2196 lines
77 KiB
Python
2196 lines
77 KiB
Python
|
from typing import Tuple as tTuple
|
||
|
from collections import defaultdict
|
||
|
from functools import cmp_to_key, reduce
|
||
|
from itertools import product
|
||
|
import operator
|
||
|
|
||
|
from .sympify import sympify
|
||
|
from .basic import Basic
|
||
|
from .singleton import S
|
||
|
from .operations import AssocOp, AssocOpDispatcher
|
||
|
from .cache import cacheit
|
||
|
from .logic import fuzzy_not, _fuzzy_group
|
||
|
from .expr import Expr
|
||
|
from .parameters import global_parameters
|
||
|
from .kind import KindDispatcher
|
||
|
from .traversal import bottom_up
|
||
|
|
||
|
from sympy.utilities.iterables import sift
|
||
|
|
||
|
# internal marker to indicate:
|
||
|
# "there are still non-commutative objects -- don't forget to process them"
|
||
|
class NC_Marker:
|
||
|
is_Order = False
|
||
|
is_Mul = False
|
||
|
is_Number = False
|
||
|
is_Poly = False
|
||
|
|
||
|
is_commutative = False
|
||
|
|
||
|
|
||
|
# Key for sorting commutative args in canonical order
|
||
|
_args_sortkey = cmp_to_key(Basic.compare)
|
||
|
def _mulsort(args):
|
||
|
# in-place sorting of args
|
||
|
args.sort(key=_args_sortkey)
|
||
|
|
||
|
|
||
|
def _unevaluated_Mul(*args):
|
||
|
"""Return a well-formed unevaluated Mul: Numbers are collected and
|
||
|
put in slot 0, any arguments that are Muls will be flattened, and args
|
||
|
are sorted. Use this when args have changed but you still want to return
|
||
|
an unevaluated Mul.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.core.mul import _unevaluated_Mul as uMul
|
||
|
>>> from sympy import S, sqrt, Mul
|
||
|
>>> from sympy.abc import x
|
||
|
>>> a = uMul(*[S(3.0), x, S(2)])
|
||
|
>>> a.args[0]
|
||
|
6.00000000000000
|
||
|
>>> a.args[1]
|
||
|
x
|
||
|
|
||
|
Two unevaluated Muls with the same arguments will
|
||
|
always compare as equal during testing:
|
||
|
|
||
|
>>> m = uMul(sqrt(2), sqrt(3))
|
||
|
>>> m == uMul(sqrt(3), sqrt(2))
|
||
|
True
|
||
|
>>> u = Mul(sqrt(3), sqrt(2), evaluate=False)
|
||
|
>>> m == uMul(u)
|
||
|
True
|
||
|
>>> m == Mul(*m.args)
|
||
|
False
|
||
|
|
||
|
"""
|
||
|
args = list(args)
|
||
|
newargs = []
|
||
|
ncargs = []
|
||
|
co = S.One
|
||
|
while args:
|
||
|
a = args.pop()
|
||
|
if a.is_Mul:
|
||
|
c, nc = a.args_cnc()
|
||
|
args.extend(c)
|
||
|
if nc:
|
||
|
ncargs.append(Mul._from_args(nc))
|
||
|
elif a.is_Number:
|
||
|
co *= a
|
||
|
else:
|
||
|
newargs.append(a)
|
||
|
_mulsort(newargs)
|
||
|
if co is not S.One:
|
||
|
newargs.insert(0, co)
|
||
|
if ncargs:
|
||
|
newargs.append(Mul._from_args(ncargs))
|
||
|
return Mul._from_args(newargs)
|
||
|
|
||
|
|
||
|
class Mul(Expr, AssocOp):
|
||
|
"""
|
||
|
Expression representing multiplication operation for algebraic field.
|
||
|
|
||
|
.. deprecated:: 1.7
|
||
|
|
||
|
Using arguments that aren't subclasses of :class:`~.Expr` in core
|
||
|
operators (:class:`~.Mul`, :class:`~.Add`, and :class:`~.Pow`) is
|
||
|
deprecated. See :ref:`non-expr-args-deprecated` for details.
|
||
|
|
||
|
Every argument of ``Mul()`` must be ``Expr``. Infix operator ``*``
|
||
|
on most scalar objects in SymPy calls this class.
|
||
|
|
||
|
Another use of ``Mul()`` is to represent the structure of abstract
|
||
|
multiplication so that its arguments can be substituted to return
|
||
|
different class. Refer to examples section for this.
|
||
|
|
||
|
``Mul()`` evaluates the argument unless ``evaluate=False`` is passed.
|
||
|
The evaluation logic includes:
|
||
|
|
||
|
1. Flattening
|
||
|
``Mul(x, Mul(y, z))`` -> ``Mul(x, y, z)``
|
||
|
|
||
|
2. Identity removing
|
||
|
``Mul(x, 1, y)`` -> ``Mul(x, y)``
|
||
|
|
||
|
3. Exponent collecting by ``.as_base_exp()``
|
||
|
``Mul(x, x**2)`` -> ``Pow(x, 3)``
|
||
|
|
||
|
4. Term sorting
|
||
|
``Mul(y, x, 2)`` -> ``Mul(2, x, y)``
|
||
|
|
||
|
Since multiplication can be vector space operation, arguments may
|
||
|
have the different :obj:`sympy.core.kind.Kind()`. Kind of the
|
||
|
resulting object is automatically inferred.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Mul
|
||
|
>>> from sympy.abc import x, y
|
||
|
>>> Mul(x, 1)
|
||
|
x
|
||
|
>>> Mul(x, x)
|
||
|
x**2
|
||
|
|
||
|
If ``evaluate=False`` is passed, result is not evaluated.
|
||
|
|
||
|
>>> Mul(1, 2, evaluate=False)
|
||
|
1*2
|
||
|
>>> Mul(x, x, evaluate=False)
|
||
|
x*x
|
||
|
|
||
|
``Mul()`` also represents the general structure of multiplication
|
||
|
operation.
|
||
|
|
||
|
>>> from sympy import MatrixSymbol
|
||
|
>>> A = MatrixSymbol('A', 2,2)
|
||
|
>>> expr = Mul(x,y).subs({y:A})
|
||
|
>>> expr
|
||
|
x*A
|
||
|
>>> type(expr)
|
||
|
<class 'sympy.matrices.expressions.matmul.MatMul'>
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
MatMul
|
||
|
|
||
|
"""
|
||
|
__slots__ = ()
|
||
|
|
||
|
args: tTuple[Expr]
|
||
|
|
||
|
is_Mul = True
|
||
|
|
||
|
_args_type = Expr
|
||
|
_kind_dispatcher = KindDispatcher("Mul_kind_dispatcher", commutative=True)
|
||
|
|
||
|
@property
|
||
|
def kind(self):
|
||
|
arg_kinds = (a.kind for a in self.args)
|
||
|
return self._kind_dispatcher(*arg_kinds)
|
||
|
|
||
|
def could_extract_minus_sign(self):
|
||
|
if self == (-self):
|
||
|
return False # e.g. zoo*x == -zoo*x
|
||
|
c = self.args[0]
|
||
|
return c.is_Number and c.is_extended_negative
|
||
|
|
||
|
def __neg__(self):
|
||
|
c, args = self.as_coeff_mul()
|
||
|
if args[0] is not S.ComplexInfinity:
|
||
|
c = -c
|
||
|
if c is not S.One:
|
||
|
if args[0].is_Number:
|
||
|
args = list(args)
|
||
|
if c is S.NegativeOne:
|
||
|
args[0] = -args[0]
|
||
|
else:
|
||
|
args[0] *= c
|
||
|
else:
|
||
|
args = (c,) + args
|
||
|
return self._from_args(args, self.is_commutative)
|
||
|
|
||
|
@classmethod
|
||
|
def flatten(cls, seq):
|
||
|
"""Return commutative, noncommutative and order arguments by
|
||
|
combining related terms.
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
* In an expression like ``a*b*c``, Python process this through SymPy
|
||
|
as ``Mul(Mul(a, b), c)``. This can have undesirable consequences.
|
||
|
|
||
|
- Sometimes terms are not combined as one would like:
|
||
|
{c.f. https://github.com/sympy/sympy/issues/4596}
|
||
|
|
||
|
>>> from sympy import Mul, sqrt
|
||
|
>>> from sympy.abc import x, y, z
|
||
|
>>> 2*(x + 1) # this is the 2-arg Mul behavior
|
||
|
2*x + 2
|
||
|
>>> y*(x + 1)*2
|
||
|
2*y*(x + 1)
|
||
|
>>> 2*(x + 1)*y # 2-arg result will be obtained first
|
||
|
y*(2*x + 2)
|
||
|
>>> Mul(2, x + 1, y) # all 3 args simultaneously processed
|
||
|
2*y*(x + 1)
|
||
|
>>> 2*((x + 1)*y) # parentheses can control this behavior
|
||
|
2*y*(x + 1)
|
||
|
|
||
|
Powers with compound bases may not find a single base to
|
||
|
combine with unless all arguments are processed at once.
|
||
|
Post-processing may be necessary in such cases.
|
||
|
{c.f. https://github.com/sympy/sympy/issues/5728}
|
||
|
|
||
|
>>> a = sqrt(x*sqrt(y))
|
||
|
>>> a**3
|
||
|
(x*sqrt(y))**(3/2)
|
||
|
>>> Mul(a,a,a)
|
||
|
(x*sqrt(y))**(3/2)
|
||
|
>>> a*a*a
|
||
|
x*sqrt(y)*sqrt(x*sqrt(y))
|
||
|
>>> _.subs(a.base, z).subs(z, a.base)
|
||
|
(x*sqrt(y))**(3/2)
|
||
|
|
||
|
- If more than two terms are being multiplied then all the
|
||
|
previous terms will be re-processed for each new argument.
|
||
|
So if each of ``a``, ``b`` and ``c`` were :class:`Mul`
|
||
|
expression, then ``a*b*c`` (or building up the product
|
||
|
with ``*=``) will process all the arguments of ``a`` and
|
||
|
``b`` twice: once when ``a*b`` is computed and again when
|
||
|
``c`` is multiplied.
|
||
|
|
||
|
Using ``Mul(a, b, c)`` will process all arguments once.
|
||
|
|
||
|
* The results of Mul are cached according to arguments, so flatten
|
||
|
will only be called once for ``Mul(a, b, c)``. If you can
|
||
|
structure a calculation so the arguments are most likely to be
|
||
|
repeats then this can save time in computing the answer. For
|
||
|
example, say you had a Mul, M, that you wished to divide by ``d[i]``
|
||
|
and multiply by ``n[i]`` and you suspect there are many repeats
|
||
|
in ``n``. It would be better to compute ``M*n[i]/d[i]`` rather
|
||
|
than ``M/d[i]*n[i]`` since every time n[i] is a repeat, the
|
||
|
product, ``M*n[i]`` will be returned without flattening -- the
|
||
|
cached value will be returned. If you divide by the ``d[i]``
|
||
|
first (and those are more unique than the ``n[i]``) then that will
|
||
|
create a new Mul, ``M/d[i]`` the args of which will be traversed
|
||
|
again when it is multiplied by ``n[i]``.
|
||
|
|
||
|
{c.f. https://github.com/sympy/sympy/issues/5706}
|
||
|
|
||
|
This consideration is moot if the cache is turned off.
|
||
|
|
||
|
NB
|
||
|
--
|
||
|
The validity of the above notes depends on the implementation
|
||
|
details of Mul and flatten which may change at any time. Therefore,
|
||
|
you should only consider them when your code is highly performance
|
||
|
sensitive.
|
||
|
|
||
|
Removal of 1 from the sequence is already handled by AssocOp.__new__.
|
||
|
"""
|
||
|
|
||
|
from sympy.calculus.accumulationbounds import AccumBounds
|
||
|
from sympy.matrices.expressions import MatrixExpr
|
||
|
rv = None
|
||
|
if len(seq) == 2:
|
||
|
a, b = seq
|
||
|
if b.is_Rational:
|
||
|
a, b = b, a
|
||
|
seq = [a, b]
|
||
|
assert a is not S.One
|
||
|
if not a.is_zero and a.is_Rational:
|
||
|
r, b = b.as_coeff_Mul()
|
||
|
if b.is_Add:
|
||
|
if r is not S.One: # 2-arg hack
|
||
|
# leave the Mul as a Mul?
|
||
|
ar = a*r
|
||
|
if ar is S.One:
|
||
|
arb = b
|
||
|
else:
|
||
|
arb = cls(a*r, b, evaluate=False)
|
||
|
rv = [arb], [], None
|
||
|
elif global_parameters.distribute and b.is_commutative:
|
||
|
newb = Add(*[_keep_coeff(a, bi) for bi in b.args])
|
||
|
rv = [newb], [], None
|
||
|
if rv:
|
||
|
return rv
|
||
|
|
||
|
# apply associativity, separate commutative part of seq
|
||
|
c_part = [] # out: commutative factors
|
||
|
nc_part = [] # out: non-commutative factors
|
||
|
|
||
|
nc_seq = []
|
||
|
|
||
|
coeff = S.One # standalone term
|
||
|
# e.g. 3 * ...
|
||
|
|
||
|
c_powers = [] # (base,exp) n
|
||
|
# e.g. (x,n) for x
|
||
|
|
||
|
num_exp = [] # (num-base, exp) y
|
||
|
# e.g. (3, y) for ... * 3 * ...
|
||
|
|
||
|
neg1e = S.Zero # exponent on -1 extracted from Number-based Pow and I
|
||
|
|
||
|
pnum_rat = {} # (num-base, Rat-exp) 1/2
|
||
|
# e.g. (3, 1/2) for ... * 3 * ...
|
||
|
|
||
|
order_symbols = None
|
||
|
|
||
|
# --- PART 1 ---
|
||
|
#
|
||
|
# "collect powers and coeff":
|
||
|
#
|
||
|
# o coeff
|
||
|
# o c_powers
|
||
|
# o num_exp
|
||
|
# o neg1e
|
||
|
# o pnum_rat
|
||
|
#
|
||
|
# NOTE: this is optimized for all-objects-are-commutative case
|
||
|
for o in seq:
|
||
|
# O(x)
|
||
|
if o.is_Order:
|
||
|
o, order_symbols = o.as_expr_variables(order_symbols)
|
||
|
|
||
|
# Mul([...])
|
||
|
if o.is_Mul:
|
||
|
if o.is_commutative:
|
||
|
seq.extend(o.args) # XXX zerocopy?
|
||
|
|
||
|
else:
|
||
|
# NCMul can have commutative parts as well
|
||
|
for q in o.args:
|
||
|
if q.is_commutative:
|
||
|
seq.append(q)
|
||
|
else:
|
||
|
nc_seq.append(q)
|
||
|
|
||
|
# append non-commutative marker, so we don't forget to
|
||
|
# process scheduled non-commutative objects
|
||
|
seq.append(NC_Marker)
|
||
|
|
||
|
continue
|
||
|
|
||
|
# 3
|
||
|
elif o.is_Number:
|
||
|
if o is S.NaN or coeff is S.ComplexInfinity and o.is_zero:
|
||
|
# we know for sure the result will be nan
|
||
|
return [S.NaN], [], None
|
||
|
elif coeff.is_Number or isinstance(coeff, AccumBounds): # it could be zoo
|
||
|
coeff *= o
|
||
|
if coeff is S.NaN:
|
||
|
# we know for sure the result will be nan
|
||
|
return [S.NaN], [], None
|
||
|
continue
|
||
|
|
||
|
elif isinstance(o, AccumBounds):
|
||
|
coeff = o.__mul__(coeff)
|
||
|
continue
|
||
|
|
||
|
elif o is S.ComplexInfinity:
|
||
|
if not coeff:
|
||
|
# 0 * zoo = NaN
|
||
|
return [S.NaN], [], None
|
||
|
coeff = S.ComplexInfinity
|
||
|
continue
|
||
|
|
||
|
elif o is S.ImaginaryUnit:
|
||
|
neg1e += S.Half
|
||
|
continue
|
||
|
|
||
|
elif o.is_commutative:
|
||
|
# e
|
||
|
# o = b
|
||
|
b, e = o.as_base_exp()
|
||
|
|
||
|
# y
|
||
|
# 3
|
||
|
if o.is_Pow:
|
||
|
if b.is_Number:
|
||
|
|
||
|
# get all the factors with numeric base so they can be
|
||
|
# combined below, but don't combine negatives unless
|
||
|
# the exponent is an integer
|
||
|
if e.is_Rational:
|
||
|
if e.is_Integer:
|
||
|
coeff *= Pow(b, e) # it is an unevaluated power
|
||
|
continue
|
||
|
elif e.is_negative: # also a sign of an unevaluated power
|
||
|
seq.append(Pow(b, e))
|
||
|
continue
|
||
|
elif b.is_negative:
|
||
|
neg1e += e
|
||
|
b = -b
|
||
|
if b is not S.One:
|
||
|
pnum_rat.setdefault(b, []).append(e)
|
||
|
continue
|
||
|
elif b.is_positive or e.is_integer:
|
||
|
num_exp.append((b, e))
|
||
|
continue
|
||
|
|
||
|
c_powers.append((b, e))
|
||
|
|
||
|
# NON-COMMUTATIVE
|
||
|
# TODO: Make non-commutative exponents not combine automatically
|
||
|
else:
|
||
|
if o is not NC_Marker:
|
||
|
nc_seq.append(o)
|
||
|
|
||
|
# process nc_seq (if any)
|
||
|
while nc_seq:
|
||
|
o = nc_seq.pop(0)
|
||
|
if not nc_part:
|
||
|
nc_part.append(o)
|
||
|
continue
|
||
|
|
||
|
# b c b+c
|
||
|
# try to combine last terms: a * a -> a
|
||
|
o1 = nc_part.pop()
|
||
|
b1, e1 = o1.as_base_exp()
|
||
|
b2, e2 = o.as_base_exp()
|
||
|
new_exp = e1 + e2
|
||
|
# Only allow powers to combine if the new exponent is
|
||
|
# not an Add. This allow things like a**2*b**3 == a**5
|
||
|
# if a.is_commutative == False, but prohibits
|
||
|
# a**x*a**y and x**a*x**b from combining (x,y commute).
|
||
|
if b1 == b2 and (not new_exp.is_Add):
|
||
|
o12 = b1 ** new_exp
|
||
|
|
||
|
# now o12 could be a commutative object
|
||
|
if o12.is_commutative:
|
||
|
seq.append(o12)
|
||
|
continue
|
||
|
else:
|
||
|
nc_seq.insert(0, o12)
|
||
|
|
||
|
else:
|
||
|
nc_part.extend([o1, o])
|
||
|
|
||
|
# We do want a combined exponent if it would not be an Add, such as
|
||
|
# y 2y 3y
|
||
|
# x * x -> x
|
||
|
# We determine if two exponents have the same term by using
|
||
|
# as_coeff_Mul.
|
||
|
#
|
||
|
# Unfortunately, this isn't smart enough to consider combining into
|
||
|
# exponents that might already be adds, so things like:
|
||
|
# z - y y
|
||
|
# x * x will be left alone. This is because checking every possible
|
||
|
# combination can slow things down.
|
||
|
|
||
|
# gather exponents of common bases...
|
||
|
def _gather(c_powers):
|
||
|
common_b = {} # b:e
|
||
|
for b, e in c_powers:
|
||
|
co = e.as_coeff_Mul()
|
||
|
common_b.setdefault(b, {}).setdefault(
|
||
|
co[1], []).append(co[0])
|
||
|
for b, d in common_b.items():
|
||
|
for di, li in d.items():
|
||
|
d[di] = Add(*li)
|
||
|
new_c_powers = []
|
||
|
for b, e in common_b.items():
|
||
|
new_c_powers.extend([(b, c*t) for t, c in e.items()])
|
||
|
return new_c_powers
|
||
|
|
||
|
# in c_powers
|
||
|
c_powers = _gather(c_powers)
|
||
|
|
||
|
# and in num_exp
|
||
|
num_exp = _gather(num_exp)
|
||
|
|
||
|
# --- PART 2 ---
|
||
|
#
|
||
|
# o process collected powers (x**0 -> 1; x**1 -> x; otherwise Pow)
|
||
|
# o combine collected powers (2**x * 3**x -> 6**x)
|
||
|
# with numeric base
|
||
|
|
||
|
# ................................
|
||
|
# now we have:
|
||
|
# - coeff:
|
||
|
# - c_powers: (b, e)
|
||
|
# - num_exp: (2, e)
|
||
|
# - pnum_rat: {(1/3, [1/3, 2/3, 1/4])}
|
||
|
|
||
|
# 0 1
|
||
|
# x -> 1 x -> x
|
||
|
|
||
|
# this should only need to run twice; if it fails because
|
||
|
# it needs to be run more times, perhaps this should be
|
||
|
# changed to a "while True" loop -- the only reason it
|
||
|
# isn't such now is to allow a less-than-perfect result to
|
||
|
# be obtained rather than raising an error or entering an
|
||
|
# infinite loop
|
||
|
for i in range(2):
|
||
|
new_c_powers = []
|
||
|
changed = False
|
||
|
for b, e in c_powers:
|
||
|
if e.is_zero:
|
||
|
# canceling out infinities yields NaN
|
||
|
if (b.is_Add or b.is_Mul) and any(infty in b.args
|
||
|
for infty in (S.ComplexInfinity, S.Infinity,
|
||
|
S.NegativeInfinity)):
|
||
|
return [S.NaN], [], None
|
||
|
continue
|
||
|
if e is S.One:
|
||
|
if b.is_Number:
|
||
|
coeff *= b
|
||
|
continue
|
||
|
p = b
|
||
|
if e is not S.One:
|
||
|
p = Pow(b, e)
|
||
|
# check to make sure that the base doesn't change
|
||
|
# after exponentiation; to allow for unevaluated
|
||
|
# Pow, we only do so if b is not already a Pow
|
||
|
if p.is_Pow and not b.is_Pow:
|
||
|
bi = b
|
||
|
b, e = p.as_base_exp()
|
||
|
if b != bi:
|
||
|
changed = True
|
||
|
c_part.append(p)
|
||
|
new_c_powers.append((b, e))
|
||
|
# there might have been a change, but unless the base
|
||
|
# matches some other base, there is nothing to do
|
||
|
if changed and len({
|
||
|
b for b, e in new_c_powers}) != len(new_c_powers):
|
||
|
# start over again
|
||
|
c_part = []
|
||
|
c_powers = _gather(new_c_powers)
|
||
|
else:
|
||
|
break
|
||
|
|
||
|
# x x x
|
||
|
# 2 * 3 -> 6
|
||
|
inv_exp_dict = {} # exp:Mul(num-bases) x x
|
||
|
# e.g. x:6 for ... * 2 * 3 * ...
|
||
|
for b, e in num_exp:
|
||
|
inv_exp_dict.setdefault(e, []).append(b)
|
||
|
for e, b in inv_exp_dict.items():
|
||
|
inv_exp_dict[e] = cls(*b)
|
||
|
c_part.extend([Pow(b, e) for e, b in inv_exp_dict.items() if e])
|
||
|
|
||
|
# b, e -> e' = sum(e), b
|
||
|
# {(1/5, [1/3]), (1/2, [1/12, 1/4]} -> {(1/3, [1/5, 1/2])}
|
||
|
comb_e = {}
|
||
|
for b, e in pnum_rat.items():
|
||
|
comb_e.setdefault(Add(*e), []).append(b)
|
||
|
del pnum_rat
|
||
|
# process them, reducing exponents to values less than 1
|
||
|
# and updating coeff if necessary else adding them to
|
||
|
# num_rat for further processing
|
||
|
num_rat = []
|
||
|
for e, b in comb_e.items():
|
||
|
b = cls(*b)
|
||
|
if e.q == 1:
|
||
|
coeff *= Pow(b, e)
|
||
|
continue
|
||
|
if e.p > e.q:
|
||
|
e_i, ep = divmod(e.p, e.q)
|
||
|
coeff *= Pow(b, e_i)
|
||
|
e = Rational(ep, e.q)
|
||
|
num_rat.append((b, e))
|
||
|
del comb_e
|
||
|
|
||
|
# extract gcd of bases in num_rat
|
||
|
# 2**(1/3)*6**(1/4) -> 2**(1/3+1/4)*3**(1/4)
|
||
|
pnew = defaultdict(list)
|
||
|
i = 0 # steps through num_rat which may grow
|
||
|
while i < len(num_rat):
|
||
|
bi, ei = num_rat[i]
|
||
|
grow = []
|
||
|
for j in range(i + 1, len(num_rat)):
|
||
|
bj, ej = num_rat[j]
|
||
|
g = bi.gcd(bj)
|
||
|
if g is not S.One:
|
||
|
# 4**r1*6**r2 -> 2**(r1+r2) * 2**r1 * 3**r2
|
||
|
# this might have a gcd with something else
|
||
|
e = ei + ej
|
||
|
if e.q == 1:
|
||
|
coeff *= Pow(g, e)
|
||
|
else:
|
||
|
if e.p > e.q:
|
||
|
e_i, ep = divmod(e.p, e.q) # change e in place
|
||
|
coeff *= Pow(g, e_i)
|
||
|
e = Rational(ep, e.q)
|
||
|
grow.append((g, e))
|
||
|
# update the jth item
|
||
|
num_rat[j] = (bj/g, ej)
|
||
|
# update bi that we are checking with
|
||
|
bi = bi/g
|
||
|
if bi is S.One:
|
||
|
break
|
||
|
if bi is not S.One:
|
||
|
obj = Pow(bi, ei)
|
||
|
if obj.is_Number:
|
||
|
coeff *= obj
|
||
|
else:
|
||
|
# changes like sqrt(12) -> 2*sqrt(3)
|
||
|
for obj in Mul.make_args(obj):
|
||
|
if obj.is_Number:
|
||
|
coeff *= obj
|
||
|
else:
|
||
|
assert obj.is_Pow
|
||
|
bi, ei = obj.args
|
||
|
pnew[ei].append(bi)
|
||
|
|
||
|
num_rat.extend(grow)
|
||
|
i += 1
|
||
|
|
||
|
# combine bases of the new powers
|
||
|
for e, b in pnew.items():
|
||
|
pnew[e] = cls(*b)
|
||
|
|
||
|
# handle -1 and I
|
||
|
if neg1e:
|
||
|
# treat I as (-1)**(1/2) and compute -1's total exponent
|
||
|
p, q = neg1e.as_numer_denom()
|
||
|
# if the integer part is odd, extract -1
|
||
|
n, p = divmod(p, q)
|
||
|
if n % 2:
|
||
|
coeff = -coeff
|
||
|
# if it's a multiple of 1/2 extract I
|
||
|
if q == 2:
|
||
|
c_part.append(S.ImaginaryUnit)
|
||
|
elif p:
|
||
|
# see if there is any positive base this power of
|
||
|
# -1 can join
|
||
|
neg1e = Rational(p, q)
|
||
|
for e, b in pnew.items():
|
||
|
if e == neg1e and b.is_positive:
|
||
|
pnew[e] = -b
|
||
|
break
|
||
|
else:
|
||
|
# keep it separate; we've already evaluated it as
|
||
|
# much as possible so evaluate=False
|
||
|
c_part.append(Pow(S.NegativeOne, neg1e, evaluate=False))
|
||
|
|
||
|
# add all the pnew powers
|
||
|
c_part.extend([Pow(b, e) for e, b in pnew.items()])
|
||
|
|
||
|
# oo, -oo
|
||
|
if coeff in (S.Infinity, S.NegativeInfinity):
|
||
|
def _handle_for_oo(c_part, coeff_sign):
|
||
|
new_c_part = []
|
||
|
for t in c_part:
|
||
|
if t.is_extended_positive:
|
||
|
continue
|
||
|
if t.is_extended_negative:
|
||
|
coeff_sign *= -1
|
||
|
continue
|
||
|
new_c_part.append(t)
|
||
|
return new_c_part, coeff_sign
|
||
|
c_part, coeff_sign = _handle_for_oo(c_part, 1)
|
||
|
nc_part, coeff_sign = _handle_for_oo(nc_part, coeff_sign)
|
||
|
coeff *= coeff_sign
|
||
|
|
||
|
# zoo
|
||
|
if coeff is S.ComplexInfinity:
|
||
|
# zoo might be
|
||
|
# infinite_real + bounded_im
|
||
|
# bounded_real + infinite_im
|
||
|
# infinite_real + infinite_im
|
||
|
# and non-zero real or imaginary will not change that status.
|
||
|
c_part = [c for c in c_part if not (fuzzy_not(c.is_zero) and
|
||
|
c.is_extended_real is not None)]
|
||
|
nc_part = [c for c in nc_part if not (fuzzy_not(c.is_zero) and
|
||
|
c.is_extended_real is not None)]
|
||
|
|
||
|
# 0
|
||
|
elif coeff.is_zero:
|
||
|
# we know for sure the result will be 0 except the multiplicand
|
||
|
# is infinity or a matrix
|
||
|
if any(isinstance(c, MatrixExpr) for c in nc_part):
|
||
|
return [coeff], nc_part, order_symbols
|
||
|
if any(c.is_finite == False for c in c_part):
|
||
|
return [S.NaN], [], order_symbols
|
||
|
return [coeff], [], order_symbols
|
||
|
|
||
|
# check for straggling Numbers that were produced
|
||
|
_new = []
|
||
|
for i in c_part:
|
||
|
if i.is_Number:
|
||
|
coeff *= i
|
||
|
else:
|
||
|
_new.append(i)
|
||
|
c_part = _new
|
||
|
|
||
|
# order commutative part canonically
|
||
|
_mulsort(c_part)
|
||
|
|
||
|
# current code expects coeff to be always in slot-0
|
||
|
if coeff is not S.One:
|
||
|
c_part.insert(0, coeff)
|
||
|
|
||
|
# we are done
|
||
|
if (global_parameters.distribute and not nc_part and len(c_part) == 2 and
|
||
|
c_part[0].is_Number and c_part[0].is_finite and c_part[1].is_Add):
|
||
|
# 2*(1+a) -> 2 + 2 * a
|
||
|
coeff = c_part[0]
|
||
|
c_part = [Add(*[coeff*f for f in c_part[1].args])]
|
||
|
|
||
|
return c_part, nc_part, order_symbols
|
||
|
|
||
|
def _eval_power(self, e):
|
||
|
|
||
|
# don't break up NC terms: (A*B)**3 != A**3*B**3, it is A*B*A*B*A*B
|
||
|
cargs, nc = self.args_cnc(split_1=False)
|
||
|
|
||
|
if e.is_Integer:
|
||
|
return Mul(*[Pow(b, e, evaluate=False) for b in cargs]) * \
|
||
|
Pow(Mul._from_args(nc), e, evaluate=False)
|
||
|
if e.is_Rational and e.q == 2:
|
||
|
if self.is_imaginary:
|
||
|
a = self.as_real_imag()[1]
|
||
|
if a.is_Rational:
|
||
|
from .power import integer_nthroot
|
||
|
n, d = abs(a/2).as_numer_denom()
|
||
|
n, t = integer_nthroot(n, 2)
|
||
|
if t:
|
||
|
d, t = integer_nthroot(d, 2)
|
||
|
if t:
|
||
|
from sympy.functions.elementary.complexes import sign
|
||
|
r = sympify(n)/d
|
||
|
return _unevaluated_Mul(r**e.p, (1 + sign(a)*S.ImaginaryUnit)**e.p)
|
||
|
|
||
|
p = Pow(self, e, evaluate=False)
|
||
|
|
||
|
if e.is_Rational or e.is_Float:
|
||
|
return p._eval_expand_power_base()
|
||
|
|
||
|
return p
|
||
|
|
||
|
@classmethod
|
||
|
def class_key(cls):
|
||
|
return 3, 0, cls.__name__
|
||
|
|
||
|
def _eval_evalf(self, prec):
|
||
|
c, m = self.as_coeff_Mul()
|
||
|
if c is S.NegativeOne:
|
||
|
if m.is_Mul:
|
||
|
rv = -AssocOp._eval_evalf(m, prec)
|
||
|
else:
|
||
|
mnew = m._eval_evalf(prec)
|
||
|
if mnew is not None:
|
||
|
m = mnew
|
||
|
rv = -m
|
||
|
else:
|
||
|
rv = AssocOp._eval_evalf(self, prec)
|
||
|
if rv.is_number:
|
||
|
return rv.expand()
|
||
|
return rv
|
||
|
|
||
|
@property
|
||
|
def _mpc_(self):
|
||
|
"""
|
||
|
Convert self to an mpmath mpc if possible
|
||
|
"""
|
||
|
from .numbers import Float
|
||
|
im_part, imag_unit = self.as_coeff_Mul()
|
||
|
if imag_unit is not S.ImaginaryUnit:
|
||
|
# ValueError may seem more reasonable but since it's a @property,
|
||
|
# we need to use AttributeError to keep from confusing things like
|
||
|
# hasattr.
|
||
|
raise AttributeError("Cannot convert Mul to mpc. Must be of the form Number*I")
|
||
|
|
||
|
return (Float(0)._mpf_, Float(im_part)._mpf_)
|
||
|
|
||
|
@cacheit
|
||
|
def as_two_terms(self):
|
||
|
"""Return head and tail of self.
|
||
|
|
||
|
This is the most efficient way to get the head and tail of an
|
||
|
expression.
|
||
|
|
||
|
- if you want only the head, use self.args[0];
|
||
|
- if you want to process the arguments of the tail then use
|
||
|
self.as_coef_mul() which gives the head and a tuple containing
|
||
|
the arguments of the tail when treated as a Mul.
|
||
|
- if you want the coefficient when self is treated as an Add
|
||
|
then use self.as_coeff_add()[0]
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.abc import x, y
|
||
|
>>> (3*x*y).as_two_terms()
|
||
|
(3, x*y)
|
||
|
"""
|
||
|
args = self.args
|
||
|
|
||
|
if len(args) == 1:
|
||
|
return S.One, self
|
||
|
elif len(args) == 2:
|
||
|
return args
|
||
|
|
||
|
else:
|
||
|
return args[0], self._new_rawargs(*args[1:])
|
||
|
|
||
|
@cacheit
|
||
|
def as_coeff_mul(self, *deps, rational=True, **kwargs):
|
||
|
if deps:
|
||
|
l1, l2 = sift(self.args, lambda x: x.has(*deps), binary=True)
|
||
|
return self._new_rawargs(*l2), tuple(l1)
|
||
|
args = self.args
|
||
|
if args[0].is_Number:
|
||
|
if not rational or args[0].is_Rational:
|
||
|
return args[0], args[1:]
|
||
|
elif args[0].is_extended_negative:
|
||
|
return S.NegativeOne, (-args[0],) + args[1:]
|
||
|
return S.One, args
|
||
|
|
||
|
def as_coeff_Mul(self, rational=False):
|
||
|
"""
|
||
|
Efficiently extract the coefficient of a product.
|
||
|
"""
|
||
|
coeff, args = self.args[0], self.args[1:]
|
||
|
|
||
|
if coeff.is_Number:
|
||
|
if not rational or coeff.is_Rational:
|
||
|
if len(args) == 1:
|
||
|
return coeff, args[0]
|
||
|
else:
|
||
|
return coeff, self._new_rawargs(*args)
|
||
|
elif coeff.is_extended_negative:
|
||
|
return S.NegativeOne, self._new_rawargs(*((-coeff,) + args))
|
||
|
return S.One, self
|
||
|
|
||
|
def as_real_imag(self, deep=True, **hints):
|
||
|
from sympy.functions.elementary.complexes import Abs, im, re
|
||
|
other = []
|
||
|
coeffr = []
|
||
|
coeffi = []
|
||
|
addterms = S.One
|
||
|
for a in self.args:
|
||
|
r, i = a.as_real_imag()
|
||
|
if i.is_zero:
|
||
|
coeffr.append(r)
|
||
|
elif r.is_zero:
|
||
|
coeffi.append(i*S.ImaginaryUnit)
|
||
|
elif a.is_commutative:
|
||
|
aconj = a.conjugate() if other else None
|
||
|
# search for complex conjugate pairs:
|
||
|
for i, x in enumerate(other):
|
||
|
if x == aconj:
|
||
|
coeffr.append(Abs(x)**2)
|
||
|
del other[i]
|
||
|
break
|
||
|
else:
|
||
|
if a.is_Add:
|
||
|
addterms *= a
|
||
|
else:
|
||
|
other.append(a)
|
||
|
else:
|
||
|
other.append(a)
|
||
|
m = self.func(*other)
|
||
|
if hints.get('ignore') == m:
|
||
|
return
|
||
|
if len(coeffi) % 2:
|
||
|
imco = im(coeffi.pop(0))
|
||
|
# all other pairs make a real factor; they will be
|
||
|
# put into reco below
|
||
|
else:
|
||
|
imco = S.Zero
|
||
|
reco = self.func(*(coeffr + coeffi))
|
||
|
r, i = (reco*re(m), reco*im(m))
|
||
|
if addterms == 1:
|
||
|
if m == 1:
|
||
|
if imco.is_zero:
|
||
|
return (reco, S.Zero)
|
||
|
else:
|
||
|
return (S.Zero, reco*imco)
|
||
|
if imco is S.Zero:
|
||
|
return (r, i)
|
||
|
return (-imco*i, imco*r)
|
||
|
from .function import expand_mul
|
||
|
addre, addim = expand_mul(addterms, deep=False).as_real_imag()
|
||
|
if imco is S.Zero:
|
||
|
return (r*addre - i*addim, i*addre + r*addim)
|
||
|
else:
|
||
|
r, i = -imco*i, imco*r
|
||
|
return (r*addre - i*addim, r*addim + i*addre)
|
||
|
|
||
|
@staticmethod
|
||
|
def _expandsums(sums):
|
||
|
"""
|
||
|
Helper function for _eval_expand_mul.
|
||
|
|
||
|
sums must be a list of instances of Basic.
|
||
|
"""
|
||
|
|
||
|
L = len(sums)
|
||
|
if L == 1:
|
||
|
return sums[0].args
|
||
|
terms = []
|
||
|
left = Mul._expandsums(sums[:L//2])
|
||
|
right = Mul._expandsums(sums[L//2:])
|
||
|
|
||
|
terms = [Mul(a, b) for a in left for b in right]
|
||
|
added = Add(*terms)
|
||
|
return Add.make_args(added) # it may have collapsed down to one term
|
||
|
|
||
|
def _eval_expand_mul(self, **hints):
|
||
|
from sympy.simplify.radsimp import fraction
|
||
|
|
||
|
# Handle things like 1/(x*(x + 1)), which are automatically converted
|
||
|
# to 1/x*1/(x + 1)
|
||
|
expr = self
|
||
|
n, d = fraction(expr)
|
||
|
if d.is_Mul:
|
||
|
n, d = [i._eval_expand_mul(**hints) if i.is_Mul else i
|
||
|
for i in (n, d)]
|
||
|
expr = n/d
|
||
|
if not expr.is_Mul:
|
||
|
return expr
|
||
|
|
||
|
plain, sums, rewrite = [], [], False
|
||
|
for factor in expr.args:
|
||
|
if factor.is_Add:
|
||
|
sums.append(factor)
|
||
|
rewrite = True
|
||
|
else:
|
||
|
if factor.is_commutative:
|
||
|
plain.append(factor)
|
||
|
else:
|
||
|
sums.append(Basic(factor)) # Wrapper
|
||
|
|
||
|
if not rewrite:
|
||
|
return expr
|
||
|
else:
|
||
|
plain = self.func(*plain)
|
||
|
if sums:
|
||
|
deep = hints.get("deep", False)
|
||
|
terms = self.func._expandsums(sums)
|
||
|
args = []
|
||
|
for term in terms:
|
||
|
t = self.func(plain, term)
|
||
|
if t.is_Mul and any(a.is_Add for a in t.args) and deep:
|
||
|
t = t._eval_expand_mul()
|
||
|
args.append(t)
|
||
|
return Add(*args)
|
||
|
else:
|
||
|
return plain
|
||
|
|
||
|
@cacheit
|
||
|
def _eval_derivative(self, s):
|
||
|
args = list(self.args)
|
||
|
terms = []
|
||
|
for i in range(len(args)):
|
||
|
d = args[i].diff(s)
|
||
|
if d:
|
||
|
# Note: reduce is used in step of Mul as Mul is unable to
|
||
|
# handle subtypes and operation priority:
|
||
|
terms.append(reduce(lambda x, y: x*y, (args[:i] + [d] + args[i + 1:]), S.One))
|
||
|
return Add.fromiter(terms)
|
||
|
|
||
|
@cacheit
|
||
|
def _eval_derivative_n_times(self, s, n):
|
||
|
from .function import AppliedUndef
|
||
|
from .symbol import Symbol, symbols, Dummy
|
||
|
if not isinstance(s, (AppliedUndef, Symbol)):
|
||
|
# other types of s may not be well behaved, e.g.
|
||
|
# (cos(x)*sin(y)).diff([[x, y, z]])
|
||
|
return super()._eval_derivative_n_times(s, n)
|
||
|
from .numbers import Integer
|
||
|
args = self.args
|
||
|
m = len(args)
|
||
|
if isinstance(n, (int, Integer)):
|
||
|
# https://en.wikipedia.org/wiki/General_Leibniz_rule#More_than_two_factors
|
||
|
terms = []
|
||
|
from sympy.ntheory.multinomial import multinomial_coefficients_iterator
|
||
|
for kvals, c in multinomial_coefficients_iterator(m, n):
|
||
|
p = Mul(*[arg.diff((s, k)) for k, arg in zip(kvals, args)])
|
||
|
terms.append(c * p)
|
||
|
return Add(*terms)
|
||
|
from sympy.concrete.summations import Sum
|
||
|
from sympy.functions.combinatorial.factorials import factorial
|
||
|
from sympy.functions.elementary.miscellaneous import Max
|
||
|
kvals = symbols("k1:%i" % m, cls=Dummy)
|
||
|
klast = n - sum(kvals)
|
||
|
nfact = factorial(n)
|
||
|
e, l = (# better to use the multinomial?
|
||
|
nfact/prod(map(factorial, kvals))/factorial(klast)*\
|
||
|
Mul(*[args[t].diff((s, kvals[t])) for t in range(m-1)])*\
|
||
|
args[-1].diff((s, Max(0, klast))),
|
||
|
[(k, 0, n) for k in kvals])
|
||
|
return Sum(e, *l)
|
||
|
|
||
|
def _eval_difference_delta(self, n, step):
|
||
|
from sympy.series.limitseq import difference_delta as dd
|
||
|
arg0 = self.args[0]
|
||
|
rest = Mul(*self.args[1:])
|
||
|
return (arg0.subs(n, n + step) * dd(rest, n, step) + dd(arg0, n, step) *
|
||
|
rest)
|
||
|
|
||
|
def _matches_simple(self, expr, repl_dict):
|
||
|
# handle (w*3).matches('x*5') -> {w: x*5/3}
|
||
|
coeff, terms = self.as_coeff_Mul()
|
||
|
terms = Mul.make_args(terms)
|
||
|
if len(terms) == 1:
|
||
|
newexpr = self.__class__._combine_inverse(expr, coeff)
|
||
|
return terms[0].matches(newexpr, repl_dict)
|
||
|
return
|
||
|
|
||
|
def matches(self, expr, repl_dict=None, old=False):
|
||
|
expr = sympify(expr)
|
||
|
if self.is_commutative and expr.is_commutative:
|
||
|
return self._matches_commutative(expr, repl_dict, old)
|
||
|
elif self.is_commutative is not expr.is_commutative:
|
||
|
return None
|
||
|
|
||
|
# Proceed only if both both expressions are non-commutative
|
||
|
c1, nc1 = self.args_cnc()
|
||
|
c2, nc2 = expr.args_cnc()
|
||
|
c1, c2 = [c or [1] for c in [c1, c2]]
|
||
|
|
||
|
# TODO: Should these be self.func?
|
||
|
comm_mul_self = Mul(*c1)
|
||
|
comm_mul_expr = Mul(*c2)
|
||
|
|
||
|
repl_dict = comm_mul_self.matches(comm_mul_expr, repl_dict, old)
|
||
|
|
||
|
# If the commutative arguments didn't match and aren't equal, then
|
||
|
# then the expression as a whole doesn't match
|
||
|
if not repl_dict and c1 != c2:
|
||
|
return None
|
||
|
|
||
|
# Now match the non-commutative arguments, expanding powers to
|
||
|
# multiplications
|
||
|
nc1 = Mul._matches_expand_pows(nc1)
|
||
|
nc2 = Mul._matches_expand_pows(nc2)
|
||
|
|
||
|
repl_dict = Mul._matches_noncomm(nc1, nc2, repl_dict)
|
||
|
|
||
|
return repl_dict or None
|
||
|
|
||
|
@staticmethod
|
||
|
def _matches_expand_pows(arg_list):
|
||
|
new_args = []
|
||
|
for arg in arg_list:
|
||
|
if arg.is_Pow and arg.exp > 0:
|
||
|
new_args.extend([arg.base] * arg.exp)
|
||
|
else:
|
||
|
new_args.append(arg)
|
||
|
return new_args
|
||
|
|
||
|
@staticmethod
|
||
|
def _matches_noncomm(nodes, targets, repl_dict=None):
|
||
|
"""Non-commutative multiplication matcher.
|
||
|
|
||
|
`nodes` is a list of symbols within the matcher multiplication
|
||
|
expression, while `targets` is a list of arguments in the
|
||
|
multiplication expression being matched against.
|
||
|
"""
|
||
|
if repl_dict is None:
|
||
|
repl_dict = {}
|
||
|
else:
|
||
|
repl_dict = repl_dict.copy()
|
||
|
|
||
|
# List of possible future states to be considered
|
||
|
agenda = []
|
||
|
# The current matching state, storing index in nodes and targets
|
||
|
state = (0, 0)
|
||
|
node_ind, target_ind = state
|
||
|
# Mapping between wildcard indices and the index ranges they match
|
||
|
wildcard_dict = {}
|
||
|
|
||
|
while target_ind < len(targets) and node_ind < len(nodes):
|
||
|
node = nodes[node_ind]
|
||
|
|
||
|
if node.is_Wild:
|
||
|
Mul._matches_add_wildcard(wildcard_dict, state)
|
||
|
|
||
|
states_matches = Mul._matches_new_states(wildcard_dict, state,
|
||
|
nodes, targets)
|
||
|
if states_matches:
|
||
|
new_states, new_matches = states_matches
|
||
|
agenda.extend(new_states)
|
||
|
if new_matches:
|
||
|
for match in new_matches:
|
||
|
repl_dict[match] = new_matches[match]
|
||
|
if not agenda:
|
||
|
return None
|
||
|
else:
|
||
|
state = agenda.pop()
|
||
|
node_ind, target_ind = state
|
||
|
|
||
|
return repl_dict
|
||
|
|
||
|
@staticmethod
|
||
|
def _matches_add_wildcard(dictionary, state):
|
||
|
node_ind, target_ind = state
|
||
|
if node_ind in dictionary:
|
||
|
begin, end = dictionary[node_ind]
|
||
|
dictionary[node_ind] = (begin, target_ind)
|
||
|
else:
|
||
|
dictionary[node_ind] = (target_ind, target_ind)
|
||
|
|
||
|
@staticmethod
|
||
|
def _matches_new_states(dictionary, state, nodes, targets):
|
||
|
node_ind, target_ind = state
|
||
|
node = nodes[node_ind]
|
||
|
target = targets[target_ind]
|
||
|
|
||
|
# Don't advance at all if we've exhausted the targets but not the nodes
|
||
|
if target_ind >= len(targets) - 1 and node_ind < len(nodes) - 1:
|
||
|
return None
|
||
|
|
||
|
if node.is_Wild:
|
||
|
match_attempt = Mul._matches_match_wilds(dictionary, node_ind,
|
||
|
nodes, targets)
|
||
|
if match_attempt:
|
||
|
# If the same node has been matched before, don't return
|
||
|
# anything if the current match is diverging from the previous
|
||
|
# match
|
||
|
other_node_inds = Mul._matches_get_other_nodes(dictionary,
|
||
|
nodes, node_ind)
|
||
|
for ind in other_node_inds:
|
||
|
other_begin, other_end = dictionary[ind]
|
||
|
curr_begin, curr_end = dictionary[node_ind]
|
||
|
|
||
|
other_targets = targets[other_begin:other_end + 1]
|
||
|
current_targets = targets[curr_begin:curr_end + 1]
|
||
|
|
||
|
for curr, other in zip(current_targets, other_targets):
|
||
|
if curr != other:
|
||
|
return None
|
||
|
|
||
|
# A wildcard node can match more than one target, so only the
|
||
|
# target index is advanced
|
||
|
new_state = [(node_ind, target_ind + 1)]
|
||
|
# Only move on to the next node if there is one
|
||
|
if node_ind < len(nodes) - 1:
|
||
|
new_state.append((node_ind + 1, target_ind + 1))
|
||
|
return new_state, match_attempt
|
||
|
else:
|
||
|
# If we're not at a wildcard, then make sure we haven't exhausted
|
||
|
# nodes but not targets, since in this case one node can only match
|
||
|
# one target
|
||
|
if node_ind >= len(nodes) - 1 and target_ind < len(targets) - 1:
|
||
|
return None
|
||
|
|
||
|
match_attempt = node.matches(target)
|
||
|
|
||
|
if match_attempt:
|
||
|
return [(node_ind + 1, target_ind + 1)], match_attempt
|
||
|
elif node == target:
|
||
|
return [(node_ind + 1, target_ind + 1)], None
|
||
|
else:
|
||
|
return None
|
||
|
|
||
|
@staticmethod
|
||
|
def _matches_match_wilds(dictionary, wildcard_ind, nodes, targets):
|
||
|
"""Determine matches of a wildcard with sub-expression in `target`."""
|
||
|
wildcard = nodes[wildcard_ind]
|
||
|
begin, end = dictionary[wildcard_ind]
|
||
|
terms = targets[begin:end + 1]
|
||
|
# TODO: Should this be self.func?
|
||
|
mult = Mul(*terms) if len(terms) > 1 else terms[0]
|
||
|
return wildcard.matches(mult)
|
||
|
|
||
|
@staticmethod
|
||
|
def _matches_get_other_nodes(dictionary, nodes, node_ind):
|
||
|
"""Find other wildcards that may have already been matched."""
|
||
|
ind_node = nodes[node_ind]
|
||
|
return [ind for ind in dictionary if nodes[ind] == ind_node]
|
||
|
|
||
|
@staticmethod
|
||
|
def _combine_inverse(lhs, rhs):
|
||
|
"""
|
||
|
Returns lhs/rhs, but treats arguments like symbols, so things
|
||
|
like oo/oo return 1 (instead of a nan) and ``I`` behaves like
|
||
|
a symbol instead of sqrt(-1).
|
||
|
"""
|
||
|
from sympy.simplify.simplify import signsimp
|
||
|
from .symbol import Dummy
|
||
|
if lhs == rhs:
|
||
|
return S.One
|
||
|
|
||
|
def check(l, r):
|
||
|
if l.is_Float and r.is_comparable:
|
||
|
# if both objects are added to 0 they will share the same "normalization"
|
||
|
# and are more likely to compare the same. Since Add(foo, 0) will not allow
|
||
|
# the 0 to pass, we use __add__ directly.
|
||
|
return l.__add__(0) == r.evalf().__add__(0)
|
||
|
return False
|
||
|
if check(lhs, rhs) or check(rhs, lhs):
|
||
|
return S.One
|
||
|
if any(i.is_Pow or i.is_Mul for i in (lhs, rhs)):
|
||
|
# gruntz and limit wants a literal I to not combine
|
||
|
# with a power of -1
|
||
|
d = Dummy('I')
|
||
|
_i = {S.ImaginaryUnit: d}
|
||
|
i_ = {d: S.ImaginaryUnit}
|
||
|
a = lhs.xreplace(_i).as_powers_dict()
|
||
|
b = rhs.xreplace(_i).as_powers_dict()
|
||
|
blen = len(b)
|
||
|
for bi in tuple(b.keys()):
|
||
|
if bi in a:
|
||
|
a[bi] -= b.pop(bi)
|
||
|
if not a[bi]:
|
||
|
a.pop(bi)
|
||
|
if len(b) != blen:
|
||
|
lhs = Mul(*[k**v for k, v in a.items()]).xreplace(i_)
|
||
|
rhs = Mul(*[k**v for k, v in b.items()]).xreplace(i_)
|
||
|
rv = lhs/rhs
|
||
|
srv = signsimp(rv)
|
||
|
return srv if srv.is_Number else rv
|
||
|
|
||
|
def as_powers_dict(self):
|
||
|
d = defaultdict(int)
|
||
|
for term in self.args:
|
||
|
for b, e in term.as_powers_dict().items():
|
||
|
d[b] += e
|
||
|
return d
|
||
|
|
||
|
def as_numer_denom(self):
|
||
|
# don't use _from_args to rebuild the numerators and denominators
|
||
|
# as the order is not guaranteed to be the same once they have
|
||
|
# been separated from each other
|
||
|
numers, denoms = list(zip(*[f.as_numer_denom() for f in self.args]))
|
||
|
return self.func(*numers), self.func(*denoms)
|
||
|
|
||
|
def as_base_exp(self):
|
||
|
e1 = None
|
||
|
bases = []
|
||
|
nc = 0
|
||
|
for m in self.args:
|
||
|
b, e = m.as_base_exp()
|
||
|
if not b.is_commutative:
|
||
|
nc += 1
|
||
|
if e1 is None:
|
||
|
e1 = e
|
||
|
elif e != e1 or nc > 1:
|
||
|
return self, S.One
|
||
|
bases.append(b)
|
||
|
return self.func(*bases), e1
|
||
|
|
||
|
def _eval_is_polynomial(self, syms):
|
||
|
return all(term._eval_is_polynomial(syms) for term in self.args)
|
||
|
|
||
|
def _eval_is_rational_function(self, syms):
|
||
|
return all(term._eval_is_rational_function(syms) for term in self.args)
|
||
|
|
||
|
def _eval_is_meromorphic(self, x, a):
|
||
|
return _fuzzy_group((arg.is_meromorphic(x, a) for arg in self.args),
|
||
|
quick_exit=True)
|
||
|
|
||
|
def _eval_is_algebraic_expr(self, syms):
|
||
|
return all(term._eval_is_algebraic_expr(syms) for term in self.args)
|
||
|
|
||
|
_eval_is_commutative = lambda self: _fuzzy_group(
|
||
|
a.is_commutative for a in self.args)
|
||
|
|
||
|
def _eval_is_complex(self):
|
||
|
comp = _fuzzy_group(a.is_complex for a in self.args)
|
||
|
if comp is False:
|
||
|
if any(a.is_infinite for a in self.args):
|
||
|
if any(a.is_zero is not False for a in self.args):
|
||
|
return None
|
||
|
return False
|
||
|
return comp
|
||
|
|
||
|
def _eval_is_zero_infinite_helper(self):
|
||
|
#
|
||
|
# Helper used by _eval_is_zero and _eval_is_infinite.
|
||
|
#
|
||
|
# Three-valued logic is tricky so let us reason this carefully. It
|
||
|
# would be nice to say that we just check is_zero/is_infinite in all
|
||
|
# args but we need to be careful about the case that one arg is zero
|
||
|
# and another is infinite like Mul(0, oo) or more importantly a case
|
||
|
# where it is not known if the arguments are zero or infinite like
|
||
|
# Mul(y, 1/x). If either y or x could be zero then there is a
|
||
|
# *possibility* that we have Mul(0, oo) which should give None for both
|
||
|
# is_zero and is_infinite.
|
||
|
#
|
||
|
# We keep track of whether we have seen a zero or infinity but we also
|
||
|
# need to keep track of whether we have *possibly* seen one which
|
||
|
# would be indicated by None.
|
||
|
#
|
||
|
# For each argument there is the possibility that is_zero might give
|
||
|
# True, False or None and likewise that is_infinite might give True,
|
||
|
# False or None, giving 9 combinations. The True cases for is_zero and
|
||
|
# is_infinite are mutually exclusive though so there are 3 main cases:
|
||
|
#
|
||
|
# - is_zero = True
|
||
|
# - is_infinite = True
|
||
|
# - is_zero and is_infinite are both either False or None
|
||
|
#
|
||
|
# At the end seen_zero and seen_infinite can be any of 9 combinations
|
||
|
# of True/False/None. Unless one is False though we cannot return
|
||
|
# anything except None:
|
||
|
#
|
||
|
# - is_zero=True needs seen_zero=True and seen_infinite=False
|
||
|
# - is_zero=False needs seen_zero=False
|
||
|
# - is_infinite=True needs seen_infinite=True and seen_zero=False
|
||
|
# - is_infinite=False needs seen_infinite=False
|
||
|
# - anything else gives both is_zero=None and is_infinite=None
|
||
|
#
|
||
|
# The loop only sets the flags to True or None and never back to False.
|
||
|
# Hence as soon as neither flag is False we exit early returning None.
|
||
|
# In particular as soon as we encounter a single arg that has
|
||
|
# is_zero=is_infinite=None we exit. This is a common case since it is
|
||
|
# the default assumptions for a Symbol and also the case for most
|
||
|
# expressions containing such a symbol. The early exit gives a big
|
||
|
# speedup for something like Mul(*symbols('x:1000')).is_zero.
|
||
|
#
|
||
|
seen_zero = seen_infinite = False
|
||
|
|
||
|
for a in self.args:
|
||
|
if a.is_zero:
|
||
|
if seen_infinite is not False:
|
||
|
return None, None
|
||
|
seen_zero = True
|
||
|
elif a.is_infinite:
|
||
|
if seen_zero is not False:
|
||
|
return None, None
|
||
|
seen_infinite = True
|
||
|
else:
|
||
|
if seen_zero is False and a.is_zero is None:
|
||
|
if seen_infinite is not False:
|
||
|
return None, None
|
||
|
seen_zero = None
|
||
|
if seen_infinite is False and a.is_infinite is None:
|
||
|
if seen_zero is not False:
|
||
|
return None, None
|
||
|
seen_infinite = None
|
||
|
|
||
|
return seen_zero, seen_infinite
|
||
|
|
||
|
def _eval_is_zero(self):
|
||
|
# True iff any arg is zero and no arg is infinite but need to handle
|
||
|
# three valued logic carefully.
|
||
|
seen_zero, seen_infinite = self._eval_is_zero_infinite_helper()
|
||
|
|
||
|
if seen_zero is False:
|
||
|
return False
|
||
|
elif seen_zero is True and seen_infinite is False:
|
||
|
return True
|
||
|
else:
|
||
|
return None
|
||
|
|
||
|
def _eval_is_infinite(self):
|
||
|
# True iff any arg is infinite and no arg is zero but need to handle
|
||
|
# three valued logic carefully.
|
||
|
seen_zero, seen_infinite = self._eval_is_zero_infinite_helper()
|
||
|
|
||
|
if seen_infinite is True and seen_zero is False:
|
||
|
return True
|
||
|
elif seen_infinite is False:
|
||
|
return False
|
||
|
else:
|
||
|
return None
|
||
|
|
||
|
# We do not need to implement _eval_is_finite because the assumptions
|
||
|
# system can infer it from finite = not infinite.
|
||
|
|
||
|
def _eval_is_rational(self):
|
||
|
r = _fuzzy_group((a.is_rational for a in self.args), quick_exit=True)
|
||
|
if r:
|
||
|
return r
|
||
|
elif r is False:
|
||
|
# All args except one are rational
|
||
|
if all(a.is_zero is False for a in self.args):
|
||
|
return False
|
||
|
|
||
|
def _eval_is_algebraic(self):
|
||
|
r = _fuzzy_group((a.is_algebraic for a in self.args), quick_exit=True)
|
||
|
if r:
|
||
|
return r
|
||
|
elif r is False:
|
||
|
# All args except one are algebraic
|
||
|
if all(a.is_zero is False for a in self.args):
|
||
|
return False
|
||
|
|
||
|
# without involving odd/even checks this code would suffice:
|
||
|
#_eval_is_integer = lambda self: _fuzzy_group(
|
||
|
# (a.is_integer for a in self.args), quick_exit=True)
|
||
|
def _eval_is_integer(self):
|
||
|
from sympy.ntheory.factor_ import trailing
|
||
|
is_rational = self._eval_is_rational()
|
||
|
if is_rational is False:
|
||
|
return False
|
||
|
|
||
|
numerators = []
|
||
|
denominators = []
|
||
|
unknown = False
|
||
|
for a in self.args:
|
||
|
hit = False
|
||
|
if a.is_integer:
|
||
|
if abs(a) is not S.One:
|
||
|
numerators.append(a)
|
||
|
elif a.is_Rational:
|
||
|
n, d = a.as_numer_denom()
|
||
|
if abs(n) is not S.One:
|
||
|
numerators.append(n)
|
||
|
if d is not S.One:
|
||
|
denominators.append(d)
|
||
|
elif a.is_Pow:
|
||
|
b, e = a.as_base_exp()
|
||
|
if not b.is_integer or not e.is_integer:
|
||
|
hit = unknown = True
|
||
|
if e.is_negative:
|
||
|
denominators.append(2 if a is S.Half else
|
||
|
Pow(a, S.NegativeOne))
|
||
|
elif not hit:
|
||
|
# int b and pos int e: a = b**e is integer
|
||
|
assert not e.is_positive
|
||
|
# for rational self and e equal to zero: a = b**e is 1
|
||
|
assert not e.is_zero
|
||
|
return # sign of e unknown -> self.is_integer unknown
|
||
|
else:
|
||
|
# x**2, 2**x, or x**y with x and y int-unknown -> unknown
|
||
|
return
|
||
|
else:
|
||
|
return
|
||
|
|
||
|
if not denominators and not unknown:
|
||
|
return True
|
||
|
|
||
|
allodd = lambda x: all(i.is_odd for i in x)
|
||
|
alleven = lambda x: all(i.is_even for i in x)
|
||
|
anyeven = lambda x: any(i.is_even for i in x)
|
||
|
|
||
|
from .relational import is_gt
|
||
|
if not numerators and denominators and all(
|
||
|
is_gt(_, S.One) for _ in denominators):
|
||
|
return False
|
||
|
elif unknown:
|
||
|
return
|
||
|
elif allodd(numerators) and anyeven(denominators):
|
||
|
return False
|
||
|
elif anyeven(numerators) and denominators == [2]:
|
||
|
return True
|
||
|
elif alleven(numerators) and allodd(denominators
|
||
|
) and (Mul(*denominators, evaluate=False) - 1
|
||
|
).is_positive:
|
||
|
return False
|
||
|
if len(denominators) == 1:
|
||
|
d = denominators[0]
|
||
|
if d.is_Integer and d.is_even:
|
||
|
# if minimal power of 2 in num vs den is not
|
||
|
# negative then we have an integer
|
||
|
if (Add(*[i.as_base_exp()[1] for i in
|
||
|
numerators if i.is_even]) - trailing(d.p)
|
||
|
).is_nonnegative:
|
||
|
return True
|
||
|
if len(numerators) == 1:
|
||
|
n = numerators[0]
|
||
|
if n.is_Integer and n.is_even:
|
||
|
# if minimal power of 2 in den vs num is positive
|
||
|
# then we have have a non-integer
|
||
|
if (Add(*[i.as_base_exp()[1] for i in
|
||
|
denominators if i.is_even]) - trailing(n.p)
|
||
|
).is_positive:
|
||
|
return False
|
||
|
|
||
|
def _eval_is_polar(self):
|
||
|
has_polar = any(arg.is_polar for arg in self.args)
|
||
|
return has_polar and \
|
||
|
all(arg.is_polar or arg.is_positive for arg in self.args)
|
||
|
|
||
|
def _eval_is_extended_real(self):
|
||
|
return self._eval_real_imag(True)
|
||
|
|
||
|
def _eval_real_imag(self, real):
|
||
|
zero = False
|
||
|
t_not_re_im = None
|
||
|
|
||
|
for t in self.args:
|
||
|
if (t.is_complex or t.is_infinite) is False and t.is_extended_real is False:
|
||
|
return False
|
||
|
elif t.is_imaginary: # I
|
||
|
real = not real
|
||
|
elif t.is_extended_real: # 2
|
||
|
if not zero:
|
||
|
z = t.is_zero
|
||
|
if not z and zero is False:
|
||
|
zero = z
|
||
|
elif z:
|
||
|
if all(a.is_finite for a in self.args):
|
||
|
return True
|
||
|
return
|
||
|
elif t.is_extended_real is False:
|
||
|
# symbolic or literal like `2 + I` or symbolic imaginary
|
||
|
if t_not_re_im:
|
||
|
return # complex terms might cancel
|
||
|
t_not_re_im = t
|
||
|
elif t.is_imaginary is False: # symbolic like `2` or `2 + I`
|
||
|
if t_not_re_im:
|
||
|
return # complex terms might cancel
|
||
|
t_not_re_im = t
|
||
|
else:
|
||
|
return
|
||
|
|
||
|
if t_not_re_im:
|
||
|
if t_not_re_im.is_extended_real is False:
|
||
|
if real: # like 3
|
||
|
return zero # 3*(smthng like 2 + I or i) is not real
|
||
|
if t_not_re_im.is_imaginary is False: # symbolic 2 or 2 + I
|
||
|
if not real: # like I
|
||
|
return zero # I*(smthng like 2 or 2 + I) is not real
|
||
|
elif zero is False:
|
||
|
return real # can't be trumped by 0
|
||
|
elif real:
|
||
|
return real # doesn't matter what zero is
|
||
|
|
||
|
def _eval_is_imaginary(self):
|
||
|
if all(a.is_zero is False and a.is_finite for a in self.args):
|
||
|
return self._eval_real_imag(False)
|
||
|
|
||
|
def _eval_is_hermitian(self):
|
||
|
return self._eval_herm_antiherm(True)
|
||
|
|
||
|
def _eval_is_antihermitian(self):
|
||
|
return self._eval_herm_antiherm(False)
|
||
|
|
||
|
def _eval_herm_antiherm(self, herm):
|
||
|
for t in self.args:
|
||
|
if t.is_hermitian is None or t.is_antihermitian is None:
|
||
|
return
|
||
|
if t.is_hermitian:
|
||
|
continue
|
||
|
elif t.is_antihermitian:
|
||
|
herm = not herm
|
||
|
else:
|
||
|
return
|
||
|
|
||
|
if herm is not False:
|
||
|
return herm
|
||
|
|
||
|
is_zero = self._eval_is_zero()
|
||
|
if is_zero:
|
||
|
return True
|
||
|
elif is_zero is False:
|
||
|
return herm
|
||
|
|
||
|
def _eval_is_irrational(self):
|
||
|
for t in self.args:
|
||
|
a = t.is_irrational
|
||
|
if a:
|
||
|
others = list(self.args)
|
||
|
others.remove(t)
|
||
|
if all((x.is_rational and fuzzy_not(x.is_zero)) is True for x in others):
|
||
|
return True
|
||
|
return
|
||
|
if a is None:
|
||
|
return
|
||
|
if all(x.is_real for x in self.args):
|
||
|
return False
|
||
|
|
||
|
def _eval_is_extended_positive(self):
|
||
|
"""Return True if self is positive, False if not, and None if it
|
||
|
cannot be determined.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
This algorithm is non-recursive and works by keeping track of the
|
||
|
sign which changes when a negative or nonpositive is encountered.
|
||
|
Whether a nonpositive or nonnegative is seen is also tracked since
|
||
|
the presence of these makes it impossible to return True, but
|
||
|
possible to return False if the end result is nonpositive. e.g.
|
||
|
|
||
|
pos * neg * nonpositive -> pos or zero -> None is returned
|
||
|
pos * neg * nonnegative -> neg or zero -> False is returned
|
||
|
"""
|
||
|
return self._eval_pos_neg(1)
|
||
|
|
||
|
def _eval_pos_neg(self, sign):
|
||
|
saw_NON = saw_NOT = False
|
||
|
for t in self.args:
|
||
|
if t.is_extended_positive:
|
||
|
continue
|
||
|
elif t.is_extended_negative:
|
||
|
sign = -sign
|
||
|
elif t.is_zero:
|
||
|
if all(a.is_finite for a in self.args):
|
||
|
return False
|
||
|
return
|
||
|
elif t.is_extended_nonpositive:
|
||
|
sign = -sign
|
||
|
saw_NON = True
|
||
|
elif t.is_extended_nonnegative:
|
||
|
saw_NON = True
|
||
|
# FIXME: is_positive/is_negative is False doesn't take account of
|
||
|
# Symbol('x', infinite=True, extended_real=True) which has
|
||
|
# e.g. is_positive is False but has uncertain sign.
|
||
|
elif t.is_positive is False:
|
||
|
sign = -sign
|
||
|
if saw_NOT:
|
||
|
return
|
||
|
saw_NOT = True
|
||
|
elif t.is_negative is False:
|
||
|
if saw_NOT:
|
||
|
return
|
||
|
saw_NOT = True
|
||
|
else:
|
||
|
return
|
||
|
if sign == 1 and saw_NON is False and saw_NOT is False:
|
||
|
return True
|
||
|
if sign < 0:
|
||
|
return False
|
||
|
|
||
|
def _eval_is_extended_negative(self):
|
||
|
return self._eval_pos_neg(-1)
|
||
|
|
||
|
def _eval_is_odd(self):
|
||
|
is_integer = self._eval_is_integer()
|
||
|
if is_integer is not True:
|
||
|
return is_integer
|
||
|
|
||
|
from sympy.simplify.radsimp import fraction
|
||
|
n, d = fraction(self)
|
||
|
if d.is_Integer and d.is_even:
|
||
|
from sympy.ntheory.factor_ import trailing
|
||
|
# if minimal power of 2 in num vs den is
|
||
|
# positive then we have an even number
|
||
|
if (Add(*[i.as_base_exp()[1] for i in
|
||
|
Mul.make_args(n) if i.is_even]) - trailing(d.p)
|
||
|
).is_positive:
|
||
|
return False
|
||
|
return
|
||
|
r, acc = True, 1
|
||
|
for t in self.args:
|
||
|
if abs(t) is S.One:
|
||
|
continue
|
||
|
if t.is_even:
|
||
|
return False
|
||
|
if r is False:
|
||
|
pass
|
||
|
elif acc != 1 and (acc + t).is_odd:
|
||
|
r = False
|
||
|
elif t.is_even is None:
|
||
|
r = None
|
||
|
acc = t
|
||
|
return r
|
||
|
|
||
|
def _eval_is_even(self):
|
||
|
from sympy.simplify.radsimp import fraction
|
||
|
n, d = fraction(self)
|
||
|
if n.is_Integer and n.is_even:
|
||
|
# if minimal power of 2 in den vs num is not
|
||
|
# negative then this is not an integer and
|
||
|
# can't be even
|
||
|
from sympy.ntheory.factor_ import trailing
|
||
|
if (Add(*[i.as_base_exp()[1] for i in
|
||
|
Mul.make_args(d) if i.is_even]) - trailing(n.p)
|
||
|
).is_nonnegative:
|
||
|
return False
|
||
|
|
||
|
def _eval_is_composite(self):
|
||
|
"""
|
||
|
Here we count the number of arguments that have a minimum value
|
||
|
greater than two.
|
||
|
If there are more than one of such a symbol then the result is composite.
|
||
|
Else, the result cannot be determined.
|
||
|
"""
|
||
|
number_of_args = 0 # count of symbols with minimum value greater than one
|
||
|
for arg in self.args:
|
||
|
if not (arg.is_integer and arg.is_positive):
|
||
|
return None
|
||
|
if (arg-1).is_positive:
|
||
|
number_of_args += 1
|
||
|
|
||
|
if number_of_args > 1:
|
||
|
return True
|
||
|
|
||
|
def _eval_subs(self, old, new):
|
||
|
from sympy.functions.elementary.complexes import sign
|
||
|
from sympy.ntheory.factor_ import multiplicity
|
||
|
from sympy.simplify.powsimp import powdenest
|
||
|
from sympy.simplify.radsimp import fraction
|
||
|
|
||
|
if not old.is_Mul:
|
||
|
return None
|
||
|
|
||
|
# try keep replacement literal so -2*x doesn't replace 4*x
|
||
|
if old.args[0].is_Number and old.args[0] < 0:
|
||
|
if self.args[0].is_Number:
|
||
|
if self.args[0] < 0:
|
||
|
return self._subs(-old, -new)
|
||
|
return None
|
||
|
|
||
|
def base_exp(a):
|
||
|
# if I and -1 are in a Mul, they get both end up with
|
||
|
# a -1 base (see issue 6421); all we want here are the
|
||
|
# true Pow or exp separated into base and exponent
|
||
|
from sympy.functions.elementary.exponential import exp
|
||
|
if a.is_Pow or isinstance(a, exp):
|
||
|
return a.as_base_exp()
|
||
|
return a, S.One
|
||
|
|
||
|
def breakup(eq):
|
||
|
"""break up powers of eq when treated as a Mul:
|
||
|
b**(Rational*e) -> b**e, Rational
|
||
|
commutatives come back as a dictionary {b**e: Rational}
|
||
|
noncommutatives come back as a list [(b**e, Rational)]
|
||
|
"""
|
||
|
|
||
|
(c, nc) = (defaultdict(int), [])
|
||
|
for a in Mul.make_args(eq):
|
||
|
a = powdenest(a)
|
||
|
(b, e) = base_exp(a)
|
||
|
if e is not S.One:
|
||
|
(co, _) = e.as_coeff_mul()
|
||
|
b = Pow(b, e/co)
|
||
|
e = co
|
||
|
if a.is_commutative:
|
||
|
c[b] += e
|
||
|
else:
|
||
|
nc.append([b, e])
|
||
|
return (c, nc)
|
||
|
|
||
|
def rejoin(b, co):
|
||
|
"""
|
||
|
Put rational back with exponent; in general this is not ok, but
|
||
|
since we took it from the exponent for analysis, it's ok to put
|
||
|
it back.
|
||
|
"""
|
||
|
|
||
|
(b, e) = base_exp(b)
|
||
|
return Pow(b, e*co)
|
||
|
|
||
|
def ndiv(a, b):
|
||
|
"""if b divides a in an extractive way (like 1/4 divides 1/2
|
||
|
but not vice versa, and 2/5 does not divide 1/3) then return
|
||
|
the integer number of times it divides, else return 0.
|
||
|
"""
|
||
|
if not b.q % a.q or not a.q % b.q:
|
||
|
return int(a/b)
|
||
|
return 0
|
||
|
|
||
|
# give Muls in the denominator a chance to be changed (see issue 5651)
|
||
|
# rv will be the default return value
|
||
|
rv = None
|
||
|
n, d = fraction(self)
|
||
|
self2 = self
|
||
|
if d is not S.One:
|
||
|
self2 = n._subs(old, new)/d._subs(old, new)
|
||
|
if not self2.is_Mul:
|
||
|
return self2._subs(old, new)
|
||
|
if self2 != self:
|
||
|
rv = self2
|
||
|
|
||
|
# Now continue with regular substitution.
|
||
|
|
||
|
# handle the leading coefficient and use it to decide if anything
|
||
|
# should even be started; we always know where to find the Rational
|
||
|
# so it's a quick test
|
||
|
|
||
|
co_self = self2.args[0]
|
||
|
co_old = old.args[0]
|
||
|
co_xmul = None
|
||
|
if co_old.is_Rational and co_self.is_Rational:
|
||
|
# if coeffs are the same there will be no updating to do
|
||
|
# below after breakup() step; so skip (and keep co_xmul=None)
|
||
|
if co_old != co_self:
|
||
|
co_xmul = co_self.extract_multiplicatively(co_old)
|
||
|
elif co_old.is_Rational:
|
||
|
return rv
|
||
|
|
||
|
# break self and old into factors
|
||
|
|
||
|
(c, nc) = breakup(self2)
|
||
|
(old_c, old_nc) = breakup(old)
|
||
|
|
||
|
# update the coefficients if we had an extraction
|
||
|
# e.g. if co_self were 2*(3/35*x)**2 and co_old = 3/5
|
||
|
# then co_self in c is replaced by (3/5)**2 and co_residual
|
||
|
# is 2*(1/7)**2
|
||
|
|
||
|
if co_xmul and co_xmul.is_Rational and abs(co_old) != 1:
|
||
|
mult = S(multiplicity(abs(co_old), co_self))
|
||
|
c.pop(co_self)
|
||
|
if co_old in c:
|
||
|
c[co_old] += mult
|
||
|
else:
|
||
|
c[co_old] = mult
|
||
|
co_residual = co_self/co_old**mult
|
||
|
else:
|
||
|
co_residual = 1
|
||
|
|
||
|
# do quick tests to see if we can't succeed
|
||
|
|
||
|
ok = True
|
||
|
if len(old_nc) > len(nc):
|
||
|
# more non-commutative terms
|
||
|
ok = False
|
||
|
elif len(old_c) > len(c):
|
||
|
# more commutative terms
|
||
|
ok = False
|
||
|
elif {i[0] for i in old_nc}.difference({i[0] for i in nc}):
|
||
|
# unmatched non-commutative bases
|
||
|
ok = False
|
||
|
elif set(old_c).difference(set(c)):
|
||
|
# unmatched commutative terms
|
||
|
ok = False
|
||
|
elif any(sign(c[b]) != sign(old_c[b]) for b in old_c):
|
||
|
# differences in sign
|
||
|
ok = False
|
||
|
if not ok:
|
||
|
return rv
|
||
|
|
||
|
if not old_c:
|
||
|
cdid = None
|
||
|
else:
|
||
|
rat = []
|
||
|
for (b, old_e) in old_c.items():
|
||
|
c_e = c[b]
|
||
|
rat.append(ndiv(c_e, old_e))
|
||
|
if not rat[-1]:
|
||
|
return rv
|
||
|
cdid = min(rat)
|
||
|
|
||
|
if not old_nc:
|
||
|
ncdid = None
|
||
|
for i in range(len(nc)):
|
||
|
nc[i] = rejoin(*nc[i])
|
||
|
else:
|
||
|
ncdid = 0 # number of nc replacements we did
|
||
|
take = len(old_nc) # how much to look at each time
|
||
|
limit = cdid or S.Infinity # max number that we can take
|
||
|
failed = [] # failed terms will need subs if other terms pass
|
||
|
i = 0
|
||
|
while limit and i + take <= len(nc):
|
||
|
hit = False
|
||
|
|
||
|
# the bases must be equivalent in succession, and
|
||
|
# the powers must be extractively compatible on the
|
||
|
# first and last factor but equal in between.
|
||
|
|
||
|
rat = []
|
||
|
for j in range(take):
|
||
|
if nc[i + j][0] != old_nc[j][0]:
|
||
|
break
|
||
|
elif j == 0:
|
||
|
rat.append(ndiv(nc[i + j][1], old_nc[j][1]))
|
||
|
elif j == take - 1:
|
||
|
rat.append(ndiv(nc[i + j][1], old_nc[j][1]))
|
||
|
elif nc[i + j][1] != old_nc[j][1]:
|
||
|
break
|
||
|
else:
|
||
|
rat.append(1)
|
||
|
j += 1
|
||
|
else:
|
||
|
ndo = min(rat)
|
||
|
if ndo:
|
||
|
if take == 1:
|
||
|
if cdid:
|
||
|
ndo = min(cdid, ndo)
|
||
|
nc[i] = Pow(new, ndo)*rejoin(nc[i][0],
|
||
|
nc[i][1] - ndo*old_nc[0][1])
|
||
|
else:
|
||
|
ndo = 1
|
||
|
|
||
|
# the left residual
|
||
|
|
||
|
l = rejoin(nc[i][0], nc[i][1] - ndo*
|
||
|
old_nc[0][1])
|
||
|
|
||
|
# eliminate all middle terms
|
||
|
|
||
|
mid = new
|
||
|
|
||
|
# the right residual (which may be the same as the middle if take == 2)
|
||
|
|
||
|
ir = i + take - 1
|
||
|
r = (nc[ir][0], nc[ir][1] - ndo*
|
||
|
old_nc[-1][1])
|
||
|
if r[1]:
|
||
|
if i + take < len(nc):
|
||
|
nc[i:i + take] = [l*mid, r]
|
||
|
else:
|
||
|
r = rejoin(*r)
|
||
|
nc[i:i + take] = [l*mid*r]
|
||
|
else:
|
||
|
|
||
|
# there was nothing left on the right
|
||
|
|
||
|
nc[i:i + take] = [l*mid]
|
||
|
|
||
|
limit -= ndo
|
||
|
ncdid += ndo
|
||
|
hit = True
|
||
|
if not hit:
|
||
|
|
||
|
# do the subs on this failing factor
|
||
|
|
||
|
failed.append(i)
|
||
|
i += 1
|
||
|
else:
|
||
|
|
||
|
if not ncdid:
|
||
|
return rv
|
||
|
|
||
|
# although we didn't fail, certain nc terms may have
|
||
|
# failed so we rebuild them after attempting a partial
|
||
|
# subs on them
|
||
|
|
||
|
failed.extend(range(i, len(nc)))
|
||
|
for i in failed:
|
||
|
nc[i] = rejoin(*nc[i]).subs(old, new)
|
||
|
|
||
|
# rebuild the expression
|
||
|
|
||
|
if cdid is None:
|
||
|
do = ncdid
|
||
|
elif ncdid is None:
|
||
|
do = cdid
|
||
|
else:
|
||
|
do = min(ncdid, cdid)
|
||
|
|
||
|
margs = []
|
||
|
for b in c:
|
||
|
if b in old_c:
|
||
|
|
||
|
# calculate the new exponent
|
||
|
|
||
|
e = c[b] - old_c[b]*do
|
||
|
margs.append(rejoin(b, e))
|
||
|
else:
|
||
|
margs.append(rejoin(b.subs(old, new), c[b]))
|
||
|
if cdid and not ncdid:
|
||
|
|
||
|
# in case we are replacing commutative with non-commutative,
|
||
|
# we want the new term to come at the front just like the
|
||
|
# rest of this routine
|
||
|
|
||
|
margs = [Pow(new, cdid)] + margs
|
||
|
return co_residual*self2.func(*margs)*self2.func(*nc)
|
||
|
|
||
|
def _eval_nseries(self, x, n, logx, cdir=0):
|
||
|
from .function import PoleError
|
||
|
from sympy.functions.elementary.integers import ceiling
|
||
|
from sympy.series.order import Order
|
||
|
|
||
|
def coeff_exp(term, x):
|
||
|
lt = term.as_coeff_exponent(x)
|
||
|
if lt[0].has(x):
|
||
|
try:
|
||
|
lt = term.leadterm(x)
|
||
|
except ValueError:
|
||
|
return term, S.Zero
|
||
|
return lt
|
||
|
|
||
|
ords = []
|
||
|
|
||
|
try:
|
||
|
for t in self.args:
|
||
|
coeff, exp = t.leadterm(x)
|
||
|
if not coeff.has(x):
|
||
|
ords.append((t, exp))
|
||
|
else:
|
||
|
raise ValueError
|
||
|
|
||
|
n0 = sum(t[1] for t in ords if t[1].is_number)
|
||
|
facs = []
|
||
|
for t, m in ords:
|
||
|
n1 = ceiling(n - n0 + (m if m.is_number else 0))
|
||
|
s = t.nseries(x, n=n1, logx=logx, cdir=cdir)
|
||
|
ns = s.getn()
|
||
|
if ns is not None:
|
||
|
if ns < n1: # less than expected
|
||
|
n -= n1 - ns # reduce n
|
||
|
facs.append(s)
|
||
|
|
||
|
except (ValueError, NotImplementedError, TypeError, AttributeError, PoleError):
|
||
|
n0 = sympify(sum(t[1] for t in ords if t[1].is_number))
|
||
|
if n0.is_nonnegative:
|
||
|
n0 = S.Zero
|
||
|
facs = [t.nseries(x, n=ceiling(n-n0), logx=logx, cdir=cdir) for t in self.args]
|
||
|
from sympy.simplify.powsimp import powsimp
|
||
|
res = powsimp(self.func(*facs).expand(), combine='exp', deep=True)
|
||
|
if res.has(Order):
|
||
|
res += Order(x**n, x)
|
||
|
return res
|
||
|
|
||
|
res = S.Zero
|
||
|
ords2 = [Add.make_args(factor) for factor in facs]
|
||
|
|
||
|
for fac in product(*ords2):
|
||
|
ords3 = [coeff_exp(term, x) for term in fac]
|
||
|
coeffs, powers = zip(*ords3)
|
||
|
power = sum(powers)
|
||
|
if (power - n).is_negative:
|
||
|
res += Mul(*coeffs)*(x**power)
|
||
|
|
||
|
def max_degree(e, x):
|
||
|
if e is x:
|
||
|
return S.One
|
||
|
if e.is_Atom:
|
||
|
return S.Zero
|
||
|
if e.is_Add:
|
||
|
return max(max_degree(a, x) for a in e.args)
|
||
|
if e.is_Mul:
|
||
|
return Add(*[max_degree(a, x) for a in e.args])
|
||
|
if e.is_Pow:
|
||
|
return max_degree(e.base, x)*e.exp
|
||
|
return S.Zero
|
||
|
|
||
|
if self.is_polynomial(x):
|
||
|
from sympy.polys.polyerrors import PolynomialError
|
||
|
from sympy.polys.polytools import degree
|
||
|
try:
|
||
|
if max_degree(self, x) >= n or degree(self, x) != degree(res, x):
|
||
|
res += Order(x**n, x)
|
||
|
except PolynomialError:
|
||
|
pass
|
||
|
else:
|
||
|
return res
|
||
|
|
||
|
if res != self:
|
||
|
if (self - res).subs(x, 0) == S.Zero and n > 0:
|
||
|
lt = self._eval_as_leading_term(x, logx=logx, cdir=cdir)
|
||
|
if lt == S.Zero:
|
||
|
return res
|
||
|
res += Order(x**n, x)
|
||
|
return res
|
||
|
|
||
|
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
||
|
return self.func(*[t.as_leading_term(x, logx=logx, cdir=cdir) for t in self.args])
|
||
|
|
||
|
def _eval_conjugate(self):
|
||
|
return self.func(*[t.conjugate() for t in self.args])
|
||
|
|
||
|
def _eval_transpose(self):
|
||
|
return self.func(*[t.transpose() for t in self.args[::-1]])
|
||
|
|
||
|
def _eval_adjoint(self):
|
||
|
return self.func(*[t.adjoint() for t in self.args[::-1]])
|
||
|
|
||
|
def as_content_primitive(self, radical=False, clear=True):
|
||
|
"""Return the tuple (R, self/R) where R is the positive Rational
|
||
|
extracted from self.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import sqrt
|
||
|
>>> (-3*sqrt(2)*(2 - 2*sqrt(2))).as_content_primitive()
|
||
|
(6, -sqrt(2)*(1 - sqrt(2)))
|
||
|
|
||
|
See docstring of Expr.as_content_primitive for more examples.
|
||
|
"""
|
||
|
|
||
|
coef = S.One
|
||
|
args = []
|
||
|
for a in self.args:
|
||
|
c, p = a.as_content_primitive(radical=radical, clear=clear)
|
||
|
coef *= c
|
||
|
if p is not S.One:
|
||
|
args.append(p)
|
||
|
# don't use self._from_args here to reconstruct args
|
||
|
# since there may be identical args now that should be combined
|
||
|
# e.g. (2+2*x)*(3+3*x) should be (6, (1 + x)**2) not (6, (1+x)*(1+x))
|
||
|
return coef, self.func(*args)
|
||
|
|
||
|
def as_ordered_factors(self, order=None):
|
||
|
"""Transform an expression into an ordered list of factors.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import sin, cos
|
||
|
>>> from sympy.abc import x, y
|
||
|
|
||
|
>>> (2*x*y*sin(x)*cos(x)).as_ordered_factors()
|
||
|
[2, x, y, sin(x), cos(x)]
|
||
|
|
||
|
"""
|
||
|
cpart, ncpart = self.args_cnc()
|
||
|
cpart.sort(key=lambda expr: expr.sort_key(order=order))
|
||
|
return cpart + ncpart
|
||
|
|
||
|
@property
|
||
|
def _sorted_args(self):
|
||
|
return tuple(self.as_ordered_factors())
|
||
|
|
||
|
mul = AssocOpDispatcher('mul')
|
||
|
|
||
|
|
||
|
def prod(a, start=1):
|
||
|
"""Return product of elements of a. Start with int 1 so if only
|
||
|
ints are included then an int result is returned.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import prod, S
|
||
|
>>> prod(range(3))
|
||
|
0
|
||
|
>>> type(_) is int
|
||
|
True
|
||
|
>>> prod([S(2), 3])
|
||
|
6
|
||
|
>>> _.is_Integer
|
||
|
True
|
||
|
|
||
|
You can start the product at something other than 1:
|
||
|
|
||
|
>>> prod([1, 2], 3)
|
||
|
6
|
||
|
|
||
|
"""
|
||
|
return reduce(operator.mul, a, start)
|
||
|
|
||
|
|
||
|
def _keep_coeff(coeff, factors, clear=True, sign=False):
|
||
|
"""Return ``coeff*factors`` unevaluated if necessary.
|
||
|
|
||
|
If ``clear`` is False, do not keep the coefficient as a factor
|
||
|
if it can be distributed on a single factor such that one or
|
||
|
more terms will still have integer coefficients.
|
||
|
|
||
|
If ``sign`` is True, allow a coefficient of -1 to remain factored out.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.core.mul import _keep_coeff
|
||
|
>>> from sympy.abc import x, y
|
||
|
>>> from sympy import S
|
||
|
|
||
|
>>> _keep_coeff(S.Half, x + 2)
|
||
|
(x + 2)/2
|
||
|
>>> _keep_coeff(S.Half, x + 2, clear=False)
|
||
|
x/2 + 1
|
||
|
>>> _keep_coeff(S.Half, (x + 2)*y, clear=False)
|
||
|
y*(x + 2)/2
|
||
|
>>> _keep_coeff(S(-1), x + y)
|
||
|
-x - y
|
||
|
>>> _keep_coeff(S(-1), x + y, sign=True)
|
||
|
-(x + y)
|
||
|
"""
|
||
|
if not coeff.is_Number:
|
||
|
if factors.is_Number:
|
||
|
factors, coeff = coeff, factors
|
||
|
else:
|
||
|
return coeff*factors
|
||
|
if factors is S.One:
|
||
|
return coeff
|
||
|
if coeff is S.One:
|
||
|
return factors
|
||
|
elif coeff is S.NegativeOne and not sign:
|
||
|
return -factors
|
||
|
elif factors.is_Add:
|
||
|
if not clear and coeff.is_Rational and coeff.q != 1:
|
||
|
args = [i.as_coeff_Mul() for i in factors.args]
|
||
|
args = [(_keep_coeff(c, coeff), m) for c, m in args]
|
||
|
if any(c.is_Integer for c, _ in args):
|
||
|
return Add._from_args([Mul._from_args(
|
||
|
i[1:] if i[0] == 1 else i) for i in args])
|
||
|
return Mul(coeff, factors, evaluate=False)
|
||
|
elif factors.is_Mul:
|
||
|
margs = list(factors.args)
|
||
|
if margs[0].is_Number:
|
||
|
margs[0] *= coeff
|
||
|
if margs[0] == 1:
|
||
|
margs.pop(0)
|
||
|
else:
|
||
|
margs.insert(0, coeff)
|
||
|
return Mul._from_args(margs)
|
||
|
else:
|
||
|
m = coeff*factors
|
||
|
if m.is_Number and not factors.is_Number:
|
||
|
m = Mul._from_args((coeff, factors))
|
||
|
return m
|
||
|
|
||
|
def expand_2arg(e):
|
||
|
def do(e):
|
||
|
if e.is_Mul:
|
||
|
c, r = e.as_coeff_Mul()
|
||
|
if c.is_Number and r.is_Add:
|
||
|
return _unevaluated_Add(*[c*ri for ri in r.args])
|
||
|
return e
|
||
|
return bottom_up(e, do)
|
||
|
|
||
|
|
||
|
from .numbers import Rational
|
||
|
from .power import Pow
|
||
|
from .add import Add, _unevaluated_Add
|