3386 lines
113 KiB
Python
3386 lines
113 KiB
Python
|
"""
|
||
|
There are three types of functions implemented in SymPy:
|
||
|
|
||
|
1) defined functions (in the sense that they can be evaluated) like
|
||
|
exp or sin; they have a name and a body:
|
||
|
f = exp
|
||
|
2) undefined function which have a name but no body. Undefined
|
||
|
functions can be defined using a Function class as follows:
|
||
|
f = Function('f')
|
||
|
(the result will be a Function instance)
|
||
|
3) anonymous function (or lambda function) which have a body (defined
|
||
|
with dummy variables) but have no name:
|
||
|
f = Lambda(x, exp(x)*x)
|
||
|
f = Lambda((x, y), exp(x)*y)
|
||
|
The fourth type of functions are composites, like (sin + cos)(x); these work in
|
||
|
SymPy core, but are not yet part of SymPy.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> import sympy
|
||
|
>>> f = sympy.Function("f")
|
||
|
>>> from sympy.abc import x
|
||
|
>>> f(x)
|
||
|
f(x)
|
||
|
>>> print(sympy.srepr(f(x).func))
|
||
|
Function('f')
|
||
|
>>> f(x).args
|
||
|
(x,)
|
||
|
|
||
|
"""
|
||
|
|
||
|
from __future__ import annotations
|
||
|
from typing import Any
|
||
|
from collections.abc import Iterable
|
||
|
|
||
|
from .add import Add
|
||
|
from .basic import Basic, _atomic
|
||
|
from .cache import cacheit
|
||
|
from .containers import Tuple, Dict
|
||
|
from .decorators import _sympifyit
|
||
|
from .evalf import pure_complex
|
||
|
from .expr import Expr, AtomicExpr
|
||
|
from .logic import fuzzy_and, fuzzy_or, fuzzy_not, FuzzyBool
|
||
|
from .mul import Mul
|
||
|
from .numbers import Rational, Float, Integer
|
||
|
from .operations import LatticeOp
|
||
|
from .parameters import global_parameters
|
||
|
from .rules import Transform
|
||
|
from .singleton import S
|
||
|
from .sympify import sympify, _sympify
|
||
|
|
||
|
from .sorting import default_sort_key, ordered
|
||
|
from sympy.utilities.exceptions import (sympy_deprecation_warning,
|
||
|
SymPyDeprecationWarning, ignore_warnings)
|
||
|
from sympy.utilities.iterables import (has_dups, sift, iterable,
|
||
|
is_sequence, uniq, topological_sort)
|
||
|
from sympy.utilities.lambdify import MPMATH_TRANSLATIONS
|
||
|
from sympy.utilities.misc import as_int, filldedent, func_name
|
||
|
|
||
|
import mpmath
|
||
|
from mpmath.libmp.libmpf import prec_to_dps
|
||
|
|
||
|
import inspect
|
||
|
from collections import Counter
|
||
|
|
||
|
def _coeff_isneg(a):
|
||
|
"""Return True if the leading Number is negative.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.core.function import _coeff_isneg
|
||
|
>>> from sympy import S, Symbol, oo, pi
|
||
|
>>> _coeff_isneg(-3*pi)
|
||
|
True
|
||
|
>>> _coeff_isneg(S(3))
|
||
|
False
|
||
|
>>> _coeff_isneg(-oo)
|
||
|
True
|
||
|
>>> _coeff_isneg(Symbol('n', negative=True)) # coeff is 1
|
||
|
False
|
||
|
|
||
|
For matrix expressions:
|
||
|
|
||
|
>>> from sympy import MatrixSymbol, sqrt
|
||
|
>>> A = MatrixSymbol("A", 3, 3)
|
||
|
>>> _coeff_isneg(-sqrt(2)*A)
|
||
|
True
|
||
|
>>> _coeff_isneg(sqrt(2)*A)
|
||
|
False
|
||
|
"""
|
||
|
|
||
|
if a.is_MatMul:
|
||
|
a = a.args[0]
|
||
|
if a.is_Mul:
|
||
|
a = a.args[0]
|
||
|
return a.is_Number and a.is_extended_negative
|
||
|
|
||
|
|
||
|
class PoleError(Exception):
|
||
|
pass
|
||
|
|
||
|
|
||
|
class ArgumentIndexError(ValueError):
|
||
|
def __str__(self):
|
||
|
return ("Invalid operation with argument number %s for Function %s" %
|
||
|
(self.args[1], self.args[0]))
|
||
|
|
||
|
|
||
|
class BadSignatureError(TypeError):
|
||
|
'''Raised when a Lambda is created with an invalid signature'''
|
||
|
pass
|
||
|
|
||
|
|
||
|
class BadArgumentsError(TypeError):
|
||
|
'''Raised when a Lambda is called with an incorrect number of arguments'''
|
||
|
pass
|
||
|
|
||
|
|
||
|
# Python 3 version that does not raise a Deprecation warning
|
||
|
def arity(cls):
|
||
|
"""Return the arity of the function if it is known, else None.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
When default values are specified for some arguments, they are
|
||
|
optional and the arity is reported as a tuple of possible values.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import arity, log
|
||
|
>>> arity(lambda x: x)
|
||
|
1
|
||
|
>>> arity(log)
|
||
|
(1, 2)
|
||
|
>>> arity(lambda *x: sum(x)) is None
|
||
|
True
|
||
|
"""
|
||
|
eval_ = getattr(cls, 'eval', cls)
|
||
|
|
||
|
parameters = inspect.signature(eval_).parameters.items()
|
||
|
if [p for _, p in parameters if p.kind == p.VAR_POSITIONAL]:
|
||
|
return
|
||
|
p_or_k = [p for _, p in parameters if p.kind == p.POSITIONAL_OR_KEYWORD]
|
||
|
# how many have no default and how many have a default value
|
||
|
no, yes = map(len, sift(p_or_k,
|
||
|
lambda p:p.default == p.empty, binary=True))
|
||
|
return no if not yes else tuple(range(no, no + yes + 1))
|
||
|
|
||
|
class FunctionClass(type):
|
||
|
"""
|
||
|
Base class for function classes. FunctionClass is a subclass of type.
|
||
|
|
||
|
Use Function('<function name>' [ , signature ]) to create
|
||
|
undefined function classes.
|
||
|
"""
|
||
|
_new = type.__new__
|
||
|
|
||
|
def __init__(cls, *args, **kwargs):
|
||
|
# honor kwarg value or class-defined value before using
|
||
|
# the number of arguments in the eval function (if present)
|
||
|
nargs = kwargs.pop('nargs', cls.__dict__.get('nargs', arity(cls)))
|
||
|
if nargs is None and 'nargs' not in cls.__dict__:
|
||
|
for supcls in cls.__mro__:
|
||
|
if hasattr(supcls, '_nargs'):
|
||
|
nargs = supcls._nargs
|
||
|
break
|
||
|
else:
|
||
|
continue
|
||
|
|
||
|
# Canonicalize nargs here; change to set in nargs.
|
||
|
if is_sequence(nargs):
|
||
|
if not nargs:
|
||
|
raise ValueError(filldedent('''
|
||
|
Incorrectly specified nargs as %s:
|
||
|
if there are no arguments, it should be
|
||
|
`nargs = 0`;
|
||
|
if there are any number of arguments,
|
||
|
it should be
|
||
|
`nargs = None`''' % str(nargs)))
|
||
|
nargs = tuple(ordered(set(nargs)))
|
||
|
elif nargs is not None:
|
||
|
nargs = (as_int(nargs),)
|
||
|
cls._nargs = nargs
|
||
|
|
||
|
# When __init__ is called from UndefinedFunction it is called with
|
||
|
# just one arg but when it is called from subclassing Function it is
|
||
|
# called with the usual (name, bases, namespace) type() signature.
|
||
|
if len(args) == 3:
|
||
|
namespace = args[2]
|
||
|
if 'eval' in namespace and not isinstance(namespace['eval'], classmethod):
|
||
|
raise TypeError("eval on Function subclasses should be a class method (defined with @classmethod)")
|
||
|
|
||
|
@property
|
||
|
def __signature__(self):
|
||
|
"""
|
||
|
Allow Python 3's inspect.signature to give a useful signature for
|
||
|
Function subclasses.
|
||
|
"""
|
||
|
# Python 3 only, but backports (like the one in IPython) still might
|
||
|
# call this.
|
||
|
try:
|
||
|
from inspect import signature
|
||
|
except ImportError:
|
||
|
return None
|
||
|
|
||
|
# TODO: Look at nargs
|
||
|
return signature(self.eval)
|
||
|
|
||
|
@property
|
||
|
def free_symbols(self):
|
||
|
return set()
|
||
|
|
||
|
@property
|
||
|
def xreplace(self):
|
||
|
# Function needs args so we define a property that returns
|
||
|
# a function that takes args...and then use that function
|
||
|
# to return the right value
|
||
|
return lambda rule, **_: rule.get(self, self)
|
||
|
|
||
|
@property
|
||
|
def nargs(self):
|
||
|
"""Return a set of the allowed number of arguments for the function.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Function
|
||
|
>>> f = Function('f')
|
||
|
|
||
|
If the function can take any number of arguments, the set of whole
|
||
|
numbers is returned:
|
||
|
|
||
|
>>> Function('f').nargs
|
||
|
Naturals0
|
||
|
|
||
|
If the function was initialized to accept one or more arguments, a
|
||
|
corresponding set will be returned:
|
||
|
|
||
|
>>> Function('f', nargs=1).nargs
|
||
|
{1}
|
||
|
>>> Function('f', nargs=(2, 1)).nargs
|
||
|
{1, 2}
|
||
|
|
||
|
The undefined function, after application, also has the nargs
|
||
|
attribute; the actual number of arguments is always available by
|
||
|
checking the ``args`` attribute:
|
||
|
|
||
|
>>> f = Function('f')
|
||
|
>>> f(1).nargs
|
||
|
Naturals0
|
||
|
>>> len(f(1).args)
|
||
|
1
|
||
|
"""
|
||
|
from sympy.sets.sets import FiniteSet
|
||
|
# XXX it would be nice to handle this in __init__ but there are import
|
||
|
# problems with trying to import FiniteSet there
|
||
|
return FiniteSet(*self._nargs) if self._nargs else S.Naturals0
|
||
|
|
||
|
def _valid_nargs(self, n : int) -> bool:
|
||
|
""" Return True if the specified integer is a valid number of arguments
|
||
|
|
||
|
The number of arguments n is guaranteed to be an integer and positive
|
||
|
|
||
|
"""
|
||
|
if self._nargs:
|
||
|
return n in self._nargs
|
||
|
|
||
|
nargs = self.nargs
|
||
|
return nargs is S.Naturals0 or n in nargs
|
||
|
|
||
|
def __repr__(cls):
|
||
|
return cls.__name__
|
||
|
|
||
|
|
||
|
class Application(Basic, metaclass=FunctionClass):
|
||
|
"""
|
||
|
Base class for applied functions.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
Instances of Application represent the result of applying an application of
|
||
|
any type to any object.
|
||
|
"""
|
||
|
|
||
|
is_Function = True
|
||
|
|
||
|
@cacheit
|
||
|
def __new__(cls, *args, **options):
|
||
|
from sympy.sets.fancysets import Naturals0
|
||
|
from sympy.sets.sets import FiniteSet
|
||
|
|
||
|
args = list(map(sympify, args))
|
||
|
evaluate = options.pop('evaluate', global_parameters.evaluate)
|
||
|
# WildFunction (and anything else like it) may have nargs defined
|
||
|
# and we throw that value away here
|
||
|
options.pop('nargs', None)
|
||
|
|
||
|
if options:
|
||
|
raise ValueError("Unknown options: %s" % options)
|
||
|
|
||
|
if evaluate:
|
||
|
evaluated = cls.eval(*args)
|
||
|
if evaluated is not None:
|
||
|
return evaluated
|
||
|
|
||
|
obj = super().__new__(cls, *args, **options)
|
||
|
|
||
|
# make nargs uniform here
|
||
|
sentinel = object()
|
||
|
objnargs = getattr(obj, "nargs", sentinel)
|
||
|
if objnargs is not sentinel:
|
||
|
# things passing through here:
|
||
|
# - functions subclassed from Function (e.g. myfunc(1).nargs)
|
||
|
# - functions like cos(1).nargs
|
||
|
# - AppliedUndef with given nargs like Function('f', nargs=1)(1).nargs
|
||
|
# Canonicalize nargs here
|
||
|
if is_sequence(objnargs):
|
||
|
nargs = tuple(ordered(set(objnargs)))
|
||
|
elif objnargs is not None:
|
||
|
nargs = (as_int(objnargs),)
|
||
|
else:
|
||
|
nargs = None
|
||
|
else:
|
||
|
# things passing through here:
|
||
|
# - WildFunction('f').nargs
|
||
|
# - AppliedUndef with no nargs like Function('f')(1).nargs
|
||
|
nargs = obj._nargs # note the underscore here
|
||
|
# convert to FiniteSet
|
||
|
obj.nargs = FiniteSet(*nargs) if nargs else Naturals0()
|
||
|
return obj
|
||
|
|
||
|
@classmethod
|
||
|
def eval(cls, *args):
|
||
|
"""
|
||
|
Returns a canonical form of cls applied to arguments args.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The ``eval()`` method is called when the class ``cls`` is about to be
|
||
|
instantiated and it should return either some simplified instance
|
||
|
(possible of some other class), or if the class ``cls`` should be
|
||
|
unmodified, return None.
|
||
|
|
||
|
Examples of ``eval()`` for the function "sign"
|
||
|
|
||
|
.. code-block:: python
|
||
|
|
||
|
@classmethod
|
||
|
def eval(cls, arg):
|
||
|
if arg is S.NaN:
|
||
|
return S.NaN
|
||
|
if arg.is_zero: return S.Zero
|
||
|
if arg.is_positive: return S.One
|
||
|
if arg.is_negative: return S.NegativeOne
|
||
|
if isinstance(arg, Mul):
|
||
|
coeff, terms = arg.as_coeff_Mul(rational=True)
|
||
|
if coeff is not S.One:
|
||
|
return cls(coeff) * cls(terms)
|
||
|
|
||
|
"""
|
||
|
return
|
||
|
|
||
|
@property
|
||
|
def func(self):
|
||
|
return self.__class__
|
||
|
|
||
|
def _eval_subs(self, old, new):
|
||
|
if (old.is_Function and new.is_Function and
|
||
|
callable(old) and callable(new) and
|
||
|
old == self.func and len(self.args) in new.nargs):
|
||
|
return new(*[i._subs(old, new) for i in self.args])
|
||
|
|
||
|
|
||
|
class Function(Application, Expr):
|
||
|
r"""
|
||
|
Base class for applied mathematical functions.
|
||
|
|
||
|
It also serves as a constructor for undefined function classes.
|
||
|
|
||
|
See the :ref:`custom-functions` guide for details on how to subclass
|
||
|
``Function`` and what methods can be defined.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
**Undefined Functions**
|
||
|
|
||
|
To create an undefined function, pass a string of the function name to
|
||
|
``Function``.
|
||
|
|
||
|
>>> from sympy import Function, Symbol
|
||
|
>>> x = Symbol('x')
|
||
|
>>> f = Function('f')
|
||
|
>>> g = Function('g')(x)
|
||
|
>>> f
|
||
|
f
|
||
|
>>> f(x)
|
||
|
f(x)
|
||
|
>>> g
|
||
|
g(x)
|
||
|
>>> f(x).diff(x)
|
||
|
Derivative(f(x), x)
|
||
|
>>> g.diff(x)
|
||
|
Derivative(g(x), x)
|
||
|
|
||
|
Assumptions can be passed to ``Function`` the same as with a
|
||
|
:class:`~.Symbol`. Alternatively, you can use a ``Symbol`` with
|
||
|
assumptions for the function name and the function will inherit the name
|
||
|
and assumptions associated with the ``Symbol``:
|
||
|
|
||
|
>>> f_real = Function('f', real=True)
|
||
|
>>> f_real(x).is_real
|
||
|
True
|
||
|
>>> f_real_inherit = Function(Symbol('f', real=True))
|
||
|
>>> f_real_inherit(x).is_real
|
||
|
True
|
||
|
|
||
|
Note that assumptions on a function are unrelated to the assumptions on
|
||
|
the variables it is called on. If you want to add a relationship, subclass
|
||
|
``Function`` and define custom assumptions handler methods. See the
|
||
|
:ref:`custom-functions-assumptions` section of the :ref:`custom-functions`
|
||
|
guide for more details.
|
||
|
|
||
|
**Custom Function Subclasses**
|
||
|
|
||
|
The :ref:`custom-functions` guide has several
|
||
|
:ref:`custom-functions-complete-examples` of how to subclass ``Function``
|
||
|
to create a custom function.
|
||
|
|
||
|
"""
|
||
|
|
||
|
@property
|
||
|
def _diff_wrt(self):
|
||
|
return False
|
||
|
|
||
|
@cacheit
|
||
|
def __new__(cls, *args, **options):
|
||
|
# Handle calls like Function('f')
|
||
|
if cls is Function:
|
||
|
return UndefinedFunction(*args, **options)
|
||
|
|
||
|
n = len(args)
|
||
|
|
||
|
if not cls._valid_nargs(n):
|
||
|
# XXX: exception message must be in exactly this format to
|
||
|
# make it work with NumPy's functions like vectorize(). See,
|
||
|
# for example, https://github.com/numpy/numpy/issues/1697.
|
||
|
# The ideal solution would be just to attach metadata to
|
||
|
# the exception and change NumPy to take advantage of this.
|
||
|
temp = ('%(name)s takes %(qual)s %(args)s '
|
||
|
'argument%(plural)s (%(given)s given)')
|
||
|
raise TypeError(temp % {
|
||
|
'name': cls,
|
||
|
'qual': 'exactly' if len(cls.nargs) == 1 else 'at least',
|
||
|
'args': min(cls.nargs),
|
||
|
'plural': 's'*(min(cls.nargs) != 1),
|
||
|
'given': n})
|
||
|
|
||
|
evaluate = options.get('evaluate', global_parameters.evaluate)
|
||
|
result = super().__new__(cls, *args, **options)
|
||
|
if evaluate and isinstance(result, cls) and result.args:
|
||
|
_should_evalf = [cls._should_evalf(a) for a in result.args]
|
||
|
pr2 = min(_should_evalf)
|
||
|
if pr2 > 0:
|
||
|
pr = max(_should_evalf)
|
||
|
result = result.evalf(prec_to_dps(pr))
|
||
|
|
||
|
return _sympify(result)
|
||
|
|
||
|
@classmethod
|
||
|
def _should_evalf(cls, arg):
|
||
|
"""
|
||
|
Decide if the function should automatically evalf().
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
By default (in this implementation), this happens if (and only if) the
|
||
|
ARG is a floating point number (including complex numbers).
|
||
|
This function is used by __new__.
|
||
|
|
||
|
Returns the precision to evalf to, or -1 if it should not evalf.
|
||
|
"""
|
||
|
if arg.is_Float:
|
||
|
return arg._prec
|
||
|
if not arg.is_Add:
|
||
|
return -1
|
||
|
m = pure_complex(arg)
|
||
|
if m is None:
|
||
|
return -1
|
||
|
# the elements of m are of type Number, so have a _prec
|
||
|
return max(m[0]._prec, m[1]._prec)
|
||
|
|
||
|
@classmethod
|
||
|
def class_key(cls):
|
||
|
from sympy.sets.fancysets import Naturals0
|
||
|
funcs = {
|
||
|
'exp': 10,
|
||
|
'log': 11,
|
||
|
'sin': 20,
|
||
|
'cos': 21,
|
||
|
'tan': 22,
|
||
|
'cot': 23,
|
||
|
'sinh': 30,
|
||
|
'cosh': 31,
|
||
|
'tanh': 32,
|
||
|
'coth': 33,
|
||
|
'conjugate': 40,
|
||
|
're': 41,
|
||
|
'im': 42,
|
||
|
'arg': 43,
|
||
|
}
|
||
|
name = cls.__name__
|
||
|
|
||
|
try:
|
||
|
i = funcs[name]
|
||
|
except KeyError:
|
||
|
i = 0 if isinstance(cls.nargs, Naturals0) else 10000
|
||
|
|
||
|
return 4, i, name
|
||
|
|
||
|
def _eval_evalf(self, prec):
|
||
|
|
||
|
def _get_mpmath_func(fname):
|
||
|
"""Lookup mpmath function based on name"""
|
||
|
if isinstance(self, AppliedUndef):
|
||
|
# Shouldn't lookup in mpmath but might have ._imp_
|
||
|
return None
|
||
|
|
||
|
if not hasattr(mpmath, fname):
|
||
|
fname = MPMATH_TRANSLATIONS.get(fname, None)
|
||
|
if fname is None:
|
||
|
return None
|
||
|
return getattr(mpmath, fname)
|
||
|
|
||
|
_eval_mpmath = getattr(self, '_eval_mpmath', None)
|
||
|
if _eval_mpmath is None:
|
||
|
func = _get_mpmath_func(self.func.__name__)
|
||
|
args = self.args
|
||
|
else:
|
||
|
func, args = _eval_mpmath()
|
||
|
|
||
|
# Fall-back evaluation
|
||
|
if func is None:
|
||
|
imp = getattr(self, '_imp_', None)
|
||
|
if imp is None:
|
||
|
return None
|
||
|
try:
|
||
|
return Float(imp(*[i.evalf(prec) for i in self.args]), prec)
|
||
|
except (TypeError, ValueError):
|
||
|
return None
|
||
|
|
||
|
# Convert all args to mpf or mpc
|
||
|
# Convert the arguments to *higher* precision than requested for the
|
||
|
# final result.
|
||
|
# XXX + 5 is a guess, it is similar to what is used in evalf.py. Should
|
||
|
# we be more intelligent about it?
|
||
|
try:
|
||
|
args = [arg._to_mpmath(prec + 5) for arg in args]
|
||
|
def bad(m):
|
||
|
from mpmath import mpf, mpc
|
||
|
# the precision of an mpf value is the last element
|
||
|
# if that is 1 (and m[1] is not 1 which would indicate a
|
||
|
# power of 2), then the eval failed; so check that none of
|
||
|
# the arguments failed to compute to a finite precision.
|
||
|
# Note: An mpc value has two parts, the re and imag tuple;
|
||
|
# check each of those parts, too. Anything else is allowed to
|
||
|
# pass
|
||
|
if isinstance(m, mpf):
|
||
|
m = m._mpf_
|
||
|
return m[1] !=1 and m[-1] == 1
|
||
|
elif isinstance(m, mpc):
|
||
|
m, n = m._mpc_
|
||
|
return m[1] !=1 and m[-1] == 1 and \
|
||
|
n[1] !=1 and n[-1] == 1
|
||
|
else:
|
||
|
return False
|
||
|
if any(bad(a) for a in args):
|
||
|
raise ValueError # one or more args failed to compute with significance
|
||
|
except ValueError:
|
||
|
return
|
||
|
|
||
|
with mpmath.workprec(prec):
|
||
|
v = func(*args)
|
||
|
|
||
|
return Expr._from_mpmath(v, prec)
|
||
|
|
||
|
def _eval_derivative(self, s):
|
||
|
# f(x).diff(s) -> x.diff(s) * f.fdiff(1)(s)
|
||
|
i = 0
|
||
|
l = []
|
||
|
for a in self.args:
|
||
|
i += 1
|
||
|
da = a.diff(s)
|
||
|
if da.is_zero:
|
||
|
continue
|
||
|
try:
|
||
|
df = self.fdiff(i)
|
||
|
except ArgumentIndexError:
|
||
|
df = Function.fdiff(self, i)
|
||
|
l.append(df * da)
|
||
|
return Add(*l)
|
||
|
|
||
|
def _eval_is_commutative(self):
|
||
|
return fuzzy_and(a.is_commutative for a in self.args)
|
||
|
|
||
|
def _eval_is_meromorphic(self, x, a):
|
||
|
if not self.args:
|
||
|
return True
|
||
|
if any(arg.has(x) for arg in self.args[1:]):
|
||
|
return False
|
||
|
|
||
|
arg = self.args[0]
|
||
|
if not arg._eval_is_meromorphic(x, a):
|
||
|
return None
|
||
|
|
||
|
return fuzzy_not(type(self).is_singular(arg.subs(x, a)))
|
||
|
|
||
|
_singularities: FuzzyBool | tuple[Expr, ...] = None
|
||
|
|
||
|
@classmethod
|
||
|
def is_singular(cls, a):
|
||
|
"""
|
||
|
Tests whether the argument is an essential singularity
|
||
|
or a branch point, or the functions is non-holomorphic.
|
||
|
"""
|
||
|
ss = cls._singularities
|
||
|
if ss in (True, None, False):
|
||
|
return ss
|
||
|
|
||
|
return fuzzy_or(a.is_infinite if s is S.ComplexInfinity
|
||
|
else (a - s).is_zero for s in ss)
|
||
|
|
||
|
def as_base_exp(self):
|
||
|
"""
|
||
|
Returns the method as the 2-tuple (base, exponent).
|
||
|
"""
|
||
|
return self, S.One
|
||
|
|
||
|
def _eval_aseries(self, n, args0, x, logx):
|
||
|
"""
|
||
|
Compute an asymptotic expansion around args0, in terms of self.args.
|
||
|
This function is only used internally by _eval_nseries and should not
|
||
|
be called directly; derived classes can overwrite this to implement
|
||
|
asymptotic expansions.
|
||
|
"""
|
||
|
raise PoleError(filldedent('''
|
||
|
Asymptotic expansion of %s around %s is
|
||
|
not implemented.''' % (type(self), args0)))
|
||
|
|
||
|
def _eval_nseries(self, x, n, logx, cdir=0):
|
||
|
"""
|
||
|
This function does compute series for multivariate functions,
|
||
|
but the expansion is always in terms of *one* variable.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import atan2
|
||
|
>>> from sympy.abc import x, y
|
||
|
>>> atan2(x, y).series(x, n=2)
|
||
|
atan2(0, y) + x/y + O(x**2)
|
||
|
>>> atan2(x, y).series(y, n=2)
|
||
|
-y/x + atan2(x, 0) + O(y**2)
|
||
|
|
||
|
This function also computes asymptotic expansions, if necessary
|
||
|
and possible:
|
||
|
|
||
|
>>> from sympy import loggamma
|
||
|
>>> loggamma(1/x)._eval_nseries(x,0,None)
|
||
|
-1/x - log(x)/x + log(x)/2 + O(1)
|
||
|
|
||
|
"""
|
||
|
from .symbol import uniquely_named_symbol
|
||
|
from sympy.series.order import Order
|
||
|
from sympy.sets.sets import FiniteSet
|
||
|
args = self.args
|
||
|
args0 = [t.limit(x, 0) for t in args]
|
||
|
if any(t.is_finite is False for t in args0):
|
||
|
from .numbers import oo, zoo, nan
|
||
|
a = [t.as_leading_term(x, logx=logx) for t in args]
|
||
|
a0 = [t.limit(x, 0) for t in a]
|
||
|
if any(t.has(oo, -oo, zoo, nan) for t in a0):
|
||
|
return self._eval_aseries(n, args0, x, logx)
|
||
|
# Careful: the argument goes to oo, but only logarithmically so. We
|
||
|
# are supposed to do a power series expansion "around the
|
||
|
# logarithmic term". e.g.
|
||
|
# f(1+x+log(x))
|
||
|
# -> f(1+logx) + x*f'(1+logx) + O(x**2)
|
||
|
# where 'logx' is given in the argument
|
||
|
a = [t._eval_nseries(x, n, logx) for t in args]
|
||
|
z = [r - r0 for (r, r0) in zip(a, a0)]
|
||
|
p = [Dummy() for _ in z]
|
||
|
q = []
|
||
|
v = None
|
||
|
for ai, zi, pi in zip(a0, z, p):
|
||
|
if zi.has(x):
|
||
|
if v is not None:
|
||
|
raise NotImplementedError
|
||
|
q.append(ai + pi)
|
||
|
v = pi
|
||
|
else:
|
||
|
q.append(ai)
|
||
|
e1 = self.func(*q)
|
||
|
if v is None:
|
||
|
return e1
|
||
|
s = e1._eval_nseries(v, n, logx)
|
||
|
o = s.getO()
|
||
|
s = s.removeO()
|
||
|
s = s.subs(v, zi).expand() + Order(o.expr.subs(v, zi), x)
|
||
|
return s
|
||
|
if (self.func.nargs is S.Naturals0
|
||
|
or (self.func.nargs == FiniteSet(1) and args0[0])
|
||
|
or any(c > 1 for c in self.func.nargs)):
|
||
|
e = self
|
||
|
e1 = e.expand()
|
||
|
if e == e1:
|
||
|
#for example when e = sin(x+1) or e = sin(cos(x))
|
||
|
#let's try the general algorithm
|
||
|
if len(e.args) == 1:
|
||
|
# issue 14411
|
||
|
e = e.func(e.args[0].cancel())
|
||
|
term = e.subs(x, S.Zero)
|
||
|
if term.is_finite is False or term is S.NaN:
|
||
|
raise PoleError("Cannot expand %s around 0" % (self))
|
||
|
series = term
|
||
|
fact = S.One
|
||
|
|
||
|
_x = uniquely_named_symbol('xi', self)
|
||
|
e = e.subs(x, _x)
|
||
|
for i in range(1, n):
|
||
|
fact *= Rational(i)
|
||
|
e = e.diff(_x)
|
||
|
subs = e.subs(_x, S.Zero)
|
||
|
if subs is S.NaN:
|
||
|
# try to evaluate a limit if we have to
|
||
|
subs = e.limit(_x, S.Zero)
|
||
|
if subs.is_finite is False:
|
||
|
raise PoleError("Cannot expand %s around 0" % (self))
|
||
|
term = subs*(x**i)/fact
|
||
|
term = term.expand()
|
||
|
series += term
|
||
|
return series + Order(x**n, x)
|
||
|
return e1.nseries(x, n=n, logx=logx)
|
||
|
arg = self.args[0]
|
||
|
l = []
|
||
|
g = None
|
||
|
# try to predict a number of terms needed
|
||
|
nterms = n + 2
|
||
|
cf = Order(arg.as_leading_term(x), x).getn()
|
||
|
if cf != 0:
|
||
|
nterms = (n/cf).ceiling()
|
||
|
for i in range(nterms):
|
||
|
g = self.taylor_term(i, arg, g)
|
||
|
g = g.nseries(x, n=n, logx=logx)
|
||
|
l.append(g)
|
||
|
return Add(*l) + Order(x**n, x)
|
||
|
|
||
|
def fdiff(self, argindex=1):
|
||
|
"""
|
||
|
Returns the first derivative of the function.
|
||
|
"""
|
||
|
if not (1 <= argindex <= len(self.args)):
|
||
|
raise ArgumentIndexError(self, argindex)
|
||
|
ix = argindex - 1
|
||
|
A = self.args[ix]
|
||
|
if A._diff_wrt:
|
||
|
if len(self.args) == 1 or not A.is_Symbol:
|
||
|
return _derivative_dispatch(self, A)
|
||
|
for i, v in enumerate(self.args):
|
||
|
if i != ix and A in v.free_symbols:
|
||
|
# it can't be in any other argument's free symbols
|
||
|
# issue 8510
|
||
|
break
|
||
|
else:
|
||
|
return _derivative_dispatch(self, A)
|
||
|
|
||
|
# See issue 4624 and issue 4719, 5600 and 8510
|
||
|
D = Dummy('xi_%i' % argindex, dummy_index=hash(A))
|
||
|
args = self.args[:ix] + (D,) + self.args[ix + 1:]
|
||
|
return Subs(Derivative(self.func(*args), D), D, A)
|
||
|
|
||
|
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
||
|
"""Stub that should be overridden by new Functions to return
|
||
|
the first non-zero term in a series if ever an x-dependent
|
||
|
argument whose leading term vanishes as x -> 0 might be encountered.
|
||
|
See, for example, cos._eval_as_leading_term.
|
||
|
"""
|
||
|
from sympy.series.order import Order
|
||
|
args = [a.as_leading_term(x, logx=logx) for a in self.args]
|
||
|
o = Order(1, x)
|
||
|
if any(x in a.free_symbols and o.contains(a) for a in args):
|
||
|
# Whereas x and any finite number are contained in O(1, x),
|
||
|
# expressions like 1/x are not. If any arg simplified to a
|
||
|
# vanishing expression as x -> 0 (like x or x**2, but not
|
||
|
# 3, 1/x, etc...) then the _eval_as_leading_term is needed
|
||
|
# to supply the first non-zero term of the series,
|
||
|
#
|
||
|
# e.g. expression leading term
|
||
|
# ---------- ------------
|
||
|
# cos(1/x) cos(1/x)
|
||
|
# cos(cos(x)) cos(1)
|
||
|
# cos(x) 1 <- _eval_as_leading_term needed
|
||
|
# sin(x) x <- _eval_as_leading_term needed
|
||
|
#
|
||
|
raise NotImplementedError(
|
||
|
'%s has no _eval_as_leading_term routine' % self.func)
|
||
|
else:
|
||
|
return self.func(*args)
|
||
|
|
||
|
|
||
|
class AppliedUndef(Function):
|
||
|
"""
|
||
|
Base class for expressions resulting from the application of an undefined
|
||
|
function.
|
||
|
"""
|
||
|
|
||
|
is_number = False
|
||
|
|
||
|
def __new__(cls, *args, **options):
|
||
|
args = list(map(sympify, args))
|
||
|
u = [a.name for a in args if isinstance(a, UndefinedFunction)]
|
||
|
if u:
|
||
|
raise TypeError('Invalid argument: expecting an expression, not UndefinedFunction%s: %s' % (
|
||
|
's'*(len(u) > 1), ', '.join(u)))
|
||
|
obj = super().__new__(cls, *args, **options)
|
||
|
return obj
|
||
|
|
||
|
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
||
|
return self
|
||
|
|
||
|
@property
|
||
|
def _diff_wrt(self):
|
||
|
"""
|
||
|
Allow derivatives wrt to undefined functions.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Function, Symbol
|
||
|
>>> f = Function('f')
|
||
|
>>> x = Symbol('x')
|
||
|
>>> f(x)._diff_wrt
|
||
|
True
|
||
|
>>> f(x).diff(x)
|
||
|
Derivative(f(x), x)
|
||
|
"""
|
||
|
return True
|
||
|
|
||
|
|
||
|
class UndefSageHelper:
|
||
|
"""
|
||
|
Helper to facilitate Sage conversion.
|
||
|
"""
|
||
|
def __get__(self, ins, typ):
|
||
|
import sage.all as sage
|
||
|
if ins is None:
|
||
|
return lambda: sage.function(typ.__name__)
|
||
|
else:
|
||
|
args = [arg._sage_() for arg in ins.args]
|
||
|
return lambda : sage.function(ins.__class__.__name__)(*args)
|
||
|
|
||
|
_undef_sage_helper = UndefSageHelper()
|
||
|
|
||
|
class UndefinedFunction(FunctionClass):
|
||
|
"""
|
||
|
The (meta)class of undefined functions.
|
||
|
"""
|
||
|
def __new__(mcl, name, bases=(AppliedUndef,), __dict__=None, **kwargs):
|
||
|
from .symbol import _filter_assumptions
|
||
|
# Allow Function('f', real=True)
|
||
|
# and/or Function(Symbol('f', real=True))
|
||
|
assumptions, kwargs = _filter_assumptions(kwargs)
|
||
|
if isinstance(name, Symbol):
|
||
|
assumptions = name._merge(assumptions)
|
||
|
name = name.name
|
||
|
elif not isinstance(name, str):
|
||
|
raise TypeError('expecting string or Symbol for name')
|
||
|
else:
|
||
|
commutative = assumptions.get('commutative', None)
|
||
|
assumptions = Symbol(name, **assumptions).assumptions0
|
||
|
if commutative is None:
|
||
|
assumptions.pop('commutative')
|
||
|
__dict__ = __dict__ or {}
|
||
|
# put the `is_*` for into __dict__
|
||
|
__dict__.update({'is_%s' % k: v for k, v in assumptions.items()})
|
||
|
# You can add other attributes, although they do have to be hashable
|
||
|
# (but seriously, if you want to add anything other than assumptions,
|
||
|
# just subclass Function)
|
||
|
__dict__.update(kwargs)
|
||
|
# add back the sanitized assumptions without the is_ prefix
|
||
|
kwargs.update(assumptions)
|
||
|
# Save these for __eq__
|
||
|
__dict__.update({'_kwargs': kwargs})
|
||
|
# do this for pickling
|
||
|
__dict__['__module__'] = None
|
||
|
obj = super().__new__(mcl, name, bases, __dict__)
|
||
|
obj.name = name
|
||
|
obj._sage_ = _undef_sage_helper
|
||
|
return obj
|
||
|
|
||
|
def __instancecheck__(cls, instance):
|
||
|
return cls in type(instance).__mro__
|
||
|
|
||
|
_kwargs: dict[str, bool | None] = {}
|
||
|
|
||
|
def __hash__(self):
|
||
|
return hash((self.class_key(), frozenset(self._kwargs.items())))
|
||
|
|
||
|
def __eq__(self, other):
|
||
|
return (isinstance(other, self.__class__) and
|
||
|
self.class_key() == other.class_key() and
|
||
|
self._kwargs == other._kwargs)
|
||
|
|
||
|
def __ne__(self, other):
|
||
|
return not self == other
|
||
|
|
||
|
@property
|
||
|
def _diff_wrt(self):
|
||
|
return False
|
||
|
|
||
|
|
||
|
# XXX: The type: ignore on WildFunction is because mypy complains:
|
||
|
#
|
||
|
# sympy/core/function.py:939: error: Cannot determine type of 'sort_key' in
|
||
|
# base class 'Expr'
|
||
|
#
|
||
|
# Somehow this is because of the @cacheit decorator but it is not clear how to
|
||
|
# fix it.
|
||
|
|
||
|
|
||
|
class WildFunction(Function, AtomicExpr): # type: ignore
|
||
|
"""
|
||
|
A WildFunction function matches any function (with its arguments).
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import WildFunction, Function, cos
|
||
|
>>> from sympy.abc import x, y
|
||
|
>>> F = WildFunction('F')
|
||
|
>>> f = Function('f')
|
||
|
>>> F.nargs
|
||
|
Naturals0
|
||
|
>>> x.match(F)
|
||
|
>>> F.match(F)
|
||
|
{F_: F_}
|
||
|
>>> f(x).match(F)
|
||
|
{F_: f(x)}
|
||
|
>>> cos(x).match(F)
|
||
|
{F_: cos(x)}
|
||
|
>>> f(x, y).match(F)
|
||
|
{F_: f(x, y)}
|
||
|
|
||
|
To match functions with a given number of arguments, set ``nargs`` to the
|
||
|
desired value at instantiation:
|
||
|
|
||
|
>>> F = WildFunction('F', nargs=2)
|
||
|
>>> F.nargs
|
||
|
{2}
|
||
|
>>> f(x).match(F)
|
||
|
>>> f(x, y).match(F)
|
||
|
{F_: f(x, y)}
|
||
|
|
||
|
To match functions with a range of arguments, set ``nargs`` to a tuple
|
||
|
containing the desired number of arguments, e.g. if ``nargs = (1, 2)``
|
||
|
then functions with 1 or 2 arguments will be matched.
|
||
|
|
||
|
>>> F = WildFunction('F', nargs=(1, 2))
|
||
|
>>> F.nargs
|
||
|
{1, 2}
|
||
|
>>> f(x).match(F)
|
||
|
{F_: f(x)}
|
||
|
>>> f(x, y).match(F)
|
||
|
{F_: f(x, y)}
|
||
|
>>> f(x, y, 1).match(F)
|
||
|
|
||
|
"""
|
||
|
|
||
|
# XXX: What is this class attribute used for?
|
||
|
include: set[Any] = set()
|
||
|
|
||
|
def __init__(cls, name, **assumptions):
|
||
|
from sympy.sets.sets import Set, FiniteSet
|
||
|
cls.name = name
|
||
|
nargs = assumptions.pop('nargs', S.Naturals0)
|
||
|
if not isinstance(nargs, Set):
|
||
|
# Canonicalize nargs here. See also FunctionClass.
|
||
|
if is_sequence(nargs):
|
||
|
nargs = tuple(ordered(set(nargs)))
|
||
|
elif nargs is not None:
|
||
|
nargs = (as_int(nargs),)
|
||
|
nargs = FiniteSet(*nargs)
|
||
|
cls.nargs = nargs
|
||
|
|
||
|
def matches(self, expr, repl_dict=None, old=False):
|
||
|
if not isinstance(expr, (AppliedUndef, Function)):
|
||
|
return None
|
||
|
if len(expr.args) not in self.nargs:
|
||
|
return None
|
||
|
|
||
|
if repl_dict is None:
|
||
|
repl_dict = {}
|
||
|
else:
|
||
|
repl_dict = repl_dict.copy()
|
||
|
|
||
|
repl_dict[self] = expr
|
||
|
return repl_dict
|
||
|
|
||
|
|
||
|
class Derivative(Expr):
|
||
|
"""
|
||
|
Carries out differentiation of the given expression with respect to symbols.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Derivative, Function, symbols, Subs
|
||
|
>>> from sympy.abc import x, y
|
||
|
>>> f, g = symbols('f g', cls=Function)
|
||
|
|
||
|
>>> Derivative(x**2, x, evaluate=True)
|
||
|
2*x
|
||
|
|
||
|
Denesting of derivatives retains the ordering of variables:
|
||
|
|
||
|
>>> Derivative(Derivative(f(x, y), y), x)
|
||
|
Derivative(f(x, y), y, x)
|
||
|
|
||
|
Contiguously identical symbols are merged into a tuple giving
|
||
|
the symbol and the count:
|
||
|
|
||
|
>>> Derivative(f(x), x, x, y, x)
|
||
|
Derivative(f(x), (x, 2), y, x)
|
||
|
|
||
|
If the derivative cannot be performed, and evaluate is True, the
|
||
|
order of the variables of differentiation will be made canonical:
|
||
|
|
||
|
>>> Derivative(f(x, y), y, x, evaluate=True)
|
||
|
Derivative(f(x, y), x, y)
|
||
|
|
||
|
Derivatives with respect to undefined functions can be calculated:
|
||
|
|
||
|
>>> Derivative(f(x)**2, f(x), evaluate=True)
|
||
|
2*f(x)
|
||
|
|
||
|
Such derivatives will show up when the chain rule is used to
|
||
|
evalulate a derivative:
|
||
|
|
||
|
>>> f(g(x)).diff(x)
|
||
|
Derivative(f(g(x)), g(x))*Derivative(g(x), x)
|
||
|
|
||
|
Substitution is used to represent derivatives of functions with
|
||
|
arguments that are not symbols or functions:
|
||
|
|
||
|
>>> f(2*x + 3).diff(x) == 2*Subs(f(y).diff(y), y, 2*x + 3)
|
||
|
True
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
Simplification of high-order derivatives:
|
||
|
|
||
|
Because there can be a significant amount of simplification that can be
|
||
|
done when multiple differentiations are performed, results will be
|
||
|
automatically simplified in a fairly conservative fashion unless the
|
||
|
keyword ``simplify`` is set to False.
|
||
|
|
||
|
>>> from sympy import sqrt, diff, Function, symbols
|
||
|
>>> from sympy.abc import x, y, z
|
||
|
>>> f, g = symbols('f,g', cls=Function)
|
||
|
|
||
|
>>> e = sqrt((x + 1)**2 + x)
|
||
|
>>> diff(e, (x, 5), simplify=False).count_ops()
|
||
|
136
|
||
|
>>> diff(e, (x, 5)).count_ops()
|
||
|
30
|
||
|
|
||
|
Ordering of variables:
|
||
|
|
||
|
If evaluate is set to True and the expression cannot be evaluated, the
|
||
|
list of differentiation symbols will be sorted, that is, the expression is
|
||
|
assumed to have continuous derivatives up to the order asked.
|
||
|
|
||
|
Derivative wrt non-Symbols:
|
||
|
|
||
|
For the most part, one may not differentiate wrt non-symbols.
|
||
|
For example, we do not allow differentiation wrt `x*y` because
|
||
|
there are multiple ways of structurally defining where x*y appears
|
||
|
in an expression: a very strict definition would make
|
||
|
(x*y*z).diff(x*y) == 0. Derivatives wrt defined functions (like
|
||
|
cos(x)) are not allowed, either:
|
||
|
|
||
|
>>> (x*y*z).diff(x*y)
|
||
|
Traceback (most recent call last):
|
||
|
...
|
||
|
ValueError: Can't calculate derivative wrt x*y.
|
||
|
|
||
|
To make it easier to work with variational calculus, however,
|
||
|
derivatives wrt AppliedUndef and Derivatives are allowed.
|
||
|
For example, in the Euler-Lagrange method one may write
|
||
|
F(t, u, v) where u = f(t) and v = f'(t). These variables can be
|
||
|
written explicitly as functions of time::
|
||
|
|
||
|
>>> from sympy.abc import t
|
||
|
>>> F = Function('F')
|
||
|
>>> U = f(t)
|
||
|
>>> V = U.diff(t)
|
||
|
|
||
|
The derivative wrt f(t) can be obtained directly:
|
||
|
|
||
|
>>> direct = F(t, U, V).diff(U)
|
||
|
|
||
|
When differentiation wrt a non-Symbol is attempted, the non-Symbol
|
||
|
is temporarily converted to a Symbol while the differentiation
|
||
|
is performed and the same answer is obtained:
|
||
|
|
||
|
>>> indirect = F(t, U, V).subs(U, x).diff(x).subs(x, U)
|
||
|
>>> assert direct == indirect
|
||
|
|
||
|
The implication of this non-symbol replacement is that all
|
||
|
functions are treated as independent of other functions and the
|
||
|
symbols are independent of the functions that contain them::
|
||
|
|
||
|
>>> x.diff(f(x))
|
||
|
0
|
||
|
>>> g(x).diff(f(x))
|
||
|
0
|
||
|
|
||
|
It also means that derivatives are assumed to depend only
|
||
|
on the variables of differentiation, not on anything contained
|
||
|
within the expression being differentiated::
|
||
|
|
||
|
>>> F = f(x)
|
||
|
>>> Fx = F.diff(x)
|
||
|
>>> Fx.diff(F) # derivative depends on x, not F
|
||
|
0
|
||
|
>>> Fxx = Fx.diff(x)
|
||
|
>>> Fxx.diff(Fx) # derivative depends on x, not Fx
|
||
|
0
|
||
|
|
||
|
The last example can be made explicit by showing the replacement
|
||
|
of Fx in Fxx with y:
|
||
|
|
||
|
>>> Fxx.subs(Fx, y)
|
||
|
Derivative(y, x)
|
||
|
|
||
|
Since that in itself will evaluate to zero, differentiating
|
||
|
wrt Fx will also be zero:
|
||
|
|
||
|
>>> _.doit()
|
||
|
0
|
||
|
|
||
|
Replacing undefined functions with concrete expressions
|
||
|
|
||
|
One must be careful to replace undefined functions with expressions
|
||
|
that contain variables consistent with the function definition and
|
||
|
the variables of differentiation or else insconsistent result will
|
||
|
be obtained. Consider the following example:
|
||
|
|
||
|
>>> eq = f(x)*g(y)
|
||
|
>>> eq.subs(f(x), x*y).diff(x, y).doit()
|
||
|
y*Derivative(g(y), y) + g(y)
|
||
|
>>> eq.diff(x, y).subs(f(x), x*y).doit()
|
||
|
y*Derivative(g(y), y)
|
||
|
|
||
|
The results differ because `f(x)` was replaced with an expression
|
||
|
that involved both variables of differentiation. In the abstract
|
||
|
case, differentiation of `f(x)` by `y` is 0; in the concrete case,
|
||
|
the presence of `y` made that derivative nonvanishing and produced
|
||
|
the extra `g(y)` term.
|
||
|
|
||
|
Defining differentiation for an object
|
||
|
|
||
|
An object must define ._eval_derivative(symbol) method that returns
|
||
|
the differentiation result. This function only needs to consider the
|
||
|
non-trivial case where expr contains symbol and it should call the diff()
|
||
|
method internally (not _eval_derivative); Derivative should be the only
|
||
|
one to call _eval_derivative.
|
||
|
|
||
|
Any class can allow derivatives to be taken with respect to
|
||
|
itself (while indicating its scalar nature). See the
|
||
|
docstring of Expr._diff_wrt.
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
_sort_variable_count
|
||
|
"""
|
||
|
|
||
|
is_Derivative = True
|
||
|
|
||
|
@property
|
||
|
def _diff_wrt(self):
|
||
|
"""An expression may be differentiated wrt a Derivative if
|
||
|
it is in elementary form.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Function, Derivative, cos
|
||
|
>>> from sympy.abc import x
|
||
|
>>> f = Function('f')
|
||
|
|
||
|
>>> Derivative(f(x), x)._diff_wrt
|
||
|
True
|
||
|
>>> Derivative(cos(x), x)._diff_wrt
|
||
|
False
|
||
|
>>> Derivative(x + 1, x)._diff_wrt
|
||
|
False
|
||
|
|
||
|
A Derivative might be an unevaluated form of what will not be
|
||
|
a valid variable of differentiation if evaluated. For example,
|
||
|
|
||
|
>>> Derivative(f(f(x)), x).doit()
|
||
|
Derivative(f(x), x)*Derivative(f(f(x)), f(x))
|
||
|
|
||
|
Such an expression will present the same ambiguities as arise
|
||
|
when dealing with any other product, like ``2*x``, so ``_diff_wrt``
|
||
|
is False:
|
||
|
|
||
|
>>> Derivative(f(f(x)), x)._diff_wrt
|
||
|
False
|
||
|
"""
|
||
|
return self.expr._diff_wrt and isinstance(self.doit(), Derivative)
|
||
|
|
||
|
def __new__(cls, expr, *variables, **kwargs):
|
||
|
expr = sympify(expr)
|
||
|
symbols_or_none = getattr(expr, "free_symbols", None)
|
||
|
has_symbol_set = isinstance(symbols_or_none, set)
|
||
|
|
||
|
if not has_symbol_set:
|
||
|
raise ValueError(filldedent('''
|
||
|
Since there are no variables in the expression %s,
|
||
|
it cannot be differentiated.''' % expr))
|
||
|
|
||
|
# determine value for variables if it wasn't given
|
||
|
if not variables:
|
||
|
variables = expr.free_symbols
|
||
|
if len(variables) != 1:
|
||
|
if expr.is_number:
|
||
|
return S.Zero
|
||
|
if len(variables) == 0:
|
||
|
raise ValueError(filldedent('''
|
||
|
Since there are no variables in the expression,
|
||
|
the variable(s) of differentiation must be supplied
|
||
|
to differentiate %s''' % expr))
|
||
|
else:
|
||
|
raise ValueError(filldedent('''
|
||
|
Since there is more than one variable in the
|
||
|
expression, the variable(s) of differentiation
|
||
|
must be supplied to differentiate %s''' % expr))
|
||
|
|
||
|
# Split the list of variables into a list of the variables we are diff
|
||
|
# wrt, where each element of the list has the form (s, count) where
|
||
|
# s is the entity to diff wrt and count is the order of the
|
||
|
# derivative.
|
||
|
variable_count = []
|
||
|
array_likes = (tuple, list, Tuple)
|
||
|
|
||
|
from sympy.tensor.array import Array, NDimArray
|
||
|
|
||
|
for i, v in enumerate(variables):
|
||
|
if isinstance(v, UndefinedFunction):
|
||
|
raise TypeError(
|
||
|
"cannot differentiate wrt "
|
||
|
"UndefinedFunction: %s" % v)
|
||
|
|
||
|
if isinstance(v, array_likes):
|
||
|
if len(v) == 0:
|
||
|
# Ignore empty tuples: Derivative(expr, ... , (), ... )
|
||
|
continue
|
||
|
if isinstance(v[0], array_likes):
|
||
|
# Derive by array: Derivative(expr, ... , [[x, y, z]], ... )
|
||
|
if len(v) == 1:
|
||
|
v = Array(v[0])
|
||
|
count = 1
|
||
|
else:
|
||
|
v, count = v
|
||
|
v = Array(v)
|
||
|
else:
|
||
|
v, count = v
|
||
|
if count == 0:
|
||
|
continue
|
||
|
variable_count.append(Tuple(v, count))
|
||
|
continue
|
||
|
|
||
|
v = sympify(v)
|
||
|
if isinstance(v, Integer):
|
||
|
if i == 0:
|
||
|
raise ValueError("First variable cannot be a number: %i" % v)
|
||
|
count = v
|
||
|
prev, prevcount = variable_count[-1]
|
||
|
if prevcount != 1:
|
||
|
raise TypeError("tuple {} followed by number {}".format((prev, prevcount), v))
|
||
|
if count == 0:
|
||
|
variable_count.pop()
|
||
|
else:
|
||
|
variable_count[-1] = Tuple(prev, count)
|
||
|
else:
|
||
|
count = 1
|
||
|
variable_count.append(Tuple(v, count))
|
||
|
|
||
|
# light evaluation of contiguous, identical
|
||
|
# items: (x, 1), (x, 1) -> (x, 2)
|
||
|
merged = []
|
||
|
for t in variable_count:
|
||
|
v, c = t
|
||
|
if c.is_negative:
|
||
|
raise ValueError(
|
||
|
'order of differentiation must be nonnegative')
|
||
|
if merged and merged[-1][0] == v:
|
||
|
c += merged[-1][1]
|
||
|
if not c:
|
||
|
merged.pop()
|
||
|
else:
|
||
|
merged[-1] = Tuple(v, c)
|
||
|
else:
|
||
|
merged.append(t)
|
||
|
variable_count = merged
|
||
|
|
||
|
# sanity check of variables of differentation; we waited
|
||
|
# until the counts were computed since some variables may
|
||
|
# have been removed because the count was 0
|
||
|
for v, c in variable_count:
|
||
|
# v must have _diff_wrt True
|
||
|
if not v._diff_wrt:
|
||
|
__ = '' # filler to make error message neater
|
||
|
raise ValueError(filldedent('''
|
||
|
Can't calculate derivative wrt %s.%s''' % (v,
|
||
|
__)))
|
||
|
|
||
|
# We make a special case for 0th derivative, because there is no
|
||
|
# good way to unambiguously print this.
|
||
|
if len(variable_count) == 0:
|
||
|
return expr
|
||
|
|
||
|
evaluate = kwargs.get('evaluate', False)
|
||
|
|
||
|
if evaluate:
|
||
|
if isinstance(expr, Derivative):
|
||
|
expr = expr.canonical
|
||
|
variable_count = [
|
||
|
(v.canonical if isinstance(v, Derivative) else v, c)
|
||
|
for v, c in variable_count]
|
||
|
|
||
|
# Look for a quick exit if there are symbols that don't appear in
|
||
|
# expression at all. Note, this cannot check non-symbols like
|
||
|
# Derivatives as those can be created by intermediate
|
||
|
# derivatives.
|
||
|
zero = False
|
||
|
free = expr.free_symbols
|
||
|
from sympy.matrices.expressions.matexpr import MatrixExpr
|
||
|
|
||
|
for v, c in variable_count:
|
||
|
vfree = v.free_symbols
|
||
|
if c.is_positive and vfree:
|
||
|
if isinstance(v, AppliedUndef):
|
||
|
# these match exactly since
|
||
|
# x.diff(f(x)) == g(x).diff(f(x)) == 0
|
||
|
# and are not created by differentiation
|
||
|
D = Dummy()
|
||
|
if not expr.xreplace({v: D}).has(D):
|
||
|
zero = True
|
||
|
break
|
||
|
elif isinstance(v, MatrixExpr):
|
||
|
zero = False
|
||
|
break
|
||
|
elif isinstance(v, Symbol) and v not in free:
|
||
|
zero = True
|
||
|
break
|
||
|
else:
|
||
|
if not free & vfree:
|
||
|
# e.g. v is IndexedBase or Matrix
|
||
|
zero = True
|
||
|
break
|
||
|
if zero:
|
||
|
return cls._get_zero_with_shape_like(expr)
|
||
|
|
||
|
# make the order of symbols canonical
|
||
|
#TODO: check if assumption of discontinuous derivatives exist
|
||
|
variable_count = cls._sort_variable_count(variable_count)
|
||
|
|
||
|
# denest
|
||
|
if isinstance(expr, Derivative):
|
||
|
variable_count = list(expr.variable_count) + variable_count
|
||
|
expr = expr.expr
|
||
|
return _derivative_dispatch(expr, *variable_count, **kwargs)
|
||
|
|
||
|
# we return here if evaluate is False or if there is no
|
||
|
# _eval_derivative method
|
||
|
if not evaluate or not hasattr(expr, '_eval_derivative'):
|
||
|
# return an unevaluated Derivative
|
||
|
if evaluate and variable_count == [(expr, 1)] and expr.is_scalar:
|
||
|
# special hack providing evaluation for classes
|
||
|
# that have defined is_scalar=True but have no
|
||
|
# _eval_derivative defined
|
||
|
return S.One
|
||
|
return Expr.__new__(cls, expr, *variable_count)
|
||
|
|
||
|
# evaluate the derivative by calling _eval_derivative method
|
||
|
# of expr for each variable
|
||
|
# -------------------------------------------------------------
|
||
|
nderivs = 0 # how many derivatives were performed
|
||
|
unhandled = []
|
||
|
from sympy.matrices.common import MatrixCommon
|
||
|
for i, (v, count) in enumerate(variable_count):
|
||
|
|
||
|
old_expr = expr
|
||
|
old_v = None
|
||
|
|
||
|
is_symbol = v.is_symbol or isinstance(v,
|
||
|
(Iterable, Tuple, MatrixCommon, NDimArray))
|
||
|
|
||
|
if not is_symbol:
|
||
|
old_v = v
|
||
|
v = Dummy('xi')
|
||
|
expr = expr.xreplace({old_v: v})
|
||
|
# Derivatives and UndefinedFunctions are independent
|
||
|
# of all others
|
||
|
clashing = not (isinstance(old_v, Derivative) or \
|
||
|
isinstance(old_v, AppliedUndef))
|
||
|
if v not in expr.free_symbols and not clashing:
|
||
|
return expr.diff(v) # expr's version of 0
|
||
|
if not old_v.is_scalar and not hasattr(
|
||
|
old_v, '_eval_derivative'):
|
||
|
# special hack providing evaluation for classes
|
||
|
# that have defined is_scalar=True but have no
|
||
|
# _eval_derivative defined
|
||
|
expr *= old_v.diff(old_v)
|
||
|
|
||
|
obj = cls._dispatch_eval_derivative_n_times(expr, v, count)
|
||
|
if obj is not None and obj.is_zero:
|
||
|
return obj
|
||
|
|
||
|
nderivs += count
|
||
|
|
||
|
if old_v is not None:
|
||
|
if obj is not None:
|
||
|
# remove the dummy that was used
|
||
|
obj = obj.subs(v, old_v)
|
||
|
# restore expr
|
||
|
expr = old_expr
|
||
|
|
||
|
if obj is None:
|
||
|
# we've already checked for quick-exit conditions
|
||
|
# that give 0 so the remaining variables
|
||
|
# are contained in the expression but the expression
|
||
|
# did not compute a derivative so we stop taking
|
||
|
# derivatives
|
||
|
unhandled = variable_count[i:]
|
||
|
break
|
||
|
|
||
|
expr = obj
|
||
|
|
||
|
# what we have so far can be made canonical
|
||
|
expr = expr.replace(
|
||
|
lambda x: isinstance(x, Derivative),
|
||
|
lambda x: x.canonical)
|
||
|
|
||
|
if unhandled:
|
||
|
if isinstance(expr, Derivative):
|
||
|
unhandled = list(expr.variable_count) + unhandled
|
||
|
expr = expr.expr
|
||
|
expr = Expr.__new__(cls, expr, *unhandled)
|
||
|
|
||
|
if (nderivs > 1) == True and kwargs.get('simplify', True):
|
||
|
from .exprtools import factor_terms
|
||
|
from sympy.simplify.simplify import signsimp
|
||
|
expr = factor_terms(signsimp(expr))
|
||
|
return expr
|
||
|
|
||
|
@property
|
||
|
def canonical(cls):
|
||
|
return cls.func(cls.expr,
|
||
|
*Derivative._sort_variable_count(cls.variable_count))
|
||
|
|
||
|
@classmethod
|
||
|
def _sort_variable_count(cls, vc):
|
||
|
"""
|
||
|
Sort (variable, count) pairs into canonical order while
|
||
|
retaining order of variables that do not commute during
|
||
|
differentiation:
|
||
|
|
||
|
* symbols and functions commute with each other
|
||
|
* derivatives commute with each other
|
||
|
* a derivative does not commute with anything it contains
|
||
|
* any other object is not allowed to commute if it has
|
||
|
free symbols in common with another object
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Derivative, Function, symbols
|
||
|
>>> vsort = Derivative._sort_variable_count
|
||
|
>>> x, y, z = symbols('x y z')
|
||
|
>>> f, g, h = symbols('f g h', cls=Function)
|
||
|
|
||
|
Contiguous items are collapsed into one pair:
|
||
|
|
||
|
>>> vsort([(x, 1), (x, 1)])
|
||
|
[(x, 2)]
|
||
|
>>> vsort([(y, 1), (f(x), 1), (y, 1), (f(x), 1)])
|
||
|
[(y, 2), (f(x), 2)]
|
||
|
|
||
|
Ordering is canonical.
|
||
|
|
||
|
>>> def vsort0(*v):
|
||
|
... # docstring helper to
|
||
|
... # change vi -> (vi, 0), sort, and return vi vals
|
||
|
... return [i[0] for i in vsort([(i, 0) for i in v])]
|
||
|
|
||
|
>>> vsort0(y, x)
|
||
|
[x, y]
|
||
|
>>> vsort0(g(y), g(x), f(y))
|
||
|
[f(y), g(x), g(y)]
|
||
|
|
||
|
Symbols are sorted as far to the left as possible but never
|
||
|
move to the left of a derivative having the same symbol in
|
||
|
its variables; the same applies to AppliedUndef which are
|
||
|
always sorted after Symbols:
|
||
|
|
||
|
>>> dfx = f(x).diff(x)
|
||
|
>>> assert vsort0(dfx, y) == [y, dfx]
|
||
|
>>> assert vsort0(dfx, x) == [dfx, x]
|
||
|
"""
|
||
|
if not vc:
|
||
|
return []
|
||
|
vc = list(vc)
|
||
|
if len(vc) == 1:
|
||
|
return [Tuple(*vc[0])]
|
||
|
V = list(range(len(vc)))
|
||
|
E = []
|
||
|
v = lambda i: vc[i][0]
|
||
|
D = Dummy()
|
||
|
def _block(d, v, wrt=False):
|
||
|
# return True if v should not come before d else False
|
||
|
if d == v:
|
||
|
return wrt
|
||
|
if d.is_Symbol:
|
||
|
return False
|
||
|
if isinstance(d, Derivative):
|
||
|
# a derivative blocks if any of it's variables contain
|
||
|
# v; the wrt flag will return True for an exact match
|
||
|
# and will cause an AppliedUndef to block if v is in
|
||
|
# the arguments
|
||
|
if any(_block(k, v, wrt=True)
|
||
|
for k in d._wrt_variables):
|
||
|
return True
|
||
|
return False
|
||
|
if not wrt and isinstance(d, AppliedUndef):
|
||
|
return False
|
||
|
if v.is_Symbol:
|
||
|
return v in d.free_symbols
|
||
|
if isinstance(v, AppliedUndef):
|
||
|
return _block(d.xreplace({v: D}), D)
|
||
|
return d.free_symbols & v.free_symbols
|
||
|
for i in range(len(vc)):
|
||
|
for j in range(i):
|
||
|
if _block(v(j), v(i)):
|
||
|
E.append((j,i))
|
||
|
# this is the default ordering to use in case of ties
|
||
|
O = dict(zip(ordered(uniq([i for i, c in vc])), range(len(vc))))
|
||
|
ix = topological_sort((V, E), key=lambda i: O[v(i)])
|
||
|
# merge counts of contiguously identical items
|
||
|
merged = []
|
||
|
for v, c in [vc[i] for i in ix]:
|
||
|
if merged and merged[-1][0] == v:
|
||
|
merged[-1][1] += c
|
||
|
else:
|
||
|
merged.append([v, c])
|
||
|
return [Tuple(*i) for i in merged]
|
||
|
|
||
|
def _eval_is_commutative(self):
|
||
|
return self.expr.is_commutative
|
||
|
|
||
|
def _eval_derivative(self, v):
|
||
|
# If v (the variable of differentiation) is not in
|
||
|
# self.variables, we might be able to take the derivative.
|
||
|
if v not in self._wrt_variables:
|
||
|
dedv = self.expr.diff(v)
|
||
|
if isinstance(dedv, Derivative):
|
||
|
return dedv.func(dedv.expr, *(self.variable_count + dedv.variable_count))
|
||
|
# dedv (d(self.expr)/dv) could have simplified things such that the
|
||
|
# derivative wrt things in self.variables can now be done. Thus,
|
||
|
# we set evaluate=True to see if there are any other derivatives
|
||
|
# that can be done. The most common case is when dedv is a simple
|
||
|
# number so that the derivative wrt anything else will vanish.
|
||
|
return self.func(dedv, *self.variables, evaluate=True)
|
||
|
# In this case v was in self.variables so the derivative wrt v has
|
||
|
# already been attempted and was not computed, either because it
|
||
|
# couldn't be or evaluate=False originally.
|
||
|
variable_count = list(self.variable_count)
|
||
|
variable_count.append((v, 1))
|
||
|
return self.func(self.expr, *variable_count, evaluate=False)
|
||
|
|
||
|
def doit(self, **hints):
|
||
|
expr = self.expr
|
||
|
if hints.get('deep', True):
|
||
|
expr = expr.doit(**hints)
|
||
|
hints['evaluate'] = True
|
||
|
rv = self.func(expr, *self.variable_count, **hints)
|
||
|
if rv!= self and rv.has(Derivative):
|
||
|
rv = rv.doit(**hints)
|
||
|
return rv
|
||
|
|
||
|
@_sympifyit('z0', NotImplementedError)
|
||
|
def doit_numerically(self, z0):
|
||
|
"""
|
||
|
Evaluate the derivative at z numerically.
|
||
|
|
||
|
When we can represent derivatives at a point, this should be folded
|
||
|
into the normal evalf. For now, we need a special method.
|
||
|
"""
|
||
|
if len(self.free_symbols) != 1 or len(self.variables) != 1:
|
||
|
raise NotImplementedError('partials and higher order derivatives')
|
||
|
z = list(self.free_symbols)[0]
|
||
|
|
||
|
def eval(x):
|
||
|
f0 = self.expr.subs(z, Expr._from_mpmath(x, prec=mpmath.mp.prec))
|
||
|
f0 = f0.evalf(prec_to_dps(mpmath.mp.prec))
|
||
|
return f0._to_mpmath(mpmath.mp.prec)
|
||
|
return Expr._from_mpmath(mpmath.diff(eval,
|
||
|
z0._to_mpmath(mpmath.mp.prec)),
|
||
|
mpmath.mp.prec)
|
||
|
|
||
|
@property
|
||
|
def expr(self):
|
||
|
return self._args[0]
|
||
|
|
||
|
@property
|
||
|
def _wrt_variables(self):
|
||
|
# return the variables of differentiation without
|
||
|
# respect to the type of count (int or symbolic)
|
||
|
return [i[0] for i in self.variable_count]
|
||
|
|
||
|
@property
|
||
|
def variables(self):
|
||
|
# TODO: deprecate? YES, make this 'enumerated_variables' and
|
||
|
# name _wrt_variables as variables
|
||
|
# TODO: support for `d^n`?
|
||
|
rv = []
|
||
|
for v, count in self.variable_count:
|
||
|
if not count.is_Integer:
|
||
|
raise TypeError(filldedent('''
|
||
|
Cannot give expansion for symbolic count. If you just
|
||
|
want a list of all variables of differentiation, use
|
||
|
_wrt_variables.'''))
|
||
|
rv.extend([v]*count)
|
||
|
return tuple(rv)
|
||
|
|
||
|
@property
|
||
|
def variable_count(self):
|
||
|
return self._args[1:]
|
||
|
|
||
|
@property
|
||
|
def derivative_count(self):
|
||
|
return sum([count for _, count in self.variable_count], 0)
|
||
|
|
||
|
@property
|
||
|
def free_symbols(self):
|
||
|
ret = self.expr.free_symbols
|
||
|
# Add symbolic counts to free_symbols
|
||
|
for _, count in self.variable_count:
|
||
|
ret.update(count.free_symbols)
|
||
|
return ret
|
||
|
|
||
|
@property
|
||
|
def kind(self):
|
||
|
return self.args[0].kind
|
||
|
|
||
|
def _eval_subs(self, old, new):
|
||
|
# The substitution (old, new) cannot be done inside
|
||
|
# Derivative(expr, vars) for a variety of reasons
|
||
|
# as handled below.
|
||
|
if old in self._wrt_variables:
|
||
|
# first handle the counts
|
||
|
expr = self.func(self.expr, *[(v, c.subs(old, new))
|
||
|
for v, c in self.variable_count])
|
||
|
if expr != self:
|
||
|
return expr._eval_subs(old, new)
|
||
|
# quick exit case
|
||
|
if not getattr(new, '_diff_wrt', False):
|
||
|
# case (0): new is not a valid variable of
|
||
|
# differentiation
|
||
|
if isinstance(old, Symbol):
|
||
|
# don't introduce a new symbol if the old will do
|
||
|
return Subs(self, old, new)
|
||
|
else:
|
||
|
xi = Dummy('xi')
|
||
|
return Subs(self.xreplace({old: xi}), xi, new)
|
||
|
|
||
|
# If both are Derivatives with the same expr, check if old is
|
||
|
# equivalent to self or if old is a subderivative of self.
|
||
|
if old.is_Derivative and old.expr == self.expr:
|
||
|
if self.canonical == old.canonical:
|
||
|
return new
|
||
|
|
||
|
# collections.Counter doesn't have __le__
|
||
|
def _subset(a, b):
|
||
|
return all((a[i] <= b[i]) == True for i in a)
|
||
|
|
||
|
old_vars = Counter(dict(reversed(old.variable_count)))
|
||
|
self_vars = Counter(dict(reversed(self.variable_count)))
|
||
|
if _subset(old_vars, self_vars):
|
||
|
return _derivative_dispatch(new, *(self_vars - old_vars).items()).canonical
|
||
|
|
||
|
args = list(self.args)
|
||
|
newargs = [x._subs(old, new) for x in args]
|
||
|
if args[0] == old:
|
||
|
# complete replacement of self.expr
|
||
|
# we already checked that the new is valid so we know
|
||
|
# it won't be a problem should it appear in variables
|
||
|
return _derivative_dispatch(*newargs)
|
||
|
|
||
|
if newargs[0] != args[0]:
|
||
|
# case (1) can't change expr by introducing something that is in
|
||
|
# the _wrt_variables if it was already in the expr
|
||
|
# e.g.
|
||
|
# for Derivative(f(x, g(y)), y), x cannot be replaced with
|
||
|
# anything that has y in it; for f(g(x), g(y)).diff(g(y))
|
||
|
# g(x) cannot be replaced with anything that has g(y)
|
||
|
syms = {vi: Dummy() for vi in self._wrt_variables
|
||
|
if not vi.is_Symbol}
|
||
|
wrt = {syms.get(vi, vi) for vi in self._wrt_variables}
|
||
|
forbidden = args[0].xreplace(syms).free_symbols & wrt
|
||
|
nfree = new.xreplace(syms).free_symbols
|
||
|
ofree = old.xreplace(syms).free_symbols
|
||
|
if (nfree - ofree) & forbidden:
|
||
|
return Subs(self, old, new)
|
||
|
|
||
|
viter = ((i, j) for ((i, _), (j, _)) in zip(newargs[1:], args[1:]))
|
||
|
if any(i != j for i, j in viter): # a wrt-variable change
|
||
|
# case (2) can't change vars by introducing a variable
|
||
|
# that is contained in expr, e.g.
|
||
|
# for Derivative(f(z, g(h(x), y)), y), y cannot be changed to
|
||
|
# x, h(x), or g(h(x), y)
|
||
|
for a in _atomic(self.expr, recursive=True):
|
||
|
for i in range(1, len(newargs)):
|
||
|
vi, _ = newargs[i]
|
||
|
if a == vi and vi != args[i][0]:
|
||
|
return Subs(self, old, new)
|
||
|
# more arg-wise checks
|
||
|
vc = newargs[1:]
|
||
|
oldv = self._wrt_variables
|
||
|
newe = self.expr
|
||
|
subs = []
|
||
|
for i, (vi, ci) in enumerate(vc):
|
||
|
if not vi._diff_wrt:
|
||
|
# case (3) invalid differentiation expression so
|
||
|
# create a replacement dummy
|
||
|
xi = Dummy('xi_%i' % i)
|
||
|
# replace the old valid variable with the dummy
|
||
|
# in the expression
|
||
|
newe = newe.xreplace({oldv[i]: xi})
|
||
|
# and replace the bad variable with the dummy
|
||
|
vc[i] = (xi, ci)
|
||
|
# and record the dummy with the new (invalid)
|
||
|
# differentiation expression
|
||
|
subs.append((xi, vi))
|
||
|
|
||
|
if subs:
|
||
|
# handle any residual substitution in the expression
|
||
|
newe = newe._subs(old, new)
|
||
|
# return the Subs-wrapped derivative
|
||
|
return Subs(Derivative(newe, *vc), *zip(*subs))
|
||
|
|
||
|
# everything was ok
|
||
|
return _derivative_dispatch(*newargs)
|
||
|
|
||
|
def _eval_lseries(self, x, logx, cdir=0):
|
||
|
dx = self.variables
|
||
|
for term in self.expr.lseries(x, logx=logx, cdir=cdir):
|
||
|
yield self.func(term, *dx)
|
||
|
|
||
|
def _eval_nseries(self, x, n, logx, cdir=0):
|
||
|
arg = self.expr.nseries(x, n=n, logx=logx)
|
||
|
o = arg.getO()
|
||
|
dx = self.variables
|
||
|
rv = [self.func(a, *dx) for a in Add.make_args(arg.removeO())]
|
||
|
if o:
|
||
|
rv.append(o/x)
|
||
|
return Add(*rv)
|
||
|
|
||
|
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
||
|
series_gen = self.expr.lseries(x)
|
||
|
d = S.Zero
|
||
|
for leading_term in series_gen:
|
||
|
d = diff(leading_term, *self.variables)
|
||
|
if d != 0:
|
||
|
break
|
||
|
return d
|
||
|
|
||
|
def as_finite_difference(self, points=1, x0=None, wrt=None):
|
||
|
""" Expresses a Derivative instance as a finite difference.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
points : sequence or coefficient, optional
|
||
|
If sequence: discrete values (length >= order+1) of the
|
||
|
independent variable used for generating the finite
|
||
|
difference weights.
|
||
|
If it is a coefficient, it will be used as the step-size
|
||
|
for generating an equidistant sequence of length order+1
|
||
|
centered around ``x0``. Default: 1 (step-size 1)
|
||
|
|
||
|
x0 : number or Symbol, optional
|
||
|
the value of the independent variable (``wrt``) at which the
|
||
|
derivative is to be approximated. Default: same as ``wrt``.
|
||
|
|
||
|
wrt : Symbol, optional
|
||
|
"with respect to" the variable for which the (partial)
|
||
|
derivative is to be approximated for. If not provided it
|
||
|
is required that the derivative is ordinary. Default: ``None``.
|
||
|
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import symbols, Function, exp, sqrt, Symbol
|
||
|
>>> x, h = symbols('x h')
|
||
|
>>> f = Function('f')
|
||
|
>>> f(x).diff(x).as_finite_difference()
|
||
|
-f(x - 1/2) + f(x + 1/2)
|
||
|
|
||
|
The default step size and number of points are 1 and
|
||
|
``order + 1`` respectively. We can change the step size by
|
||
|
passing a symbol as a parameter:
|
||
|
|
||
|
>>> f(x).diff(x).as_finite_difference(h)
|
||
|
-f(-h/2 + x)/h + f(h/2 + x)/h
|
||
|
|
||
|
We can also specify the discretized values to be used in a
|
||
|
sequence:
|
||
|
|
||
|
>>> f(x).diff(x).as_finite_difference([x, x+h, x+2*h])
|
||
|
-3*f(x)/(2*h) + 2*f(h + x)/h - f(2*h + x)/(2*h)
|
||
|
|
||
|
The algorithm is not restricted to use equidistant spacing, nor
|
||
|
do we need to make the approximation around ``x0``, but we can get
|
||
|
an expression estimating the derivative at an offset:
|
||
|
|
||
|
>>> e, sq2 = exp(1), sqrt(2)
|
||
|
>>> xl = [x-h, x+h, x+e*h]
|
||
|
>>> f(x).diff(x, 1).as_finite_difference(xl, x+h*sq2) # doctest: +ELLIPSIS
|
||
|
2*h*((h + sqrt(2)*h)/(2*h) - (-sqrt(2)*h + h)/(2*h))*f(E*h + x)/...
|
||
|
|
||
|
To approximate ``Derivative`` around ``x0`` using a non-equidistant
|
||
|
spacing step, the algorithm supports assignment of undefined
|
||
|
functions to ``points``:
|
||
|
|
||
|
>>> dx = Function('dx')
|
||
|
>>> f(x).diff(x).as_finite_difference(points=dx(x), x0=x-h)
|
||
|
-f(-h + x - dx(-h + x)/2)/dx(-h + x) + f(-h + x + dx(-h + x)/2)/dx(-h + x)
|
||
|
|
||
|
Partial derivatives are also supported:
|
||
|
|
||
|
>>> y = Symbol('y')
|
||
|
>>> d2fdxdy=f(x,y).diff(x,y)
|
||
|
>>> d2fdxdy.as_finite_difference(wrt=x)
|
||
|
-Derivative(f(x - 1/2, y), y) + Derivative(f(x + 1/2, y), y)
|
||
|
|
||
|
We can apply ``as_finite_difference`` to ``Derivative`` instances in
|
||
|
compound expressions using ``replace``:
|
||
|
|
||
|
>>> (1 + 42**f(x).diff(x)).replace(lambda arg: arg.is_Derivative,
|
||
|
... lambda arg: arg.as_finite_difference())
|
||
|
42**(-f(x - 1/2) + f(x + 1/2)) + 1
|
||
|
|
||
|
|
||
|
See also
|
||
|
========
|
||
|
|
||
|
sympy.calculus.finite_diff.apply_finite_diff
|
||
|
sympy.calculus.finite_diff.differentiate_finite
|
||
|
sympy.calculus.finite_diff.finite_diff_weights
|
||
|
|
||
|
"""
|
||
|
from sympy.calculus.finite_diff import _as_finite_diff
|
||
|
return _as_finite_diff(self, points, x0, wrt)
|
||
|
|
||
|
@classmethod
|
||
|
def _get_zero_with_shape_like(cls, expr):
|
||
|
return S.Zero
|
||
|
|
||
|
@classmethod
|
||
|
def _dispatch_eval_derivative_n_times(cls, expr, v, count):
|
||
|
# Evaluate the derivative `n` times. If
|
||
|
# `_eval_derivative_n_times` is not overridden by the current
|
||
|
# object, the default in `Basic` will call a loop over
|
||
|
# `_eval_derivative`:
|
||
|
return expr._eval_derivative_n_times(v, count)
|
||
|
|
||
|
|
||
|
def _derivative_dispatch(expr, *variables, **kwargs):
|
||
|
from sympy.matrices.common import MatrixCommon
|
||
|
from sympy.matrices.expressions.matexpr import MatrixExpr
|
||
|
from sympy.tensor.array import NDimArray
|
||
|
array_types = (MatrixCommon, MatrixExpr, NDimArray, list, tuple, Tuple)
|
||
|
if isinstance(expr, array_types) or any(isinstance(i[0], array_types) if isinstance(i, (tuple, list, Tuple)) else isinstance(i, array_types) for i in variables):
|
||
|
from sympy.tensor.array.array_derivatives import ArrayDerivative
|
||
|
return ArrayDerivative(expr, *variables, **kwargs)
|
||
|
return Derivative(expr, *variables, **kwargs)
|
||
|
|
||
|
|
||
|
class Lambda(Expr):
|
||
|
"""
|
||
|
Lambda(x, expr) represents a lambda function similar to Python's
|
||
|
'lambda x: expr'. A function of several variables is written as
|
||
|
Lambda((x, y, ...), expr).
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
A simple example:
|
||
|
|
||
|
>>> from sympy import Lambda
|
||
|
>>> from sympy.abc import x
|
||
|
>>> f = Lambda(x, x**2)
|
||
|
>>> f(4)
|
||
|
16
|
||
|
|
||
|
For multivariate functions, use:
|
||
|
|
||
|
>>> from sympy.abc import y, z, t
|
||
|
>>> f2 = Lambda((x, y, z, t), x + y**z + t**z)
|
||
|
>>> f2(1, 2, 3, 4)
|
||
|
73
|
||
|
|
||
|
It is also possible to unpack tuple arguments:
|
||
|
|
||
|
>>> f = Lambda(((x, y), z), x + y + z)
|
||
|
>>> f((1, 2), 3)
|
||
|
6
|
||
|
|
||
|
A handy shortcut for lots of arguments:
|
||
|
|
||
|
>>> p = x, y, z
|
||
|
>>> f = Lambda(p, x + y*z)
|
||
|
>>> f(*p)
|
||
|
x + y*z
|
||
|
|
||
|
"""
|
||
|
is_Function = True
|
||
|
|
||
|
def __new__(cls, signature, expr):
|
||
|
if iterable(signature) and not isinstance(signature, (tuple, Tuple)):
|
||
|
sympy_deprecation_warning(
|
||
|
"""
|
||
|
Using a non-tuple iterable as the first argument to Lambda
|
||
|
is deprecated. Use Lambda(tuple(args), expr) instead.
|
||
|
""",
|
||
|
deprecated_since_version="1.5",
|
||
|
active_deprecations_target="deprecated-non-tuple-lambda",
|
||
|
)
|
||
|
signature = tuple(signature)
|
||
|
sig = signature if iterable(signature) else (signature,)
|
||
|
sig = sympify(sig)
|
||
|
cls._check_signature(sig)
|
||
|
|
||
|
if len(sig) == 1 and sig[0] == expr:
|
||
|
return S.IdentityFunction
|
||
|
|
||
|
return Expr.__new__(cls, sig, sympify(expr))
|
||
|
|
||
|
@classmethod
|
||
|
def _check_signature(cls, sig):
|
||
|
syms = set()
|
||
|
|
||
|
def rcheck(args):
|
||
|
for a in args:
|
||
|
if a.is_symbol:
|
||
|
if a in syms:
|
||
|
raise BadSignatureError("Duplicate symbol %s" % a)
|
||
|
syms.add(a)
|
||
|
elif isinstance(a, Tuple):
|
||
|
rcheck(a)
|
||
|
else:
|
||
|
raise BadSignatureError("Lambda signature should be only tuples"
|
||
|
" and symbols, not %s" % a)
|
||
|
|
||
|
if not isinstance(sig, Tuple):
|
||
|
raise BadSignatureError("Lambda signature should be a tuple not %s" % sig)
|
||
|
# Recurse through the signature:
|
||
|
rcheck(sig)
|
||
|
|
||
|
@property
|
||
|
def signature(self):
|
||
|
"""The expected form of the arguments to be unpacked into variables"""
|
||
|
return self._args[0]
|
||
|
|
||
|
@property
|
||
|
def expr(self):
|
||
|
"""The return value of the function"""
|
||
|
return self._args[1]
|
||
|
|
||
|
@property
|
||
|
def variables(self):
|
||
|
"""The variables used in the internal representation of the function"""
|
||
|
def _variables(args):
|
||
|
if isinstance(args, Tuple):
|
||
|
for arg in args:
|
||
|
yield from _variables(arg)
|
||
|
else:
|
||
|
yield args
|
||
|
return tuple(_variables(self.signature))
|
||
|
|
||
|
@property
|
||
|
def nargs(self):
|
||
|
from sympy.sets.sets import FiniteSet
|
||
|
return FiniteSet(len(self.signature))
|
||
|
|
||
|
bound_symbols = variables
|
||
|
|
||
|
@property
|
||
|
def free_symbols(self):
|
||
|
return self.expr.free_symbols - set(self.variables)
|
||
|
|
||
|
def __call__(self, *args):
|
||
|
n = len(args)
|
||
|
if n not in self.nargs: # Lambda only ever has 1 value in nargs
|
||
|
# XXX: exception message must be in exactly this format to
|
||
|
# make it work with NumPy's functions like vectorize(). See,
|
||
|
# for example, https://github.com/numpy/numpy/issues/1697.
|
||
|
# The ideal solution would be just to attach metadata to
|
||
|
# the exception and change NumPy to take advantage of this.
|
||
|
## XXX does this apply to Lambda? If not, remove this comment.
|
||
|
temp = ('%(name)s takes exactly %(args)s '
|
||
|
'argument%(plural)s (%(given)s given)')
|
||
|
raise BadArgumentsError(temp % {
|
||
|
'name': self,
|
||
|
'args': list(self.nargs)[0],
|
||
|
'plural': 's'*(list(self.nargs)[0] != 1),
|
||
|
'given': n})
|
||
|
|
||
|
d = self._match_signature(self.signature, args)
|
||
|
|
||
|
return self.expr.xreplace(d)
|
||
|
|
||
|
def _match_signature(self, sig, args):
|
||
|
|
||
|
symargmap = {}
|
||
|
|
||
|
def rmatch(pars, args):
|
||
|
for par, arg in zip(pars, args):
|
||
|
if par.is_symbol:
|
||
|
symargmap[par] = arg
|
||
|
elif isinstance(par, Tuple):
|
||
|
if not isinstance(arg, (tuple, Tuple)) or len(args) != len(pars):
|
||
|
raise BadArgumentsError("Can't match %s and %s" % (args, pars))
|
||
|
rmatch(par, arg)
|
||
|
|
||
|
rmatch(sig, args)
|
||
|
|
||
|
return symargmap
|
||
|
|
||
|
@property
|
||
|
def is_identity(self):
|
||
|
"""Return ``True`` if this ``Lambda`` is an identity function. """
|
||
|
return self.signature == self.expr
|
||
|
|
||
|
def _eval_evalf(self, prec):
|
||
|
return self.func(self.args[0], self.args[1].evalf(n=prec_to_dps(prec)))
|
||
|
|
||
|
|
||
|
class Subs(Expr):
|
||
|
"""
|
||
|
Represents unevaluated substitutions of an expression.
|
||
|
|
||
|
``Subs(expr, x, x0)`` represents the expression resulting
|
||
|
from substituting x with x0 in expr.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
expr : Expr
|
||
|
An expression.
|
||
|
|
||
|
x : tuple, variable
|
||
|
A variable or list of distinct variables.
|
||
|
|
||
|
x0 : tuple or list of tuples
|
||
|
A point or list of evaluation points
|
||
|
corresponding to those variables.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Subs, Function, sin, cos
|
||
|
>>> from sympy.abc import x, y, z
|
||
|
>>> f = Function('f')
|
||
|
|
||
|
Subs are created when a particular substitution cannot be made. The
|
||
|
x in the derivative cannot be replaced with 0 because 0 is not a
|
||
|
valid variables of differentiation:
|
||
|
|
||
|
>>> f(x).diff(x).subs(x, 0)
|
||
|
Subs(Derivative(f(x), x), x, 0)
|
||
|
|
||
|
Once f is known, the derivative and evaluation at 0 can be done:
|
||
|
|
||
|
>>> _.subs(f, sin).doit() == sin(x).diff(x).subs(x, 0) == cos(0)
|
||
|
True
|
||
|
|
||
|
Subs can also be created directly with one or more variables:
|
||
|
|
||
|
>>> Subs(f(x)*sin(y) + z, (x, y), (0, 1))
|
||
|
Subs(z + f(x)*sin(y), (x, y), (0, 1))
|
||
|
>>> _.doit()
|
||
|
z + f(0)*sin(1)
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
``Subs`` objects are generally useful to represent unevaluated derivatives
|
||
|
calculated at a point.
|
||
|
|
||
|
The variables may be expressions, but they are subjected to the limitations
|
||
|
of subs(), so it is usually a good practice to use only symbols for
|
||
|
variables, since in that case there can be no ambiguity.
|
||
|
|
||
|
There's no automatic expansion - use the method .doit() to effect all
|
||
|
possible substitutions of the object and also of objects inside the
|
||
|
expression.
|
||
|
|
||
|
When evaluating derivatives at a point that is not a symbol, a Subs object
|
||
|
is returned. One is also able to calculate derivatives of Subs objects - in
|
||
|
this case the expression is always expanded (for the unevaluated form, use
|
||
|
Derivative()).
|
||
|
|
||
|
In order to allow expressions to combine before doit is done, a
|
||
|
representation of the Subs expression is used internally to make
|
||
|
expressions that are superficially different compare the same:
|
||
|
|
||
|
>>> a, b = Subs(x, x, 0), Subs(y, y, 0)
|
||
|
>>> a + b
|
||
|
2*Subs(x, x, 0)
|
||
|
|
||
|
This can lead to unexpected consequences when using methods
|
||
|
like `has` that are cached:
|
||
|
|
||
|
>>> s = Subs(x, x, 0)
|
||
|
>>> s.has(x), s.has(y)
|
||
|
(True, False)
|
||
|
>>> ss = s.subs(x, y)
|
||
|
>>> ss.has(x), ss.has(y)
|
||
|
(True, False)
|
||
|
>>> s, ss
|
||
|
(Subs(x, x, 0), Subs(y, y, 0))
|
||
|
"""
|
||
|
def __new__(cls, expr, variables, point, **assumptions):
|
||
|
if not is_sequence(variables, Tuple):
|
||
|
variables = [variables]
|
||
|
variables = Tuple(*variables)
|
||
|
|
||
|
if has_dups(variables):
|
||
|
repeated = [str(v) for v, i in Counter(variables).items() if i > 1]
|
||
|
__ = ', '.join(repeated)
|
||
|
raise ValueError(filldedent('''
|
||
|
The following expressions appear more than once: %s
|
||
|
''' % __))
|
||
|
|
||
|
point = Tuple(*(point if is_sequence(point, Tuple) else [point]))
|
||
|
|
||
|
if len(point) != len(variables):
|
||
|
raise ValueError('Number of point values must be the same as '
|
||
|
'the number of variables.')
|
||
|
|
||
|
if not point:
|
||
|
return sympify(expr)
|
||
|
|
||
|
# denest
|
||
|
if isinstance(expr, Subs):
|
||
|
variables = expr.variables + variables
|
||
|
point = expr.point + point
|
||
|
expr = expr.expr
|
||
|
else:
|
||
|
expr = sympify(expr)
|
||
|
|
||
|
# use symbols with names equal to the point value (with prepended _)
|
||
|
# to give a variable-independent expression
|
||
|
pre = "_"
|
||
|
pts = sorted(set(point), key=default_sort_key)
|
||
|
from sympy.printing.str import StrPrinter
|
||
|
class CustomStrPrinter(StrPrinter):
|
||
|
def _print_Dummy(self, expr):
|
||
|
return str(expr) + str(expr.dummy_index)
|
||
|
def mystr(expr, **settings):
|
||
|
p = CustomStrPrinter(settings)
|
||
|
return p.doprint(expr)
|
||
|
while 1:
|
||
|
s_pts = {p: Symbol(pre + mystr(p)) for p in pts}
|
||
|
reps = [(v, s_pts[p])
|
||
|
for v, p in zip(variables, point)]
|
||
|
# if any underscore-prepended symbol is already a free symbol
|
||
|
# and is a variable with a different point value, then there
|
||
|
# is a clash, e.g. _0 clashes in Subs(_0 + _1, (_0, _1), (1, 0))
|
||
|
# because the new symbol that would be created is _1 but _1
|
||
|
# is already mapped to 0 so __0 and __1 are used for the new
|
||
|
# symbols
|
||
|
if any(r in expr.free_symbols and
|
||
|
r in variables and
|
||
|
Symbol(pre + mystr(point[variables.index(r)])) != r
|
||
|
for _, r in reps):
|
||
|
pre += "_"
|
||
|
continue
|
||
|
break
|
||
|
|
||
|
obj = Expr.__new__(cls, expr, Tuple(*variables), point)
|
||
|
obj._expr = expr.xreplace(dict(reps))
|
||
|
return obj
|
||
|
|
||
|
def _eval_is_commutative(self):
|
||
|
return self.expr.is_commutative
|
||
|
|
||
|
def doit(self, **hints):
|
||
|
e, v, p = self.args
|
||
|
|
||
|
# remove self mappings
|
||
|
for i, (vi, pi) in enumerate(zip(v, p)):
|
||
|
if vi == pi:
|
||
|
v = v[:i] + v[i + 1:]
|
||
|
p = p[:i] + p[i + 1:]
|
||
|
if not v:
|
||
|
return self.expr
|
||
|
|
||
|
if isinstance(e, Derivative):
|
||
|
# apply functions first, e.g. f -> cos
|
||
|
undone = []
|
||
|
for i, vi in enumerate(v):
|
||
|
if isinstance(vi, FunctionClass):
|
||
|
e = e.subs(vi, p[i])
|
||
|
else:
|
||
|
undone.append((vi, p[i]))
|
||
|
if not isinstance(e, Derivative):
|
||
|
e = e.doit()
|
||
|
if isinstance(e, Derivative):
|
||
|
# do Subs that aren't related to differentiation
|
||
|
undone2 = []
|
||
|
D = Dummy()
|
||
|
arg = e.args[0]
|
||
|
for vi, pi in undone:
|
||
|
if D not in e.xreplace({vi: D}).free_symbols:
|
||
|
if arg.has(vi):
|
||
|
e = e.subs(vi, pi)
|
||
|
else:
|
||
|
undone2.append((vi, pi))
|
||
|
undone = undone2
|
||
|
# differentiate wrt variables that are present
|
||
|
wrt = []
|
||
|
D = Dummy()
|
||
|
expr = e.expr
|
||
|
free = expr.free_symbols
|
||
|
for vi, ci in e.variable_count:
|
||
|
if isinstance(vi, Symbol) and vi in free:
|
||
|
expr = expr.diff((vi, ci))
|
||
|
elif D in expr.subs(vi, D).free_symbols:
|
||
|
expr = expr.diff((vi, ci))
|
||
|
else:
|
||
|
wrt.append((vi, ci))
|
||
|
# inject remaining subs
|
||
|
rv = expr.subs(undone)
|
||
|
# do remaining differentiation *in order given*
|
||
|
for vc in wrt:
|
||
|
rv = rv.diff(vc)
|
||
|
else:
|
||
|
# inject remaining subs
|
||
|
rv = e.subs(undone)
|
||
|
else:
|
||
|
rv = e.doit(**hints).subs(list(zip(v, p)))
|
||
|
|
||
|
if hints.get('deep', True) and rv != self:
|
||
|
rv = rv.doit(**hints)
|
||
|
return rv
|
||
|
|
||
|
def evalf(self, prec=None, **options):
|
||
|
return self.doit().evalf(prec, **options)
|
||
|
|
||
|
n = evalf # type:ignore
|
||
|
|
||
|
@property
|
||
|
def variables(self):
|
||
|
"""The variables to be evaluated"""
|
||
|
return self._args[1]
|
||
|
|
||
|
bound_symbols = variables
|
||
|
|
||
|
@property
|
||
|
def expr(self):
|
||
|
"""The expression on which the substitution operates"""
|
||
|
return self._args[0]
|
||
|
|
||
|
@property
|
||
|
def point(self):
|
||
|
"""The values for which the variables are to be substituted"""
|
||
|
return self._args[2]
|
||
|
|
||
|
@property
|
||
|
def free_symbols(self):
|
||
|
return (self.expr.free_symbols - set(self.variables) |
|
||
|
set(self.point.free_symbols))
|
||
|
|
||
|
@property
|
||
|
def expr_free_symbols(self):
|
||
|
sympy_deprecation_warning("""
|
||
|
The expr_free_symbols property is deprecated. Use free_symbols to get
|
||
|
the free symbols of an expression.
|
||
|
""",
|
||
|
deprecated_since_version="1.9",
|
||
|
active_deprecations_target="deprecated-expr-free-symbols")
|
||
|
# Don't show the warning twice from the recursive call
|
||
|
with ignore_warnings(SymPyDeprecationWarning):
|
||
|
return (self.expr.expr_free_symbols - set(self.variables) |
|
||
|
set(self.point.expr_free_symbols))
|
||
|
|
||
|
def __eq__(self, other):
|
||
|
if not isinstance(other, Subs):
|
||
|
return False
|
||
|
return self._hashable_content() == other._hashable_content()
|
||
|
|
||
|
def __ne__(self, other):
|
||
|
return not(self == other)
|
||
|
|
||
|
def __hash__(self):
|
||
|
return super().__hash__()
|
||
|
|
||
|
def _hashable_content(self):
|
||
|
return (self._expr.xreplace(self.canonical_variables),
|
||
|
) + tuple(ordered([(v, p) for v, p in
|
||
|
zip(self.variables, self.point) if not self.expr.has(v)]))
|
||
|
|
||
|
def _eval_subs(self, old, new):
|
||
|
# Subs doit will do the variables in order; the semantics
|
||
|
# of subs for Subs is have the following invariant for
|
||
|
# Subs object foo:
|
||
|
# foo.doit().subs(reps) == foo.subs(reps).doit()
|
||
|
pt = list(self.point)
|
||
|
if old in self.variables:
|
||
|
if _atomic(new) == {new} and not any(
|
||
|
i.has(new) for i in self.args):
|
||
|
# the substitution is neutral
|
||
|
return self.xreplace({old: new})
|
||
|
# any occurrence of old before this point will get
|
||
|
# handled by replacements from here on
|
||
|
i = self.variables.index(old)
|
||
|
for j in range(i, len(self.variables)):
|
||
|
pt[j] = pt[j]._subs(old, new)
|
||
|
return self.func(self.expr, self.variables, pt)
|
||
|
v = [i._subs(old, new) for i in self.variables]
|
||
|
if v != list(self.variables):
|
||
|
return self.func(self.expr, self.variables + (old,), pt + [new])
|
||
|
expr = self.expr._subs(old, new)
|
||
|
pt = [i._subs(old, new) for i in self.point]
|
||
|
return self.func(expr, v, pt)
|
||
|
|
||
|
def _eval_derivative(self, s):
|
||
|
# Apply the chain rule of the derivative on the substitution variables:
|
||
|
f = self.expr
|
||
|
vp = V, P = self.variables, self.point
|
||
|
val = Add.fromiter(p.diff(s)*Subs(f.diff(v), *vp).doit()
|
||
|
for v, p in zip(V, P))
|
||
|
|
||
|
# these are all the free symbols in the expr
|
||
|
efree = f.free_symbols
|
||
|
# some symbols like IndexedBase include themselves and args
|
||
|
# as free symbols
|
||
|
compound = {i for i in efree if len(i.free_symbols) > 1}
|
||
|
# hide them and see what independent free symbols remain
|
||
|
dums = {Dummy() for i in compound}
|
||
|
masked = f.xreplace(dict(zip(compound, dums)))
|
||
|
ifree = masked.free_symbols - dums
|
||
|
# include the compound symbols
|
||
|
free = ifree | compound
|
||
|
# remove the variables already handled
|
||
|
free -= set(V)
|
||
|
# add back any free symbols of remaining compound symbols
|
||
|
free |= {i for j in free & compound for i in j.free_symbols}
|
||
|
# if symbols of s are in free then there is more to do
|
||
|
if free & s.free_symbols:
|
||
|
val += Subs(f.diff(s), self.variables, self.point).doit()
|
||
|
return val
|
||
|
|
||
|
def _eval_nseries(self, x, n, logx, cdir=0):
|
||
|
if x in self.point:
|
||
|
# x is the variable being substituted into
|
||
|
apos = self.point.index(x)
|
||
|
other = self.variables[apos]
|
||
|
else:
|
||
|
other = x
|
||
|
arg = self.expr.nseries(other, n=n, logx=logx)
|
||
|
o = arg.getO()
|
||
|
terms = Add.make_args(arg.removeO())
|
||
|
rv = Add(*[self.func(a, *self.args[1:]) for a in terms])
|
||
|
if o:
|
||
|
rv += o.subs(other, x)
|
||
|
return rv
|
||
|
|
||
|
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
||
|
if x in self.point:
|
||
|
ipos = self.point.index(x)
|
||
|
xvar = self.variables[ipos]
|
||
|
return self.expr.as_leading_term(xvar)
|
||
|
if x in self.variables:
|
||
|
# if `x` is a dummy variable, it means it won't exist after the
|
||
|
# substitution has been performed:
|
||
|
return self
|
||
|
# The variable is independent of the substitution:
|
||
|
return self.expr.as_leading_term(x)
|
||
|
|
||
|
|
||
|
def diff(f, *symbols, **kwargs):
|
||
|
"""
|
||
|
Differentiate f with respect to symbols.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
This is just a wrapper to unify .diff() and the Derivative class; its
|
||
|
interface is similar to that of integrate(). You can use the same
|
||
|
shortcuts for multiple variables as with Derivative. For example,
|
||
|
diff(f(x), x, x, x) and diff(f(x), x, 3) both return the third derivative
|
||
|
of f(x).
|
||
|
|
||
|
You can pass evaluate=False to get an unevaluated Derivative class. Note
|
||
|
that if there are 0 symbols (such as diff(f(x), x, 0), then the result will
|
||
|
be the function (the zeroth derivative), even if evaluate=False.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import sin, cos, Function, diff
|
||
|
>>> from sympy.abc import x, y
|
||
|
>>> f = Function('f')
|
||
|
|
||
|
>>> diff(sin(x), x)
|
||
|
cos(x)
|
||
|
>>> diff(f(x), x, x, x)
|
||
|
Derivative(f(x), (x, 3))
|
||
|
>>> diff(f(x), x, 3)
|
||
|
Derivative(f(x), (x, 3))
|
||
|
>>> diff(sin(x)*cos(y), x, 2, y, 2)
|
||
|
sin(x)*cos(y)
|
||
|
|
||
|
>>> type(diff(sin(x), x))
|
||
|
cos
|
||
|
>>> type(diff(sin(x), x, evaluate=False))
|
||
|
<class 'sympy.core.function.Derivative'>
|
||
|
>>> type(diff(sin(x), x, 0))
|
||
|
sin
|
||
|
>>> type(diff(sin(x), x, 0, evaluate=False))
|
||
|
sin
|
||
|
|
||
|
>>> diff(sin(x))
|
||
|
cos(x)
|
||
|
>>> diff(sin(x*y))
|
||
|
Traceback (most recent call last):
|
||
|
...
|
||
|
ValueError: specify differentiation variables to differentiate sin(x*y)
|
||
|
|
||
|
Note that ``diff(sin(x))`` syntax is meant only for convenience
|
||
|
in interactive sessions and should be avoided in library code.
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://reference.wolfram.com/legacy/v5_2/Built-inFunctions/AlgebraicComputation/Calculus/D.html
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
Derivative
|
||
|
idiff: computes the derivative implicitly
|
||
|
|
||
|
"""
|
||
|
if hasattr(f, 'diff'):
|
||
|
return f.diff(*symbols, **kwargs)
|
||
|
kwargs.setdefault('evaluate', True)
|
||
|
return _derivative_dispatch(f, *symbols, **kwargs)
|
||
|
|
||
|
|
||
|
def expand(e, deep=True, modulus=None, power_base=True, power_exp=True,
|
||
|
mul=True, log=True, multinomial=True, basic=True, **hints):
|
||
|
r"""
|
||
|
Expand an expression using methods given as hints.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
Hints evaluated unless explicitly set to False are: ``basic``, ``log``,
|
||
|
``multinomial``, ``mul``, ``power_base``, and ``power_exp`` The following
|
||
|
hints are supported but not applied unless set to True: ``complex``,
|
||
|
``func``, and ``trig``. In addition, the following meta-hints are
|
||
|
supported by some or all of the other hints: ``frac``, ``numer``,
|
||
|
``denom``, ``modulus``, and ``force``. ``deep`` is supported by all
|
||
|
hints. Additionally, subclasses of Expr may define their own hints or
|
||
|
meta-hints.
|
||
|
|
||
|
The ``basic`` hint is used for any special rewriting of an object that
|
||
|
should be done automatically (along with the other hints like ``mul``)
|
||
|
when expand is called. This is a catch-all hint to handle any sort of
|
||
|
expansion that may not be described by the existing hint names. To use
|
||
|
this hint an object should override the ``_eval_expand_basic`` method.
|
||
|
Objects may also define their own expand methods, which are not run by
|
||
|
default. See the API section below.
|
||
|
|
||
|
If ``deep`` is set to ``True`` (the default), things like arguments of
|
||
|
functions are recursively expanded. Use ``deep=False`` to only expand on
|
||
|
the top level.
|
||
|
|
||
|
If the ``force`` hint is used, assumptions about variables will be ignored
|
||
|
in making the expansion.
|
||
|
|
||
|
Hints
|
||
|
=====
|
||
|
|
||
|
These hints are run by default
|
||
|
|
||
|
mul
|
||
|
---
|
||
|
|
||
|
Distributes multiplication over addition:
|
||
|
|
||
|
>>> from sympy import cos, exp, sin
|
||
|
>>> from sympy.abc import x, y, z
|
||
|
>>> (y*(x + z)).expand(mul=True)
|
||
|
x*y + y*z
|
||
|
|
||
|
multinomial
|
||
|
-----------
|
||
|
|
||
|
Expand (x + y + ...)**n where n is a positive integer.
|
||
|
|
||
|
>>> ((x + y + z)**2).expand(multinomial=True)
|
||
|
x**2 + 2*x*y + 2*x*z + y**2 + 2*y*z + z**2
|
||
|
|
||
|
power_exp
|
||
|
---------
|
||
|
|
||
|
Expand addition in exponents into multiplied bases.
|
||
|
|
||
|
>>> exp(x + y).expand(power_exp=True)
|
||
|
exp(x)*exp(y)
|
||
|
>>> (2**(x + y)).expand(power_exp=True)
|
||
|
2**x*2**y
|
||
|
|
||
|
power_base
|
||
|
----------
|
||
|
|
||
|
Split powers of multiplied bases.
|
||
|
|
||
|
This only happens by default if assumptions allow, or if the
|
||
|
``force`` meta-hint is used:
|
||
|
|
||
|
>>> ((x*y)**z).expand(power_base=True)
|
||
|
(x*y)**z
|
||
|
>>> ((x*y)**z).expand(power_base=True, force=True)
|
||
|
x**z*y**z
|
||
|
>>> ((2*y)**z).expand(power_base=True)
|
||
|
2**z*y**z
|
||
|
|
||
|
Note that in some cases where this expansion always holds, SymPy performs
|
||
|
it automatically:
|
||
|
|
||
|
>>> (x*y)**2
|
||
|
x**2*y**2
|
||
|
|
||
|
log
|
||
|
---
|
||
|
|
||
|
Pull out power of an argument as a coefficient and split logs products
|
||
|
into sums of logs.
|
||
|
|
||
|
Note that these only work if the arguments of the log function have the
|
||
|
proper assumptions--the arguments must be positive and the exponents must
|
||
|
be real--or else the ``force`` hint must be True:
|
||
|
|
||
|
>>> from sympy import log, symbols
|
||
|
>>> log(x**2*y).expand(log=True)
|
||
|
log(x**2*y)
|
||
|
>>> log(x**2*y).expand(log=True, force=True)
|
||
|
2*log(x) + log(y)
|
||
|
>>> x, y = symbols('x,y', positive=True)
|
||
|
>>> log(x**2*y).expand(log=True)
|
||
|
2*log(x) + log(y)
|
||
|
|
||
|
basic
|
||
|
-----
|
||
|
|
||
|
This hint is intended primarily as a way for custom subclasses to enable
|
||
|
expansion by default.
|
||
|
|
||
|
These hints are not run by default:
|
||
|
|
||
|
complex
|
||
|
-------
|
||
|
|
||
|
Split an expression into real and imaginary parts.
|
||
|
|
||
|
>>> x, y = symbols('x,y')
|
||
|
>>> (x + y).expand(complex=True)
|
||
|
re(x) + re(y) + I*im(x) + I*im(y)
|
||
|
>>> cos(x).expand(complex=True)
|
||
|
-I*sin(re(x))*sinh(im(x)) + cos(re(x))*cosh(im(x))
|
||
|
|
||
|
Note that this is just a wrapper around ``as_real_imag()``. Most objects
|
||
|
that wish to redefine ``_eval_expand_complex()`` should consider
|
||
|
redefining ``as_real_imag()`` instead.
|
||
|
|
||
|
func
|
||
|
----
|
||
|
|
||
|
Expand other functions.
|
||
|
|
||
|
>>> from sympy import gamma
|
||
|
>>> gamma(x + 1).expand(func=True)
|
||
|
x*gamma(x)
|
||
|
|
||
|
trig
|
||
|
----
|
||
|
|
||
|
Do trigonometric expansions.
|
||
|
|
||
|
>>> cos(x + y).expand(trig=True)
|
||
|
-sin(x)*sin(y) + cos(x)*cos(y)
|
||
|
>>> sin(2*x).expand(trig=True)
|
||
|
2*sin(x)*cos(x)
|
||
|
|
||
|
Note that the forms of ``sin(n*x)`` and ``cos(n*x)`` in terms of ``sin(x)``
|
||
|
and ``cos(x)`` are not unique, due to the identity `\sin^2(x) + \cos^2(x)
|
||
|
= 1`. The current implementation uses the form obtained from Chebyshev
|
||
|
polynomials, but this may change. See `this MathWorld article
|
||
|
<https://mathworld.wolfram.com/Multiple-AngleFormulas.html>`_ for more
|
||
|
information.
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
- You can shut off unwanted methods::
|
||
|
|
||
|
>>> (exp(x + y)*(x + y)).expand()
|
||
|
x*exp(x)*exp(y) + y*exp(x)*exp(y)
|
||
|
>>> (exp(x + y)*(x + y)).expand(power_exp=False)
|
||
|
x*exp(x + y) + y*exp(x + y)
|
||
|
>>> (exp(x + y)*(x + y)).expand(mul=False)
|
||
|
(x + y)*exp(x)*exp(y)
|
||
|
|
||
|
- Use deep=False to only expand on the top level::
|
||
|
|
||
|
>>> exp(x + exp(x + y)).expand()
|
||
|
exp(x)*exp(exp(x)*exp(y))
|
||
|
>>> exp(x + exp(x + y)).expand(deep=False)
|
||
|
exp(x)*exp(exp(x + y))
|
||
|
|
||
|
- Hints are applied in an arbitrary, but consistent order (in the current
|
||
|
implementation, they are applied in alphabetical order, except
|
||
|
multinomial comes before mul, but this may change). Because of this,
|
||
|
some hints may prevent expansion by other hints if they are applied
|
||
|
first. For example, ``mul`` may distribute multiplications and prevent
|
||
|
``log`` and ``power_base`` from expanding them. Also, if ``mul`` is
|
||
|
applied before ``multinomial`, the expression might not be fully
|
||
|
distributed. The solution is to use the various ``expand_hint`` helper
|
||
|
functions or to use ``hint=False`` to this function to finely control
|
||
|
which hints are applied. Here are some examples::
|
||
|
|
||
|
>>> from sympy import expand, expand_mul, expand_power_base
|
||
|
>>> x, y, z = symbols('x,y,z', positive=True)
|
||
|
|
||
|
>>> expand(log(x*(y + z)))
|
||
|
log(x) + log(y + z)
|
||
|
|
||
|
Here, we see that ``log`` was applied before ``mul``. To get the mul
|
||
|
expanded form, either of the following will work::
|
||
|
|
||
|
>>> expand_mul(log(x*(y + z)))
|
||
|
log(x*y + x*z)
|
||
|
>>> expand(log(x*(y + z)), log=False)
|
||
|
log(x*y + x*z)
|
||
|
|
||
|
A similar thing can happen with the ``power_base`` hint::
|
||
|
|
||
|
>>> expand((x*(y + z))**x)
|
||
|
(x*y + x*z)**x
|
||
|
|
||
|
To get the ``power_base`` expanded form, either of the following will
|
||
|
work::
|
||
|
|
||
|
>>> expand((x*(y + z))**x, mul=False)
|
||
|
x**x*(y + z)**x
|
||
|
>>> expand_power_base((x*(y + z))**x)
|
||
|
x**x*(y + z)**x
|
||
|
|
||
|
>>> expand((x + y)*y/x)
|
||
|
y + y**2/x
|
||
|
|
||
|
The parts of a rational expression can be targeted::
|
||
|
|
||
|
>>> expand((x + y)*y/x/(x + 1), frac=True)
|
||
|
(x*y + y**2)/(x**2 + x)
|
||
|
>>> expand((x + y)*y/x/(x + 1), numer=True)
|
||
|
(x*y + y**2)/(x*(x + 1))
|
||
|
>>> expand((x + y)*y/x/(x + 1), denom=True)
|
||
|
y*(x + y)/(x**2 + x)
|
||
|
|
||
|
- The ``modulus`` meta-hint can be used to reduce the coefficients of an
|
||
|
expression post-expansion::
|
||
|
|
||
|
>>> expand((3*x + 1)**2)
|
||
|
9*x**2 + 6*x + 1
|
||
|
>>> expand((3*x + 1)**2, modulus=5)
|
||
|
4*x**2 + x + 1
|
||
|
|
||
|
- Either ``expand()`` the function or ``.expand()`` the method can be
|
||
|
used. Both are equivalent::
|
||
|
|
||
|
>>> expand((x + 1)**2)
|
||
|
x**2 + 2*x + 1
|
||
|
>>> ((x + 1)**2).expand()
|
||
|
x**2 + 2*x + 1
|
||
|
|
||
|
API
|
||
|
===
|
||
|
|
||
|
Objects can define their own expand hints by defining
|
||
|
``_eval_expand_hint()``. The function should take the form::
|
||
|
|
||
|
def _eval_expand_hint(self, **hints):
|
||
|
# Only apply the method to the top-level expression
|
||
|
...
|
||
|
|
||
|
See also the example below. Objects should define ``_eval_expand_hint()``
|
||
|
methods only if ``hint`` applies to that specific object. The generic
|
||
|
``_eval_expand_hint()`` method defined in Expr will handle the no-op case.
|
||
|
|
||
|
Each hint should be responsible for expanding that hint only.
|
||
|
Furthermore, the expansion should be applied to the top-level expression
|
||
|
only. ``expand()`` takes care of the recursion that happens when
|
||
|
``deep=True``.
|
||
|
|
||
|
You should only call ``_eval_expand_hint()`` methods directly if you are
|
||
|
100% sure that the object has the method, as otherwise you are liable to
|
||
|
get unexpected ``AttributeError``s. Note, again, that you do not need to
|
||
|
recursively apply the hint to args of your object: this is handled
|
||
|
automatically by ``expand()``. ``_eval_expand_hint()`` should
|
||
|
generally not be used at all outside of an ``_eval_expand_hint()`` method.
|
||
|
If you want to apply a specific expansion from within another method, use
|
||
|
the public ``expand()`` function, method, or ``expand_hint()`` functions.
|
||
|
|
||
|
In order for expand to work, objects must be rebuildable by their args,
|
||
|
i.e., ``obj.func(*obj.args) == obj`` must hold.
|
||
|
|
||
|
Expand methods are passed ``**hints`` so that expand hints may use
|
||
|
'metahints'--hints that control how different expand methods are applied.
|
||
|
For example, the ``force=True`` hint described above that causes
|
||
|
``expand(log=True)`` to ignore assumptions is such a metahint. The
|
||
|
``deep`` meta-hint is handled exclusively by ``expand()`` and is not
|
||
|
passed to ``_eval_expand_hint()`` methods.
|
||
|
|
||
|
Note that expansion hints should generally be methods that perform some
|
||
|
kind of 'expansion'. For hints that simply rewrite an expression, use the
|
||
|
.rewrite() API.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Expr, sympify
|
||
|
>>> class MyClass(Expr):
|
||
|
... def __new__(cls, *args):
|
||
|
... args = sympify(args)
|
||
|
... return Expr.__new__(cls, *args)
|
||
|
...
|
||
|
... def _eval_expand_double(self, *, force=False, **hints):
|
||
|
... '''
|
||
|
... Doubles the args of MyClass.
|
||
|
...
|
||
|
... If there more than four args, doubling is not performed,
|
||
|
... unless force=True is also used (False by default).
|
||
|
... '''
|
||
|
... if not force and len(self.args) > 4:
|
||
|
... return self
|
||
|
... return self.func(*(self.args + self.args))
|
||
|
...
|
||
|
>>> a = MyClass(1, 2, MyClass(3, 4))
|
||
|
>>> a
|
||
|
MyClass(1, 2, MyClass(3, 4))
|
||
|
>>> a.expand(double=True)
|
||
|
MyClass(1, 2, MyClass(3, 4, 3, 4), 1, 2, MyClass(3, 4, 3, 4))
|
||
|
>>> a.expand(double=True, deep=False)
|
||
|
MyClass(1, 2, MyClass(3, 4), 1, 2, MyClass(3, 4))
|
||
|
|
||
|
>>> b = MyClass(1, 2, 3, 4, 5)
|
||
|
>>> b.expand(double=True)
|
||
|
MyClass(1, 2, 3, 4, 5)
|
||
|
>>> b.expand(double=True, force=True)
|
||
|
MyClass(1, 2, 3, 4, 5, 1, 2, 3, 4, 5)
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
expand_log, expand_mul, expand_multinomial, expand_complex, expand_trig,
|
||
|
expand_power_base, expand_power_exp, expand_func, sympy.simplify.hyperexpand.hyperexpand
|
||
|
|
||
|
"""
|
||
|
# don't modify this; modify the Expr.expand method
|
||
|
hints['power_base'] = power_base
|
||
|
hints['power_exp'] = power_exp
|
||
|
hints['mul'] = mul
|
||
|
hints['log'] = log
|
||
|
hints['multinomial'] = multinomial
|
||
|
hints['basic'] = basic
|
||
|
return sympify(e).expand(deep=deep, modulus=modulus, **hints)
|
||
|
|
||
|
# This is a special application of two hints
|
||
|
|
||
|
def _mexpand(expr, recursive=False):
|
||
|
# expand multinomials and then expand products; this may not always
|
||
|
# be sufficient to give a fully expanded expression (see
|
||
|
# test_issue_8247_8354 in test_arit)
|
||
|
if expr is None:
|
||
|
return
|
||
|
was = None
|
||
|
while was != expr:
|
||
|
was, expr = expr, expand_mul(expand_multinomial(expr))
|
||
|
if not recursive:
|
||
|
break
|
||
|
return expr
|
||
|
|
||
|
|
||
|
# These are simple wrappers around single hints.
|
||
|
|
||
|
|
||
|
def expand_mul(expr, deep=True):
|
||
|
"""
|
||
|
Wrapper around expand that only uses the mul hint. See the expand
|
||
|
docstring for more information.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import symbols, expand_mul, exp, log
|
||
|
>>> x, y = symbols('x,y', positive=True)
|
||
|
>>> expand_mul(exp(x+y)*(x+y)*log(x*y**2))
|
||
|
x*exp(x + y)*log(x*y**2) + y*exp(x + y)*log(x*y**2)
|
||
|
|
||
|
"""
|
||
|
return sympify(expr).expand(deep=deep, mul=True, power_exp=False,
|
||
|
power_base=False, basic=False, multinomial=False, log=False)
|
||
|
|
||
|
|
||
|
def expand_multinomial(expr, deep=True):
|
||
|
"""
|
||
|
Wrapper around expand that only uses the multinomial hint. See the expand
|
||
|
docstring for more information.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import symbols, expand_multinomial, exp
|
||
|
>>> x, y = symbols('x y', positive=True)
|
||
|
>>> expand_multinomial((x + exp(x + 1))**2)
|
||
|
x**2 + 2*x*exp(x + 1) + exp(2*x + 2)
|
||
|
|
||
|
"""
|
||
|
return sympify(expr).expand(deep=deep, mul=False, power_exp=False,
|
||
|
power_base=False, basic=False, multinomial=True, log=False)
|
||
|
|
||
|
|
||
|
def expand_log(expr, deep=True, force=False, factor=False):
|
||
|
"""
|
||
|
Wrapper around expand that only uses the log hint. See the expand
|
||
|
docstring for more information.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import symbols, expand_log, exp, log
|
||
|
>>> x, y = symbols('x,y', positive=True)
|
||
|
>>> expand_log(exp(x+y)*(x+y)*log(x*y**2))
|
||
|
(x + y)*(log(x) + 2*log(y))*exp(x + y)
|
||
|
|
||
|
"""
|
||
|
from sympy.functions.elementary.exponential import log
|
||
|
if factor is False:
|
||
|
def _handle(x):
|
||
|
x1 = expand_mul(expand_log(x, deep=deep, force=force, factor=True))
|
||
|
if x1.count(log) <= x.count(log):
|
||
|
return x1
|
||
|
return x
|
||
|
|
||
|
expr = expr.replace(
|
||
|
lambda x: x.is_Mul and all(any(isinstance(i, log) and i.args[0].is_Rational
|
||
|
for i in Mul.make_args(j)) for j in x.as_numer_denom()),
|
||
|
_handle)
|
||
|
|
||
|
return sympify(expr).expand(deep=deep, log=True, mul=False,
|
||
|
power_exp=False, power_base=False, multinomial=False,
|
||
|
basic=False, force=force, factor=factor)
|
||
|
|
||
|
|
||
|
def expand_func(expr, deep=True):
|
||
|
"""
|
||
|
Wrapper around expand that only uses the func hint. See the expand
|
||
|
docstring for more information.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import expand_func, gamma
|
||
|
>>> from sympy.abc import x
|
||
|
>>> expand_func(gamma(x + 2))
|
||
|
x*(x + 1)*gamma(x)
|
||
|
|
||
|
"""
|
||
|
return sympify(expr).expand(deep=deep, func=True, basic=False,
|
||
|
log=False, mul=False, power_exp=False, power_base=False, multinomial=False)
|
||
|
|
||
|
|
||
|
def expand_trig(expr, deep=True):
|
||
|
"""
|
||
|
Wrapper around expand that only uses the trig hint. See the expand
|
||
|
docstring for more information.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import expand_trig, sin
|
||
|
>>> from sympy.abc import x, y
|
||
|
>>> expand_trig(sin(x+y)*(x+y))
|
||
|
(x + y)*(sin(x)*cos(y) + sin(y)*cos(x))
|
||
|
|
||
|
"""
|
||
|
return sympify(expr).expand(deep=deep, trig=True, basic=False,
|
||
|
log=False, mul=False, power_exp=False, power_base=False, multinomial=False)
|
||
|
|
||
|
|
||
|
def expand_complex(expr, deep=True):
|
||
|
"""
|
||
|
Wrapper around expand that only uses the complex hint. See the expand
|
||
|
docstring for more information.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import expand_complex, exp, sqrt, I
|
||
|
>>> from sympy.abc import z
|
||
|
>>> expand_complex(exp(z))
|
||
|
I*exp(re(z))*sin(im(z)) + exp(re(z))*cos(im(z))
|
||
|
>>> expand_complex(sqrt(I))
|
||
|
sqrt(2)/2 + sqrt(2)*I/2
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
sympy.core.expr.Expr.as_real_imag
|
||
|
"""
|
||
|
return sympify(expr).expand(deep=deep, complex=True, basic=False,
|
||
|
log=False, mul=False, power_exp=False, power_base=False, multinomial=False)
|
||
|
|
||
|
|
||
|
def expand_power_base(expr, deep=True, force=False):
|
||
|
"""
|
||
|
Wrapper around expand that only uses the power_base hint.
|
||
|
|
||
|
A wrapper to expand(power_base=True) which separates a power with a base
|
||
|
that is a Mul into a product of powers, without performing any other
|
||
|
expansions, provided that assumptions about the power's base and exponent
|
||
|
allow.
|
||
|
|
||
|
deep=False (default is True) will only apply to the top-level expression.
|
||
|
|
||
|
force=True (default is False) will cause the expansion to ignore
|
||
|
assumptions about the base and exponent. When False, the expansion will
|
||
|
only happen if the base is non-negative or the exponent is an integer.
|
||
|
|
||
|
>>> from sympy.abc import x, y, z
|
||
|
>>> from sympy import expand_power_base, sin, cos, exp, Symbol
|
||
|
|
||
|
>>> (x*y)**2
|
||
|
x**2*y**2
|
||
|
|
||
|
>>> (2*x)**y
|
||
|
(2*x)**y
|
||
|
>>> expand_power_base(_)
|
||
|
2**y*x**y
|
||
|
|
||
|
>>> expand_power_base((x*y)**z)
|
||
|
(x*y)**z
|
||
|
>>> expand_power_base((x*y)**z, force=True)
|
||
|
x**z*y**z
|
||
|
>>> expand_power_base(sin((x*y)**z), deep=False)
|
||
|
sin((x*y)**z)
|
||
|
>>> expand_power_base(sin((x*y)**z), force=True)
|
||
|
sin(x**z*y**z)
|
||
|
|
||
|
>>> expand_power_base((2*sin(x))**y + (2*cos(x))**y)
|
||
|
2**y*sin(x)**y + 2**y*cos(x)**y
|
||
|
|
||
|
>>> expand_power_base((2*exp(y))**x)
|
||
|
2**x*exp(y)**x
|
||
|
|
||
|
>>> expand_power_base((2*cos(x))**y)
|
||
|
2**y*cos(x)**y
|
||
|
|
||
|
Notice that sums are left untouched. If this is not the desired behavior,
|
||
|
apply full ``expand()`` to the expression:
|
||
|
|
||
|
>>> expand_power_base(((x+y)*z)**2)
|
||
|
z**2*(x + y)**2
|
||
|
>>> (((x+y)*z)**2).expand()
|
||
|
x**2*z**2 + 2*x*y*z**2 + y**2*z**2
|
||
|
|
||
|
>>> expand_power_base((2*y)**(1+z))
|
||
|
2**(z + 1)*y**(z + 1)
|
||
|
>>> ((2*y)**(1+z)).expand()
|
||
|
2*2**z*y**(z + 1)
|
||
|
|
||
|
The power that is unexpanded can be expanded safely when
|
||
|
``y != 0``, otherwise different values might be obtained for the expression:
|
||
|
|
||
|
>>> prev = _
|
||
|
|
||
|
If we indicate that ``y`` is positive but then replace it with
|
||
|
a value of 0 after expansion, the expression becomes 0:
|
||
|
|
||
|
>>> p = Symbol('p', positive=True)
|
||
|
>>> prev.subs(y, p).expand().subs(p, 0)
|
||
|
0
|
||
|
|
||
|
But if ``z = -1`` the expression would not be zero:
|
||
|
|
||
|
>>> prev.subs(y, 0).subs(z, -1)
|
||
|
1
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
expand
|
||
|
|
||
|
"""
|
||
|
return sympify(expr).expand(deep=deep, log=False, mul=False,
|
||
|
power_exp=False, power_base=True, multinomial=False,
|
||
|
basic=False, force=force)
|
||
|
|
||
|
|
||
|
def expand_power_exp(expr, deep=True):
|
||
|
"""
|
||
|
Wrapper around expand that only uses the power_exp hint.
|
||
|
|
||
|
See the expand docstring for more information.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import expand_power_exp, Symbol
|
||
|
>>> from sympy.abc import x, y
|
||
|
>>> expand_power_exp(3**(y + 2))
|
||
|
9*3**y
|
||
|
>>> expand_power_exp(x**(y + 2))
|
||
|
x**(y + 2)
|
||
|
|
||
|
If ``x = 0`` the value of the expression depends on the
|
||
|
value of ``y``; if the expression were expanded the result
|
||
|
would be 0. So expansion is only done if ``x != 0``:
|
||
|
|
||
|
>>> expand_power_exp(Symbol('x', zero=False)**(y + 2))
|
||
|
x**2*x**y
|
||
|
"""
|
||
|
return sympify(expr).expand(deep=deep, complex=False, basic=False,
|
||
|
log=False, mul=False, power_exp=True, power_base=False, multinomial=False)
|
||
|
|
||
|
|
||
|
def count_ops(expr, visual=False):
|
||
|
"""
|
||
|
Return a representation (integer or expression) of the operations in expr.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
expr : Expr
|
||
|
If expr is an iterable, the sum of the op counts of the
|
||
|
items will be returned.
|
||
|
|
||
|
visual : bool, optional
|
||
|
If ``False`` (default) then the sum of the coefficients of the
|
||
|
visual expression will be returned.
|
||
|
If ``True`` then the number of each type of operation is shown
|
||
|
with the core class types (or their virtual equivalent) multiplied by the
|
||
|
number of times they occur.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.abc import a, b, x, y
|
||
|
>>> from sympy import sin, count_ops
|
||
|
|
||
|
Although there is not a SUB object, minus signs are interpreted as
|
||
|
either negations or subtractions:
|
||
|
|
||
|
>>> (x - y).count_ops(visual=True)
|
||
|
SUB
|
||
|
>>> (-x).count_ops(visual=True)
|
||
|
NEG
|
||
|
|
||
|
Here, there are two Adds and a Pow:
|
||
|
|
||
|
>>> (1 + a + b**2).count_ops(visual=True)
|
||
|
2*ADD + POW
|
||
|
|
||
|
In the following, an Add, Mul, Pow and two functions:
|
||
|
|
||
|
>>> (sin(x)*x + sin(x)**2).count_ops(visual=True)
|
||
|
ADD + MUL + POW + 2*SIN
|
||
|
|
||
|
for a total of 5:
|
||
|
|
||
|
>>> (sin(x)*x + sin(x)**2).count_ops(visual=False)
|
||
|
5
|
||
|
|
||
|
Note that "what you type" is not always what you get. The expression
|
||
|
1/x/y is translated by sympy into 1/(x*y) so it gives a DIV and MUL rather
|
||
|
than two DIVs:
|
||
|
|
||
|
>>> (1/x/y).count_ops(visual=True)
|
||
|
DIV + MUL
|
||
|
|
||
|
The visual option can be used to demonstrate the difference in
|
||
|
operations for expressions in different forms. Here, the Horner
|
||
|
representation is compared with the expanded form of a polynomial:
|
||
|
|
||
|
>>> eq=x*(1 + x*(2 + x*(3 + x)))
|
||
|
>>> count_ops(eq.expand(), visual=True) - count_ops(eq, visual=True)
|
||
|
-MUL + 3*POW
|
||
|
|
||
|
The count_ops function also handles iterables:
|
||
|
|
||
|
>>> count_ops([x, sin(x), None, True, x + 2], visual=False)
|
||
|
2
|
||
|
>>> count_ops([x, sin(x), None, True, x + 2], visual=True)
|
||
|
ADD + SIN
|
||
|
>>> count_ops({x: sin(x), x + 2: y + 1}, visual=True)
|
||
|
2*ADD + SIN
|
||
|
|
||
|
"""
|
||
|
from .relational import Relational
|
||
|
from sympy.concrete.summations import Sum
|
||
|
from sympy.integrals.integrals import Integral
|
||
|
from sympy.logic.boolalg import BooleanFunction
|
||
|
from sympy.simplify.radsimp import fraction
|
||
|
|
||
|
expr = sympify(expr)
|
||
|
if isinstance(expr, Expr) and not expr.is_Relational:
|
||
|
|
||
|
ops = []
|
||
|
args = [expr]
|
||
|
NEG = Symbol('NEG')
|
||
|
DIV = Symbol('DIV')
|
||
|
SUB = Symbol('SUB')
|
||
|
ADD = Symbol('ADD')
|
||
|
EXP = Symbol('EXP')
|
||
|
while args:
|
||
|
a = args.pop()
|
||
|
|
||
|
# if the following fails because the object is
|
||
|
# not Basic type, then the object should be fixed
|
||
|
# since it is the intention that all args of Basic
|
||
|
# should themselves be Basic
|
||
|
if a.is_Rational:
|
||
|
#-1/3 = NEG + DIV
|
||
|
if a is not S.One:
|
||
|
if a.p < 0:
|
||
|
ops.append(NEG)
|
||
|
if a.q != 1:
|
||
|
ops.append(DIV)
|
||
|
continue
|
||
|
elif a.is_Mul or a.is_MatMul:
|
||
|
if _coeff_isneg(a):
|
||
|
ops.append(NEG)
|
||
|
if a.args[0] is S.NegativeOne:
|
||
|
a = a.as_two_terms()[1]
|
||
|
else:
|
||
|
a = -a
|
||
|
n, d = fraction(a)
|
||
|
if n.is_Integer:
|
||
|
ops.append(DIV)
|
||
|
if n < 0:
|
||
|
ops.append(NEG)
|
||
|
args.append(d)
|
||
|
continue # won't be -Mul but could be Add
|
||
|
elif d is not S.One:
|
||
|
if not d.is_Integer:
|
||
|
args.append(d)
|
||
|
ops.append(DIV)
|
||
|
args.append(n)
|
||
|
continue # could be -Mul
|
||
|
elif a.is_Add or a.is_MatAdd:
|
||
|
aargs = list(a.args)
|
||
|
negs = 0
|
||
|
for i, ai in enumerate(aargs):
|
||
|
if _coeff_isneg(ai):
|
||
|
negs += 1
|
||
|
args.append(-ai)
|
||
|
if i > 0:
|
||
|
ops.append(SUB)
|
||
|
else:
|
||
|
args.append(ai)
|
||
|
if i > 0:
|
||
|
ops.append(ADD)
|
||
|
if negs == len(aargs): # -x - y = NEG + SUB
|
||
|
ops.append(NEG)
|
||
|
elif _coeff_isneg(aargs[0]): # -x + y = SUB, but already recorded ADD
|
||
|
ops.append(SUB - ADD)
|
||
|
continue
|
||
|
if a.is_Pow and a.exp is S.NegativeOne:
|
||
|
ops.append(DIV)
|
||
|
args.append(a.base) # won't be -Mul but could be Add
|
||
|
continue
|
||
|
if a == S.Exp1:
|
||
|
ops.append(EXP)
|
||
|
continue
|
||
|
if a.is_Pow and a.base == S.Exp1:
|
||
|
ops.append(EXP)
|
||
|
args.append(a.exp)
|
||
|
continue
|
||
|
if a.is_Mul or isinstance(a, LatticeOp):
|
||
|
o = Symbol(a.func.__name__.upper())
|
||
|
# count the args
|
||
|
ops.append(o*(len(a.args) - 1))
|
||
|
elif a.args and (
|
||
|
a.is_Pow or
|
||
|
a.is_Function or
|
||
|
isinstance(a, Derivative) or
|
||
|
isinstance(a, Integral) or
|
||
|
isinstance(a, Sum)):
|
||
|
# if it's not in the list above we don't
|
||
|
# consider a.func something to count, e.g.
|
||
|
# Tuple, MatrixSymbol, etc...
|
||
|
if isinstance(a.func, UndefinedFunction):
|
||
|
o = Symbol("FUNC_" + a.func.__name__.upper())
|
||
|
else:
|
||
|
o = Symbol(a.func.__name__.upper())
|
||
|
ops.append(o)
|
||
|
|
||
|
if not a.is_Symbol:
|
||
|
args.extend(a.args)
|
||
|
|
||
|
elif isinstance(expr, Dict):
|
||
|
ops = [count_ops(k, visual=visual) +
|
||
|
count_ops(v, visual=visual) for k, v in expr.items()]
|
||
|
elif iterable(expr):
|
||
|
ops = [count_ops(i, visual=visual) for i in expr]
|
||
|
elif isinstance(expr, (Relational, BooleanFunction)):
|
||
|
ops = []
|
||
|
for arg in expr.args:
|
||
|
ops.append(count_ops(arg, visual=True))
|
||
|
o = Symbol(func_name(expr, short=True).upper())
|
||
|
ops.append(o)
|
||
|
elif not isinstance(expr, Basic):
|
||
|
ops = []
|
||
|
else: # it's Basic not isinstance(expr, Expr):
|
||
|
if not isinstance(expr, Basic):
|
||
|
raise TypeError("Invalid type of expr")
|
||
|
else:
|
||
|
ops = []
|
||
|
args = [expr]
|
||
|
while args:
|
||
|
a = args.pop()
|
||
|
|
||
|
if a.args:
|
||
|
o = Symbol(type(a).__name__.upper())
|
||
|
if a.is_Boolean:
|
||
|
ops.append(o*(len(a.args)-1))
|
||
|
else:
|
||
|
ops.append(o)
|
||
|
args.extend(a.args)
|
||
|
|
||
|
if not ops:
|
||
|
if visual:
|
||
|
return S.Zero
|
||
|
return 0
|
||
|
|
||
|
ops = Add(*ops)
|
||
|
|
||
|
if visual:
|
||
|
return ops
|
||
|
|
||
|
if ops.is_Number:
|
||
|
return int(ops)
|
||
|
|
||
|
return sum(int((a.args or [1])[0]) for a in Add.make_args(ops))
|
||
|
|
||
|
|
||
|
def nfloat(expr, n=15, exponent=False, dkeys=False):
|
||
|
"""Make all Rationals in expr Floats except those in exponents
|
||
|
(unless the exponents flag is set to True) and those in undefined
|
||
|
functions. When processing dictionaries, do not modify the keys
|
||
|
unless ``dkeys=True``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import nfloat, cos, pi, sqrt
|
||
|
>>> from sympy.abc import x, y
|
||
|
>>> nfloat(x**4 + x/2 + cos(pi/3) + 1 + sqrt(y))
|
||
|
x**4 + 0.5*x + sqrt(y) + 1.5
|
||
|
>>> nfloat(x**4 + sqrt(y), exponent=True)
|
||
|
x**4.0 + y**0.5
|
||
|
|
||
|
Container types are not modified:
|
||
|
|
||
|
>>> type(nfloat((1, 2))) is tuple
|
||
|
True
|
||
|
"""
|
||
|
from sympy.matrices.matrices import MatrixBase
|
||
|
|
||
|
kw = {"n": n, "exponent": exponent, "dkeys": dkeys}
|
||
|
|
||
|
if isinstance(expr, MatrixBase):
|
||
|
return expr.applyfunc(lambda e: nfloat(e, **kw))
|
||
|
|
||
|
# handling of iterable containers
|
||
|
if iterable(expr, exclude=str):
|
||
|
if isinstance(expr, (dict, Dict)):
|
||
|
if dkeys:
|
||
|
args = [tuple((nfloat(i, **kw) for i in a))
|
||
|
for a in expr.items()]
|
||
|
else:
|
||
|
args = [(k, nfloat(v, **kw)) for k, v in expr.items()]
|
||
|
if isinstance(expr, dict):
|
||
|
return type(expr)(args)
|
||
|
else:
|
||
|
return expr.func(*args)
|
||
|
elif isinstance(expr, Basic):
|
||
|
return expr.func(*[nfloat(a, **kw) for a in expr.args])
|
||
|
return type(expr)([nfloat(a, **kw) for a in expr])
|
||
|
|
||
|
rv = sympify(expr)
|
||
|
|
||
|
if rv.is_Number:
|
||
|
return Float(rv, n)
|
||
|
elif rv.is_number:
|
||
|
# evalf doesn't always set the precision
|
||
|
rv = rv.n(n)
|
||
|
if rv.is_Number:
|
||
|
rv = Float(rv.n(n), n)
|
||
|
else:
|
||
|
pass # pure_complex(rv) is likely True
|
||
|
return rv
|
||
|
elif rv.is_Atom:
|
||
|
return rv
|
||
|
elif rv.is_Relational:
|
||
|
args_nfloat = (nfloat(arg, **kw) for arg in rv.args)
|
||
|
return rv.func(*args_nfloat)
|
||
|
|
||
|
|
||
|
# watch out for RootOf instances that don't like to have
|
||
|
# their exponents replaced with Dummies and also sometimes have
|
||
|
# problems with evaluating at low precision (issue 6393)
|
||
|
from sympy.polys.rootoftools import RootOf
|
||
|
rv = rv.xreplace({ro: ro.n(n) for ro in rv.atoms(RootOf)})
|
||
|
|
||
|
from .power import Pow
|
||
|
if not exponent:
|
||
|
reps = [(p, Pow(p.base, Dummy())) for p in rv.atoms(Pow)]
|
||
|
rv = rv.xreplace(dict(reps))
|
||
|
rv = rv.n(n)
|
||
|
if not exponent:
|
||
|
rv = rv.xreplace({d.exp: p.exp for p, d in reps})
|
||
|
else:
|
||
|
# Pow._eval_evalf special cases Integer exponents so if
|
||
|
# exponent is suppose to be handled we have to do so here
|
||
|
rv = rv.xreplace(Transform(
|
||
|
lambda x: Pow(x.base, Float(x.exp, n)),
|
||
|
lambda x: x.is_Pow and x.exp.is_Integer))
|
||
|
|
||
|
return rv.xreplace(Transform(
|
||
|
lambda x: x.func(*nfloat(x.args, n, exponent)),
|
||
|
lambda x: isinstance(x, Function) and not isinstance(x, AppliedUndef)))
|
||
|
|
||
|
|
||
|
from .symbol import Dummy, Symbol
|