ai-content-maker/.venv/Lib/site-packages/sympy/discrete/convolutions.py

489 lines
14 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
"""
Convolution (using **FFT**, **NTT**, **FWHT**), Subset Convolution,
Covering Product, Intersecting Product
"""
from sympy.core import S, sympify
from sympy.core.function import expand_mul
from sympy.discrete.transforms import (
fft, ifft, ntt, intt, fwht, ifwht,
mobius_transform, inverse_mobius_transform)
from sympy.utilities.iterables import iterable
from sympy.utilities.misc import as_int
def convolution(a, b, cycle=0, dps=None, prime=None, dyadic=None, subset=None):
"""
Performs convolution by determining the type of desired
convolution using hints.
Exactly one of ``dps``, ``prime``, ``dyadic``, ``subset`` arguments
should be specified explicitly for identifying the type of convolution,
and the argument ``cycle`` can be specified optionally.
For the default arguments, linear convolution is performed using **FFT**.
Parameters
==========
a, b : iterables
The sequences for which convolution is performed.
cycle : Integer
Specifies the length for doing cyclic convolution.
dps : Integer
Specifies the number of decimal digits for precision for
performing **FFT** on the sequence.
prime : Integer
Prime modulus of the form `(m 2^k + 1)` to be used for
performing **NTT** on the sequence.
dyadic : bool
Identifies the convolution type as dyadic (*bitwise-XOR*)
convolution, which is performed using **FWHT**.
subset : bool
Identifies the convolution type as subset convolution.
Examples
========
>>> from sympy import convolution, symbols, S, I
>>> u, v, w, x, y, z = symbols('u v w x y z')
>>> convolution([1 + 2*I, 4 + 3*I], [S(5)/4, 6], dps=3)
[1.25 + 2.5*I, 11.0 + 15.8*I, 24.0 + 18.0*I]
>>> convolution([1, 2, 3], [4, 5, 6], cycle=3)
[31, 31, 28]
>>> convolution([111, 777], [888, 444], prime=19*2**10 + 1)
[1283, 19351, 14219]
>>> convolution([111, 777], [888, 444], prime=19*2**10 + 1, cycle=2)
[15502, 19351]
>>> convolution([u, v], [x, y, z], dyadic=True)
[u*x + v*y, u*y + v*x, u*z, v*z]
>>> convolution([u, v], [x, y, z], dyadic=True, cycle=2)
[u*x + u*z + v*y, u*y + v*x + v*z]
>>> convolution([u, v, w], [x, y, z], subset=True)
[u*x, u*y + v*x, u*z + w*x, v*z + w*y]
>>> convolution([u, v, w], [x, y, z], subset=True, cycle=3)
[u*x + v*z + w*y, u*y + v*x, u*z + w*x]
"""
c = as_int(cycle)
if c < 0:
raise ValueError("The length for cyclic convolution "
"must be non-negative")
dyadic = True if dyadic else None
subset = True if subset else None
if sum(x is not None for x in (prime, dps, dyadic, subset)) > 1:
raise TypeError("Ambiguity in determining the type of convolution")
if prime is not None:
ls = convolution_ntt(a, b, prime=prime)
return ls if not c else [sum(ls[i::c]) % prime for i in range(c)]
if dyadic:
ls = convolution_fwht(a, b)
elif subset:
ls = convolution_subset(a, b)
else:
ls = convolution_fft(a, b, dps=dps)
return ls if not c else [sum(ls[i::c]) for i in range(c)]
#----------------------------------------------------------------------------#
# #
# Convolution for Complex domain #
# #
#----------------------------------------------------------------------------#
def convolution_fft(a, b, dps=None):
"""
Performs linear convolution using Fast Fourier Transform.
Parameters
==========
a, b : iterables
The sequences for which convolution is performed.
dps : Integer
Specifies the number of decimal digits for precision.
Examples
========
>>> from sympy import S, I
>>> from sympy.discrete.convolutions import convolution_fft
>>> convolution_fft([2, 3], [4, 5])
[8, 22, 15]
>>> convolution_fft([2, 5], [6, 7, 3])
[12, 44, 41, 15]
>>> convolution_fft([1 + 2*I, 4 + 3*I], [S(5)/4, 6])
[5/4 + 5*I/2, 11 + 63*I/4, 24 + 18*I]
References
==========
.. [1] https://en.wikipedia.org/wiki/Convolution_theorem
.. [2] https://en.wikipedia.org/wiki/Discrete_Fourier_transform_(general%29
"""
a, b = a[:], b[:]
n = m = len(a) + len(b) - 1 # convolution size
if n > 0 and n&(n - 1): # not a power of 2
n = 2**n.bit_length()
# padding with zeros
a += [S.Zero]*(n - len(a))
b += [S.Zero]*(n - len(b))
a, b = fft(a, dps), fft(b, dps)
a = [expand_mul(x*y) for x, y in zip(a, b)]
a = ifft(a, dps)[:m]
return a
#----------------------------------------------------------------------------#
# #
# Convolution for GF(p) #
# #
#----------------------------------------------------------------------------#
def convolution_ntt(a, b, prime):
"""
Performs linear convolution using Number Theoretic Transform.
Parameters
==========
a, b : iterables
The sequences for which convolution is performed.
prime : Integer
Prime modulus of the form `(m 2^k + 1)` to be used for performing
**NTT** on the sequence.
Examples
========
>>> from sympy.discrete.convolutions import convolution_ntt
>>> convolution_ntt([2, 3], [4, 5], prime=19*2**10 + 1)
[8, 22, 15]
>>> convolution_ntt([2, 5], [6, 7, 3], prime=19*2**10 + 1)
[12, 44, 41, 15]
>>> convolution_ntt([333, 555], [222, 666], prime=19*2**10 + 1)
[15555, 14219, 19404]
References
==========
.. [1] https://en.wikipedia.org/wiki/Convolution_theorem
.. [2] https://en.wikipedia.org/wiki/Discrete_Fourier_transform_(general%29
"""
a, b, p = a[:], b[:], as_int(prime)
n = m = len(a) + len(b) - 1 # convolution size
if n > 0 and n&(n - 1): # not a power of 2
n = 2**n.bit_length()
# padding with zeros
a += [0]*(n - len(a))
b += [0]*(n - len(b))
a, b = ntt(a, p), ntt(b, p)
a = [x*y % p for x, y in zip(a, b)]
a = intt(a, p)[:m]
return a
#----------------------------------------------------------------------------#
# #
# Convolution for 2**n-group #
# #
#----------------------------------------------------------------------------#
def convolution_fwht(a, b):
"""
Performs dyadic (*bitwise-XOR*) convolution using Fast Walsh Hadamard
Transform.
The convolution is automatically padded to the right with zeros, as the
*radix-2 FWHT* requires the number of sample points to be a power of 2.
Parameters
==========
a, b : iterables
The sequences for which convolution is performed.
Examples
========
>>> from sympy import symbols, S, I
>>> from sympy.discrete.convolutions import convolution_fwht
>>> u, v, x, y = symbols('u v x y')
>>> convolution_fwht([u, v], [x, y])
[u*x + v*y, u*y + v*x]
>>> convolution_fwht([2, 3], [4, 5])
[23, 22]
>>> convolution_fwht([2, 5 + 4*I, 7], [6*I, 7, 3 + 4*I])
[56 + 68*I, -10 + 30*I, 6 + 50*I, 48 + 32*I]
>>> convolution_fwht([S(33)/7, S(55)/6, S(7)/4], [S(2)/3, 5])
[2057/42, 1870/63, 7/6, 35/4]
References
==========
.. [1] https://www.radioeng.cz/fulltexts/2002/02_03_40_42.pdf
.. [2] https://en.wikipedia.org/wiki/Hadamard_transform
"""
if not a or not b:
return []
a, b = a[:], b[:]
n = max(len(a), len(b))
if n&(n - 1): # not a power of 2
n = 2**n.bit_length()
# padding with zeros
a += [S.Zero]*(n - len(a))
b += [S.Zero]*(n - len(b))
a, b = fwht(a), fwht(b)
a = [expand_mul(x*y) for x, y in zip(a, b)]
a = ifwht(a)
return a
#----------------------------------------------------------------------------#
# #
# Subset Convolution #
# #
#----------------------------------------------------------------------------#
def convolution_subset(a, b):
"""
Performs Subset Convolution of given sequences.
The indices of each argument, considered as bit strings, correspond to
subsets of a finite set.
The sequence is automatically padded to the right with zeros, as the
definition of subset based on bitmasks (indices) requires the size of
sequence to be a power of 2.
Parameters
==========
a, b : iterables
The sequences for which convolution is performed.
Examples
========
>>> from sympy import symbols, S
>>> from sympy.discrete.convolutions import convolution_subset
>>> u, v, x, y, z = symbols('u v x y z')
>>> convolution_subset([u, v], [x, y])
[u*x, u*y + v*x]
>>> convolution_subset([u, v, x], [y, z])
[u*y, u*z + v*y, x*y, x*z]
>>> convolution_subset([1, S(2)/3], [3, 4])
[3, 6]
>>> convolution_subset([1, 3, S(5)/7], [7])
[7, 21, 5, 0]
References
==========
.. [1] https://people.csail.mit.edu/rrw/presentations/subset-conv.pdf
"""
if not a or not b:
return []
if not iterable(a) or not iterable(b):
raise TypeError("Expected a sequence of coefficients for convolution")
a = [sympify(arg) for arg in a]
b = [sympify(arg) for arg in b]
n = max(len(a), len(b))
if n&(n - 1): # not a power of 2
n = 2**n.bit_length()
# padding with zeros
a += [S.Zero]*(n - len(a))
b += [S.Zero]*(n - len(b))
c = [S.Zero]*n
for mask in range(n):
smask = mask
while smask > 0:
c[mask] += expand_mul(a[smask] * b[mask^smask])
smask = (smask - 1)&mask
c[mask] += expand_mul(a[smask] * b[mask^smask])
return c
#----------------------------------------------------------------------------#
# #
# Covering Product #
# #
#----------------------------------------------------------------------------#
def covering_product(a, b):
"""
Returns the covering product of given sequences.
The indices of each argument, considered as bit strings, correspond to
subsets of a finite set.
The covering product of given sequences is a sequence which contains
the sum of products of the elements of the given sequences grouped by
the *bitwise-OR* of the corresponding indices.
The sequence is automatically padded to the right with zeros, as the
definition of subset based on bitmasks (indices) requires the size of
sequence to be a power of 2.
Parameters
==========
a, b : iterables
The sequences for which covering product is to be obtained.
Examples
========
>>> from sympy import symbols, S, I, covering_product
>>> u, v, x, y, z = symbols('u v x y z')
>>> covering_product([u, v], [x, y])
[u*x, u*y + v*x + v*y]
>>> covering_product([u, v, x], [y, z])
[u*y, u*z + v*y + v*z, x*y, x*z]
>>> covering_product([1, S(2)/3], [3, 4 + 5*I])
[3, 26/3 + 25*I/3]
>>> covering_product([1, 3, S(5)/7], [7, 8])
[7, 53, 5, 40/7]
References
==========
.. [1] https://people.csail.mit.edu/rrw/presentations/subset-conv.pdf
"""
if not a or not b:
return []
a, b = a[:], b[:]
n = max(len(a), len(b))
if n&(n - 1): # not a power of 2
n = 2**n.bit_length()
# padding with zeros
a += [S.Zero]*(n - len(a))
b += [S.Zero]*(n - len(b))
a, b = mobius_transform(a), mobius_transform(b)
a = [expand_mul(x*y) for x, y in zip(a, b)]
a = inverse_mobius_transform(a)
return a
#----------------------------------------------------------------------------#
# #
# Intersecting Product #
# #
#----------------------------------------------------------------------------#
def intersecting_product(a, b):
"""
Returns the intersecting product of given sequences.
The indices of each argument, considered as bit strings, correspond to
subsets of a finite set.
The intersecting product of given sequences is the sequence which
contains the sum of products of the elements of the given sequences
grouped by the *bitwise-AND* of the corresponding indices.
The sequence is automatically padded to the right with zeros, as the
definition of subset based on bitmasks (indices) requires the size of
sequence to be a power of 2.
Parameters
==========
a, b : iterables
The sequences for which intersecting product is to be obtained.
Examples
========
>>> from sympy import symbols, S, I, intersecting_product
>>> u, v, x, y, z = symbols('u v x y z')
>>> intersecting_product([u, v], [x, y])
[u*x + u*y + v*x, v*y]
>>> intersecting_product([u, v, x], [y, z])
[u*y + u*z + v*y + x*y + x*z, v*z, 0, 0]
>>> intersecting_product([1, S(2)/3], [3, 4 + 5*I])
[9 + 5*I, 8/3 + 10*I/3]
>>> intersecting_product([1, 3, S(5)/7], [7, 8])
[327/7, 24, 0, 0]
References
==========
.. [1] https://people.csail.mit.edu/rrw/presentations/subset-conv.pdf
"""
if not a or not b:
return []
a, b = a[:], b[:]
n = max(len(a), len(b))
if n&(n - 1): # not a power of 2
n = 2**n.bit_length()
# padding with zeros
a += [S.Zero]*(n - len(a))
b += [S.Zero]*(n - len(b))
a, b = mobius_transform(a, subset=False), mobius_transform(b, subset=False)
a = [expand_mul(x*y) for x, y in zip(a, b)]
a = inverse_mobius_transform(a, subset=False)
return a