ai-content-maker/.venv/Lib/site-packages/sympy/functions/elementary/exponential.py

1292 lines
42 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
from itertools import product
from typing import Tuple as tTuple
from sympy.core.add import Add
from sympy.core.cache import cacheit
from sympy.core.expr import Expr
from sympy.core.function import (Function, ArgumentIndexError, expand_log,
expand_mul, FunctionClass, PoleError, expand_multinomial, expand_complex)
from sympy.core.logic import fuzzy_and, fuzzy_not, fuzzy_or
from sympy.core.mul import Mul
from sympy.core.numbers import Integer, Rational, pi, I, ImaginaryUnit
from sympy.core.parameters import global_parameters
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.core.symbol import Wild, Dummy
from sympy.core.sympify import sympify
from sympy.functions.combinatorial.factorials import factorial
from sympy.functions.elementary.complexes import arg, unpolarify, im, re, Abs
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.ntheory import multiplicity, perfect_power
from sympy.ntheory.factor_ import factorint
# NOTE IMPORTANT
# The series expansion code in this file is an important part of the gruntz
# algorithm for determining limits. _eval_nseries has to return a generalized
# power series with coefficients in C(log(x), log).
# In more detail, the result of _eval_nseries(self, x, n) must be
# c_0*x**e_0 + ... (finitely many terms)
# where e_i are numbers (not necessarily integers) and c_i involve only
# numbers, the function log, and log(x). [This also means it must not contain
# log(x(1+p)), this *has* to be expanded to log(x)+log(1+p) if x.is_positive and
# p.is_positive.]
class ExpBase(Function):
unbranched = True
_singularities = (S.ComplexInfinity,)
@property
def kind(self):
return self.exp.kind
def inverse(self, argindex=1):
"""
Returns the inverse function of ``exp(x)``.
"""
return log
def as_numer_denom(self):
"""
Returns this with a positive exponent as a 2-tuple (a fraction).
Examples
========
>>> from sympy import exp
>>> from sympy.abc import x
>>> exp(-x).as_numer_denom()
(1, exp(x))
>>> exp(x).as_numer_denom()
(exp(x), 1)
"""
# this should be the same as Pow.as_numer_denom wrt
# exponent handling
exp = self.exp
neg_exp = exp.is_negative
if not neg_exp and not (-exp).is_negative:
neg_exp = exp.could_extract_minus_sign()
if neg_exp:
return S.One, self.func(-exp)
return self, S.One
@property
def exp(self):
"""
Returns the exponent of the function.
"""
return self.args[0]
def as_base_exp(self):
"""
Returns the 2-tuple (base, exponent).
"""
return self.func(1), Mul(*self.args)
def _eval_adjoint(self):
return self.func(self.exp.adjoint())
def _eval_conjugate(self):
return self.func(self.exp.conjugate())
def _eval_transpose(self):
return self.func(self.exp.transpose())
def _eval_is_finite(self):
arg = self.exp
if arg.is_infinite:
if arg.is_extended_negative:
return True
if arg.is_extended_positive:
return False
if arg.is_finite:
return True
def _eval_is_rational(self):
s = self.func(*self.args)
if s.func == self.func:
z = s.exp.is_zero
if z:
return True
elif s.exp.is_rational and fuzzy_not(z):
return False
else:
return s.is_rational
def _eval_is_zero(self):
return self.exp is S.NegativeInfinity
def _eval_power(self, other):
"""exp(arg)**e -> exp(arg*e) if assumptions allow it.
"""
b, e = self.as_base_exp()
return Pow._eval_power(Pow(b, e, evaluate=False), other)
def _eval_expand_power_exp(self, **hints):
from sympy.concrete.products import Product
from sympy.concrete.summations import Sum
arg = self.args[0]
if arg.is_Add and arg.is_commutative:
return Mul.fromiter(self.func(x) for x in arg.args)
elif isinstance(arg, Sum) and arg.is_commutative:
return Product(self.func(arg.function), *arg.limits)
return self.func(arg)
class exp_polar(ExpBase):
r"""
Represent a *polar number* (see g-function Sphinx documentation).
Explanation
===========
``exp_polar`` represents the function
`Exp: \mathbb{C} \rightarrow \mathcal{S}`, sending the complex number
`z = a + bi` to the polar number `r = exp(a), \theta = b`. It is one of
the main functions to construct polar numbers.
Examples
========
>>> from sympy import exp_polar, pi, I, exp
The main difference is that polar numbers do not "wrap around" at `2 \pi`:
>>> exp(2*pi*I)
1
>>> exp_polar(2*pi*I)
exp_polar(2*I*pi)
apart from that they behave mostly like classical complex numbers:
>>> exp_polar(2)*exp_polar(3)
exp_polar(5)
See Also
========
sympy.simplify.powsimp.powsimp
polar_lift
periodic_argument
principal_branch
"""
is_polar = True
is_comparable = False # cannot be evalf'd
def _eval_Abs(self): # Abs is never a polar number
return exp(re(self.args[0]))
def _eval_evalf(self, prec):
""" Careful! any evalf of polar numbers is flaky """
i = im(self.args[0])
try:
bad = (i <= -pi or i > pi)
except TypeError:
bad = True
if bad:
return self # cannot evalf for this argument
res = exp(self.args[0])._eval_evalf(prec)
if i > 0 and im(res) < 0:
# i ~ pi, but exp(I*i) evaluated to argument slightly bigger than pi
return re(res)
return res
def _eval_power(self, other):
return self.func(self.args[0]*other)
def _eval_is_extended_real(self):
if self.args[0].is_extended_real:
return True
def as_base_exp(self):
# XXX exp_polar(0) is special!
if self.args[0] == 0:
return self, S.One
return ExpBase.as_base_exp(self)
class ExpMeta(FunctionClass):
def __instancecheck__(cls, instance):
if exp in instance.__class__.__mro__:
return True
return isinstance(instance, Pow) and instance.base is S.Exp1
class exp(ExpBase, metaclass=ExpMeta):
"""
The exponential function, :math:`e^x`.
Examples
========
>>> from sympy import exp, I, pi
>>> from sympy.abc import x
>>> exp(x)
exp(x)
>>> exp(x).diff(x)
exp(x)
>>> exp(I*pi)
-1
Parameters
==========
arg : Expr
See Also
========
log
"""
def fdiff(self, argindex=1):
"""
Returns the first derivative of this function.
"""
if argindex == 1:
return self
else:
raise ArgumentIndexError(self, argindex)
def _eval_refine(self, assumptions):
from sympy.assumptions import ask, Q
arg = self.args[0]
if arg.is_Mul:
Ioo = I*S.Infinity
if arg in [Ioo, -Ioo]:
return S.NaN
coeff = arg.as_coefficient(pi*I)
if coeff:
if ask(Q.integer(2*coeff)):
if ask(Q.even(coeff)):
return S.One
elif ask(Q.odd(coeff)):
return S.NegativeOne
elif ask(Q.even(coeff + S.Half)):
return -I
elif ask(Q.odd(coeff + S.Half)):
return I
@classmethod
def eval(cls, arg):
from sympy.calculus import AccumBounds
from sympy.matrices.matrices import MatrixBase
from sympy.sets.setexpr import SetExpr
from sympy.simplify.simplify import logcombine
if isinstance(arg, MatrixBase):
return arg.exp()
elif global_parameters.exp_is_pow:
return Pow(S.Exp1, arg)
elif arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg.is_zero:
return S.One
elif arg is S.One:
return S.Exp1
elif arg is S.Infinity:
return S.Infinity
elif arg is S.NegativeInfinity:
return S.Zero
elif arg is S.ComplexInfinity:
return S.NaN
elif isinstance(arg, log):
return arg.args[0]
elif isinstance(arg, AccumBounds):
return AccumBounds(exp(arg.min), exp(arg.max))
elif isinstance(arg, SetExpr):
return arg._eval_func(cls)
elif arg.is_Mul:
coeff = arg.as_coefficient(pi*I)
if coeff:
if (2*coeff).is_integer:
if coeff.is_even:
return S.One
elif coeff.is_odd:
return S.NegativeOne
elif (coeff + S.Half).is_even:
return -I
elif (coeff + S.Half).is_odd:
return I
elif coeff.is_Rational:
ncoeff = coeff % 2 # restrict to [0, 2pi)
if ncoeff > 1: # restrict to (-pi, pi]
ncoeff -= 2
if ncoeff != coeff:
return cls(ncoeff*pi*I)
# Warning: code in risch.py will be very sensitive to changes
# in this (see DifferentialExtension).
# look for a single log factor
coeff, terms = arg.as_coeff_Mul()
# but it can't be multiplied by oo
if coeff in [S.NegativeInfinity, S.Infinity]:
if terms.is_number:
if coeff is S.NegativeInfinity:
terms = -terms
if re(terms).is_zero and terms is not S.Zero:
return S.NaN
if re(terms).is_positive and im(terms) is not S.Zero:
return S.ComplexInfinity
if re(terms).is_negative:
return S.Zero
return None
coeffs, log_term = [coeff], None
for term in Mul.make_args(terms):
term_ = logcombine(term)
if isinstance(term_, log):
if log_term is None:
log_term = term_.args[0]
else:
return None
elif term.is_comparable:
coeffs.append(term)
else:
return None
return log_term**Mul(*coeffs) if log_term else None
elif arg.is_Add:
out = []
add = []
argchanged = False
for a in arg.args:
if a is S.One:
add.append(a)
continue
newa = cls(a)
if isinstance(newa, cls):
if newa.args[0] != a:
add.append(newa.args[0])
argchanged = True
else:
add.append(a)
else:
out.append(newa)
if out or argchanged:
return Mul(*out)*cls(Add(*add), evaluate=False)
if arg.is_zero:
return S.One
@property
def base(self):
"""
Returns the base of the exponential function.
"""
return S.Exp1
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
"""
Calculates the next term in the Taylor series expansion.
"""
if n < 0:
return S.Zero
if n == 0:
return S.One
x = sympify(x)
if previous_terms:
p = previous_terms[-1]
if p is not None:
return p * x / n
return x**n/factorial(n)
def as_real_imag(self, deep=True, **hints):
"""
Returns this function as a 2-tuple representing a complex number.
Examples
========
>>> from sympy import exp, I
>>> from sympy.abc import x
>>> exp(x).as_real_imag()
(exp(re(x))*cos(im(x)), exp(re(x))*sin(im(x)))
>>> exp(1).as_real_imag()
(E, 0)
>>> exp(I).as_real_imag()
(cos(1), sin(1))
>>> exp(1+I).as_real_imag()
(E*cos(1), E*sin(1))
See Also
========
sympy.functions.elementary.complexes.re
sympy.functions.elementary.complexes.im
"""
from sympy.functions.elementary.trigonometric import cos, sin
re, im = self.args[0].as_real_imag()
if deep:
re = re.expand(deep, **hints)
im = im.expand(deep, **hints)
cos, sin = cos(im), sin(im)
return (exp(re)*cos, exp(re)*sin)
def _eval_subs(self, old, new):
# keep processing of power-like args centralized in Pow
if old.is_Pow: # handle (exp(3*log(x))).subs(x**2, z) -> z**(3/2)
old = exp(old.exp*log(old.base))
elif old is S.Exp1 and new.is_Function:
old = exp
if isinstance(old, exp) or old is S.Exp1:
f = lambda a: Pow(*a.as_base_exp(), evaluate=False) if (
a.is_Pow or isinstance(a, exp)) else a
return Pow._eval_subs(f(self), f(old), new)
if old is exp and not new.is_Function:
return new**self.exp._subs(old, new)
return Function._eval_subs(self, old, new)
def _eval_is_extended_real(self):
if self.args[0].is_extended_real:
return True
elif self.args[0].is_imaginary:
arg2 = -S(2) * I * self.args[0] / pi
return arg2.is_even
def _eval_is_complex(self):
def complex_extended_negative(arg):
yield arg.is_complex
yield arg.is_extended_negative
return fuzzy_or(complex_extended_negative(self.args[0]))
def _eval_is_algebraic(self):
if (self.exp / pi / I).is_rational:
return True
if fuzzy_not(self.exp.is_zero):
if self.exp.is_algebraic:
return False
elif (self.exp / pi).is_rational:
return False
def _eval_is_extended_positive(self):
if self.exp.is_extended_real:
return self.args[0] is not S.NegativeInfinity
elif self.exp.is_imaginary:
arg2 = -I * self.args[0] / pi
return arg2.is_even
def _eval_nseries(self, x, n, logx, cdir=0):
# NOTE Please see the comment at the beginning of this file, labelled
# IMPORTANT.
from sympy.functions.elementary.complexes import sign
from sympy.functions.elementary.integers import ceiling
from sympy.series.limits import limit
from sympy.series.order import Order
from sympy.simplify.powsimp import powsimp
arg = self.exp
arg_series = arg._eval_nseries(x, n=n, logx=logx)
if arg_series.is_Order:
return 1 + arg_series
arg0 = limit(arg_series.removeO(), x, 0)
if arg0 is S.NegativeInfinity:
return Order(x**n, x)
if arg0 is S.Infinity:
return self
# checking for indecisiveness/ sign terms in arg0
if any(isinstance(arg, (sign, ImaginaryUnit)) for arg in arg0.args):
return self
t = Dummy("t")
nterms = n
try:
cf = Order(arg.as_leading_term(x, logx=logx), x).getn()
except (NotImplementedError, PoleError):
cf = 0
if cf and cf > 0:
nterms = ceiling(n/cf)
exp_series = exp(t)._taylor(t, nterms)
r = exp(arg0)*exp_series.subs(t, arg_series - arg0)
rep = {logx: log(x)} if logx is not None else {}
if r.subs(rep) == self:
return r
if cf and cf > 1:
r += Order((arg_series - arg0)**n, x)/x**((cf-1)*n)
else:
r += Order((arg_series - arg0)**n, x)
r = r.expand()
r = powsimp(r, deep=True, combine='exp')
# powsimp may introduce unexpanded (-1)**Rational; see PR #17201
simplerat = lambda x: x.is_Rational and x.q in [3, 4, 6]
w = Wild('w', properties=[simplerat])
r = r.replace(S.NegativeOne**w, expand_complex(S.NegativeOne**w))
return r
def _taylor(self, x, n):
l = []
g = None
for i in range(n):
g = self.taylor_term(i, self.args[0], g)
g = g.nseries(x, n=n)
l.append(g.removeO())
return Add(*l)
def _eval_as_leading_term(self, x, logx=None, cdir=0):
from sympy.calculus.util import AccumBounds
arg = self.args[0].cancel().as_leading_term(x, logx=logx)
arg0 = arg.subs(x, 0)
if arg is S.NaN:
return S.NaN
if isinstance(arg0, AccumBounds):
# This check addresses a corner case involving AccumBounds.
# if isinstance(arg, AccumBounds) is True, then arg0 can either be 0,
# AccumBounds(-oo, 0) or AccumBounds(-oo, oo).
# Check out function: test_issue_18473() in test_exponential.py and
# test_limits.py for more information.
if re(cdir) < S.Zero:
return exp(-arg0)
return exp(arg0)
if arg0 is S.NaN:
arg0 = arg.limit(x, 0)
if arg0.is_infinite is False:
return exp(arg0)
raise PoleError("Cannot expand %s around 0" % (self))
def _eval_rewrite_as_sin(self, arg, **kwargs):
from sympy.functions.elementary.trigonometric import sin
return sin(I*arg + pi/2) - I*sin(I*arg)
def _eval_rewrite_as_cos(self, arg, **kwargs):
from sympy.functions.elementary.trigonometric import cos
return cos(I*arg) + I*cos(I*arg + pi/2)
def _eval_rewrite_as_tanh(self, arg, **kwargs):
from sympy.functions.elementary.hyperbolic import tanh
return (1 + tanh(arg/2))/(1 - tanh(arg/2))
def _eval_rewrite_as_sqrt(self, arg, **kwargs):
from sympy.functions.elementary.trigonometric import sin, cos
if arg.is_Mul:
coeff = arg.coeff(pi*I)
if coeff and coeff.is_number:
cosine, sine = cos(pi*coeff), sin(pi*coeff)
if not isinstance(cosine, cos) and not isinstance (sine, sin):
return cosine + I*sine
def _eval_rewrite_as_Pow(self, arg, **kwargs):
if arg.is_Mul:
logs = [a for a in arg.args if isinstance(a, log) and len(a.args) == 1]
if logs:
return Pow(logs[0].args[0], arg.coeff(logs[0]))
def match_real_imag(expr):
r"""
Try to match expr with $a + Ib$ for real $a$ and $b$.
``match_real_imag`` returns a tuple containing the real and imaginary
parts of expr or ``(None, None)`` if direct matching is not possible. Contrary
to :func:`~.re()`, :func:`~.im()``, and ``as_real_imag()``, this helper will not force things
by returning expressions themselves containing ``re()`` or ``im()`` and it
does not expand its argument either.
"""
r_, i_ = expr.as_independent(I, as_Add=True)
if i_ == 0 and r_.is_real:
return (r_, i_)
i_ = i_.as_coefficient(I)
if i_ and i_.is_real and r_.is_real:
return (r_, i_)
else:
return (None, None) # simpler to check for than None
class log(Function):
r"""
The natural logarithm function `\ln(x)` or `\log(x)`.
Explanation
===========
Logarithms are taken with the natural base, `e`. To get
a logarithm of a different base ``b``, use ``log(x, b)``,
which is essentially short-hand for ``log(x)/log(b)``.
``log`` represents the principal branch of the natural
logarithm. As such it has a branch cut along the negative
real axis and returns values having a complex argument in
`(-\pi, \pi]`.
Examples
========
>>> from sympy import log, sqrt, S, I
>>> log(8, 2)
3
>>> log(S(8)/3, 2)
-log(3)/log(2) + 3
>>> log(-1 + I*sqrt(3))
log(2) + 2*I*pi/3
See Also
========
exp
"""
args: tTuple[Expr]
_singularities = (S.Zero, S.ComplexInfinity)
def fdiff(self, argindex=1):
"""
Returns the first derivative of the function.
"""
if argindex == 1:
return 1/self.args[0]
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
r"""
Returns `e^x`, the inverse function of `\log(x)`.
"""
return exp
@classmethod
def eval(cls, arg, base=None):
from sympy.calculus import AccumBounds
from sympy.sets.setexpr import SetExpr
arg = sympify(arg)
if base is not None:
base = sympify(base)
if base == 1:
if arg == 1:
return S.NaN
else:
return S.ComplexInfinity
try:
# handle extraction of powers of the base now
# or else expand_log in Mul would have to handle this
n = multiplicity(base, arg)
if n:
return n + log(arg / base**n) / log(base)
else:
return log(arg)/log(base)
except ValueError:
pass
if base is not S.Exp1:
return cls(arg)/cls(base)
else:
return cls(arg)
if arg.is_Number:
if arg.is_zero:
return S.ComplexInfinity
elif arg is S.One:
return S.Zero
elif arg is S.Infinity:
return S.Infinity
elif arg is S.NegativeInfinity:
return S.Infinity
elif arg is S.NaN:
return S.NaN
elif arg.is_Rational and arg.p == 1:
return -cls(arg.q)
if arg.is_Pow and arg.base is S.Exp1 and arg.exp.is_extended_real:
return arg.exp
if isinstance(arg, exp) and arg.exp.is_extended_real:
return arg.exp
elif isinstance(arg, exp) and arg.exp.is_number:
r_, i_ = match_real_imag(arg.exp)
if i_ and i_.is_comparable:
i_ %= 2*pi
if i_ > pi:
i_ -= 2*pi
return r_ + expand_mul(i_ * I, deep=False)
elif isinstance(arg, exp_polar):
return unpolarify(arg.exp)
elif isinstance(arg, AccumBounds):
if arg.min.is_positive:
return AccumBounds(log(arg.min), log(arg.max))
elif arg.min.is_zero:
return AccumBounds(S.NegativeInfinity, log(arg.max))
else:
return S.NaN
elif isinstance(arg, SetExpr):
return arg._eval_func(cls)
if arg.is_number:
if arg.is_negative:
return pi * I + cls(-arg)
elif arg is S.ComplexInfinity:
return S.ComplexInfinity
elif arg is S.Exp1:
return S.One
if arg.is_zero:
return S.ComplexInfinity
# don't autoexpand Pow or Mul (see the issue 3351):
if not arg.is_Add:
coeff = arg.as_coefficient(I)
if coeff is not None:
if coeff is S.Infinity:
return S.Infinity
elif coeff is S.NegativeInfinity:
return S.Infinity
elif coeff.is_Rational:
if coeff.is_nonnegative:
return pi * I * S.Half + cls(coeff)
else:
return -pi * I * S.Half + cls(-coeff)
if arg.is_number and arg.is_algebraic:
# Match arg = coeff*(r_ + i_*I) with coeff>0, r_ and i_ real.
coeff, arg_ = arg.as_independent(I, as_Add=False)
if coeff.is_negative:
coeff *= -1
arg_ *= -1
arg_ = expand_mul(arg_, deep=False)
r_, i_ = arg_.as_independent(I, as_Add=True)
i_ = i_.as_coefficient(I)
if coeff.is_real and i_ and i_.is_real and r_.is_real:
if r_.is_zero:
if i_.is_positive:
return pi * I * S.Half + cls(coeff * i_)
elif i_.is_negative:
return -pi * I * S.Half + cls(coeff * -i_)
else:
from sympy.simplify import ratsimp
# Check for arguments involving rational multiples of pi
t = (i_/r_).cancel()
t1 = (-t).cancel()
atan_table = _log_atan_table()
if t in atan_table:
modulus = ratsimp(coeff * Abs(arg_))
if r_.is_positive:
return cls(modulus) + I * atan_table[t]
else:
return cls(modulus) + I * (atan_table[t] - pi)
elif t1 in atan_table:
modulus = ratsimp(coeff * Abs(arg_))
if r_.is_positive:
return cls(modulus) + I * (-atan_table[t1])
else:
return cls(modulus) + I * (pi - atan_table[t1])
def as_base_exp(self):
"""
Returns this function in the form (base, exponent).
"""
return self, S.One
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms): # of log(1+x)
r"""
Returns the next term in the Taylor series expansion of `\log(1+x)`.
"""
from sympy.simplify.powsimp import powsimp
if n < 0:
return S.Zero
x = sympify(x)
if n == 0:
return x
if previous_terms:
p = previous_terms[-1]
if p is not None:
return powsimp((-n) * p * x / (n + 1), deep=True, combine='exp')
return (1 - 2*(n % 2)) * x**(n + 1)/(n + 1)
def _eval_expand_log(self, deep=True, **hints):
from sympy.concrete import Sum, Product
force = hints.get('force', False)
factor = hints.get('factor', False)
if (len(self.args) == 2):
return expand_log(self.func(*self.args), deep=deep, force=force)
arg = self.args[0]
if arg.is_Integer:
# remove perfect powers
p = perfect_power(arg)
logarg = None
coeff = 1
if p is not False:
arg, coeff = p
logarg = self.func(arg)
# expand as product of its prime factors if factor=True
if factor:
p = factorint(arg)
if arg not in p.keys():
logarg = sum(n*log(val) for val, n in p.items())
if logarg is not None:
return coeff*logarg
elif arg.is_Rational:
return log(arg.p) - log(arg.q)
elif arg.is_Mul:
expr = []
nonpos = []
for x in arg.args:
if force or x.is_positive or x.is_polar:
a = self.func(x)
if isinstance(a, log):
expr.append(self.func(x)._eval_expand_log(**hints))
else:
expr.append(a)
elif x.is_negative:
a = self.func(-x)
expr.append(a)
nonpos.append(S.NegativeOne)
else:
nonpos.append(x)
return Add(*expr) + log(Mul(*nonpos))
elif arg.is_Pow or isinstance(arg, exp):
if force or (arg.exp.is_extended_real and (arg.base.is_positive or ((arg.exp+1)
.is_positive and (arg.exp-1).is_nonpositive))) or arg.base.is_polar:
b = arg.base
e = arg.exp
a = self.func(b)
if isinstance(a, log):
return unpolarify(e) * a._eval_expand_log(**hints)
else:
return unpolarify(e) * a
elif isinstance(arg, Product):
if force or arg.function.is_positive:
return Sum(log(arg.function), *arg.limits)
return self.func(arg)
def _eval_simplify(self, **kwargs):
from sympy.simplify.simplify import expand_log, simplify, inversecombine
if len(self.args) == 2: # it's unevaluated
return simplify(self.func(*self.args), **kwargs)
expr = self.func(simplify(self.args[0], **kwargs))
if kwargs['inverse']:
expr = inversecombine(expr)
expr = expand_log(expr, deep=True)
return min([expr, self], key=kwargs['measure'])
def as_real_imag(self, deep=True, **hints):
"""
Returns this function as a complex coordinate.
Examples
========
>>> from sympy import I, log
>>> from sympy.abc import x
>>> log(x).as_real_imag()
(log(Abs(x)), arg(x))
>>> log(I).as_real_imag()
(0, pi/2)
>>> log(1 + I).as_real_imag()
(log(sqrt(2)), pi/4)
>>> log(I*x).as_real_imag()
(log(Abs(x)), arg(I*x))
"""
sarg = self.args[0]
if deep:
sarg = self.args[0].expand(deep, **hints)
sarg_abs = Abs(sarg)
if sarg_abs == sarg:
return self, S.Zero
sarg_arg = arg(sarg)
if hints.get('log', False): # Expand the log
hints['complex'] = False
return (log(sarg_abs).expand(deep, **hints), sarg_arg)
else:
return log(sarg_abs), sarg_arg
def _eval_is_rational(self):
s = self.func(*self.args)
if s.func == self.func:
if (self.args[0] - 1).is_zero:
return True
if s.args[0].is_rational and fuzzy_not((self.args[0] - 1).is_zero):
return False
else:
return s.is_rational
def _eval_is_algebraic(self):
s = self.func(*self.args)
if s.func == self.func:
if (self.args[0] - 1).is_zero:
return True
elif fuzzy_not((self.args[0] - 1).is_zero):
if self.args[0].is_algebraic:
return False
else:
return s.is_algebraic
def _eval_is_extended_real(self):
return self.args[0].is_extended_positive
def _eval_is_complex(self):
z = self.args[0]
return fuzzy_and([z.is_complex, fuzzy_not(z.is_zero)])
def _eval_is_finite(self):
arg = self.args[0]
if arg.is_zero:
return False
return arg.is_finite
def _eval_is_extended_positive(self):
return (self.args[0] - 1).is_extended_positive
def _eval_is_zero(self):
return (self.args[0] - 1).is_zero
def _eval_is_extended_nonnegative(self):
return (self.args[0] - 1).is_extended_nonnegative
def _eval_nseries(self, x, n, logx, cdir=0):
# NOTE Please see the comment at the beginning of this file, labelled
# IMPORTANT.
from sympy.series.order import Order
from sympy.simplify.simplify import logcombine
from sympy.core.symbol import Dummy
if self.args[0] == x:
return log(x) if logx is None else logx
arg = self.args[0]
t = Dummy('t', positive=True)
if cdir == 0:
cdir = 1
z = arg.subs(x, cdir*t)
k, l = Wild("k"), Wild("l")
r = z.match(k*t**l)
if r is not None:
k, l = r[k], r[l]
if l != 0 and not l.has(t) and not k.has(t):
r = l*log(x) if logx is None else l*logx
r += log(k) - l*log(cdir) # XXX true regardless of assumptions?
return r
def coeff_exp(term, x):
coeff, exp = S.One, S.Zero
for factor in Mul.make_args(term):
if factor.has(x):
base, exp = factor.as_base_exp()
if base != x:
try:
return term.leadterm(x)
except ValueError:
return term, S.Zero
else:
coeff *= factor
return coeff, exp
# TODO new and probably slow
try:
a, b = z.leadterm(t, logx=logx, cdir=1)
except (ValueError, NotImplementedError, PoleError):
s = z._eval_nseries(t, n=n, logx=logx, cdir=1)
while s.is_Order:
n += 1
s = z._eval_nseries(t, n=n, logx=logx, cdir=1)
try:
a, b = s.removeO().leadterm(t, cdir=1)
except ValueError:
a, b = s.removeO().as_leading_term(t, cdir=1), S.Zero
p = (z/(a*t**b) - 1)._eval_nseries(t, n=n, logx=logx, cdir=1)
if p.has(exp):
p = logcombine(p)
if isinstance(p, Order):
n = p.getn()
_, d = coeff_exp(p, t)
logx = log(x) if logx is None else logx
if not d.is_positive:
res = log(a) - b*log(cdir) + b*logx
_res = res
logflags = {"deep": True, "log": True, "mul": False, "power_exp": False,
"power_base": False, "multinomial": False, "basic": False, "force": True,
"factor": False}
expr = self.expand(**logflags)
if (not a.could_extract_minus_sign() and
logx.could_extract_minus_sign()):
_res = _res.subs(-logx, -log(x)).expand(**logflags)
else:
_res = _res.subs(logx, log(x)).expand(**logflags)
if _res == expr:
return res
return res + Order(x**n, x)
def mul(d1, d2):
res = {}
for e1, e2 in product(d1, d2):
ex = e1 + e2
if ex < n:
res[ex] = res.get(ex, S.Zero) + d1[e1]*d2[e2]
return res
pterms = {}
for term in Add.make_args(p.removeO()):
co1, e1 = coeff_exp(term, t)
pterms[e1] = pterms.get(e1, S.Zero) + co1
k = S.One
terms = {}
pk = pterms
while k*d < n:
coeff = -S.NegativeOne**k/k
for ex in pk:
_ = terms.get(ex, S.Zero) + coeff*pk[ex]
terms[ex] = _.nsimplify()
pk = mul(pk, pterms)
k += S.One
res = log(a) - b*log(cdir) + b*logx
for ex in terms:
res += terms[ex]*t**(ex)
if a.is_negative and im(z) != 0:
from sympy.functions.special.delta_functions import Heaviside
for i, term in enumerate(z.lseries(t)):
if not term.is_real or i == 5:
break
if i < 5:
coeff, _ = term.as_coeff_exponent(t)
res += -2*I*pi*Heaviside(-im(coeff), 0)
res = res.subs(t, x/cdir)
return res + Order(x**n, x)
def _eval_as_leading_term(self, x, logx=None, cdir=0):
# NOTE
# Refer https://github.com/sympy/sympy/pull/23592 for more information
# on each of the following steps involved in this method.
arg0 = self.args[0].together()
# STEP 1
t = Dummy('t', positive=True)
if cdir == 0:
cdir = 1
z = arg0.subs(x, cdir*t)
# STEP 2
try:
c, e = z.leadterm(t, logx=logx, cdir=1)
except ValueError:
arg = arg0.as_leading_term(x, logx=logx, cdir=cdir)
return log(arg)
if c.has(t):
c = c.subs(t, x/cdir)
if e != 0:
raise PoleError("Cannot expand %s around 0" % (self))
return log(c)
# STEP 3
if c == S.One and e == S.Zero:
return (arg0 - S.One).as_leading_term(x, logx=logx)
# STEP 4
res = log(c) - e*log(cdir)
logx = log(x) if logx is None else logx
res += e*logx
# STEP 5
if c.is_negative and im(z) != 0:
from sympy.functions.special.delta_functions import Heaviside
for i, term in enumerate(z.lseries(t)):
if not term.is_real or i == 5:
break
if i < 5:
coeff, _ = term.as_coeff_exponent(t)
res += -2*I*pi*Heaviside(-im(coeff), 0)
return res
class LambertW(Function):
r"""
The Lambert W function $W(z)$ is defined as the inverse
function of $w \exp(w)$ [1]_.
Explanation
===========
In other words, the value of $W(z)$ is such that $z = W(z) \exp(W(z))$
for any complex number $z$. The Lambert W function is a multivalued
function with infinitely many branches $W_k(z)$, indexed by
$k \in \mathbb{Z}$. Each branch gives a different solution $w$
of the equation $z = w \exp(w)$.
The Lambert W function has two partially real branches: the
principal branch ($k = 0$) is real for real $z > -1/e$, and the
$k = -1$ branch is real for $-1/e < z < 0$. All branches except
$k = 0$ have a logarithmic singularity at $z = 0$.
Examples
========
>>> from sympy import LambertW
>>> LambertW(1.2)
0.635564016364870
>>> LambertW(1.2, -1).n()
-1.34747534407696 - 4.41624341514535*I
>>> LambertW(-1).is_real
False
References
==========
.. [1] https://en.wikipedia.org/wiki/Lambert_W_function
"""
_singularities = (-Pow(S.Exp1, -1, evaluate=False), S.ComplexInfinity)
@classmethod
def eval(cls, x, k=None):
if k == S.Zero:
return cls(x)
elif k is None:
k = S.Zero
if k.is_zero:
if x.is_zero:
return S.Zero
if x is S.Exp1:
return S.One
if x == -1/S.Exp1:
return S.NegativeOne
if x == -log(2)/2:
return -log(2)
if x == 2*log(2):
return log(2)
if x == -pi/2:
return I*pi/2
if x == exp(1 + S.Exp1):
return S.Exp1
if x is S.Infinity:
return S.Infinity
if x.is_zero:
return S.Zero
if fuzzy_not(k.is_zero):
if x.is_zero:
return S.NegativeInfinity
if k is S.NegativeOne:
if x == -pi/2:
return -I*pi/2
elif x == -1/S.Exp1:
return S.NegativeOne
elif x == -2*exp(-2):
return -Integer(2)
def fdiff(self, argindex=1):
"""
Return the first derivative of this function.
"""
x = self.args[0]
if len(self.args) == 1:
if argindex == 1:
return LambertW(x)/(x*(1 + LambertW(x)))
else:
k = self.args[1]
if argindex == 1:
return LambertW(x, k)/(x*(1 + LambertW(x, k)))
raise ArgumentIndexError(self, argindex)
def _eval_is_extended_real(self):
x = self.args[0]
if len(self.args) == 1:
k = S.Zero
else:
k = self.args[1]
if k.is_zero:
if (x + 1/S.Exp1).is_positive:
return True
elif (x + 1/S.Exp1).is_nonpositive:
return False
elif (k + 1).is_zero:
if x.is_negative and (x + 1/S.Exp1).is_positive:
return True
elif x.is_nonpositive or (x + 1/S.Exp1).is_nonnegative:
return False
elif fuzzy_not(k.is_zero) and fuzzy_not((k + 1).is_zero):
if x.is_extended_real:
return False
def _eval_is_finite(self):
return self.args[0].is_finite
def _eval_is_algebraic(self):
s = self.func(*self.args)
if s.func == self.func:
if fuzzy_not(self.args[0].is_zero) and self.args[0].is_algebraic:
return False
else:
return s.is_algebraic
def _eval_as_leading_term(self, x, logx=None, cdir=0):
if len(self.args) == 1:
arg = self.args[0]
arg0 = arg.subs(x, 0).cancel()
if not arg0.is_zero:
return self.func(arg0)
return arg.as_leading_term(x)
def _eval_nseries(self, x, n, logx, cdir=0):
if len(self.args) == 1:
from sympy.functions.elementary.integers import ceiling
from sympy.series.order import Order
arg = self.args[0].nseries(x, n=n, logx=logx)
lt = arg.as_leading_term(x, logx=logx)
lte = 1
if lt.is_Pow:
lte = lt.exp
if ceiling(n/lte) >= 1:
s = Add(*[(-S.One)**(k - 1)*Integer(k)**(k - 2)/
factorial(k - 1)*arg**k for k in range(1, ceiling(n/lte))])
s = expand_multinomial(s)
else:
s = S.Zero
return s + Order(x**n, x)
return super()._eval_nseries(x, n, logx)
def _eval_is_zero(self):
x = self.args[0]
if len(self.args) == 1:
return x.is_zero
else:
return fuzzy_and([x.is_zero, self.args[1].is_zero])
@cacheit
def _log_atan_table():
return {
# first quadrant only
sqrt(3): pi / 3,
1: pi / 4,
sqrt(5 - 2 * sqrt(5)): pi / 5,
sqrt(2) * sqrt(5 - sqrt(5)) / (1 + sqrt(5)): pi / 5,
sqrt(5 + 2 * sqrt(5)): pi * Rational(2, 5),
sqrt(2) * sqrt(sqrt(5) + 5) / (-1 + sqrt(5)): pi * Rational(2, 5),
sqrt(3) / 3: pi / 6,
sqrt(2) - 1: pi / 8,
sqrt(2 - sqrt(2)) / sqrt(sqrt(2) + 2): pi / 8,
sqrt(2) + 1: pi * Rational(3, 8),
sqrt(sqrt(2) + 2) / sqrt(2 - sqrt(2)): pi * Rational(3, 8),
sqrt(1 - 2 * sqrt(5) / 5): pi / 10,
(-sqrt(2) + sqrt(10)) / (2 * sqrt(sqrt(5) + 5)): pi / 10,
sqrt(1 + 2 * sqrt(5) / 5): pi * Rational(3, 10),
(sqrt(2) + sqrt(10)) / (2 * sqrt(5 - sqrt(5))): pi * Rational(3, 10),
2 - sqrt(3): pi / 12,
(-1 + sqrt(3)) / (1 + sqrt(3)): pi / 12,
2 + sqrt(3): pi * Rational(5, 12),
(1 + sqrt(3)) / (-1 + sqrt(3)): pi * Rational(5, 12)
}