively(x + 1)
|
||
|
(x + 1)*(x + 2*y) + 3
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
extract_multiplicatively
|
||
|
coeff
|
||
|
as_coefficient
|
||
|
|
||
|
"""
|
||
|
|
||
|
c = sympify(c)
|
||
|
if self is S.NaN:
|
||
|
return None
|
||
|
if c.is_zero:
|
||
|
return self
|
||
|
elif c == self:
|
||
|
return S.Zero
|
||
|
elif self == S.Zero:
|
||
|
return None
|
||
|
|
||
|
if self.is_Number:
|
||
|
if not c.is_Number:
|
||
|
return None
|
||
|
co = self
|
||
|
diff = co - c
|
||
|
# XXX should we match types? i.e should 3 - .1 succeed?
|
||
|
if (co > 0 and diff >= 0 and diff < co or
|
||
|
co < 0 and diff <= 0 and diff > co):
|
||
|
return diff
|
||
|
return None
|
||
|
|
||
|
if c.is_Number:
|
||
|
co, t = self.as_coeff_Add()
|
||
|
xa = co.extract_additively(c)
|
||
|
if xa is None:
|
||
|
return None
|
||
|
return xa + t
|
||
|
|
||
|
# handle the args[0].is_Number case separately
|
||
|
# since we will have trouble looking for the coeff of
|
||
|
# a number.
|
||
|
if c.is_Add and c.args[0].is_Number:
|
||
|
# whole term as a term factor
|
||
|
co = self.coeff(c)
|
||
|
xa0 = (co.extract_additively(1) or 0)*c
|
||
|
if xa0:
|
||
|
diff = self - co*c
|
||
|
return (xa0 + (diff.extract_additively(c) or diff)) or None
|
||
|
# term-wise
|
||
|
h, t = c.as_coeff_Add()
|
||
|
sh, st = self.as_coeff_Add()
|
||
|
xa = sh.extract_additively(h)
|
||
|
if xa is None:
|
||
|
return None
|
||
|
xa2 = st.extract_additively(t)
|
||
|
if xa2 is None:
|
||
|
return None
|
||
|
return xa + xa2
|
||
|
|
||
|
# whole term as a term factor
|
||
|
co, diff = _corem(self, c)
|
||
|
xa0 = (co.extract_additively(1) or 0)*c
|
||
|
if xa0:
|
||
|
return (xa0 + (diff.extract_additively(c) or diff)) or None
|
||
|
# term-wise
|
||
|
coeffs = []
|
||
|
for a in Add.make_args(c):
|
||
|
ac, at = a.as_coeff_Mul()
|
||
|
co = self.coeff(at)
|
||
|
if not co:
|
||
|
return None
|
||
|
coc, cot = co.as_coeff_Add()
|
||
|
xa = coc.extract_additively(ac)
|
||
|
if xa is None:
|
||
|
return None
|
||
|
self -= co*at
|
||
|
coeffs.append((cot + xa)*at)
|
||
|
coeffs.append(self)
|
||
|
return Add(*coeffs)
|
||
|
|
||
|
@property
|
||
|
def expr_free_symbols(self):
|
||
|
"""
|
||
|
Like ``free_symbols``, but returns the free symbols only if
|
||
|
they are contained in an expression node.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.abc import x, y
|
||
|
>>> (x + y).expr_free_symbols # doctest: +SKIP
|
||
|
{x, y}
|
||
|
|
||
|
If the expression is contained in a non-expression object, do not return
|
||
|
the free symbols. Compare:
|
||
|
|
||
|
>>> from sympy import Tuple
|
||
|
>>> t = Tuple(x + y)
|
||
|
>>> t.expr_free_symbols # doctest: +SKIP
|
||
|
set()
|
||
|
>>> t.free_symbols
|
||
|
{x, y}
|
||
|
"""
|
||
|
sympy_deprecation_warning("""
|
||
|
The expr_free_symbols property is deprecated. Use free_symbols to get
|
||
|
the free symbols of an expression.
|
||
|
""",
|
||
|
deprecated_since_version="1.9",
|
||
|
active_deprecations_target="deprecated-expr-free-symbols")
|
||
|
return {j for i in self.args for j in i.expr_free_symbols}
|
||
|
|
||
|
def could_extract_minus_sign(self):
|
||
|
"""Return True if self has -1 as a leading factor or has
|
||
|
more literal negative signs than positive signs in a sum,
|
||
|
otherwise False.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.abc import x, y
|
||
|
>>> e = x - y
|
||
|
>>> {i.could_extract_minus_sign() for i in (e, -e)}
|
||
|
{False, True}
|
||
|
|
||
|
Though the ``y - x`` is considered like ``-(x - y)``, since it
|
||
|
is in a product without a leading factor of -1, the result is
|
||
|
false below:
|
||
|
|
||
|
>>> (x*(y - x)).could_extract_minus_sign()
|
||
|
False
|
||
|
|
||
|
To put something in canonical form wrt to sign, use `signsimp`:
|
||
|
|
||
|
>>> from sympy import signsimp
|
||
|
>>> signsimp(x*(y - x))
|
||
|
-x*(x - y)
|
||
|
>>> _.could_extract_minus_sign()
|
||
|
True
|
||
|
"""
|
||
|
return False
|
||
|
|
||
|
def extract_branch_factor(self, allow_half=False):
|
||
|
"""
|
||
|
Try to write self as ``exp_polar(2*pi*I*n)*z`` in a nice way.
|
||
|
Return (z, n).
|
||
|
|
||
|
>>> from sympy import exp_polar, I, pi
|
||
|
>>> from sympy.abc import x, y
|
||
|
>>> exp_polar(I*pi).extract_branch_factor()
|
||
|
(exp_polar(I*pi), 0)
|
||
|
>>> exp_polar(2*I*pi).extract_branch_factor()
|
||
|
(1, 1)
|
||
|
>>> exp_polar(-pi*I).extract_branch_factor()
|
||
|
(exp_polar(I*pi), -1)
|
||
|
>>> exp_polar(3*pi*I + x).extract_branch_factor()
|
||
|
(exp_polar(x + I*pi), 1)
|
||
|
>>> (y*exp_polar(-5*pi*I)*exp_polar(3*pi*I + 2*pi*x)).extract_branch_factor()
|
||
|
(y*exp_polar(2*pi*x), -1)
|
||
|
>>> exp_polar(-I*pi/2).extract_branch_factor()
|
||
|
(exp_polar(-I*pi/2), 0)
|
||
|
|
||
|
If allow_half is True, also extract exp_polar(I*pi):
|
||
|
|
||
|
>>> exp_polar(I*pi).extract_branch_factor(allow_half=True)
|
||
|
(1, 1/2)
|
||
|
>>> exp_polar(2*I*pi).extract_branch_factor(allow_half=True)
|
||
|
(1, 1)
|
||
|
>>> exp_polar(3*I*pi).extract_branch_factor(allow_half=True)
|
||
|
(1, 3/2)
|
||
|
>>> exp_polar(-I*pi).extract_branch_factor(allow_half=True)
|
||
|
(1, -1/2)
|
||
|
"""
|
||
|
from sympy.functions.elementary.exponential import exp_polar
|
||
|
from sympy.functions.elementary.integers import ceiling
|
||
|
|
||
|
n = S.Zero
|
||
|
res = S.One
|
||
|
args = Mul.make_args(self)
|
||
|
exps = []
|
||
|
for arg in args:
|
||
|
if isinstance(arg, exp_polar):
|
||
|
exps += [arg.exp]
|
||
|
else:
|
||
|
res *= arg
|
||
|
piimult = S.Zero
|
||
|
extras = []
|
||
|
|
||
|
ipi = S.Pi*S.ImaginaryUnit
|
||
|
while exps:
|
||
|
exp = exps.pop()
|
||
|
if exp.is_Add:
|
||
|
exps += exp.args
|
||
|
continue
|
||
|
if exp.is_Mul:
|
||
|
coeff = exp.as_coefficient(ipi)
|
||
|
if coeff is not None:
|
||
|
piimult += coeff
|
||
|
continue
|
||
|
extras += [exp]
|
||
|
if piimult.is_number:
|
||
|
coeff = piimult
|
||
|
tail = ()
|
||
|
else:
|
||
|
coeff, tail = piimult.as_coeff_add(*piimult.free_symbols)
|
||
|
# round down to nearest multiple of 2
|
||
|
branchfact = ceiling(coeff/2 - S.Half)*2
|
||
|
n += branchfact/2
|
||
|
c = coeff - branchfact
|
||
|
if allow_half:
|
||
|
nc = c.extract_additively(1)
|
||
|
if nc is not None:
|
||
|
n += S.Half
|
||
|
c = nc
|
||
|
newexp = ipi*Add(*((c, ) + tail)) + Add(*extras)
|
||
|
if newexp != 0:
|
||
|
res *= exp_polar(newexp)
|
||
|
return res, n
|
||
|
|
||
|
def is_polynomial(self, *syms):
|
||
|
r"""
|
||
|
Return True if self is a polynomial in syms and False otherwise.
|
||
|
|
||
|
This checks if self is an exact polynomial in syms. This function
|
||
|
returns False for expressions that are "polynomials" with symbolic
|
||
|
exponents. Thus, you should be able to apply polynomial algorithms to
|
||
|
expressions for which this returns True, and Poly(expr, \*syms) should
|
||
|
work if and only if expr.is_polynomial(\*syms) returns True. The
|
||
|
polynomial does not have to be in expanded form. If no symbols are
|
||
|
given, all free symbols in the expression will be used.
|
||
|
|
||
|
This is not part of the assumptions system. You cannot do
|
||
|
Symbol('z', polynomial=True).
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Symbol, Function
|
||
|
>>> x = Symbol('x')
|
||
|
>>> ((x**2 + 1)**4).is_polynomial(x)
|
||
|
True
|
||
|
>>> ((x**2 + 1)**4).is_polynomial()
|
||
|
True
|
||
|
>>> (2**x + 1).is_polynomial(x)
|
||
|
False
|
||
|
>>> (2**x + 1).is_polynomial(2**x)
|
||
|
True
|
||
|
>>> f = Function('f')
|
||
|
>>> (f(x) + 1).is_polynomial(x)
|
||
|
False
|
||
|
>>> (f(x) + 1).is_polynomial(f(x))
|
||
|
True
|
||
|
>>> (1/f(x) + 1).is_polynomial(f(x))
|
||
|
False
|
||
|
|
||
|
>>> n = Symbol('n', nonnegative=True, integer=True)
|
||
|
>>> (x**n + 1).is_polynomial(x)
|
||
|
False
|
||
|
|
||
|
This function does not attempt any nontrivial simplifications that may
|
||
|
result in an expression that does not appear to be a polynomial to
|
||
|
become one.
|
||
|
|
||
|
>>> from sympy import sqrt, factor, cancel
|
||
|
>>> y = Symbol('y', positive=True)
|
||
|
>>> a = sqrt(y**2 + 2*y + 1)
|
||
|
>>> a.is_polynomial(y)
|
||
|
False
|
||
|
>>> factor(a)
|
||
|
y + 1
|
||
|
>>> factor(a).is_polynomial(y)
|
||
|
True
|
||
|
|
||
|
>>> b = (y**2 + 2*y + 1)/(y + 1)
|
||
|
>>> b.is_polynomial(y)
|
||
|
False
|
||
|
>>> cancel(b)
|
||
|
y + 1
|
||
|
>>> cancel(b).is_polynomial(y)
|
||
|
True
|
||
|
|
||
|
See also .is_rational_function()
|
||
|
|
||
|
"""
|
||
|
if syms:
|
||
|
syms = set(map(sympify, syms))
|
||
|
else:
|
||
|
syms = self.free_symbols
|
||
|
if not syms:
|
||
|
return True
|
||
|
|
||
|
return self._eval_is_polynomial(syms)
|
||
|
|
||
|
def _eval_is_polynomial(self, syms):
|
||
|
if self in syms:
|
||
|
return True
|
||
|
if not self.has_free(*syms):
|
||
|
# constant polynomial
|
||
|
return True
|
||
|
# subclasses should return True or False
|
||
|
|
||
|
def is_rational_function(self, *syms):
|
||
|
"""
|
||
|
Test whether function is a ratio of two polynomials in the given
|
||
|
symbols, syms. When syms is not given, all free symbols will be used.
|
||
|
The rational function does not have to be in expanded or in any kind of
|
||
|
canonical form.
|
||
|
|
||
|
This function returns False for expressions that are "rational
|
||
|
functions" with symbolic exponents. Thus, you should be able to call
|
||
|
.as_numer_denom() and apply polynomial algorithms to the result for
|
||
|
expressions for which this returns True.
|
||
|
|
||
|
This is not part of the assumptions system. You cannot do
|
||
|
Symbol('z', rational_function=True).
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Symbol, sin
|
||
|
>>> from sympy.abc import x, y
|
||
|
|
||
|
>>> (x/y).is_rational_function()
|
||
|
True
|
||
|
|
||
|
>>> (x**2).is_rational_function()
|
||
|
True
|
||
|
|
||
|
>>> (x/sin(y)).is_rational_function(y)
|
||
|
False
|
||
|
|
||
|
>>> n = Symbol('n', integer=True)
|
||
|
>>> (x**n + 1).is_rational_function(x)
|
||
|
False
|
||
|
|
||
|
This function does not attempt any nontrivial simplifications that may
|
||
|
result in an expression that does not appear to be a rational function
|
||
|
to become one.
|
||
|
|
||
|
>>> from sympy import sqrt, factor
|
||
|
>>> y = Symbol('y', positive=True)
|
||
|
>>> a = sqrt(y**2 + 2*y + 1)/y
|
||
|
>>> a.is_rational_function(y)
|
||
|
False
|
||
|
>>> factor(a)
|
||
|
(y + 1)/y
|
||
|
>>> factor(a).is_rational_function(y)
|
||
|
True
|
||
|
|
||
|
See also is_algebraic_expr().
|
||
|
|
||
|
"""
|
||
|
if syms:
|
||
|
syms = set(map(sympify, syms))
|
||
|
else:
|
||
|
syms = self.free_symbols
|
||
|
if not syms:
|
||
|
return self not in _illegal
|
||
|
|
||
|
return self._eval_is_rational_function(syms)
|
||
|
|
||
|
def _eval_is_rational_function(self, syms):
|
||
|
if self in syms:
|
||
|
return True
|
||
|
if not self.has_xfree(syms):
|
||
|
return True
|
||
|
# subclasses should return True or False
|
||
|
|
||
|
def is_meromorphic(self, x, a):
|
||
|
"""
|
||
|
This tests whether an expression is meromorphic as
|
||
|
a function of the given symbol ``x`` at the point ``a``.
|
||
|
|
||
|
This method is intended as a quick test that will return
|
||
|
None if no decision can be made without simplification or
|
||
|
more detailed analysis.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import zoo, log, sin, sqrt
|
||
|
>>> from sympy.abc import x
|
||
|
|
||
|
>>> f = 1/x**2 + 1 - 2*x**3
|
||
|
>>> f.is_meromorphic(x, 0)
|
||
|
True
|
||
|
>>> f.is_meromorphic(x, 1)
|
||
|
True
|
||
|
>>> f.is_meromorphic(x, zoo)
|
||
|
True
|
||
|
|
||
|
>>> g = x**log(3)
|
||
|
>>> g.is_meromorphic(x, 0)
|
||
|
False
|
||
|
>>> g.is_meromorphic(x, 1)
|
||
|
True
|
||
|
>>> g.is_meromorphic(x, zoo)
|
||
|
False
|
||
|
|
||
|
>>> h = sin(1/x)*x**2
|
||
|
>>> h.is_meromorphic(x, 0)
|
||
|
False
|
||
|
>>> h.is_meromorphic(x, 1)
|
||
|
True
|
||
|
>>> h.is_meromorphic(x, zoo)
|
||
|
True
|
||
|
|
||
|
Multivalued functions are considered meromorphic when their
|
||
|
branches are meromorphic. Thus most functions are meromorphic
|
||
|
everywhere except at essential singularities and branch points.
|
||
|
In particular, they will be meromorphic also on branch cuts
|
||
|
except at their endpoints.
|
||
|
|
||
|
>>> log(x).is_meromorphic(x, -1)
|
||
|
True
|
||
|
>>> log(x).is_meromorphic(x, 0)
|
||
|
False
|
||
|
>>> sqrt(x).is_meromorphic(x, -1)
|
||
|
True
|
||
|
>>> sqrt(x).is_meromorphic(x, 0)
|
||
|
False
|
||
|
|
||
|
"""
|
||
|
if not x.is_symbol:
|
||
|
raise TypeError("{} should be of symbol type".format(x))
|
||
|
a = sympify(a)
|
||
|
|
||
|
return self._eval_is_meromorphic(x, a)
|
||
|
|
||
|
def _eval_is_meromorphic(self, x, a):
|
||
|
if self == x:
|
||
|
return True
|
||
|
if not self.has_free(x):
|
||
|
return True
|
||
|
# subclasses should return True or False
|
||
|
|
||
|
def is_algebraic_expr(self, *syms):
|
||
|
"""
|
||
|
This tests whether a given expression is algebraic or not, in the
|
||
|
given symbols, syms. When syms is not given, all free symbols
|
||
|
will be used. The rational function does not have to be in expanded
|
||
|
or in any kind of canonical form.
|
||
|
|
||
|
This function returns False for expressions that are "algebraic
|
||
|
expressions" with symbolic exponents. This is a simple extension to the
|
||
|
is_rational_function, including rational exponentiation.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Symbol, sqrt
|
||
|
>>> x = Symbol('x', real=True)
|
||
|
>>> sqrt(1 + x).is_rational_function()
|
||
|
False
|
||
|
>>> sqrt(1 + x).is_algebraic_expr()
|
||
|
True
|
||
|
|
||
|
This function does not attempt any nontrivial simplifications that may
|
||
|
result in an expression that does not appear to be an algebraic
|
||
|
expression to become one.
|
||
|
|
||
|
>>> from sympy import exp, factor
|
||
|
>>> a = sqrt(exp(x)**2 + 2*exp(x) + 1)/(exp(x) + 1)
|
||
|
>>> a.is_algebraic_expr(x)
|
||
|
False
|
||
|
>>> factor(a).is_algebraic_expr()
|
||
|
True
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
is_rational_function
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://en.wikipedia.org/wiki/Algebraic_expression
|
||
|
|
||
|
"""
|
||
|
if syms:
|
||
|
syms = set(map(sympify, syms))
|
||
|
else:
|
||
|
syms = self.free_symbols
|
||
|
if not syms:
|
||
|
return True
|
||
|
|
||
|
return self._eval_is_algebraic_expr(syms)
|
||
|
|
||
|
def _eval_is_algebraic_expr(self, syms):
|
||
|
if self in syms:
|
||
|
return True
|
||
|
if not self.has_free(*syms):
|
||
|
return True
|
||
|
# subclasses should return True or False
|
||
|
|
||
|
###################################################################################
|
||
|
##################### SERIES, LEADING TERM, LIMIT, ORDER METHODS ##################
|
||
|
###################################################################################
|
||
|
|
||
|
def series(self, x=None, x0=0, n=6, dir="+", logx=None, cdir=0):
|
||
|
"""
|
||
|
Series expansion of "self" around ``x = x0`` yielding either terms of
|
||
|
the series one by one (the lazy series given when n=None), else
|
||
|
all the terms at once when n != None.
|
||
|
|
||
|
Returns the series expansion of "self" around the point ``x = x0``
|
||
|
with respect to ``x`` up to ``O((x - x0)**n, x, x0)`` (default n is 6).
|
||
|
|
||
|
If ``x=None`` and ``self`` is univariate, the univariate symbol will
|
||
|
be supplied, otherwise an error will be raised.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
expr : Expression
|
||
|
The expression whose series is to be expanded.
|
||
|
|
||
|
x : Symbol
|
||
|
It is the variable of the expression to be calculated.
|
||
|
|
||
|
x0 : Value
|
||
|
The value around which ``x`` is calculated. Can be any value
|
||
|
from ``-oo`` to ``oo``.
|
||
|
|
||
|
n : Value
|
||
|
The value used to represent the order in terms of ``x**n``,
|
||
|
up to which the series is to be expanded.
|
||
|
|
||
|
dir : String, optional
|
||
|
The series-expansion can be bi-directional. If ``dir="+"``,
|
||
|
then (x->x0+). If ``dir="-", then (x->x0-). For infinite
|
||
|
``x0`` (``oo`` or ``-oo``), the ``dir`` argument is determined
|
||
|
from the direction of the infinity (i.e., ``dir="-"`` for
|
||
|
``oo``).
|
||
|
|
||
|
logx : optional
|
||
|
It is used to replace any log(x) in the returned series with a
|
||
|
symbolic value rather than evaluating the actual value.
|
||
|
|
||
|
cdir : optional
|
||
|
It stands for complex direction, and indicates the direction
|
||
|
from which the expansion needs to be evaluated.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import cos, exp, tan
|
||
|
>>> from sympy.abc import x, y
|
||
|
>>> cos(x).series()
|
||
|
1 - x**2/2 + x**4/24 + O(x**6)
|
||
|
>>> cos(x).series(n=4)
|
||
|
1 - x**2/2 + O(x**4)
|
||
|
>>> cos(x).series(x, x0=1, n=2)
|
||
|
cos(1) - (x - 1)*sin(1) + O((x - 1)**2, (x, 1))
|
||
|
>>> e = cos(x + exp(y))
|
||
|
>>> e.series(y, n=2)
|
||
|
cos(x + 1) - y*sin(x + 1) + O(y**2)
|
||
|
>>> e.series(x, n=2)
|
||
|
cos(exp(y)) - x*sin(exp(y)) + O(x**2)
|
||
|
|
||
|
If ``n=None`` then a generator of the series terms will be returned.
|
||
|
|
||
|
>>> term=cos(x).series(n=None)
|
||
|
>>> [next(term) for i in range(2)]
|
||
|
[1, -x**2/2]
|
||
|
|
||
|
For ``dir=+`` (default) the series is calculated from the right and
|
||
|
for ``dir=-`` the series from the left. For smooth functions this
|
||
|
flag will not alter the results.
|
||
|
|
||
|
>>> abs(x).series(dir="+")
|
||
|
x
|
||
|
>>> abs(x).series(dir="-")
|
||
|
-x
|
||
|
>>> f = tan(x)
|
||
|
>>> f.series(x, 2, 6, "+")
|
||
|
tan(2) + (1 + tan(2)**2)*(x - 2) + (x - 2)**2*(tan(2)**3 + tan(2)) +
|
||
|
(x - 2)**3*(1/3 + 4*tan(2)**2/3 + tan(2)**4) + (x - 2)**4*(tan(2)**5 +
|
||
|
5*tan(2)**3/3 + 2*tan(2)/3) + (x - 2)**5*(2/15 + 17*tan(2)**2/15 +
|
||
|
2*tan(2)**4 + tan(2)**6) + O((x - 2)**6, (x, 2))
|
||
|
|
||
|
>>> f.series(x, 2, 3, "-")
|
||
|
tan(2) + (2 - x)*(-tan(2)**2 - 1) + (2 - x)**2*(tan(2)**3 + tan(2))
|
||
|
+ O((x - 2)**3, (x, 2))
|
||
|
|
||
|
For rational expressions this method may return original expression without the Order term.
|
||
|
>>> (1/x).series(x, n=8)
|
||
|
1/x
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
Expr : Expression
|
||
|
Series expansion of the expression about x0
|
||
|
|
||
|
Raises
|
||
|
======
|
||
|
|
||
|
TypeError
|
||
|
If "n" and "x0" are infinity objects
|
||
|
|
||
|
PoleError
|
||
|
If "x0" is an infinity object
|
||
|
|
||
|
"""
|
||
|
if x is None:
|
||
|
syms = self.free_symbols
|
||
|
if not syms:
|
||
|
return self
|
||
|
elif len(syms) > 1:
|
||
|
raise ValueError('x must be given for multivariate functions.')
|
||
|
x = syms.pop()
|
||
|
|
||
|
from .symbol import Dummy, Symbol
|
||
|
if isinstance(x, Symbol):
|
||
|
dep = x in self.free_symbols
|
||
|
else:
|
||
|
d = Dummy()
|
||
|
dep = d in self.xreplace({x: d}).free_symbols
|
||
|
if not dep:
|
||
|
if n is None:
|
||
|
return (s for s in [self])
|
||
|
else:
|
||
|
return self
|
||
|
|
||
|
if len(dir) != 1 or dir not in '+-':
|
||
|
raise ValueError("Dir must be '+' or '-'")
|
||
|
|
||
|
x0 = sympify(x0)
|
||
|
cdir = sympify(cdir)
|
||
|
from sympy.functions.elementary.complexes import im, sign
|
||
|
|
||
|
if not cdir.is_zero:
|
||
|
if cdir.is_real:
|
||
|
dir = '+' if cdir.is_positive else '-'
|
||
|
else:
|
||
|
dir = '+' if im(cdir).is_positive else '-'
|
||
|
else:
|
||
|
if x0 and x0.is_infinite:
|
||
|
cdir = sign(x0).simplify()
|
||
|
elif str(dir) == "+":
|
||
|
cdir = S.One
|
||
|
elif str(dir) == "-":
|
||
|
cdir = S.NegativeOne
|
||
|
elif cdir == S.Zero:
|
||
|
cdir = S.One
|
||
|
|
||
|
cdir = cdir/abs(cdir)
|
||
|
|
||
|
if x0 and x0.is_infinite:
|
||
|
from .function import PoleError
|
||
|
try:
|
||
|
s = self.subs(x, cdir/x).series(x, n=n, dir='+', cdir=1)
|
||
|
if n is None:
|
||
|
return (si.subs(x, cdir/x) for si in s)
|
||
|
return s.subs(x, cdir/x)
|
||
|
except PoleError:
|
||
|
s = self.subs(x, cdir*x).aseries(x, n=n)
|
||
|
return s.subs(x, cdir*x)
|
||
|
|
||
|
# use rep to shift origin to x0 and change sign (if dir is negative)
|
||
|
# and undo the process with rep2
|
||
|
if x0 or cdir != 1:
|
||
|
s = self.subs({x: x0 + cdir*x}).series(x, x0=0, n=n, dir='+', logx=logx, cdir=1)
|
||
|
if n is None: # lseries...
|
||
|
return (si.subs({x: x/cdir - x0/cdir}) for si in s)
|
||
|
return s.subs({x: x/cdir - x0/cdir})
|
||
|
|
||
|
# from here on it's x0=0 and dir='+' handling
|
||
|
|
||
|
if x.is_positive is x.is_negative is None or x.is_Symbol is not True:
|
||
|
# replace x with an x that has a positive assumption
|
||
|
xpos = Dummy('x', positive=True)
|
||
|
rv = self.subs(x, xpos).series(xpos, x0, n, dir, logx=logx, cdir=cdir)
|
||
|
if n is None:
|
||
|
return (s.subs(xpos, x) for s in rv)
|
||
|
else:
|
||
|
return rv.subs(xpos, x)
|
||
|
|
||
|
from sympy.series.order import Order
|
||
|
if n is not None: # nseries handling
|
||
|
s1 = self._eval_nseries(x, n=n, logx=logx, cdir=cdir)
|
||
|
o = s1.getO() or S.Zero
|
||
|
if o:
|
||
|
# make sure the requested order is returned
|
||
|
ngot = o.getn()
|
||
|
if ngot > n:
|
||
|
# leave o in its current form (e.g. with x*log(x)) so
|
||
|
# it eats terms properly, then replace it below
|
||
|
if n != 0:
|
||
|
s1 += o.subs(x, x**Rational(n, ngot))
|
||
|
else:
|
||
|
s1 += Order(1, x)
|
||
|
elif ngot < n:
|
||
|
# increase the requested number of terms to get the desired
|
||
|
# number keep increasing (up to 9) until the received order
|
||
|
# is different than the original order and then predict how
|
||
|
# many additional terms are needed
|
||
|
from sympy.functions.elementary.integers import ceiling
|
||
|
for more in range(1, 9):
|
||
|
s1 = self._eval_nseries(x, n=n + more, logx=logx, cdir=cdir)
|
||
|
newn = s1.getn()
|
||
|
if newn != ngot:
|
||
|
ndo = n + ceiling((n - ngot)*more/(newn - ngot))
|
||
|
s1 = self._eval_nseries(x, n=ndo, logx=logx, cdir=cdir)
|
||
|
while s1.getn() < n:
|
||
|
s1 = self._eval_nseries(x, n=ndo, logx=logx, cdir=cdir)
|
||
|
ndo += 1
|
||
|
break
|
||
|
else:
|
||
|
raise ValueError('Could not calculate %s terms for %s'
|
||
|
% (str(n), self))
|
||
|
s1 += Order(x**n, x)
|
||
|
o = s1.getO()
|
||
|
s1 = s1.removeO()
|
||
|
elif s1.has(Order):
|
||
|
# asymptotic expansion
|
||
|
return s1
|
||
|
else:
|
||
|
o = Order(x**n, x)
|
||
|
s1done = s1.doit()
|
||
|
try:
|
||
|
if (s1done + o).removeO() == s1done:
|
||
|
o = S.Zero
|
||
|
except NotImplementedError:
|
||
|
return s1
|
||
|
|
||
|
try:
|
||
|
from sympy.simplify.radsimp import collect
|
||
|
return collect(s1, x) + o
|
||
|
except NotImplementedError:
|
||
|
return s1 + o
|
||
|
|
||
|
else: # lseries handling
|
||
|
def yield_lseries(s):
|
||
|
"""Return terms of lseries one at a time."""
|
||
|
for si in s:
|
||
|
if not si.is_Add:
|
||
|
yield si
|
||
|
continue
|
||
|
# yield terms 1 at a time if possible
|
||
|
# by increasing order until all the
|
||
|
# terms have been returned
|
||
|
yielded = 0
|
||
|
o = Order(si, x)*x
|
||
|
ndid = 0
|
||
|
ndo = len(si.args)
|
||
|
while 1:
|
||
|
do = (si - yielded + o).removeO()
|
||
|
o *= x
|
||
|
if not do or do.is_Order:
|
||
|
continue
|
||
|
if do.is_Add:
|
||
|
ndid += len(do.args)
|
||
|
else:
|
||
|
ndid += 1
|
||
|
yield do
|
||
|
if ndid == ndo:
|
||
|
break
|
||
|
yielded += do
|
||
|
|
||
|
return yield_lseries(self.removeO()._eval_lseries(x, logx=logx, cdir=cdir))
|
||
|
|
||
|
def aseries(self, x=None, n=6, bound=0, hir=False):
|
||
|
"""Asymptotic Series expansion of self.
|
||
|
This is equivalent to ``self.series(x, oo, n)``.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
self : Expression
|
||
|
The expression whose series is to be expanded.
|
||
|
|
||
|
x : Symbol
|
||
|
It is the variable of the expression to be calculated.
|
||
|
|
||
|
n : Value
|
||
|
The value used to represent the order in terms of ``x**n``,
|
||
|
up to which the series is to be expanded.
|
||
|
|
||
|
hir : Boolean
|
||
|
Set this parameter to be True to produce hierarchical series.
|
||
|
It stops the recursion at an early level and may provide nicer
|
||
|
and more useful results.
|
||
|
|
||
|
bound : Value, Integer
|
||
|
Use the ``bound`` parameter to give limit on rewriting
|
||
|
coefficients in its normalised form.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import sin, exp
|
||
|
>>> from sympy.abc import x
|
||
|
|
||
|
>>> e = sin(1/x + exp(-x)) - sin(1/x)
|
||
|
|
||
|
>>> e.aseries(x)
|
||
|
(1/(24*x**4) - 1/(2*x**2) + 1 + O(x**(-6), (x, oo)))*exp(-x)
|
||
|
|
||
|
>>> e.aseries(x, n=3, hir=True)
|
||
|
-exp(-2*x)*sin(1/x)/2 + exp(-x)*cos(1/x) + O(exp(-3*x), (x, oo))
|
||
|
|
||
|
>>> e = exp(exp(x)/(1 - 1/x))
|
||
|
|
||
|
>>> e.aseries(x)
|
||
|
exp(exp(x)/(1 - 1/x))
|
||
|
|
||
|
>>> e.aseries(x, bound=3) # doctest: +SKIP
|
||
|
exp(exp(x)/x**2)*exp(exp(x)/x)*exp(-exp(x) + exp(x)/(1 - 1/x) - exp(x)/x - exp(x)/x**2)*exp(exp(x))
|
||
|
|
||
|
For rational expressions this method may return original expression without the Order term.
|
||
|
>>> (1/x).aseries(x, n=8)
|
||
|
1/x
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
Expr
|
||
|
Asymptotic series expansion of the expression.
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
This algorithm is directly induced from the limit computational algorithm provided by Gruntz.
|
||
|
It majorly uses the mrv and rewrite sub-routines. The overall idea of this algorithm is first
|
||
|
to look for the most rapidly varying subexpression w of a given expression f and then expands f
|
||
|
in a series in w. Then same thing is recursively done on the leading coefficient
|
||
|
till we get constant coefficients.
|
||
|
|
||
|
If the most rapidly varying subexpression of a given expression f is f itself,
|
||
|
the algorithm tries to find a normalised representation of the mrv set and rewrites f
|
||
|
using this normalised representation.
|
||
|
|
||
|
If the expansion contains an order term, it will be either ``O(x ** (-n))`` or ``O(w ** (-n))``
|
||
|
where ``w`` belongs to the most rapidly varying expression of ``self``.
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] Gruntz, Dominik. A new algorithm for computing asymptotic series.
|
||
|
In: Proc. 1993 Int. Symp. Symbolic and Algebraic Computation. 1993.
|
||
|
pp. 239-244.
|
||
|
.. [2] Gruntz thesis - p90
|
||
|
.. [3] https://en.wikipedia.org/wiki/Asymptotic_expansion
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
Expr.aseries: See the docstring of this function for complete details of this wrapper.
|
||
|
"""
|
||
|
|
||
|
from .symbol import Dummy
|
||
|
|
||
|
if x.is_positive is x.is_negative is None:
|
||
|
xpos = Dummy('x', positive=True)
|
||
|
return self.subs(x, xpos).aseries(xpos, n, bound, hir).subs(xpos, x)
|
||
|
|
||
|
from .function import PoleError
|
||
|
from sympy.series.gruntz import mrv, rewrite
|
||
|
|
||
|
try:
|
||
|
om, exps = mrv(self, x)
|
||
|
except PoleError:
|
||
|
return self
|
||
|
|
||
|
# We move one level up by replacing `x` by `exp(x)`, and then
|
||
|
# computing the asymptotic series for f(exp(x)). Then asymptotic series
|
||
|
# can be obtained by moving one-step back, by replacing x by ln(x).
|
||
|
|
||
|
from sympy.functions.elementary.exponential import exp, log
|
||
|
from sympy.series.order import Order
|
||
|
|
||
|
if x in om:
|
||
|
s = self.subs(x, exp(x)).aseries(x, n, bound, hir).subs(x, log(x))
|
||
|
if s.getO():
|
||
|
return s + Order(1/x**n, (x, S.Infinity))
|
||
|
return s
|
||
|
|
||
|
k = Dummy('k', positive=True)
|
||
|
# f is rewritten in terms of omega
|
||
|
func, logw = rewrite(exps, om, x, k)
|
||
|
|
||
|
if self in om:
|
||
|
if bound <= 0:
|
||
|
return self
|
||
|
s = (self.exp).aseries(x, n, bound=bound)
|
||
|
s = s.func(*[t.removeO() for t in s.args])
|
||
|
try:
|
||
|
res = exp(s.subs(x, 1/x).as_leading_term(x).subs(x, 1/x))
|
||
|
except PoleError:
|
||
|
res = self
|
||
|
|
||
|
func = exp(self.args[0] - res.args[0]) / k
|
||
|
logw = log(1/res)
|
||
|
|
||
|
s = func.series(k, 0, n)
|
||
|
|
||
|
# Hierarchical series
|
||
|
if hir:
|
||
|
return s.subs(k, exp(logw))
|
||
|
|
||
|
o = s.getO()
|
||
|
terms = sorted(Add.make_args(s.removeO()), key=lambda i: int(i.as_coeff_exponent(k)[1]))
|
||
|
s = S.Zero
|
||
|
has_ord = False
|
||
|
|
||
|
# Then we recursively expand these coefficients one by one into
|
||
|
# their asymptotic series in terms of their most rapidly varying subexpressions.
|
||
|
for t in terms:
|
||
|
coeff, expo = t.as_coeff_exponent(k)
|
||
|
if coeff.has(x):
|
||
|
# Recursive step
|
||
|
snew = coeff.aseries(x, n, bound=bound-1)
|
||
|
if has_ord and snew.getO():
|
||
|
break
|
||
|
elif snew.getO():
|
||
|
has_ord = True
|
||
|
s += (snew * k**expo)
|
||
|
else:
|
||
|
s += t
|
||
|
|
||
|
if not o or has_ord:
|
||
|
return s.subs(k, exp(logw))
|
||
|
return (s + o).subs(k, exp(logw))
|
||
|
|
||
|
|
||
|
def taylor_term(self, n, x, *previous_terms):
|
||
|
"""General method for the taylor term.
|
||
|
|
||
|
This method is slow, because it differentiates n-times. Subclasses can
|
||
|
redefine it to make it faster by using the "previous_terms".
|
||
|
"""
|
||
|
from .symbol import Dummy
|
||
|
from sympy.functions.combinatorial.factorials import factorial
|
||
|
|
||
|
x = sympify(x)
|
||
|
_x = Dummy('x')
|
||
|
return self.subs(x, _x).diff(_x, n).subs(_x, x).subs(x, 0) * x**n / factorial(n)
|
||
|
|
||
|
def lseries(self, x=None, x0=0, dir='+', logx=None, cdir=0):
|
||
|
"""
|
||
|
Wrapper for series yielding an iterator of the terms of the series.
|
||
|
|
||
|
Note: an infinite series will yield an infinite iterator. The following,
|
||
|
for exaxmple, will never terminate. It will just keep printing terms
|
||
|
of the sin(x) series::
|
||
|
|
||
|
for term in sin(x).lseries(x):
|
||
|
print term
|
||
|
|
||
|
The advantage of lseries() over nseries() is that many times you are
|
||
|
just interested in the next term in the series (i.e. the first term for
|
||
|
example), but you do not know how many you should ask for in nseries()
|
||
|
using the "n" parameter.
|
||
|
|
||
|
See also nseries().
|
||
|
"""
|
||
|
return self.series(x, x0, n=None, dir=dir, logx=logx, cdir=cdir)
|
||
|
|
||
|
def _eval_lseries(self, x, logx=None, cdir=0):
|
||
|
# default implementation of lseries is using nseries(), and adaptively
|
||
|
# increasing the "n". As you can see, it is not very efficient, because
|
||
|
# we are calculating the series over and over again. Subclasses should
|
||
|
# override this method and implement much more efficient yielding of
|
||
|
# terms.
|
||
|
n = 0
|
||
|
series = self._eval_nseries(x, n=n, logx=logx, cdir=cdir)
|
||
|
|
||
|
while series.is_Order:
|
||
|
n += 1
|
||
|
series = self._eval_nseries(x, n=n, logx=logx, cdir=cdir)
|
||
|
|
||
|
e = series.removeO()
|
||
|
yield e
|
||
|
if e is S.Zero:
|
||
|
return
|
||
|
|
||
|
while 1:
|
||
|
while 1:
|
||
|
n += 1
|
||
|
series = self._eval_nseries(x, n=n, logx=logx, cdir=cdir).removeO()
|
||
|
if e != series:
|
||
|
break
|
||
|
if (series - self).cancel() is S.Zero:
|
||
|
return
|
||
|
yield series - e
|
||
|
e = series
|
||
|
|
||
|
def nseries(self, x=None, x0=0, n=6, dir='+', logx=None, cdir=0):
|
||
|
"""
|
||
|
Wrapper to _eval_nseries if assumptions allow, else to series.
|
||
|
|
||
|
If x is given, x0 is 0, dir='+', and self has x, then _eval_nseries is
|
||
|
called. This calculates "n" terms in the innermost expressions and
|
||
|
then builds up the final series just by "cross-multiplying" everything
|
||
|
out.
|
||
|
|
||
|
The optional ``logx`` parameter can be used to replace any log(x) in the
|
||
|
returned series with a symbolic value to avoid evaluating log(x) at 0. A
|
||
|
symbol to use in place of log(x) should be provided.
|
||
|
|
||
|
Advantage -- it's fast, because we do not have to determine how many
|
||
|
terms we need to calculate in advance.
|
||
|
|
||
|
Disadvantage -- you may end up with less terms than you may have
|
||
|
expected, but the O(x**n) term appended will always be correct and
|
||
|
so the result, though perhaps shorter, will also be correct.
|
||
|
|
||
|
If any of those assumptions is not met, this is treated like a
|
||
|
wrapper to series which will try harder to return the correct
|
||
|
number of terms.
|
||
|
|
||
|
See also lseries().
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import sin, log, Symbol
|
||
|
>>> from sympy.abc import x, y
|
||
|
>>> sin(x).nseries(x, 0, 6)
|
||
|
x - x**3/6 + x**5/120 + O(x**6)
|
||
|
>>> log(x+1).nseries(x, 0, 5)
|
||
|
x - x**2/2 + x**3/3 - x**4/4 + O(x**5)
|
||
|
|
||
|
Handling of the ``logx`` parameter --- in the following example the
|
||
|
expansion fails since ``sin`` does not have an asymptotic expansion
|
||
|
at -oo (the limit of log(x) as x approaches 0):
|
||
|
|
||
|
>>> e = sin(log(x))
|
||
|
>>> e.nseries(x, 0, 6)
|
||
|
Traceback (most recent call last):
|
||
|
...
|
||
|
PoleError: ...
|
||
|
...
|
||
|
>>> logx = Symbol('logx')
|
||
|
>>> e.nseries(x, 0, 6, logx=logx)
|
||
|
sin(logx)
|
||
|
|
||
|
In the following example, the expansion works but only returns self
|
||
|
unless the ``logx`` parameter is used:
|
||
|
|
||
|
>>> e = x**y
|
||
|
>>> e.nseries(x, 0, 2)
|
||
|
x**y
|
||
|
>>> e.nseries(x, 0, 2, logx=logx)
|
||
|
exp(logx*y)
|
||
|
|
||
|
"""
|
||
|
if x and x not in self.free_symbols:
|
||
|
return self
|
||
|
if x is None or x0 or dir != '+': # {see XPOS above} or (x.is_positive == x.is_negative == None):
|
||
|
return self.series(x, x0, n, dir, cdir=cdir)
|
||
|
else:
|
||
|
return self._eval_nseries(x, n=n, logx=logx, cdir=cdir)
|
||
|
|
||
|
def _eval_nseries(self, x, n, logx, cdir):
|
||
|
"""
|
||
|
Return terms of series for self up to O(x**n) at x=0
|
||
|
from the positive direction.
|
||
|
|
||
|
This is a method that should be overridden in subclasses. Users should
|
||
|
never call this method directly (use .nseries() instead), so you do not
|
||
|
have to write docstrings for _eval_nseries().
|
||
|
"""
|
||
|
raise NotImplementedError(filldedent("""
|
||
|
The _eval_nseries method should be added to
|
||
|
%s to give terms up to O(x**n) at x=0
|
||
|
from the positive direction so it is available when
|
||
|
nseries calls it.""" % self.func)
|
||
|
)
|
||
|
|
||
|
def limit(self, x, xlim, dir='+'):
|
||
|
""" Compute limit x->xlim.
|
||
|
"""
|
||
|
from sympy.series.limits import limit
|
||
|
return limit(self, x, xlim, dir)
|
||
|
|
||
|
def compute_leading_term(self, x, logx=None):
|
||
|
"""Deprecated function to compute the leading term of a series.
|
||
|
|
||
|
as_leading_term is only allowed for results of .series()
|
||
|
This is a wrapper to compute a series first.
|
||
|
"""
|
||
|
from sympy.utilities.exceptions import SymPyDeprecationWarning
|
||
|
|
||
|
SymPyDeprecationWarning(
|
||
|
feature="compute_leading_term",
|
||
|
useinstead="as_leading_term",
|
||
|
issue=21843,
|
||
|
deprecated_since_version="1.12"
|
||
|
).warn()
|
||
|
|
||
|
from sympy.functions.elementary.piecewise import Piecewise, piecewise_fold
|
||
|
if self.has(Piecewise):
|
||
|
expr = piecewise_fold(self)
|
||
|
else:
|
||
|
expr = self
|
||
|
if self.removeO() == 0:
|
||
|
return self
|
||
|
|
||
|
from .symbol import Dummy
|
||
|
from sympy.functions.elementary.exponential import log
|
||
|
from sympy.series.order import Order
|
||
|
|
||
|
_logx = logx
|
||
|
logx = Dummy('logx') if logx is None else logx
|
||
|
res = Order(1)
|
||
|
incr = S.One
|
||
|
while res.is_Order:
|
||
|
res = expr._eval_nseries(x, n=1+incr, logx=logx).cancel().powsimp().trigsimp()
|
||
|
incr *= 2
|
||
|
|
||
|
if _logx is None:
|
||
|
res = res.subs(logx, log(x))
|
||
|
|
||
|
return res.as_leading_term(x)
|
||
|
|
||
|
@cacheit
|
||
|
def as_leading_term(self, *symbols, logx=None, cdir=0):
|
||
|
"""
|
||
|
Returns the leading (nonzero) term of the series expansion of self.
|
||
|
|
||
|
The _eval_as_leading_term routines are used to do this, and they must
|
||
|
always return a non-zero value.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.abc import x
|
||
|
>>> (1 + x + x**2).as_leading_term(x)
|
||
|
1
|
||
|
>>> (1/x**2 + x + x**2).as_leading_term(x)
|
||
|
x**(-2)
|
||
|
|
||
|
"""
|
||
|
if len(symbols) > 1:
|
||
|
c = self
|
||
|
for x in symbols:
|
||
|
c = c.as_leading_term(x, logx=logx, cdir=cdir)
|
||
|
return c
|
||
|
elif not symbols:
|
||
|
return self
|
||
|
x = sympify(symbols[0])
|
||
|
if not x.is_symbol:
|
||
|
raise ValueError('expecting a Symbol but got %s' % x)
|
||
|
if x not in self.free_symbols:
|
||
|
return self
|
||
|
obj = self._eval_as_leading_term(x, logx=logx, cdir=cdir)
|
||
|
if obj is not None:
|
||
|
from sympy.simplify.powsimp import powsimp
|
||
|
return powsimp(obj, deep=True, combine='exp')
|
||
|
raise NotImplementedError('as_leading_term(%s, %s)' % (self, x))
|
||
|
|
||
|
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
||
|
return self
|
||
|
|
||
|
def as_coeff_exponent(self, x) -> tuple[Expr, Expr]:
|
||
|
""" ``c*x**e -> c,e`` where x can be any symbolic expression.
|
||
|
"""
|
||
|
from sympy.simplify.radsimp import collect
|
||
|
s = collect(self, x)
|
||
|
c, p = s.as_coeff_mul(x)
|
||
|
if len(p) == 1:
|
||
|
b, e = p[0].as_base_exp()
|
||
|
if b == x:
|
||
|
return c, e
|
||
|
return s, S.Zero
|
||
|
|
||
|
def leadterm(self, x, logx=None, cdir=0):
|
||
|
"""
|
||
|
Returns the leading term a*x**b as a tuple (a, b).
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.abc import x
|
||
|
>>> (1+x+x**2).leadterm(x)
|
||
|
(1, 0)
|
||
|
>>> (1/x**2+x+x**2).leadterm(x)
|
||
|
(1, -2)
|
||
|
|
||
|
"""
|
||
|
from .symbol import Dummy
|
||
|
from sympy.functions.elementary.exponential import log
|
||
|
l = self.as_leading_term(x, logx=logx, cdir=cdir)
|
||
|
d = Dummy('logx')
|
||
|
if l.has(log(x)):
|
||
|
l = l.subs(log(x), d)
|
||
|
c, e = l.as_coeff_exponent(x)
|
||
|
if x in c.free_symbols:
|
||
|
raise ValueError(filldedent("""
|
||
|
cannot compute leadterm(%s, %s). The coefficient
|
||
|
should have been free of %s but got %s""" % (self, x, x, c)))
|
||
|
c = c.subs(d, log(x))
|
||
|
return c, e
|
||
|
|
||
|
def as_coeff_Mul(self, rational: bool = False) -> tuple['Number', Expr]:
|
||
|
"""Efficiently extract the coefficient of a product."""
|
||
|
return S.One, self
|
||
|
|
||
|
def as_coeff_Add(self, rational=False) -> tuple['Number', Expr]:
|
||
|
"""Efficiently extract the coefficient of a summation."""
|
||
|
return S.Zero, self
|
||
|
|
||
|
def fps(self, x=None, x0=0, dir=1, hyper=True, order=4, rational=True,
|
||
|
full=False):
|
||
|
"""
|
||
|
Compute formal power power series of self.
|
||
|
|
||
|
See the docstring of the :func:`fps` function in sympy.series.formal for
|
||
|
more information.
|
||
|
"""
|
||
|
from sympy.series.formal import fps
|
||
|
|
||
|
return fps(self, x, x0, dir, hyper, order, rational, full)
|
||
|
|
||
|
def fourier_series(self, limits=None):
|
||
|
"""Compute fourier sine/cosine series of self.
|
||
|
|
||
|
See the docstring of the :func:`fourier_series` in sympy.series.fourier
|
||
|
for more information.
|
||
|
"""
|
||
|
from sympy.series.fourier import fourier_series
|
||
|
|
||
|
return fourier_series(self, limits)
|
||
|
|
||
|
###################################################################################
|
||
|
##################### DERIVATIVE, INTEGRAL, FUNCTIONAL METHODS ####################
|
||
|
###################################################################################
|
||
|
|
||
|
def diff(self, *symbols, **assumptions):
|
||
|
assumptions.setdefault("evaluate", True)
|
||
|
return _derivative_dispatch(self, *symbols, **assumptions)
|
||
|
|
||
|
###########################################################################
|
||
|
###################### EXPRESSION EXPANSION METHODS #######################
|
||
|
###########################################################################
|
||
|
|
||
|
# Relevant subclasses should override _eval_expand_hint() methods. See
|
||
|
# the docstring of expand() for more info.
|
||
|
|
||
|
def _eval_expand_complex(self, **hints):
|
||
|
real, imag = self.as_real_imag(**hints)
|
||
|
return real + S.ImaginaryUnit*imag
|
||
|
|
||
|
@staticmethod
|
||
|
def _expand_hint(expr, hint, deep=True, **hints):
|
||
|
"""
|
||
|
Helper for ``expand()``. Recursively calls ``expr._eval_expand_hint()``.
|
||
|
|
||
|
Returns ``(expr, hit)``, where expr is the (possibly) expanded
|
||
|
``expr`` and ``hit`` is ``True`` if ``expr`` was truly expanded and
|
||
|
``False`` otherwise.
|
||
|
"""
|
||
|
hit = False
|
||
|
# XXX: Hack to support non-Basic args
|
||
|
# |
|
||
|
# V
|
||
|
if deep and getattr(expr, 'args', ()) and not expr.is_Atom:
|
||
|
sargs = []
|
||
|
for arg in expr.args:
|
||
|
arg, arghit = Expr._expand_hint(arg, hint, **hints)
|
||
|
hit |= arghit
|
||
|
sargs.append(arg)
|
||
|
|
||
|
if hit:
|
||
|
expr = expr.func(*sargs)
|
||
|
|
||
|
if hasattr(expr, hint):
|
||
|
newexpr = getattr(expr, hint)(**hints)
|
||
|
if newexpr != expr:
|
||
|
return (newexpr, True)
|
||
|
|
||
|
return (expr, hit)
|
||
|
|
||
|
@cacheit
|
||
|
def expand(self, deep=True, modulus=None, power_base=True, power_exp=True,
|
||
|
mul=True, log=True, multinomial=True, basic=True, **hints):
|
||
|
"""
|
||
|
Expand an expression using hints.
|
||
|
|
||
|
See the docstring of the expand() function in sympy.core.function for
|
||
|
more information.
|
||
|
|
||
|
"""
|
||
|
from sympy.simplify.radsimp import fraction
|
||
|
|
||
|
hints.update(power_base=power_base, power_exp=power_exp, mul=mul,
|
||
|
log=log, multinomial=multinomial, basic=basic)
|
||
|
|
||
|
expr = self
|
||
|
if hints.pop('frac', False):
|
||
|
n, d = [a.expand(deep=deep, modulus=modulus, **hints)
|
||
|
for a in fraction(self)]
|
||
|
return n/d
|
||
|
elif hints.pop('denom', False):
|
||
|
n, d = fraction(self)
|
||
|
return n/d.expand(deep=deep, modulus=modulus, **hints)
|
||
|
elif hints.pop('numer', False):
|
||
|
n, d = fraction(self)
|
||
|
return n.expand(deep=deep, modulus=modulus, **hints)/d
|
||
|
|
||
|
# Although the hints are sorted here, an earlier hint may get applied
|
||
|
# at a given node in the expression tree before another because of how
|
||
|
# the hints are applied. e.g. expand(log(x*(y + z))) -> log(x*y +
|
||
|
# x*z) because while applying log at the top level, log and mul are
|
||
|
# applied at the deeper level in the tree so that when the log at the
|
||
|
# upper level gets applied, the mul has already been applied at the
|
||
|
# lower level.
|
||
|
|
||
|
# Additionally, because hints are only applied once, the expression
|
||
|
# may not be expanded all the way. For example, if mul is applied
|
||
|
# before multinomial, x*(x + 1)**2 won't be expanded all the way. For
|
||
|
# now, we just use a special case to make multinomial run before mul,
|
||
|
# so that at least polynomials will be expanded all the way. In the
|
||
|
# future, smarter heuristics should be applied.
|
||
|
# TODO: Smarter heuristics
|
||
|
|
||
|
def _expand_hint_key(hint):
|
||
|
"""Make multinomial come before mul"""
|
||
|
if hint == 'mul':
|
||
|
return 'mulz'
|
||
|
return hint
|
||
|
|
||
|
for hint in sorted(hints.keys(), key=_expand_hint_key):
|
||
|
use_hint = hints[hint]
|
||
|
if use_hint:
|
||
|
hint = '_eval_expand_' + hint
|
||
|
expr, hit = Expr._expand_hint(expr, hint, deep=deep, **hints)
|
||
|
|
||
|
while True:
|
||
|
was = expr
|
||
|
if hints.get('multinomial', False):
|
||
|
expr, _ = Expr._expand_hint(
|
||
|
expr, '_eval_expand_multinomial', deep=deep, **hints)
|
||
|
if hints.get('mul', False):
|
||
|
expr, _ = Expr._expand_hint(
|
||
|
expr, '_eval_expand_mul', deep=deep, **hints)
|
||
|
if hints.get('log', False):
|
||
|
expr, _ = Expr._expand_hint(
|
||
|
expr, '_eval_expand_log', deep=deep, **hints)
|
||
|
if expr == was:
|
||
|
break
|
||
|
|
||
|
if modulus is not None:
|
||
|
modulus = sympify(modulus)
|
||
|
|
||
|
if not modulus.is_Integer or modulus <= 0:
|
||
|
raise ValueError(
|
||
|
"modulus must be a positive integer, got %s" % modulus)
|
||
|
|
||
|
terms = []
|
||
|
|
||
|
for term in Add.make_args(expr):
|
||
|
coeff, tail = term.as_coeff_Mul(rational=True)
|
||
|
|
||
|
coeff %= modulus
|
||
|
|
||
|
if coeff:
|
||
|
terms.append(coeff*tail)
|
||
|
|
||
|
expr = Add(*terms)
|
||
|
|
||
|
return expr
|
||
|
|
||
|
###########################################################################
|
||
|
################### GLOBAL ACTION VERB WRAPPER METHODS ####################
|
||
|
###########################################################################
|
||
|
|
||
|
def integrate(self, *args, **kwargs):
|
||
|
"""See the integrate function in sympy.integrals"""
|
||
|
from sympy.integrals.integrals import integrate
|
||
|
return integrate(self, *args, **kwargs)
|
||
|
|
||
|
def nsimplify(self, constants=(), tolerance=None, full=False):
|
||
|
"""See the nsimplify function in sympy.simplify"""
|
||
|
from sympy.simplify.simplify import nsimplify
|
||
|
return nsimplify(self, constants, tolerance, full)
|
||
|
|
||
|
def separate(self, deep=False, force=False):
|
||
|
"""See the separate function in sympy.simplify"""
|
||
|
from .function import expand_power_base
|
||
|
return expand_power_base(self, deep=deep, force=force)
|
||
|
|
||
|
def collect(self, syms, func=None, evaluate=True, exact=False, distribute_order_term=True):
|
||
|
"""See the collect function in sympy.simplify"""
|
||
|
from sympy.simplify.radsimp import collect
|
||
|
return collect(self, syms, func, evaluate, exact, distribute_order_term)
|
||
|
|
||
|
def together(self, *args, **kwargs):
|
||
|
"""See the together function in sympy.polys"""
|
||
|
from sympy.polys.rationaltools import together
|
||
|
return together(self, *args, **kwargs)
|
||
|
|
||
|
def apart(self, x=None, **args):
|
||
|
"""See the apart function in sympy.polys"""
|
||
|
from sympy.polys.partfrac import apart
|
||
|
return apart(self, x, **args)
|
||
|
|
||
|
def ratsimp(self):
|
||
|
"""See the ratsimp function in sympy.simplify"""
|
||
|
from sympy.simplify.ratsimp import ratsimp
|
||
|
return ratsimp(self)
|
||
|
|
||
|
def trigsimp(self, **args):
|
||
|
"""See the trigsimp function in sympy.simplify"""
|
||
|
from sympy.simplify.trigsimp import trigsimp
|
||
|
return trigsimp(self, **args)
|
||
|
|
||
|
def radsimp(self, **kwargs):
|
||
|
"""See the radsimp function in sympy.simplify"""
|
||
|
from sympy.simplify.radsimp import radsimp
|
||
|
return radsimp(self, **kwargs)
|
||
|
|
||
|
def powsimp(self, *args, **kwargs):
|
||
|
"""See the powsimp function in sympy.simplify"""
|
||
|
from sympy.simplify.powsimp import powsimp
|
||
|
return powsimp(self, *args, **kwargs)
|
||
|
|
||
|
def combsimp(self):
|
||
|
"""See the combsimp function in sympy.simplify"""
|
||
|
from sympy.simplify.combsimp import combsimp
|
||
|
return combsimp(self)
|
||
|
|
||
|
def gammasimp(self):
|
||
|
"""See the gammasimp function in sympy.simplify"""
|
||
|
from sympy.simplify.gammasimp import gammasimp
|
||
|
return gammasimp(self)
|
||
|
|
||
|
def factor(self, *gens, **args):
|
||
|
"""See the factor() function in sympy.polys.polytools"""
|
||
|
from sympy.polys.polytools import factor
|
||
|
return factor(self, *gens, **args)
|
||
|
|
||
|
def cancel(self, *gens, **args):
|
||
|
"""See the cancel function in sympy.polys"""
|
||
|
from sympy.polys.polytools import cancel
|
||
|
return cancel(self, *gens, **args)
|
||
|
|
||
|
def invert(self, g, *gens, **args):
|
||
|
"""Return the multiplicative inverse of ``self`` mod ``g``
|
||
|
where ``self`` (and ``g``) may be symbolic expressions).
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
sympy.core.numbers.mod_inverse, sympy.polys.polytools.invert
|
||
|
"""
|
||
|
if self.is_number and getattr(g, 'is_number', True):
|
||
|
from .numbers import mod_inverse
|
||
|
return mod_inverse(self, g)
|
||
|
from sympy.polys.polytools import invert
|
||
|
return invert(self, g, *gens, **args)
|
||
|
|
||
|
def round(self, n=None):
|
||
|
"""Return x rounded to the given decimal place.
|
||
|
|
||
|
If a complex number would results, apply round to the real
|
||
|
and imaginary components of the number.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import pi, E, I, S, Number
|
||
|
>>> pi.round()
|
||
|
3
|
||
|
>>> pi.round(2)
|
||
|
3.14
|
||
|
>>> (2*pi + E*I).round()
|
||
|
6 + 3*I
|
||
|
|
||
|
The round method has a chopping effect:
|
||
|
|
||
|
>>> (2*pi + I/10).round()
|
||
|
6
|
||
|
>>> (pi/10 + 2*I).round()
|
||
|
2*I
|
||
|
>>> (pi/10 + E*I).round(2)
|
||
|
0.31 + 2.72*I
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
The Python ``round`` function uses the SymPy ``round`` method so it
|
||
|
will always return a SymPy number (not a Python float or int):
|
||
|
|
||
|
>>> isinstance(round(S(123), -2), Number)
|
||
|
True
|
||
|
"""
|
||
|
x = self
|
||
|
|
||
|
if not x.is_number:
|
||
|
raise TypeError("Cannot round symbolic expression")
|
||
|
if not x.is_Atom:
|
||
|
if not pure_complex(x.n(2), or_real=True):
|
||
|
raise TypeError(
|
||
|
'Expected a number but got %s:' % func_name(x))
|
||
|
elif x in _illegal:
|
||
|
return x
|
||
|
if x.is_extended_real is False:
|
||
|
r, i = x.as_real_imag()
|
||
|
return r.round(n) + S.ImaginaryUnit*i.round(n)
|
||
|
if not x:
|
||
|
return S.Zero if n is None else x
|
||
|
|
||
|
p = as_int(n or 0)
|
||
|
|
||
|
if x.is_Integer:
|
||
|
return Integer(round(int(x), p))
|
||
|
|
||
|
digits_to_decimal = _mag(x) # _mag(12) = 2, _mag(.012) = -1
|
||
|
allow = digits_to_decimal + p
|
||
|
precs = [f._prec for f in x.atoms(Float)]
|
||
|
dps = prec_to_dps(max(precs)) if precs else None
|
||
|
if dps is None:
|
||
|
# assume everything is exact so use the Python
|
||
|
# float default or whatever was requested
|
||
|
dps = max(15, allow)
|
||
|
else:
|
||
|
allow = min(allow, dps)
|
||
|
# this will shift all digits to right of decimal
|
||
|
# and give us dps to work with as an int
|
||
|
shift = -digits_to_decimal + dps
|
||
|
extra = 1 # how far we look past known digits
|
||
|
# NOTE
|
||
|
# mpmath will calculate the binary representation to
|
||
|
# an arbitrary number of digits but we must base our
|
||
|
# answer on a finite number of those digits, e.g.
|
||
|
# .575 2589569785738035/2**52 in binary.
|
||
|
# mpmath shows us that the first 18 digits are
|
||
|
# >>> Float(.575).n(18)
|
||
|
# 0.574999999999999956
|
||
|
# The default precision is 15 digits and if we ask
|
||
|
# for 15 we get
|
||
|
# >>> Float(.575).n(15)
|
||
|
# 0.575000000000000
|
||
|
# mpmath handles rounding at the 15th digit. But we
|
||
|
# need to be careful since the user might be asking
|
||
|
# for rounding at the last digit and our semantics
|
||
|
# are to round toward the even final digit when there
|
||
|
# is a tie. So the extra digit will be used to make
|
||
|
# that decision. In this case, the value is the same
|
||
|
# to 15 digits:
|
||
|
# >>> Float(.575).n(16)
|
||
|
# 0.5750000000000000
|
||
|
# Now converting this to the 15 known digits gives
|
||
|
# 575000000000000.0
|
||
|
# which rounds to integer
|
||
|
# 5750000000000000
|
||
|
# And now we can round to the desired digt, e.g. at
|
||
|
# the second from the left and we get
|
||
|
# 5800000000000000
|
||
|
# and rescaling that gives
|
||
|
# 0.58
|
||
|
# as the final result.
|
||
|
# If the value is made slightly less than 0.575 we might
|
||
|
# still obtain the same value:
|
||
|
# >>> Float(.575-1e-16).n(16)*10**15
|
||
|
# 574999999999999.8
|
||
|
# What 15 digits best represents the known digits (which are
|
||
|
# to the left of the decimal? 5750000000000000, the same as
|
||
|
# before. The only way we will round down (in this case) is
|
||
|
# if we declared that we had more than 15 digits of precision.
|
||
|
# For example, if we use 16 digits of precision, the integer
|
||
|
# we deal with is
|
||
|
# >>> Float(.575-1e-16).n(17)*10**16
|
||
|
# 5749999999999998.4
|
||
|
# and this now rounds to 5749999999999998 and (if we round to
|
||
|
# the 2nd digit from the left) we get 5700000000000000.
|
||
|
#
|
||
|
xf = x.n(dps + extra)*Pow(10, shift)
|
||
|
xi = Integer(xf)
|
||
|
# use the last digit to select the value of xi
|
||
|
# nearest to x before rounding at the desired digit
|
||
|
sign = 1 if x > 0 else -1
|
||
|
dif2 = sign*(xf - xi).n(extra)
|
||
|
if dif2 < 0:
|
||
|
raise NotImplementedError(
|
||
|
'not expecting int(x) to round away from 0')
|
||
|
if dif2 > .5:
|
||
|
xi += sign # round away from 0
|
||
|
elif dif2 == .5:
|
||
|
xi += sign if xi%2 else -sign # round toward even
|
||
|
# shift p to the new position
|
||
|
ip = p - shift
|
||
|
# let Python handle the int rounding then rescale
|
||
|
xr = round(xi.p, ip)
|
||
|
# restore scale
|
||
|
rv = Rational(xr, Pow(10, shift))
|
||
|
# return Float or Integer
|
||
|
if rv.is_Integer:
|
||
|
if n is None: # the single-arg case
|
||
|
return rv
|
||
|
# use str or else it won't be a float
|
||
|
return Float(str(rv), dps) # keep same precision
|
||
|
else:
|
||
|
if not allow and rv > self:
|
||
|
allow += 1
|
||
|
return Float(rv, allow)
|
||
|
|
||
|
__round__ = round
|
||
|
|
||
|
def _eval_derivative_matrix_lines(self, x):
|
||
|
from sympy.matrices.expressions.matexpr import _LeftRightArgs
|
||
|
return [_LeftRightArgs([S.One, S.One], higher=self._eval_derivative(x))]
|
||
|
|
||
|
|
||
|
class AtomicExpr(Atom, Expr):
|
||
|
"""
|
||
|
A parent class for object which are both atoms and Exprs.
|
||
|
|
||
|
For example: Symbol, Number, Rational, Integer, ...
|
||
|
But not: Add, Mul, Pow, ...
|
||
|
"""
|
||
|
is_number = False
|
||
|
is_Atom = True
|
||
|
|
||
|
__slots__ = ()
|
||
|
|
||
|
def _eval_derivative(self, s):
|
||
|
if self == s:
|
||
|
return S.One
|
||
|
return S.Zero
|
||
|
|
||
|
def _eval_derivative_n_times(self, s, n):
|
||
|
from .containers import Tuple
|
||
|
from sympy.matrices.expressions.matexpr import MatrixExpr
|
||
|
from sympy.matrices.common import MatrixCommon
|
||
|
if isinstance(s, (MatrixCommon, Tuple, Iterable, MatrixExpr)):
|
||
|
return super()._eval_derivative_n_times(s, n)
|
||
|
from .relational import Eq
|
||
|
from sympy.functions.elementary.piecewise import Piecewise
|
||
|
if self == s:
|
||
|
return Piecewise((self, Eq(n, 0)), (1, Eq(n, 1)), (0, True))
|
||
|
else:
|
||
|
return Piecewise((self, Eq(n, 0)), (0, True))
|
||
|
|
||
|
def _eval_is_polynomial(self, syms):
|
||
|
return True
|
||
|
|
||
|
def _eval_is_rational_function(self, syms):
|
||
|
return self not in _illegal
|
||
|
|
||
|
def _eval_is_meromorphic(self, x, a):
|
||
|
from sympy.calculus.accumulationbounds import AccumBounds
|
||
|
return (not self.is_Number or self.is_finite) and not isinstance(self, AccumBounds)
|
||
|
|
||
|
def _eval_is_algebraic_expr(self, syms):
|
||
|
return True
|
||
|
|
||
|
def _eval_nseries(self, x, n, logx, cdir=0):
|
||
|
return self
|
||
|
|
||
|
@property
|
||
|
def expr_free_symbols(self):
|
||
|
sympy_deprecation_warning("""
|
||
|
The expr_free_symbols property is deprecated. Use free_symbols to get
|
||
|
the free symbols of an expression.
|
||
|
""",
|
||
|
deprecated_since_version="1.9",
|
||
|
active_deprecations_target="deprecated-expr-free-symbols")
|
||
|
return {self}
|
||
|
|
||
|
|
||
|
def _mag(x):
|
||
|
r"""Return integer $i$ such that $0.1 \le x/10^i < 1$
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.core.expr import _mag
|
||
|
>>> from sympy import Float
|
||
|
>>> _mag(Float(.1))
|
||
|
0
|
||
|
>>> _mag(Float(.01))
|
||
|
-1
|
||
|
>>> _mag(Float(1234))
|
||
|
4
|
||
|
"""
|
||
|
from math import log10, ceil, log
|
||
|
xpos = abs(x.n())
|
||
|
if not xpos:
|
||
|
return S.Zero
|
||
|
try:
|
||
|
mag_first_dig = int(ceil(log10(xpos)))
|
||
|
except (ValueError, OverflowError):
|
||
|
mag_first_dig = int(ceil(Float(mpf_log(xpos._mpf_, 53))/log(10)))
|
||
|
# check that we aren't off by 1
|
||
|
if (xpos/10**mag_first_dig) >= 1:
|
||
|
assert 1 <= (xpos/10**mag_first_dig) < 10
|
||
|
mag_first_dig += 1
|
||
|
return mag_first_dig
|
||
|
|
||
|
|
||
|
class UnevaluatedExpr(Expr):
|
||
|
"""
|
||
|
Expression that is not evaluated unless released.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import UnevaluatedExpr
|
||
|
>>> from sympy.abc import x
|
||
|
>>> x*(1/x)
|
||
|
1
|
||
|
>>> x*UnevaluatedExpr(1/x)
|
||
|
x*1/x
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __new__(cls, arg, **kwargs):
|
||
|
arg = _sympify(arg)
|
||
|
obj = Expr.__new__(cls, arg, **kwargs)
|
||
|
return obj
|
||
|
|
||
|
def doit(self, **hints):
|
||
|
if hints.get("deep", True):
|
||
|
return self.args[0].doit(**hints)
|
||
|
else:
|
||
|
return self.args[0]
|
||
|
|
||
|
|
||
|
|
||
|
def unchanged(func, *args):
|
||
|
"""Return True if `func` applied to the `args` is unchanged.
|
||
|
Can be used instead of `assert foo == foo`.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Piecewise, cos, pi
|
||
|
>>> from sympy.core.expr import unchanged
|
||
|
>>> from sympy.abc import x
|
||
|
|
||
|
>>> unchanged(cos, 1) # instead of assert cos(1) == cos(1)
|
||
|
True
|
||
|
|
||
|
>>> unchanged(cos, pi)
|
||
|
False
|
||
|
|
||
|
Comparison of args uses the builtin capabilities of the object's
|
||
|
arguments to test for equality so args can be defined loosely. Here,
|
||
|
the ExprCondPair arguments of Piecewise compare as equal to the
|
||
|
tuples that can be used to create the Piecewise:
|
||
|
|
||
|
>>> unchanged(Piecewise, (x, x > 1), (0, True))
|
||
|
True
|
||
|
"""
|
||
|
f = func(*args)
|
||
|
return f.func == func and f.args == args
|
||
|
|
||
|
|
||
|
class ExprBuilder:
|
||
|
def __init__(self, op, args=None, validator=None, check=True):
|
||
|
if not hasattr(op, "__call__"):
|
||
|
raise TypeError("op {} needs to be callable".format(op))
|
||
|
self.op = op
|
||
|
if args is None:
|
||
|
self.args = []
|
||
|
else:
|
||
|
self.args = args
|
||
|
self.validator = validator
|
||
|
if (validator is not None) and check:
|
||
|
self.validate()
|
||
|
|
||
|
@staticmethod
|
||
|
def _build_args(args):
|
||
|
return [i.build() if isinstance(i, ExprBuilder) else i for i in args]
|
||
|
|
||
|
def validate(self):
|
||
|
if self.validator is None:
|
||
|
return
|
||
|
args = self._build_args(self.args)
|
||
|
self.validator(*args)
|
||
|
|
||
|
def build(self, check=True):
|
||
|
args = self._build_args(self.args)
|
||
|
if self.validator and check:
|
||
|
self.validator(*args)
|
||
|
return self.op(*args)
|
||
|
|
||
|
def append_argument(self, arg, check=True):
|
||
|
self.args.append(arg)
|
||
|
if self.validator and check:
|
||
|
self.validate(*self.args)
|
||
|
|
||
|
def __getitem__(self, item):
|
||
|
if item == 0:
|
||
|
return self.op
|
||
|
else:
|
||
|
return self.args[item-1]
|
||
|
|
||
|
def __repr__(self):
|
||
|
return str(self.build())
|
||
|
|
||
|
def search_element(self, elem):
|
||
|
for i, arg in enumerate(self.args):
|
||
|
if isinstance(arg, ExprBuilder):
|
||
|
ret = arg.search_index(elem)
|
||
|
if ret is not None:
|
||
|
return (i,) + ret
|
||
|
elif id(arg) == id(elem):
|
||
|
return (i,)
|
||
|
return None
|
||
|
|
||
|
|
||
|
from .mul import Mul
|
||
|
from .add import Add
|
||
|
from .power import Pow
|
||
|
from .function import Function, _derivative_dispatch
|
||
|
from .mod import Mod
|
||
|
from .exprtools import factor_terms
|
||
|
from .numbers import Float, Integer, Rational, _illegal
|