2742 lines
75 KiB
Python
2742 lines
75 KiB
Python
|
""" This module contains various functions that are special cases
|
||
|
of incomplete gamma functions. It should probably be renamed. """
|
||
|
|
||
|
from sympy.core import EulerGamma # Must be imported from core, not core.numbers
|
||
|
from sympy.core.add import Add
|
||
|
from sympy.core.cache import cacheit
|
||
|
from sympy.core.function import Function, ArgumentIndexError, expand_mul
|
||
|
from sympy.core.numbers import I, pi, Rational
|
||
|
from sympy.core.relational import is_eq
|
||
|
from sympy.core.power import Pow
|
||
|
from sympy.core.singleton import S
|
||
|
from sympy.core.symbol import Symbol
|
||
|
from sympy.core.sympify import sympify
|
||
|
from sympy.functions.combinatorial.factorials import factorial, factorial2, RisingFactorial
|
||
|
from sympy.functions.elementary.complexes import polar_lift, re, unpolarify
|
||
|
from sympy.functions.elementary.integers import ceiling, floor
|
||
|
from sympy.functions.elementary.miscellaneous import sqrt, root
|
||
|
from sympy.functions.elementary.exponential import exp, log, exp_polar
|
||
|
from sympy.functions.elementary.hyperbolic import cosh, sinh
|
||
|
from sympy.functions.elementary.trigonometric import cos, sin, sinc
|
||
|
from sympy.functions.special.hyper import hyper, meijerg
|
||
|
|
||
|
# TODO series expansions
|
||
|
# TODO see the "Note:" in Ei
|
||
|
|
||
|
# Helper function
|
||
|
def real_to_real_as_real_imag(self, deep=True, **hints):
|
||
|
if self.args[0].is_extended_real:
|
||
|
if deep:
|
||
|
hints['complex'] = False
|
||
|
return (self.expand(deep, **hints), S.Zero)
|
||
|
else:
|
||
|
return (self, S.Zero)
|
||
|
if deep:
|
||
|
x, y = self.args[0].expand(deep, **hints).as_real_imag()
|
||
|
else:
|
||
|
x, y = self.args[0].as_real_imag()
|
||
|
re = (self.func(x + I*y) + self.func(x - I*y))/2
|
||
|
im = (self.func(x + I*y) - self.func(x - I*y))/(2*I)
|
||
|
return (re, im)
|
||
|
|
||
|
|
||
|
###############################################################################
|
||
|
################################ ERROR FUNCTION ###############################
|
||
|
###############################################################################
|
||
|
|
||
|
|
||
|
class erf(Function):
|
||
|
r"""
|
||
|
The Gauss error function.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
This function is defined as:
|
||
|
|
||
|
.. math ::
|
||
|
\mathrm{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} \mathrm{d}t.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import I, oo, erf
|
||
|
>>> from sympy.abc import z
|
||
|
|
||
|
Several special values are known:
|
||
|
|
||
|
>>> erf(0)
|
||
|
0
|
||
|
>>> erf(oo)
|
||
|
1
|
||
|
>>> erf(-oo)
|
||
|
-1
|
||
|
>>> erf(I*oo)
|
||
|
oo*I
|
||
|
>>> erf(-I*oo)
|
||
|
-oo*I
|
||
|
|
||
|
In general one can pull out factors of -1 and $I$ from the argument:
|
||
|
|
||
|
>>> erf(-z)
|
||
|
-erf(z)
|
||
|
|
||
|
The error function obeys the mirror symmetry:
|
||
|
|
||
|
>>> from sympy import conjugate
|
||
|
>>> conjugate(erf(z))
|
||
|
erf(conjugate(z))
|
||
|
|
||
|
Differentiation with respect to $z$ is supported:
|
||
|
|
||
|
>>> from sympy import diff
|
||
|
>>> diff(erf(z), z)
|
||
|
2*exp(-z**2)/sqrt(pi)
|
||
|
|
||
|
We can numerically evaluate the error function to arbitrary precision
|
||
|
on the whole complex plane:
|
||
|
|
||
|
>>> erf(4).evalf(30)
|
||
|
0.999999984582742099719981147840
|
||
|
|
||
|
>>> erf(-4*I).evalf(30)
|
||
|
-1296959.73071763923152794095062*I
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
erfc: Complementary error function.
|
||
|
erfi: Imaginary error function.
|
||
|
erf2: Two-argument error function.
|
||
|
erfinv: Inverse error function.
|
||
|
erfcinv: Inverse Complementary error function.
|
||
|
erf2inv: Inverse two-argument error function.
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://en.wikipedia.org/wiki/Error_function
|
||
|
.. [2] https://dlmf.nist.gov/7
|
||
|
.. [3] https://mathworld.wolfram.com/Erf.html
|
||
|
.. [4] https://functions.wolfram.com/GammaBetaErf/Erf
|
||
|
|
||
|
"""
|
||
|
|
||
|
unbranched = True
|
||
|
|
||
|
def fdiff(self, argindex=1):
|
||
|
if argindex == 1:
|
||
|
return 2*exp(-self.args[0]**2)/sqrt(pi)
|
||
|
else:
|
||
|
raise ArgumentIndexError(self, argindex)
|
||
|
|
||
|
|
||
|
def inverse(self, argindex=1):
|
||
|
"""
|
||
|
Returns the inverse of this function.
|
||
|
|
||
|
"""
|
||
|
return erfinv
|
||
|
|
||
|
@classmethod
|
||
|
def eval(cls, arg):
|
||
|
if arg.is_Number:
|
||
|
if arg is S.NaN:
|
||
|
return S.NaN
|
||
|
elif arg is S.Infinity:
|
||
|
return S.One
|
||
|
elif arg is S.NegativeInfinity:
|
||
|
return S.NegativeOne
|
||
|
elif arg.is_zero:
|
||
|
return S.Zero
|
||
|
|
||
|
if isinstance(arg, erfinv):
|
||
|
return arg.args[0]
|
||
|
|
||
|
if isinstance(arg, erfcinv):
|
||
|
return S.One - arg.args[0]
|
||
|
|
||
|
if arg.is_zero:
|
||
|
return S.Zero
|
||
|
|
||
|
# Only happens with unevaluated erf2inv
|
||
|
if isinstance(arg, erf2inv) and arg.args[0].is_zero:
|
||
|
return arg.args[1]
|
||
|
|
||
|
# Try to pull out factors of I
|
||
|
t = arg.extract_multiplicatively(I)
|
||
|
if t in (S.Infinity, S.NegativeInfinity):
|
||
|
return arg
|
||
|
|
||
|
# Try to pull out factors of -1
|
||
|
if arg.could_extract_minus_sign():
|
||
|
return -cls(-arg)
|
||
|
|
||
|
@staticmethod
|
||
|
@cacheit
|
||
|
def taylor_term(n, x, *previous_terms):
|
||
|
if n < 0 or n % 2 == 0:
|
||
|
return S.Zero
|
||
|
else:
|
||
|
x = sympify(x)
|
||
|
k = floor((n - 1)/S(2))
|
||
|
if len(previous_terms) > 2:
|
||
|
return -previous_terms[-2] * x**2 * (n - 2)/(n*k)
|
||
|
else:
|
||
|
return 2*S.NegativeOne**k * x**n/(n*factorial(k)*sqrt(pi))
|
||
|
|
||
|
def _eval_conjugate(self):
|
||
|
return self.func(self.args[0].conjugate())
|
||
|
|
||
|
def _eval_is_real(self):
|
||
|
return self.args[0].is_extended_real
|
||
|
|
||
|
def _eval_is_finite(self):
|
||
|
if self.args[0].is_finite:
|
||
|
return True
|
||
|
else:
|
||
|
return self.args[0].is_extended_real
|
||
|
|
||
|
def _eval_is_zero(self):
|
||
|
return self.args[0].is_zero
|
||
|
|
||
|
def _eval_rewrite_as_uppergamma(self, z, **kwargs):
|
||
|
from sympy.functions.special.gamma_functions import uppergamma
|
||
|
return sqrt(z**2)/z*(S.One - uppergamma(S.Half, z**2)/sqrt(pi))
|
||
|
|
||
|
def _eval_rewrite_as_fresnels(self, z, **kwargs):
|
||
|
arg = (S.One - I)*z/sqrt(pi)
|
||
|
return (S.One + I)*(fresnelc(arg) - I*fresnels(arg))
|
||
|
|
||
|
def _eval_rewrite_as_fresnelc(self, z, **kwargs):
|
||
|
arg = (S.One - I)*z/sqrt(pi)
|
||
|
return (S.One + I)*(fresnelc(arg) - I*fresnels(arg))
|
||
|
|
||
|
def _eval_rewrite_as_meijerg(self, z, **kwargs):
|
||
|
return z/sqrt(pi)*meijerg([S.Half], [], [0], [Rational(-1, 2)], z**2)
|
||
|
|
||
|
def _eval_rewrite_as_hyper(self, z, **kwargs):
|
||
|
return 2*z/sqrt(pi)*hyper([S.Half], [3*S.Half], -z**2)
|
||
|
|
||
|
def _eval_rewrite_as_expint(self, z, **kwargs):
|
||
|
return sqrt(z**2)/z - z*expint(S.Half, z**2)/sqrt(pi)
|
||
|
|
||
|
def _eval_rewrite_as_tractable(self, z, limitvar=None, **kwargs):
|
||
|
from sympy.series.limits import limit
|
||
|
if limitvar:
|
||
|
lim = limit(z, limitvar, S.Infinity)
|
||
|
if lim is S.NegativeInfinity:
|
||
|
return S.NegativeOne + _erfs(-z)*exp(-z**2)
|
||
|
return S.One - _erfs(z)*exp(-z**2)
|
||
|
|
||
|
def _eval_rewrite_as_erfc(self, z, **kwargs):
|
||
|
return S.One - erfc(z)
|
||
|
|
||
|
def _eval_rewrite_as_erfi(self, z, **kwargs):
|
||
|
return -I*erfi(I*z)
|
||
|
|
||
|
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
||
|
arg = self.args[0].as_leading_term(x, logx=logx, cdir=cdir)
|
||
|
arg0 = arg.subs(x, 0)
|
||
|
|
||
|
if arg0 is S.ComplexInfinity:
|
||
|
arg0 = arg.limit(x, 0, dir='-' if cdir == -1 else '+')
|
||
|
if x in arg.free_symbols and arg0.is_zero:
|
||
|
return 2*arg/sqrt(pi)
|
||
|
else:
|
||
|
return self.func(arg0)
|
||
|
|
||
|
def _eval_aseries(self, n, args0, x, logx):
|
||
|
from sympy.series.order import Order
|
||
|
point = args0[0]
|
||
|
|
||
|
if point in [S.Infinity, S.NegativeInfinity]:
|
||
|
z = self.args[0]
|
||
|
|
||
|
try:
|
||
|
_, ex = z.leadterm(x)
|
||
|
except (ValueError, NotImplementedError):
|
||
|
return self
|
||
|
|
||
|
ex = -ex # as x->1/x for aseries
|
||
|
if ex.is_positive:
|
||
|
newn = ceiling(n/ex)
|
||
|
s = [S.NegativeOne**k * factorial2(2*k - 1) / (z**(2*k + 1) * 2**k)
|
||
|
for k in range(newn)] + [Order(1/z**newn, x)]
|
||
|
return S.One - (exp(-z**2)/sqrt(pi)) * Add(*s)
|
||
|
|
||
|
return super(erf, self)._eval_aseries(n, args0, x, logx)
|
||
|
|
||
|
as_real_imag = real_to_real_as_real_imag
|
||
|
|
||
|
|
||
|
class erfc(Function):
|
||
|
r"""
|
||
|
Complementary Error Function.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The function is defined as:
|
||
|
|
||
|
.. math ::
|
||
|
\mathrm{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^\infty e^{-t^2} \mathrm{d}t
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import I, oo, erfc
|
||
|
>>> from sympy.abc import z
|
||
|
|
||
|
Several special values are known:
|
||
|
|
||
|
>>> erfc(0)
|
||
|
1
|
||
|
>>> erfc(oo)
|
||
|
0
|
||
|
>>> erfc(-oo)
|
||
|
2
|
||
|
>>> erfc(I*oo)
|
||
|
-oo*I
|
||
|
>>> erfc(-I*oo)
|
||
|
oo*I
|
||
|
|
||
|
The error function obeys the mirror symmetry:
|
||
|
|
||
|
>>> from sympy import conjugate
|
||
|
>>> conjugate(erfc(z))
|
||
|
erfc(conjugate(z))
|
||
|
|
||
|
Differentiation with respect to $z$ is supported:
|
||
|
|
||
|
>>> from sympy import diff
|
||
|
>>> diff(erfc(z), z)
|
||
|
-2*exp(-z**2)/sqrt(pi)
|
||
|
|
||
|
It also follows
|
||
|
|
||
|
>>> erfc(-z)
|
||
|
2 - erfc(z)
|
||
|
|
||
|
We can numerically evaluate the complementary error function to arbitrary
|
||
|
precision on the whole complex plane:
|
||
|
|
||
|
>>> erfc(4).evalf(30)
|
||
|
0.0000000154172579002800188521596734869
|
||
|
|
||
|
>>> erfc(4*I).evalf(30)
|
||
|
1.0 - 1296959.73071763923152794095062*I
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
erf: Gaussian error function.
|
||
|
erfi: Imaginary error function.
|
||
|
erf2: Two-argument error function.
|
||
|
erfinv: Inverse error function.
|
||
|
erfcinv: Inverse Complementary error function.
|
||
|
erf2inv: Inverse two-argument error function.
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://en.wikipedia.org/wiki/Error_function
|
||
|
.. [2] https://dlmf.nist.gov/7
|
||
|
.. [3] https://mathworld.wolfram.com/Erfc.html
|
||
|
.. [4] https://functions.wolfram.com/GammaBetaErf/Erfc
|
||
|
|
||
|
"""
|
||
|
|
||
|
unbranched = True
|
||
|
|
||
|
def fdiff(self, argindex=1):
|
||
|
if argindex == 1:
|
||
|
return -2*exp(-self.args[0]**2)/sqrt(pi)
|
||
|
else:
|
||
|
raise ArgumentIndexError(self, argindex)
|
||
|
|
||
|
def inverse(self, argindex=1):
|
||
|
"""
|
||
|
Returns the inverse of this function.
|
||
|
|
||
|
"""
|
||
|
return erfcinv
|
||
|
|
||
|
@classmethod
|
||
|
def eval(cls, arg):
|
||
|
if arg.is_Number:
|
||
|
if arg is S.NaN:
|
||
|
return S.NaN
|
||
|
elif arg is S.Infinity:
|
||
|
return S.Zero
|
||
|
elif arg.is_zero:
|
||
|
return S.One
|
||
|
|
||
|
if isinstance(arg, erfinv):
|
||
|
return S.One - arg.args[0]
|
||
|
|
||
|
if isinstance(arg, erfcinv):
|
||
|
return arg.args[0]
|
||
|
|
||
|
if arg.is_zero:
|
||
|
return S.One
|
||
|
|
||
|
# Try to pull out factors of I
|
||
|
t = arg.extract_multiplicatively(I)
|
||
|
if t in (S.Infinity, S.NegativeInfinity):
|
||
|
return -arg
|
||
|
|
||
|
# Try to pull out factors of -1
|
||
|
if arg.could_extract_minus_sign():
|
||
|
return 2 - cls(-arg)
|
||
|
|
||
|
@staticmethod
|
||
|
@cacheit
|
||
|
def taylor_term(n, x, *previous_terms):
|
||
|
if n == 0:
|
||
|
return S.One
|
||
|
elif n < 0 or n % 2 == 0:
|
||
|
return S.Zero
|
||
|
else:
|
||
|
x = sympify(x)
|
||
|
k = floor((n - 1)/S(2))
|
||
|
if len(previous_terms) > 2:
|
||
|
return -previous_terms[-2] * x**2 * (n - 2)/(n*k)
|
||
|
else:
|
||
|
return -2*S.NegativeOne**k * x**n/(n*factorial(k)*sqrt(pi))
|
||
|
|
||
|
def _eval_conjugate(self):
|
||
|
return self.func(self.args[0].conjugate())
|
||
|
|
||
|
def _eval_is_real(self):
|
||
|
return self.args[0].is_extended_real
|
||
|
|
||
|
def _eval_rewrite_as_tractable(self, z, limitvar=None, **kwargs):
|
||
|
return self.rewrite(erf).rewrite("tractable", deep=True, limitvar=limitvar)
|
||
|
|
||
|
def _eval_rewrite_as_erf(self, z, **kwargs):
|
||
|
return S.One - erf(z)
|
||
|
|
||
|
def _eval_rewrite_as_erfi(self, z, **kwargs):
|
||
|
return S.One + I*erfi(I*z)
|
||
|
|
||
|
def _eval_rewrite_as_fresnels(self, z, **kwargs):
|
||
|
arg = (S.One - I)*z/sqrt(pi)
|
||
|
return S.One - (S.One + I)*(fresnelc(arg) - I*fresnels(arg))
|
||
|
|
||
|
def _eval_rewrite_as_fresnelc(self, z, **kwargs):
|
||
|
arg = (S.One-I)*z/sqrt(pi)
|
||
|
return S.One - (S.One + I)*(fresnelc(arg) - I*fresnels(arg))
|
||
|
|
||
|
def _eval_rewrite_as_meijerg(self, z, **kwargs):
|
||
|
return S.One - z/sqrt(pi)*meijerg([S.Half], [], [0], [Rational(-1, 2)], z**2)
|
||
|
|
||
|
def _eval_rewrite_as_hyper(self, z, **kwargs):
|
||
|
return S.One - 2*z/sqrt(pi)*hyper([S.Half], [3*S.Half], -z**2)
|
||
|
|
||
|
def _eval_rewrite_as_uppergamma(self, z, **kwargs):
|
||
|
from sympy.functions.special.gamma_functions import uppergamma
|
||
|
return S.One - sqrt(z**2)/z*(S.One - uppergamma(S.Half, z**2)/sqrt(pi))
|
||
|
|
||
|
def _eval_rewrite_as_expint(self, z, **kwargs):
|
||
|
return S.One - sqrt(z**2)/z + z*expint(S.Half, z**2)/sqrt(pi)
|
||
|
|
||
|
def _eval_expand_func(self, **hints):
|
||
|
return self.rewrite(erf)
|
||
|
|
||
|
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
||
|
arg = self.args[0].as_leading_term(x, logx=logx, cdir=cdir)
|
||
|
arg0 = arg.subs(x, 0)
|
||
|
|
||
|
if arg0 is S.ComplexInfinity:
|
||
|
arg0 = arg.limit(x, 0, dir='-' if cdir == -1 else '+')
|
||
|
if arg0.is_zero:
|
||
|
return S.One
|
||
|
else:
|
||
|
return self.func(arg0)
|
||
|
|
||
|
as_real_imag = real_to_real_as_real_imag
|
||
|
|
||
|
def _eval_aseries(self, n, args0, x, logx):
|
||
|
return S.One - erf(*self.args)._eval_aseries(n, args0, x, logx)
|
||
|
|
||
|
|
||
|
class erfi(Function):
|
||
|
r"""
|
||
|
Imaginary error function.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The function erfi is defined as:
|
||
|
|
||
|
.. math ::
|
||
|
\mathrm{erfi}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{t^2} \mathrm{d}t
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import I, oo, erfi
|
||
|
>>> from sympy.abc import z
|
||
|
|
||
|
Several special values are known:
|
||
|
|
||
|
>>> erfi(0)
|
||
|
0
|
||
|
>>> erfi(oo)
|
||
|
oo
|
||
|
>>> erfi(-oo)
|
||
|
-oo
|
||
|
>>> erfi(I*oo)
|
||
|
I
|
||
|
>>> erfi(-I*oo)
|
||
|
-I
|
||
|
|
||
|
In general one can pull out factors of -1 and $I$ from the argument:
|
||
|
|
||
|
>>> erfi(-z)
|
||
|
-erfi(z)
|
||
|
|
||
|
>>> from sympy import conjugate
|
||
|
>>> conjugate(erfi(z))
|
||
|
erfi(conjugate(z))
|
||
|
|
||
|
Differentiation with respect to $z$ is supported:
|
||
|
|
||
|
>>> from sympy import diff
|
||
|
>>> diff(erfi(z), z)
|
||
|
2*exp(z**2)/sqrt(pi)
|
||
|
|
||
|
We can numerically evaluate the imaginary error function to arbitrary
|
||
|
precision on the whole complex plane:
|
||
|
|
||
|
>>> erfi(2).evalf(30)
|
||
|
18.5648024145755525987042919132
|
||
|
|
||
|
>>> erfi(-2*I).evalf(30)
|
||
|
-0.995322265018952734162069256367*I
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
erf: Gaussian error function.
|
||
|
erfc: Complementary error function.
|
||
|
erf2: Two-argument error function.
|
||
|
erfinv: Inverse error function.
|
||
|
erfcinv: Inverse Complementary error function.
|
||
|
erf2inv: Inverse two-argument error function.
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://en.wikipedia.org/wiki/Error_function
|
||
|
.. [2] https://mathworld.wolfram.com/Erfi.html
|
||
|
.. [3] https://functions.wolfram.com/GammaBetaErf/Erfi
|
||
|
|
||
|
"""
|
||
|
|
||
|
unbranched = True
|
||
|
|
||
|
def fdiff(self, argindex=1):
|
||
|
if argindex == 1:
|
||
|
return 2*exp(self.args[0]**2)/sqrt(pi)
|
||
|
else:
|
||
|
raise ArgumentIndexError(self, argindex)
|
||
|
|
||
|
@classmethod
|
||
|
def eval(cls, z):
|
||
|
if z.is_Number:
|
||
|
if z is S.NaN:
|
||
|
return S.NaN
|
||
|
elif z.is_zero:
|
||
|
return S.Zero
|
||
|
elif z is S.Infinity:
|
||
|
return S.Infinity
|
||
|
|
||
|
if z.is_zero:
|
||
|
return S.Zero
|
||
|
|
||
|
# Try to pull out factors of -1
|
||
|
if z.could_extract_minus_sign():
|
||
|
return -cls(-z)
|
||
|
|
||
|
# Try to pull out factors of I
|
||
|
nz = z.extract_multiplicatively(I)
|
||
|
if nz is not None:
|
||
|
if nz is S.Infinity:
|
||
|
return I
|
||
|
if isinstance(nz, erfinv):
|
||
|
return I*nz.args[0]
|
||
|
if isinstance(nz, erfcinv):
|
||
|
return I*(S.One - nz.args[0])
|
||
|
# Only happens with unevaluated erf2inv
|
||
|
if isinstance(nz, erf2inv) and nz.args[0].is_zero:
|
||
|
return I*nz.args[1]
|
||
|
|
||
|
@staticmethod
|
||
|
@cacheit
|
||
|
def taylor_term(n, x, *previous_terms):
|
||
|
if n < 0 or n % 2 == 0:
|
||
|
return S.Zero
|
||
|
else:
|
||
|
x = sympify(x)
|
||
|
k = floor((n - 1)/S(2))
|
||
|
if len(previous_terms) > 2:
|
||
|
return previous_terms[-2] * x**2 * (n - 2)/(n*k)
|
||
|
else:
|
||
|
return 2 * x**n/(n*factorial(k)*sqrt(pi))
|
||
|
|
||
|
def _eval_conjugate(self):
|
||
|
return self.func(self.args[0].conjugate())
|
||
|
|
||
|
def _eval_is_extended_real(self):
|
||
|
return self.args[0].is_extended_real
|
||
|
|
||
|
def _eval_is_zero(self):
|
||
|
return self.args[0].is_zero
|
||
|
|
||
|
def _eval_rewrite_as_tractable(self, z, limitvar=None, **kwargs):
|
||
|
return self.rewrite(erf).rewrite("tractable", deep=True, limitvar=limitvar)
|
||
|
|
||
|
def _eval_rewrite_as_erf(self, z, **kwargs):
|
||
|
return -I*erf(I*z)
|
||
|
|
||
|
def _eval_rewrite_as_erfc(self, z, **kwargs):
|
||
|
return I*erfc(I*z) - I
|
||
|
|
||
|
def _eval_rewrite_as_fresnels(self, z, **kwargs):
|
||
|
arg = (S.One + I)*z/sqrt(pi)
|
||
|
return (S.One - I)*(fresnelc(arg) - I*fresnels(arg))
|
||
|
|
||
|
def _eval_rewrite_as_fresnelc(self, z, **kwargs):
|
||
|
arg = (S.One + I)*z/sqrt(pi)
|
||
|
return (S.One - I)*(fresnelc(arg) - I*fresnels(arg))
|
||
|
|
||
|
def _eval_rewrite_as_meijerg(self, z, **kwargs):
|
||
|
return z/sqrt(pi)*meijerg([S.Half], [], [0], [Rational(-1, 2)], -z**2)
|
||
|
|
||
|
def _eval_rewrite_as_hyper(self, z, **kwargs):
|
||
|
return 2*z/sqrt(pi)*hyper([S.Half], [3*S.Half], z**2)
|
||
|
|
||
|
def _eval_rewrite_as_uppergamma(self, z, **kwargs):
|
||
|
from sympy.functions.special.gamma_functions import uppergamma
|
||
|
return sqrt(-z**2)/z*(uppergamma(S.Half, -z**2)/sqrt(pi) - S.One)
|
||
|
|
||
|
def _eval_rewrite_as_expint(self, z, **kwargs):
|
||
|
return sqrt(-z**2)/z - z*expint(S.Half, -z**2)/sqrt(pi)
|
||
|
|
||
|
def _eval_expand_func(self, **hints):
|
||
|
return self.rewrite(erf)
|
||
|
|
||
|
as_real_imag = real_to_real_as_real_imag
|
||
|
|
||
|
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
||
|
arg = self.args[0].as_leading_term(x, logx=logx, cdir=cdir)
|
||
|
arg0 = arg.subs(x, 0)
|
||
|
|
||
|
if x in arg.free_symbols and arg0.is_zero:
|
||
|
return 2*arg/sqrt(pi)
|
||
|
elif arg0.is_finite:
|
||
|
return self.func(arg0)
|
||
|
return self.func(arg)
|
||
|
|
||
|
def _eval_aseries(self, n, args0, x, logx):
|
||
|
from sympy.series.order import Order
|
||
|
point = args0[0]
|
||
|
|
||
|
if point is S.Infinity:
|
||
|
z = self.args[0]
|
||
|
s = [factorial2(2*k - 1) / (2**k * z**(2*k + 1))
|
||
|
for k in range(n)] + [Order(1/z**n, x)]
|
||
|
return -I + (exp(z**2)/sqrt(pi)) * Add(*s)
|
||
|
|
||
|
return super(erfi, self)._eval_aseries(n, args0, x, logx)
|
||
|
|
||
|
|
||
|
class erf2(Function):
|
||
|
r"""
|
||
|
Two-argument error function.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
This function is defined as:
|
||
|
|
||
|
.. math ::
|
||
|
\mathrm{erf2}(x, y) = \frac{2}{\sqrt{\pi}} \int_x^y e^{-t^2} \mathrm{d}t
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import oo, erf2
|
||
|
>>> from sympy.abc import x, y
|
||
|
|
||
|
Several special values are known:
|
||
|
|
||
|
>>> erf2(0, 0)
|
||
|
0
|
||
|
>>> erf2(x, x)
|
||
|
0
|
||
|
>>> erf2(x, oo)
|
||
|
1 - erf(x)
|
||
|
>>> erf2(x, -oo)
|
||
|
-erf(x) - 1
|
||
|
>>> erf2(oo, y)
|
||
|
erf(y) - 1
|
||
|
>>> erf2(-oo, y)
|
||
|
erf(y) + 1
|
||
|
|
||
|
In general one can pull out factors of -1:
|
||
|
|
||
|
>>> erf2(-x, -y)
|
||
|
-erf2(x, y)
|
||
|
|
||
|
The error function obeys the mirror symmetry:
|
||
|
|
||
|
>>> from sympy import conjugate
|
||
|
>>> conjugate(erf2(x, y))
|
||
|
erf2(conjugate(x), conjugate(y))
|
||
|
|
||
|
Differentiation with respect to $x$, $y$ is supported:
|
||
|
|
||
|
>>> from sympy import diff
|
||
|
>>> diff(erf2(x, y), x)
|
||
|
-2*exp(-x**2)/sqrt(pi)
|
||
|
>>> diff(erf2(x, y), y)
|
||
|
2*exp(-y**2)/sqrt(pi)
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
erf: Gaussian error function.
|
||
|
erfc: Complementary error function.
|
||
|
erfi: Imaginary error function.
|
||
|
erfinv: Inverse error function.
|
||
|
erfcinv: Inverse Complementary error function.
|
||
|
erf2inv: Inverse two-argument error function.
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://functions.wolfram.com/GammaBetaErf/Erf2/
|
||
|
|
||
|
"""
|
||
|
|
||
|
|
||
|
def fdiff(self, argindex):
|
||
|
x, y = self.args
|
||
|
if argindex == 1:
|
||
|
return -2*exp(-x**2)/sqrt(pi)
|
||
|
elif argindex == 2:
|
||
|
return 2*exp(-y**2)/sqrt(pi)
|
||
|
else:
|
||
|
raise ArgumentIndexError(self, argindex)
|
||
|
|
||
|
@classmethod
|
||
|
def eval(cls, x, y):
|
||
|
chk = (S.Infinity, S.NegativeInfinity, S.Zero)
|
||
|
if x is S.NaN or y is S.NaN:
|
||
|
return S.NaN
|
||
|
elif x == y:
|
||
|
return S.Zero
|
||
|
elif x in chk or y in chk:
|
||
|
return erf(y) - erf(x)
|
||
|
|
||
|
if isinstance(y, erf2inv) and y.args[0] == x:
|
||
|
return y.args[1]
|
||
|
|
||
|
if x.is_zero or y.is_zero or x.is_extended_real and x.is_infinite or \
|
||
|
y.is_extended_real and y.is_infinite:
|
||
|
return erf(y) - erf(x)
|
||
|
|
||
|
#Try to pull out -1 factor
|
||
|
sign_x = x.could_extract_minus_sign()
|
||
|
sign_y = y.could_extract_minus_sign()
|
||
|
if (sign_x and sign_y):
|
||
|
return -cls(-x, -y)
|
||
|
elif (sign_x or sign_y):
|
||
|
return erf(y)-erf(x)
|
||
|
|
||
|
def _eval_conjugate(self):
|
||
|
return self.func(self.args[0].conjugate(), self.args[1].conjugate())
|
||
|
|
||
|
def _eval_is_extended_real(self):
|
||
|
return self.args[0].is_extended_real and self.args[1].is_extended_real
|
||
|
|
||
|
def _eval_rewrite_as_erf(self, x, y, **kwargs):
|
||
|
return erf(y) - erf(x)
|
||
|
|
||
|
def _eval_rewrite_as_erfc(self, x, y, **kwargs):
|
||
|
return erfc(x) - erfc(y)
|
||
|
|
||
|
def _eval_rewrite_as_erfi(self, x, y, **kwargs):
|
||
|
return I*(erfi(I*x)-erfi(I*y))
|
||
|
|
||
|
def _eval_rewrite_as_fresnels(self, x, y, **kwargs):
|
||
|
return erf(y).rewrite(fresnels) - erf(x).rewrite(fresnels)
|
||
|
|
||
|
def _eval_rewrite_as_fresnelc(self, x, y, **kwargs):
|
||
|
return erf(y).rewrite(fresnelc) - erf(x).rewrite(fresnelc)
|
||
|
|
||
|
def _eval_rewrite_as_meijerg(self, x, y, **kwargs):
|
||
|
return erf(y).rewrite(meijerg) - erf(x).rewrite(meijerg)
|
||
|
|
||
|
def _eval_rewrite_as_hyper(self, x, y, **kwargs):
|
||
|
return erf(y).rewrite(hyper) - erf(x).rewrite(hyper)
|
||
|
|
||
|
def _eval_rewrite_as_uppergamma(self, x, y, **kwargs):
|
||
|
from sympy.functions.special.gamma_functions import uppergamma
|
||
|
return (sqrt(y**2)/y*(S.One - uppergamma(S.Half, y**2)/sqrt(pi)) -
|
||
|
sqrt(x**2)/x*(S.One - uppergamma(S.Half, x**2)/sqrt(pi)))
|
||
|
|
||
|
def _eval_rewrite_as_expint(self, x, y, **kwargs):
|
||
|
return erf(y).rewrite(expint) - erf(x).rewrite(expint)
|
||
|
|
||
|
def _eval_expand_func(self, **hints):
|
||
|
return self.rewrite(erf)
|
||
|
|
||
|
def _eval_is_zero(self):
|
||
|
return is_eq(*self.args)
|
||
|
|
||
|
class erfinv(Function):
|
||
|
r"""
|
||
|
Inverse Error Function. The erfinv function is defined as:
|
||
|
|
||
|
.. math ::
|
||
|
\mathrm{erf}(x) = y \quad \Rightarrow \quad \mathrm{erfinv}(y) = x
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import erfinv
|
||
|
>>> from sympy.abc import x
|
||
|
|
||
|
Several special values are known:
|
||
|
|
||
|
>>> erfinv(0)
|
||
|
0
|
||
|
>>> erfinv(1)
|
||
|
oo
|
||
|
|
||
|
Differentiation with respect to $x$ is supported:
|
||
|
|
||
|
>>> from sympy import diff
|
||
|
>>> diff(erfinv(x), x)
|
||
|
sqrt(pi)*exp(erfinv(x)**2)/2
|
||
|
|
||
|
We can numerically evaluate the inverse error function to arbitrary
|
||
|
precision on [-1, 1]:
|
||
|
|
||
|
>>> erfinv(0.2).evalf(30)
|
||
|
0.179143454621291692285822705344
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
erf: Gaussian error function.
|
||
|
erfc: Complementary error function.
|
||
|
erfi: Imaginary error function.
|
||
|
erf2: Two-argument error function.
|
||
|
erfcinv: Inverse Complementary error function.
|
||
|
erf2inv: Inverse two-argument error function.
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://en.wikipedia.org/wiki/Error_function#Inverse_functions
|
||
|
.. [2] https://functions.wolfram.com/GammaBetaErf/InverseErf/
|
||
|
|
||
|
"""
|
||
|
|
||
|
|
||
|
def fdiff(self, argindex =1):
|
||
|
if argindex == 1:
|
||
|
return sqrt(pi)*exp(self.func(self.args[0])**2)*S.Half
|
||
|
else :
|
||
|
raise ArgumentIndexError(self, argindex)
|
||
|
|
||
|
def inverse(self, argindex=1):
|
||
|
"""
|
||
|
Returns the inverse of this function.
|
||
|
|
||
|
"""
|
||
|
return erf
|
||
|
|
||
|
@classmethod
|
||
|
def eval(cls, z):
|
||
|
if z is S.NaN:
|
||
|
return S.NaN
|
||
|
elif z is S.NegativeOne:
|
||
|
return S.NegativeInfinity
|
||
|
elif z.is_zero:
|
||
|
return S.Zero
|
||
|
elif z is S.One:
|
||
|
return S.Infinity
|
||
|
|
||
|
if isinstance(z, erf) and z.args[0].is_extended_real:
|
||
|
return z.args[0]
|
||
|
|
||
|
if z.is_zero:
|
||
|
return S.Zero
|
||
|
|
||
|
# Try to pull out factors of -1
|
||
|
nz = z.extract_multiplicatively(-1)
|
||
|
if nz is not None and (isinstance(nz, erf) and (nz.args[0]).is_extended_real):
|
||
|
return -nz.args[0]
|
||
|
|
||
|
def _eval_rewrite_as_erfcinv(self, z, **kwargs):
|
||
|
return erfcinv(1-z)
|
||
|
|
||
|
def _eval_is_zero(self):
|
||
|
return self.args[0].is_zero
|
||
|
|
||
|
|
||
|
class erfcinv (Function):
|
||
|
r"""
|
||
|
Inverse Complementary Error Function. The erfcinv function is defined as:
|
||
|
|
||
|
.. math ::
|
||
|
\mathrm{erfc}(x) = y \quad \Rightarrow \quad \mathrm{erfcinv}(y) = x
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import erfcinv
|
||
|
>>> from sympy.abc import x
|
||
|
|
||
|
Several special values are known:
|
||
|
|
||
|
>>> erfcinv(1)
|
||
|
0
|
||
|
>>> erfcinv(0)
|
||
|
oo
|
||
|
|
||
|
Differentiation with respect to $x$ is supported:
|
||
|
|
||
|
>>> from sympy import diff
|
||
|
>>> diff(erfcinv(x), x)
|
||
|
-sqrt(pi)*exp(erfcinv(x)**2)/2
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
erf: Gaussian error function.
|
||
|
erfc: Complementary error function.
|
||
|
erfi: Imaginary error function.
|
||
|
erf2: Two-argument error function.
|
||
|
erfinv: Inverse error function.
|
||
|
erf2inv: Inverse two-argument error function.
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://en.wikipedia.org/wiki/Error_function#Inverse_functions
|
||
|
.. [2] https://functions.wolfram.com/GammaBetaErf/InverseErfc/
|
||
|
|
||
|
"""
|
||
|
|
||
|
|
||
|
def fdiff(self, argindex =1):
|
||
|
if argindex == 1:
|
||
|
return -sqrt(pi)*exp(self.func(self.args[0])**2)*S.Half
|
||
|
else:
|
||
|
raise ArgumentIndexError(self, argindex)
|
||
|
|
||
|
def inverse(self, argindex=1):
|
||
|
"""
|
||
|
Returns the inverse of this function.
|
||
|
|
||
|
"""
|
||
|
return erfc
|
||
|
|
||
|
@classmethod
|
||
|
def eval(cls, z):
|
||
|
if z is S.NaN:
|
||
|
return S.NaN
|
||
|
elif z.is_zero:
|
||
|
return S.Infinity
|
||
|
elif z is S.One:
|
||
|
return S.Zero
|
||
|
elif z == 2:
|
||
|
return S.NegativeInfinity
|
||
|
|
||
|
if z.is_zero:
|
||
|
return S.Infinity
|
||
|
|
||
|
def _eval_rewrite_as_erfinv(self, z, **kwargs):
|
||
|
return erfinv(1-z)
|
||
|
|
||
|
def _eval_is_zero(self):
|
||
|
return (self.args[0] - 1).is_zero
|
||
|
|
||
|
def _eval_is_infinite(self):
|
||
|
return self.args[0].is_zero
|
||
|
|
||
|
|
||
|
class erf2inv(Function):
|
||
|
r"""
|
||
|
Two-argument Inverse error function. The erf2inv function is defined as:
|
||
|
|
||
|
.. math ::
|
||
|
\mathrm{erf2}(x, w) = y \quad \Rightarrow \quad \mathrm{erf2inv}(x, y) = w
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import erf2inv, oo
|
||
|
>>> from sympy.abc import x, y
|
||
|
|
||
|
Several special values are known:
|
||
|
|
||
|
>>> erf2inv(0, 0)
|
||
|
0
|
||
|
>>> erf2inv(1, 0)
|
||
|
1
|
||
|
>>> erf2inv(0, 1)
|
||
|
oo
|
||
|
>>> erf2inv(0, y)
|
||
|
erfinv(y)
|
||
|
>>> erf2inv(oo, y)
|
||
|
erfcinv(-y)
|
||
|
|
||
|
Differentiation with respect to $x$ and $y$ is supported:
|
||
|
|
||
|
>>> from sympy import diff
|
||
|
>>> diff(erf2inv(x, y), x)
|
||
|
exp(-x**2 + erf2inv(x, y)**2)
|
||
|
>>> diff(erf2inv(x, y), y)
|
||
|
sqrt(pi)*exp(erf2inv(x, y)**2)/2
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
erf: Gaussian error function.
|
||
|
erfc: Complementary error function.
|
||
|
erfi: Imaginary error function.
|
||
|
erf2: Two-argument error function.
|
||
|
erfinv: Inverse error function.
|
||
|
erfcinv: Inverse complementary error function.
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://functions.wolfram.com/GammaBetaErf/InverseErf2/
|
||
|
|
||
|
"""
|
||
|
|
||
|
|
||
|
def fdiff(self, argindex):
|
||
|
x, y = self.args
|
||
|
if argindex == 1:
|
||
|
return exp(self.func(x,y)**2-x**2)
|
||
|
elif argindex == 2:
|
||
|
return sqrt(pi)*S.Half*exp(self.func(x,y)**2)
|
||
|
else:
|
||
|
raise ArgumentIndexError(self, argindex)
|
||
|
|
||
|
@classmethod
|
||
|
def eval(cls, x, y):
|
||
|
if x is S.NaN or y is S.NaN:
|
||
|
return S.NaN
|
||
|
elif x.is_zero and y.is_zero:
|
||
|
return S.Zero
|
||
|
elif x.is_zero and y is S.One:
|
||
|
return S.Infinity
|
||
|
elif x is S.One and y.is_zero:
|
||
|
return S.One
|
||
|
elif x.is_zero:
|
||
|
return erfinv(y)
|
||
|
elif x is S.Infinity:
|
||
|
return erfcinv(-y)
|
||
|
elif y.is_zero:
|
||
|
return x
|
||
|
elif y is S.Infinity:
|
||
|
return erfinv(x)
|
||
|
|
||
|
if x.is_zero:
|
||
|
if y.is_zero:
|
||
|
return S.Zero
|
||
|
else:
|
||
|
return erfinv(y)
|
||
|
if y.is_zero:
|
||
|
return x
|
||
|
|
||
|
def _eval_is_zero(self):
|
||
|
x, y = self.args
|
||
|
if x.is_zero and y.is_zero:
|
||
|
return True
|
||
|
|
||
|
###############################################################################
|
||
|
#################### EXPONENTIAL INTEGRALS ####################################
|
||
|
###############################################################################
|
||
|
|
||
|
class Ei(Function):
|
||
|
r"""
|
||
|
The classical exponential integral.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
For use in SymPy, this function is defined as
|
||
|
|
||
|
.. math:: \operatorname{Ei}(x) = \sum_{n=1}^\infty \frac{x^n}{n\, n!}
|
||
|
+ \log(x) + \gamma,
|
||
|
|
||
|
where $\gamma$ is the Euler-Mascheroni constant.
|
||
|
|
||
|
If $x$ is a polar number, this defines an analytic function on the
|
||
|
Riemann surface of the logarithm. Otherwise this defines an analytic
|
||
|
function in the cut plane $\mathbb{C} \setminus (-\infty, 0]$.
|
||
|
|
||
|
**Background**
|
||
|
|
||
|
The name exponential integral comes from the following statement:
|
||
|
|
||
|
.. math:: \operatorname{Ei}(x) = \int_{-\infty}^x \frac{e^t}{t} \mathrm{d}t
|
||
|
|
||
|
If the integral is interpreted as a Cauchy principal value, this statement
|
||
|
holds for $x > 0$ and $\operatorname{Ei}(x)$ as defined above.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Ei, polar_lift, exp_polar, I, pi
|
||
|
>>> from sympy.abc import x
|
||
|
|
||
|
>>> Ei(-1)
|
||
|
Ei(-1)
|
||
|
|
||
|
This yields a real value:
|
||
|
|
||
|
>>> Ei(-1).n(chop=True)
|
||
|
-0.219383934395520
|
||
|
|
||
|
On the other hand the analytic continuation is not real:
|
||
|
|
||
|
>>> Ei(polar_lift(-1)).n(chop=True)
|
||
|
-0.21938393439552 + 3.14159265358979*I
|
||
|
|
||
|
The exponential integral has a logarithmic branch point at the origin:
|
||
|
|
||
|
>>> Ei(x*exp_polar(2*I*pi))
|
||
|
Ei(x) + 2*I*pi
|
||
|
|
||
|
Differentiation is supported:
|
||
|
|
||
|
>>> Ei(x).diff(x)
|
||
|
exp(x)/x
|
||
|
|
||
|
The exponential integral is related to many other special functions.
|
||
|
For example:
|
||
|
|
||
|
>>> from sympy import expint, Shi
|
||
|
>>> Ei(x).rewrite(expint)
|
||
|
-expint(1, x*exp_polar(I*pi)) - I*pi
|
||
|
>>> Ei(x).rewrite(Shi)
|
||
|
Chi(x) + Shi(x)
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
expint: Generalised exponential integral.
|
||
|
E1: Special case of the generalised exponential integral.
|
||
|
li: Logarithmic integral.
|
||
|
Li: Offset logarithmic integral.
|
||
|
Si: Sine integral.
|
||
|
Ci: Cosine integral.
|
||
|
Shi: Hyperbolic sine integral.
|
||
|
Chi: Hyperbolic cosine integral.
|
||
|
uppergamma: Upper incomplete gamma function.
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://dlmf.nist.gov/6.6
|
||
|
.. [2] https://en.wikipedia.org/wiki/Exponential_integral
|
||
|
.. [3] Abramowitz & Stegun, section 5: https://web.archive.org/web/20201128173312/http://people.math.sfu.ca/~cbm/aands/page_228.htm
|
||
|
|
||
|
"""
|
||
|
|
||
|
|
||
|
@classmethod
|
||
|
def eval(cls, z):
|
||
|
if z.is_zero:
|
||
|
return S.NegativeInfinity
|
||
|
elif z is S.Infinity:
|
||
|
return S.Infinity
|
||
|
elif z is S.NegativeInfinity:
|
||
|
return S.Zero
|
||
|
|
||
|
if z.is_zero:
|
||
|
return S.NegativeInfinity
|
||
|
|
||
|
nz, n = z.extract_branch_factor()
|
||
|
if n:
|
||
|
return Ei(nz) + 2*I*pi*n
|
||
|
|
||
|
def fdiff(self, argindex=1):
|
||
|
arg = unpolarify(self.args[0])
|
||
|
if argindex == 1:
|
||
|
return exp(arg)/arg
|
||
|
else:
|
||
|
raise ArgumentIndexError(self, argindex)
|
||
|
|
||
|
def _eval_evalf(self, prec):
|
||
|
if (self.args[0]/polar_lift(-1)).is_positive:
|
||
|
return Function._eval_evalf(self, prec) + (I*pi)._eval_evalf(prec)
|
||
|
return Function._eval_evalf(self, prec)
|
||
|
|
||
|
def _eval_rewrite_as_uppergamma(self, z, **kwargs):
|
||
|
from sympy.functions.special.gamma_functions import uppergamma
|
||
|
# XXX this does not currently work usefully because uppergamma
|
||
|
# immediately turns into expint
|
||
|
return -uppergamma(0, polar_lift(-1)*z) - I*pi
|
||
|
|
||
|
def _eval_rewrite_as_expint(self, z, **kwargs):
|
||
|
return -expint(1, polar_lift(-1)*z) - I*pi
|
||
|
|
||
|
def _eval_rewrite_as_li(self, z, **kwargs):
|
||
|
if isinstance(z, log):
|
||
|
return li(z.args[0])
|
||
|
# TODO:
|
||
|
# Actually it only holds that:
|
||
|
# Ei(z) = li(exp(z))
|
||
|
# for -pi < imag(z) <= pi
|
||
|
return li(exp(z))
|
||
|
|
||
|
def _eval_rewrite_as_Si(self, z, **kwargs):
|
||
|
if z.is_negative:
|
||
|
return Shi(z) + Chi(z) - I*pi
|
||
|
else:
|
||
|
return Shi(z) + Chi(z)
|
||
|
_eval_rewrite_as_Ci = _eval_rewrite_as_Si
|
||
|
_eval_rewrite_as_Chi = _eval_rewrite_as_Si
|
||
|
_eval_rewrite_as_Shi = _eval_rewrite_as_Si
|
||
|
|
||
|
def _eval_rewrite_as_tractable(self, z, limitvar=None, **kwargs):
|
||
|
return exp(z) * _eis(z)
|
||
|
|
||
|
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
||
|
from sympy import re
|
||
|
x0 = self.args[0].limit(x, 0)
|
||
|
arg = self.args[0].as_leading_term(x, cdir=cdir)
|
||
|
cdir = arg.dir(x, cdir)
|
||
|
if x0.is_zero:
|
||
|
c, e = arg.as_coeff_exponent(x)
|
||
|
logx = log(x) if logx is None else logx
|
||
|
return log(c) + e*logx + EulerGamma - (
|
||
|
I*pi if re(cdir).is_negative else S.Zero)
|
||
|
return super()._eval_as_leading_term(x, logx=logx, cdir=cdir)
|
||
|
|
||
|
def _eval_nseries(self, x, n, logx, cdir=0):
|
||
|
x0 = self.args[0].limit(x, 0)
|
||
|
if x0.is_zero:
|
||
|
f = self._eval_rewrite_as_Si(*self.args)
|
||
|
return f._eval_nseries(x, n, logx)
|
||
|
return super()._eval_nseries(x, n, logx)
|
||
|
|
||
|
def _eval_aseries(self, n, args0, x, logx):
|
||
|
from sympy.series.order import Order
|
||
|
point = args0[0]
|
||
|
|
||
|
if point is S.Infinity:
|
||
|
z = self.args[0]
|
||
|
s = [factorial(k) / (z)**k for k in range(n)] + \
|
||
|
[Order(1/z**n, x)]
|
||
|
return (exp(z)/z) * Add(*s)
|
||
|
|
||
|
return super(Ei, self)._eval_aseries(n, args0, x, logx)
|
||
|
|
||
|
|
||
|
class expint(Function):
|
||
|
r"""
|
||
|
Generalized exponential integral.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
This function is defined as
|
||
|
|
||
|
.. math:: \operatorname{E}_\nu(z) = z^{\nu - 1} \Gamma(1 - \nu, z),
|
||
|
|
||
|
where $\Gamma(1 - \nu, z)$ is the upper incomplete gamma function
|
||
|
(``uppergamma``).
|
||
|
|
||
|
Hence for $z$ with positive real part we have
|
||
|
|
||
|
.. math:: \operatorname{E}_\nu(z)
|
||
|
= \int_1^\infty \frac{e^{-zt}}{t^\nu} \mathrm{d}t,
|
||
|
|
||
|
which explains the name.
|
||
|
|
||
|
The representation as an incomplete gamma function provides an analytic
|
||
|
continuation for $\operatorname{E}_\nu(z)$. If $\nu$ is a
|
||
|
non-positive integer, the exponential integral is thus an unbranched
|
||
|
function of $z$, otherwise there is a branch point at the origin.
|
||
|
Refer to the incomplete gamma function documentation for details of the
|
||
|
branching behavior.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import expint, S
|
||
|
>>> from sympy.abc import nu, z
|
||
|
|
||
|
Differentiation is supported. Differentiation with respect to $z$ further
|
||
|
explains the name: for integral orders, the exponential integral is an
|
||
|
iterated integral of the exponential function.
|
||
|
|
||
|
>>> expint(nu, z).diff(z)
|
||
|
-expint(nu - 1, z)
|
||
|
|
||
|
Differentiation with respect to $\nu$ has no classical expression:
|
||
|
|
||
|
>>> expint(nu, z).diff(nu)
|
||
|
-z**(nu - 1)*meijerg(((), (1, 1)), ((0, 0, 1 - nu), ()), z)
|
||
|
|
||
|
At non-postive integer orders, the exponential integral reduces to the
|
||
|
exponential function:
|
||
|
|
||
|
>>> expint(0, z)
|
||
|
exp(-z)/z
|
||
|
>>> expint(-1, z)
|
||
|
exp(-z)/z + exp(-z)/z**2
|
||
|
|
||
|
At half-integers it reduces to error functions:
|
||
|
|
||
|
>>> expint(S(1)/2, z)
|
||
|
sqrt(pi)*erfc(sqrt(z))/sqrt(z)
|
||
|
|
||
|
At positive integer orders it can be rewritten in terms of exponentials
|
||
|
and ``expint(1, z)``. Use ``expand_func()`` to do this:
|
||
|
|
||
|
>>> from sympy import expand_func
|
||
|
>>> expand_func(expint(5, z))
|
||
|
z**4*expint(1, z)/24 + (-z**3 + z**2 - 2*z + 6)*exp(-z)/24
|
||
|
|
||
|
The generalised exponential integral is essentially equivalent to the
|
||
|
incomplete gamma function:
|
||
|
|
||
|
>>> from sympy import uppergamma
|
||
|
>>> expint(nu, z).rewrite(uppergamma)
|
||
|
z**(nu - 1)*uppergamma(1 - nu, z)
|
||
|
|
||
|
As such it is branched at the origin:
|
||
|
|
||
|
>>> from sympy import exp_polar, pi, I
|
||
|
>>> expint(4, z*exp_polar(2*pi*I))
|
||
|
I*pi*z**3/3 + expint(4, z)
|
||
|
>>> expint(nu, z*exp_polar(2*pi*I))
|
||
|
z**(nu - 1)*(exp(2*I*pi*nu) - 1)*gamma(1 - nu) + expint(nu, z)
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
Ei: Another related function called exponential integral.
|
||
|
E1: The classical case, returns expint(1, z).
|
||
|
li: Logarithmic integral.
|
||
|
Li: Offset logarithmic integral.
|
||
|
Si: Sine integral.
|
||
|
Ci: Cosine integral.
|
||
|
Shi: Hyperbolic sine integral.
|
||
|
Chi: Hyperbolic cosine integral.
|
||
|
uppergamma
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://dlmf.nist.gov/8.19
|
||
|
.. [2] https://functions.wolfram.com/GammaBetaErf/ExpIntegralE/
|
||
|
.. [3] https://en.wikipedia.org/wiki/Exponential_integral
|
||
|
|
||
|
"""
|
||
|
|
||
|
|
||
|
@classmethod
|
||
|
def eval(cls, nu, z):
|
||
|
from sympy.functions.special.gamma_functions import (gamma, uppergamma)
|
||
|
nu2 = unpolarify(nu)
|
||
|
if nu != nu2:
|
||
|
return expint(nu2, z)
|
||
|
if nu.is_Integer and nu <= 0 or (not nu.is_Integer and (2*nu).is_Integer):
|
||
|
return unpolarify(expand_mul(z**(nu - 1)*uppergamma(1 - nu, z)))
|
||
|
|
||
|
# Extract branching information. This can be deduced from what is
|
||
|
# explained in lowergamma.eval().
|
||
|
z, n = z.extract_branch_factor()
|
||
|
if n is S.Zero:
|
||
|
return
|
||
|
if nu.is_integer:
|
||
|
if not nu > 0:
|
||
|
return
|
||
|
return expint(nu, z) \
|
||
|
- 2*pi*I*n*S.NegativeOne**(nu - 1)/factorial(nu - 1)*unpolarify(z)**(nu - 1)
|
||
|
else:
|
||
|
return (exp(2*I*pi*nu*n) - 1)*z**(nu - 1)*gamma(1 - nu) + expint(nu, z)
|
||
|
|
||
|
def fdiff(self, argindex):
|
||
|
nu, z = self.args
|
||
|
if argindex == 1:
|
||
|
return -z**(nu - 1)*meijerg([], [1, 1], [0, 0, 1 - nu], [], z)
|
||
|
elif argindex == 2:
|
||
|
return -expint(nu - 1, z)
|
||
|
else:
|
||
|
raise ArgumentIndexError(self, argindex)
|
||
|
|
||
|
def _eval_rewrite_as_uppergamma(self, nu, z, **kwargs):
|
||
|
from sympy.functions.special.gamma_functions import uppergamma
|
||
|
return z**(nu - 1)*uppergamma(1 - nu, z)
|
||
|
|
||
|
def _eval_rewrite_as_Ei(self, nu, z, **kwargs):
|
||
|
if nu == 1:
|
||
|
return -Ei(z*exp_polar(-I*pi)) - I*pi
|
||
|
elif nu.is_Integer and nu > 1:
|
||
|
# DLMF, 8.19.7
|
||
|
x = -unpolarify(z)
|
||
|
return x**(nu - 1)/factorial(nu - 1)*E1(z).rewrite(Ei) + \
|
||
|
exp(x)/factorial(nu - 1) * \
|
||
|
Add(*[factorial(nu - k - 2)*x**k for k in range(nu - 1)])
|
||
|
else:
|
||
|
return self
|
||
|
|
||
|
def _eval_expand_func(self, **hints):
|
||
|
return self.rewrite(Ei).rewrite(expint, **hints)
|
||
|
|
||
|
def _eval_rewrite_as_Si(self, nu, z, **kwargs):
|
||
|
if nu != 1:
|
||
|
return self
|
||
|
return Shi(z) - Chi(z)
|
||
|
_eval_rewrite_as_Ci = _eval_rewrite_as_Si
|
||
|
_eval_rewrite_as_Chi = _eval_rewrite_as_Si
|
||
|
_eval_rewrite_as_Shi = _eval_rewrite_as_Si
|
||
|
|
||
|
def _eval_nseries(self, x, n, logx, cdir=0):
|
||
|
if not self.args[0].has(x):
|
||
|
nu = self.args[0]
|
||
|
if nu == 1:
|
||
|
f = self._eval_rewrite_as_Si(*self.args)
|
||
|
return f._eval_nseries(x, n, logx)
|
||
|
elif nu.is_Integer and nu > 1:
|
||
|
f = self._eval_rewrite_as_Ei(*self.args)
|
||
|
return f._eval_nseries(x, n, logx)
|
||
|
return super()._eval_nseries(x, n, logx)
|
||
|
|
||
|
def _eval_aseries(self, n, args0, x, logx):
|
||
|
from sympy.series.order import Order
|
||
|
point = args0[1]
|
||
|
nu = self.args[0]
|
||
|
|
||
|
if point is S.Infinity:
|
||
|
z = self.args[1]
|
||
|
s = [S.NegativeOne**k * RisingFactorial(nu, k) / z**k for k in range(n)] + [Order(1/z**n, x)]
|
||
|
return (exp(-z)/z) * Add(*s)
|
||
|
|
||
|
return super(expint, self)._eval_aseries(n, args0, x, logx)
|
||
|
|
||
|
|
||
|
def E1(z):
|
||
|
"""
|
||
|
Classical case of the generalized exponential integral.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
This is equivalent to ``expint(1, z)``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import E1
|
||
|
>>> E1(0)
|
||
|
expint(1, 0)
|
||
|
|
||
|
>>> E1(5)
|
||
|
expint(1, 5)
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
Ei: Exponential integral.
|
||
|
expint: Generalised exponential integral.
|
||
|
li: Logarithmic integral.
|
||
|
Li: Offset logarithmic integral.
|
||
|
Si: Sine integral.
|
||
|
Ci: Cosine integral.
|
||
|
Shi: Hyperbolic sine integral.
|
||
|
Chi: Hyperbolic cosine integral.
|
||
|
|
||
|
"""
|
||
|
return expint(1, z)
|
||
|
|
||
|
|
||
|
class li(Function):
|
||
|
r"""
|
||
|
The classical logarithmic integral.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
For use in SymPy, this function is defined as
|
||
|
|
||
|
.. math:: \operatorname{li}(x) = \int_0^x \frac{1}{\log(t)} \mathrm{d}t \,.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import I, oo, li
|
||
|
>>> from sympy.abc import z
|
||
|
|
||
|
Several special values are known:
|
||
|
|
||
|
>>> li(0)
|
||
|
0
|
||
|
>>> li(1)
|
||
|
-oo
|
||
|
>>> li(oo)
|
||
|
oo
|
||
|
|
||
|
Differentiation with respect to $z$ is supported:
|
||
|
|
||
|
>>> from sympy import diff
|
||
|
>>> diff(li(z), z)
|
||
|
1/log(z)
|
||
|
|
||
|
Defining the ``li`` function via an integral:
|
||
|
>>> from sympy import integrate
|
||
|
>>> integrate(li(z))
|
||
|
z*li(z) - Ei(2*log(z))
|
||
|
|
||
|
>>> integrate(li(z),z)
|
||
|
z*li(z) - Ei(2*log(z))
|
||
|
|
||
|
|
||
|
The logarithmic integral can also be defined in terms of ``Ei``:
|
||
|
|
||
|
>>> from sympy import Ei
|
||
|
>>> li(z).rewrite(Ei)
|
||
|
Ei(log(z))
|
||
|
>>> diff(li(z).rewrite(Ei), z)
|
||
|
1/log(z)
|
||
|
|
||
|
We can numerically evaluate the logarithmic integral to arbitrary precision
|
||
|
on the whole complex plane (except the singular points):
|
||
|
|
||
|
>>> li(2).evalf(30)
|
||
|
1.04516378011749278484458888919
|
||
|
|
||
|
>>> li(2*I).evalf(30)
|
||
|
1.0652795784357498247001125598 + 3.08346052231061726610939702133*I
|
||
|
|
||
|
We can even compute Soldner's constant by the help of mpmath:
|
||
|
|
||
|
>>> from mpmath import findroot
|
||
|
>>> findroot(li, 2)
|
||
|
1.45136923488338
|
||
|
|
||
|
Further transformations include rewriting ``li`` in terms of
|
||
|
the trigonometric integrals ``Si``, ``Ci``, ``Shi`` and ``Chi``:
|
||
|
|
||
|
>>> from sympy import Si, Ci, Shi, Chi
|
||
|
>>> li(z).rewrite(Si)
|
||
|
-log(I*log(z)) - log(1/log(z))/2 + log(log(z))/2 + Ci(I*log(z)) + Shi(log(z))
|
||
|
>>> li(z).rewrite(Ci)
|
||
|
-log(I*log(z)) - log(1/log(z))/2 + log(log(z))/2 + Ci(I*log(z)) + Shi(log(z))
|
||
|
>>> li(z).rewrite(Shi)
|
||
|
-log(1/log(z))/2 + log(log(z))/2 + Chi(log(z)) - Shi(log(z))
|
||
|
>>> li(z).rewrite(Chi)
|
||
|
-log(1/log(z))/2 + log(log(z))/2 + Chi(log(z)) - Shi(log(z))
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
Li: Offset logarithmic integral.
|
||
|
Ei: Exponential integral.
|
||
|
expint: Generalised exponential integral.
|
||
|
E1: Special case of the generalised exponential integral.
|
||
|
Si: Sine integral.
|
||
|
Ci: Cosine integral.
|
||
|
Shi: Hyperbolic sine integral.
|
||
|
Chi: Hyperbolic cosine integral.
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://en.wikipedia.org/wiki/Logarithmic_integral
|
||
|
.. [2] https://mathworld.wolfram.com/LogarithmicIntegral.html
|
||
|
.. [3] https://dlmf.nist.gov/6
|
||
|
.. [4] https://mathworld.wolfram.com/SoldnersConstant.html
|
||
|
|
||
|
"""
|
||
|
|
||
|
|
||
|
@classmethod
|
||
|
def eval(cls, z):
|
||
|
if z.is_zero:
|
||
|
return S.Zero
|
||
|
elif z is S.One:
|
||
|
return S.NegativeInfinity
|
||
|
elif z is S.Infinity:
|
||
|
return S.Infinity
|
||
|
if z.is_zero:
|
||
|
return S.Zero
|
||
|
|
||
|
def fdiff(self, argindex=1):
|
||
|
arg = self.args[0]
|
||
|
if argindex == 1:
|
||
|
return S.One / log(arg)
|
||
|
else:
|
||
|
raise ArgumentIndexError(self, argindex)
|
||
|
|
||
|
def _eval_conjugate(self):
|
||
|
z = self.args[0]
|
||
|
# Exclude values on the branch cut (-oo, 0)
|
||
|
if not z.is_extended_negative:
|
||
|
return self.func(z.conjugate())
|
||
|
|
||
|
def _eval_rewrite_as_Li(self, z, **kwargs):
|
||
|
return Li(z) + li(2)
|
||
|
|
||
|
def _eval_rewrite_as_Ei(self, z, **kwargs):
|
||
|
return Ei(log(z))
|
||
|
|
||
|
def _eval_rewrite_as_uppergamma(self, z, **kwargs):
|
||
|
from sympy.functions.special.gamma_functions import uppergamma
|
||
|
return (-uppergamma(0, -log(z)) +
|
||
|
S.Half*(log(log(z)) - log(S.One/log(z))) - log(-log(z)))
|
||
|
|
||
|
def _eval_rewrite_as_Si(self, z, **kwargs):
|
||
|
return (Ci(I*log(z)) - I*Si(I*log(z)) -
|
||
|
S.Half*(log(S.One/log(z)) - log(log(z))) - log(I*log(z)))
|
||
|
|
||
|
_eval_rewrite_as_Ci = _eval_rewrite_as_Si
|
||
|
|
||
|
def _eval_rewrite_as_Shi(self, z, **kwargs):
|
||
|
return (Chi(log(z)) - Shi(log(z)) - S.Half*(log(S.One/log(z)) - log(log(z))))
|
||
|
|
||
|
_eval_rewrite_as_Chi = _eval_rewrite_as_Shi
|
||
|
|
||
|
def _eval_rewrite_as_hyper(self, z, **kwargs):
|
||
|
return (log(z)*hyper((1, 1), (2, 2), log(z)) +
|
||
|
S.Half*(log(log(z)) - log(S.One/log(z))) + EulerGamma)
|
||
|
|
||
|
def _eval_rewrite_as_meijerg(self, z, **kwargs):
|
||
|
return (-log(-log(z)) - S.Half*(log(S.One/log(z)) - log(log(z)))
|
||
|
- meijerg(((), (1,)), ((0, 0), ()), -log(z)))
|
||
|
|
||
|
def _eval_rewrite_as_tractable(self, z, limitvar=None, **kwargs):
|
||
|
return z * _eis(log(z))
|
||
|
|
||
|
def _eval_nseries(self, x, n, logx, cdir=0):
|
||
|
z = self.args[0]
|
||
|
s = [(log(z))**k / (factorial(k) * k) for k in range(1, n)]
|
||
|
return EulerGamma + log(log(z)) + Add(*s)
|
||
|
|
||
|
def _eval_is_zero(self):
|
||
|
z = self.args[0]
|
||
|
if z.is_zero:
|
||
|
return True
|
||
|
|
||
|
class Li(Function):
|
||
|
r"""
|
||
|
The offset logarithmic integral.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
For use in SymPy, this function is defined as
|
||
|
|
||
|
.. math:: \operatorname{Li}(x) = \operatorname{li}(x) - \operatorname{li}(2)
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Li
|
||
|
>>> from sympy.abc import z
|
||
|
|
||
|
The following special value is known:
|
||
|
|
||
|
>>> Li(2)
|
||
|
0
|
||
|
|
||
|
Differentiation with respect to $z$ is supported:
|
||
|
|
||
|
>>> from sympy import diff
|
||
|
>>> diff(Li(z), z)
|
||
|
1/log(z)
|
||
|
|
||
|
The shifted logarithmic integral can be written in terms of $li(z)$:
|
||
|
|
||
|
>>> from sympy import li
|
||
|
>>> Li(z).rewrite(li)
|
||
|
li(z) - li(2)
|
||
|
|
||
|
We can numerically evaluate the logarithmic integral to arbitrary precision
|
||
|
on the whole complex plane (except the singular points):
|
||
|
|
||
|
>>> Li(2).evalf(30)
|
||
|
0
|
||
|
|
||
|
>>> Li(4).evalf(30)
|
||
|
1.92242131492155809316615998938
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
li: Logarithmic integral.
|
||
|
Ei: Exponential integral.
|
||
|
expint: Generalised exponential integral.
|
||
|
E1: Special case of the generalised exponential integral.
|
||
|
Si: Sine integral.
|
||
|
Ci: Cosine integral.
|
||
|
Shi: Hyperbolic sine integral.
|
||
|
Chi: Hyperbolic cosine integral.
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://en.wikipedia.org/wiki/Logarithmic_integral
|
||
|
.. [2] https://mathworld.wolfram.com/LogarithmicIntegral.html
|
||
|
.. [3] https://dlmf.nist.gov/6
|
||
|
|
||
|
"""
|
||
|
|
||
|
|
||
|
@classmethod
|
||
|
def eval(cls, z):
|
||
|
if z is S.Infinity:
|
||
|
return S.Infinity
|
||
|
elif z == S(2):
|
||
|
return S.Zero
|
||
|
|
||
|
def fdiff(self, argindex=1):
|
||
|
arg = self.args[0]
|
||
|
if argindex == 1:
|
||
|
return S.One / log(arg)
|
||
|
else:
|
||
|
raise ArgumentIndexError(self, argindex)
|
||
|
|
||
|
def _eval_evalf(self, prec):
|
||
|
return self.rewrite(li).evalf(prec)
|
||
|
|
||
|
def _eval_rewrite_as_li(self, z, **kwargs):
|
||
|
return li(z) - li(2)
|
||
|
|
||
|
def _eval_rewrite_as_tractable(self, z, limitvar=None, **kwargs):
|
||
|
return self.rewrite(li).rewrite("tractable", deep=True)
|
||
|
|
||
|
def _eval_nseries(self, x, n, logx, cdir=0):
|
||
|
f = self._eval_rewrite_as_li(*self.args)
|
||
|
return f._eval_nseries(x, n, logx)
|
||
|
|
||
|
###############################################################################
|
||
|
#################### TRIGONOMETRIC INTEGRALS ##################################
|
||
|
###############################################################################
|
||
|
|
||
|
class TrigonometricIntegral(Function):
|
||
|
""" Base class for trigonometric integrals. """
|
||
|
|
||
|
|
||
|
@classmethod
|
||
|
def eval(cls, z):
|
||
|
if z is S.Zero:
|
||
|
return cls._atzero
|
||
|
elif z is S.Infinity:
|
||
|
return cls._atinf()
|
||
|
elif z is S.NegativeInfinity:
|
||
|
return cls._atneginf()
|
||
|
|
||
|
if z.is_zero:
|
||
|
return cls._atzero
|
||
|
|
||
|
nz = z.extract_multiplicatively(polar_lift(I))
|
||
|
if nz is None and cls._trigfunc(0) == 0:
|
||
|
nz = z.extract_multiplicatively(I)
|
||
|
if nz is not None:
|
||
|
return cls._Ifactor(nz, 1)
|
||
|
nz = z.extract_multiplicatively(polar_lift(-I))
|
||
|
if nz is not None:
|
||
|
return cls._Ifactor(nz, -1)
|
||
|
|
||
|
nz = z.extract_multiplicatively(polar_lift(-1))
|
||
|
if nz is None and cls._trigfunc(0) == 0:
|
||
|
nz = z.extract_multiplicatively(-1)
|
||
|
if nz is not None:
|
||
|
return cls._minusfactor(nz)
|
||
|
|
||
|
nz, n = z.extract_branch_factor()
|
||
|
if n == 0 and nz == z:
|
||
|
return
|
||
|
return 2*pi*I*n*cls._trigfunc(0) + cls(nz)
|
||
|
|
||
|
def fdiff(self, argindex=1):
|
||
|
arg = unpolarify(self.args[0])
|
||
|
if argindex == 1:
|
||
|
return self._trigfunc(arg)/arg
|
||
|
else:
|
||
|
raise ArgumentIndexError(self, argindex)
|
||
|
|
||
|
def _eval_rewrite_as_Ei(self, z, **kwargs):
|
||
|
return self._eval_rewrite_as_expint(z).rewrite(Ei)
|
||
|
|
||
|
def _eval_rewrite_as_uppergamma(self, z, **kwargs):
|
||
|
from sympy.functions.special.gamma_functions import uppergamma
|
||
|
return self._eval_rewrite_as_expint(z).rewrite(uppergamma)
|
||
|
|
||
|
def _eval_nseries(self, x, n, logx, cdir=0):
|
||
|
# NOTE this is fairly inefficient
|
||
|
n += 1
|
||
|
if self.args[0].subs(x, 0) != 0:
|
||
|
return super()._eval_nseries(x, n, logx)
|
||
|
baseseries = self._trigfunc(x)._eval_nseries(x, n, logx)
|
||
|
if self._trigfunc(0) != 0:
|
||
|
baseseries -= 1
|
||
|
baseseries = baseseries.replace(Pow, lambda t, n: t**n/n, simultaneous=False)
|
||
|
if self._trigfunc(0) != 0:
|
||
|
baseseries += EulerGamma + log(x)
|
||
|
return baseseries.subs(x, self.args[0])._eval_nseries(x, n, logx)
|
||
|
|
||
|
|
||
|
class Si(TrigonometricIntegral):
|
||
|
r"""
|
||
|
Sine integral.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
This function is defined by
|
||
|
|
||
|
.. math:: \operatorname{Si}(z) = \int_0^z \frac{\sin{t}}{t} \mathrm{d}t.
|
||
|
|
||
|
It is an entire function.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Si
|
||
|
>>> from sympy.abc import z
|
||
|
|
||
|
The sine integral is an antiderivative of $sin(z)/z$:
|
||
|
|
||
|
>>> Si(z).diff(z)
|
||
|
sin(z)/z
|
||
|
|
||
|
It is unbranched:
|
||
|
|
||
|
>>> from sympy import exp_polar, I, pi
|
||
|
>>> Si(z*exp_polar(2*I*pi))
|
||
|
Si(z)
|
||
|
|
||
|
Sine integral behaves much like ordinary sine under multiplication by ``I``:
|
||
|
|
||
|
>>> Si(I*z)
|
||
|
I*Shi(z)
|
||
|
>>> Si(-z)
|
||
|
-Si(z)
|
||
|
|
||
|
It can also be expressed in terms of exponential integrals, but beware
|
||
|
that the latter is branched:
|
||
|
|
||
|
>>> from sympy import expint
|
||
|
>>> Si(z).rewrite(expint)
|
||
|
-I*(-expint(1, z*exp_polar(-I*pi/2))/2 +
|
||
|
expint(1, z*exp_polar(I*pi/2))/2) + pi/2
|
||
|
|
||
|
It can be rewritten in the form of sinc function (by definition):
|
||
|
|
||
|
>>> from sympy import sinc
|
||
|
>>> Si(z).rewrite(sinc)
|
||
|
Integral(sinc(t), (t, 0, z))
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
Ci: Cosine integral.
|
||
|
Shi: Hyperbolic sine integral.
|
||
|
Chi: Hyperbolic cosine integral.
|
||
|
Ei: Exponential integral.
|
||
|
expint: Generalised exponential integral.
|
||
|
sinc: unnormalized sinc function
|
||
|
E1: Special case of the generalised exponential integral.
|
||
|
li: Logarithmic integral.
|
||
|
Li: Offset logarithmic integral.
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://en.wikipedia.org/wiki/Trigonometric_integral
|
||
|
|
||
|
"""
|
||
|
|
||
|
_trigfunc = sin
|
||
|
_atzero = S.Zero
|
||
|
|
||
|
@classmethod
|
||
|
def _atinf(cls):
|
||
|
return pi*S.Half
|
||
|
|
||
|
@classmethod
|
||
|
def _atneginf(cls):
|
||
|
return -pi*S.Half
|
||
|
|
||
|
@classmethod
|
||
|
def _minusfactor(cls, z):
|
||
|
return -Si(z)
|
||
|
|
||
|
@classmethod
|
||
|
def _Ifactor(cls, z, sign):
|
||
|
return I*Shi(z)*sign
|
||
|
|
||
|
def _eval_rewrite_as_expint(self, z, **kwargs):
|
||
|
# XXX should we polarify z?
|
||
|
return pi/2 + (E1(polar_lift(I)*z) - E1(polar_lift(-I)*z))/2/I
|
||
|
|
||
|
def _eval_rewrite_as_sinc(self, z, **kwargs):
|
||
|
from sympy.integrals.integrals import Integral
|
||
|
t = Symbol('t', Dummy=True)
|
||
|
return Integral(sinc(t), (t, 0, z))
|
||
|
|
||
|
def _eval_aseries(self, n, args0, x, logx):
|
||
|
from sympy.series.order import Order
|
||
|
point = args0[0]
|
||
|
|
||
|
# Expansion at oo
|
||
|
if point is S.Infinity:
|
||
|
z = self.args[0]
|
||
|
p = [S.NegativeOne**k * factorial(2*k) / z**(2*k)
|
||
|
for k in range(int((n - 1)/2))] + [Order(1/z**n, x)]
|
||
|
q = [S.NegativeOne**k * factorial(2*k + 1) / z**(2*k + 1)
|
||
|
for k in range(int(n/2) - 1)] + [Order(1/z**n, x)]
|
||
|
return pi/2 - (cos(z)/z)*Add(*p) - (sin(z)/z)*Add(*q)
|
||
|
|
||
|
# All other points are not handled
|
||
|
return super(Si, self)._eval_aseries(n, args0, x, logx)
|
||
|
|
||
|
def _eval_is_zero(self):
|
||
|
z = self.args[0]
|
||
|
if z.is_zero:
|
||
|
return True
|
||
|
|
||
|
|
||
|
class Ci(TrigonometricIntegral):
|
||
|
r"""
|
||
|
Cosine integral.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
This function is defined for positive $x$ by
|
||
|
|
||
|
.. math:: \operatorname{Ci}(x) = \gamma + \log{x}
|
||
|
+ \int_0^x \frac{\cos{t} - 1}{t} \mathrm{d}t
|
||
|
= -\int_x^\infty \frac{\cos{t}}{t} \mathrm{d}t,
|
||
|
|
||
|
where $\gamma$ is the Euler-Mascheroni constant.
|
||
|
|
||
|
We have
|
||
|
|
||
|
.. math:: \operatorname{Ci}(z) =
|
||
|
-\frac{\operatorname{E}_1\left(e^{i\pi/2} z\right)
|
||
|
+ \operatorname{E}_1\left(e^{-i \pi/2} z\right)}{2}
|
||
|
|
||
|
which holds for all polar $z$ and thus provides an analytic
|
||
|
continuation to the Riemann surface of the logarithm.
|
||
|
|
||
|
The formula also holds as stated
|
||
|
for $z \in \mathbb{C}$ with $\Re(z) > 0$.
|
||
|
By lifting to the principal branch, we obtain an analytic function on the
|
||
|
cut complex plane.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Ci
|
||
|
>>> from sympy.abc import z
|
||
|
|
||
|
The cosine integral is a primitive of $\cos(z)/z$:
|
||
|
|
||
|
>>> Ci(z).diff(z)
|
||
|
cos(z)/z
|
||
|
|
||
|
It has a logarithmic branch point at the origin:
|
||
|
|
||
|
>>> from sympy import exp_polar, I, pi
|
||
|
>>> Ci(z*exp_polar(2*I*pi))
|
||
|
Ci(z) + 2*I*pi
|
||
|
|
||
|
The cosine integral behaves somewhat like ordinary $\cos$ under
|
||
|
multiplication by $i$:
|
||
|
|
||
|
>>> from sympy import polar_lift
|
||
|
>>> Ci(polar_lift(I)*z)
|
||
|
Chi(z) + I*pi/2
|
||
|
>>> Ci(polar_lift(-1)*z)
|
||
|
Ci(z) + I*pi
|
||
|
|
||
|
It can also be expressed in terms of exponential integrals:
|
||
|
|
||
|
>>> from sympy import expint
|
||
|
>>> Ci(z).rewrite(expint)
|
||
|
-expint(1, z*exp_polar(-I*pi/2))/2 - expint(1, z*exp_polar(I*pi/2))/2
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
Si: Sine integral.
|
||
|
Shi: Hyperbolic sine integral.
|
||
|
Chi: Hyperbolic cosine integral.
|
||
|
Ei: Exponential integral.
|
||
|
expint: Generalised exponential integral.
|
||
|
E1: Special case of the generalised exponential integral.
|
||
|
li: Logarithmic integral.
|
||
|
Li: Offset logarithmic integral.
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://en.wikipedia.org/wiki/Trigonometric_integral
|
||
|
|
||
|
"""
|
||
|
|
||
|
_trigfunc = cos
|
||
|
_atzero = S.ComplexInfinity
|
||
|
|
||
|
@classmethod
|
||
|
def _atinf(cls):
|
||
|
return S.Zero
|
||
|
|
||
|
@classmethod
|
||
|
def _atneginf(cls):
|
||
|
return I*pi
|
||
|
|
||
|
@classmethod
|
||
|
def _minusfactor(cls, z):
|
||
|
return Ci(z) + I*pi
|
||
|
|
||
|
@classmethod
|
||
|
def _Ifactor(cls, z, sign):
|
||
|
return Chi(z) + I*pi/2*sign
|
||
|
|
||
|
def _eval_rewrite_as_expint(self, z, **kwargs):
|
||
|
return -(E1(polar_lift(I)*z) + E1(polar_lift(-I)*z))/2
|
||
|
|
||
|
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
||
|
arg = self.args[0].as_leading_term(x, logx=logx, cdir=cdir)
|
||
|
arg0 = arg.subs(x, 0)
|
||
|
|
||
|
if arg0 is S.NaN:
|
||
|
arg0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+')
|
||
|
if arg0.is_zero:
|
||
|
c, e = arg.as_coeff_exponent(x)
|
||
|
logx = log(x) if logx is None else logx
|
||
|
return log(c) + e*logx + EulerGamma
|
||
|
elif arg0.is_finite:
|
||
|
return self.func(arg0)
|
||
|
else:
|
||
|
return self
|
||
|
|
||
|
def _eval_aseries(self, n, args0, x, logx):
|
||
|
from sympy.series.order import Order
|
||
|
point = args0[0]
|
||
|
|
||
|
# Expansion at oo
|
||
|
if point is S.Infinity:
|
||
|
z = self.args[0]
|
||
|
p = [S.NegativeOne**k * factorial(2*k) / z**(2*k)
|
||
|
for k in range(int((n - 1)/2))] + [Order(1/z**n, x)]
|
||
|
q = [S.NegativeOne**k * factorial(2*k + 1) / z**(2*k + 1)
|
||
|
for k in range(int(n/2) - 1)] + [Order(1/z**n, x)]
|
||
|
return (sin(z)/z)*Add(*p) - (cos(z)/z)*Add(*q)
|
||
|
|
||
|
# All other points are not handled
|
||
|
return super(Ci, self)._eval_aseries(n, args0, x, logx)
|
||
|
|
||
|
|
||
|
class Shi(TrigonometricIntegral):
|
||
|
r"""
|
||
|
Sinh integral.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
This function is defined by
|
||
|
|
||
|
.. math:: \operatorname{Shi}(z) = \int_0^z \frac{\sinh{t}}{t} \mathrm{d}t.
|
||
|
|
||
|
It is an entire function.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Shi
|
||
|
>>> from sympy.abc import z
|
||
|
|
||
|
The Sinh integral is a primitive of $\sinh(z)/z$:
|
||
|
|
||
|
>>> Shi(z).diff(z)
|
||
|
sinh(z)/z
|
||
|
|
||
|
It is unbranched:
|
||
|
|
||
|
>>> from sympy import exp_polar, I, pi
|
||
|
>>> Shi(z*exp_polar(2*I*pi))
|
||
|
Shi(z)
|
||
|
|
||
|
The $\sinh$ integral behaves much like ordinary $\sinh$ under
|
||
|
multiplication by $i$:
|
||
|
|
||
|
>>> Shi(I*z)
|
||
|
I*Si(z)
|
||
|
>>> Shi(-z)
|
||
|
-Shi(z)
|
||
|
|
||
|
It can also be expressed in terms of exponential integrals, but beware
|
||
|
that the latter is branched:
|
||
|
|
||
|
>>> from sympy import expint
|
||
|
>>> Shi(z).rewrite(expint)
|
||
|
expint(1, z)/2 - expint(1, z*exp_polar(I*pi))/2 - I*pi/2
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
Si: Sine integral.
|
||
|
Ci: Cosine integral.
|
||
|
Chi: Hyperbolic cosine integral.
|
||
|
Ei: Exponential integral.
|
||
|
expint: Generalised exponential integral.
|
||
|
E1: Special case of the generalised exponential integral.
|
||
|
li: Logarithmic integral.
|
||
|
Li: Offset logarithmic integral.
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://en.wikipedia.org/wiki/Trigonometric_integral
|
||
|
|
||
|
"""
|
||
|
|
||
|
_trigfunc = sinh
|
||
|
_atzero = S.Zero
|
||
|
|
||
|
@classmethod
|
||
|
def _atinf(cls):
|
||
|
return S.Infinity
|
||
|
|
||
|
@classmethod
|
||
|
def _atneginf(cls):
|
||
|
return S.NegativeInfinity
|
||
|
|
||
|
@classmethod
|
||
|
def _minusfactor(cls, z):
|
||
|
return -Shi(z)
|
||
|
|
||
|
@classmethod
|
||
|
def _Ifactor(cls, z, sign):
|
||
|
return I*Si(z)*sign
|
||
|
|
||
|
def _eval_rewrite_as_expint(self, z, **kwargs):
|
||
|
# XXX should we polarify z?
|
||
|
return (E1(z) - E1(exp_polar(I*pi)*z))/2 - I*pi/2
|
||
|
|
||
|
def _eval_is_zero(self):
|
||
|
z = self.args[0]
|
||
|
if z.is_zero:
|
||
|
return True
|
||
|
|
||
|
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
||
|
arg = self.args[0].as_leading_term(x)
|
||
|
arg0 = arg.subs(x, 0)
|
||
|
|
||
|
if arg0 is S.NaN:
|
||
|
arg0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+')
|
||
|
if arg0.is_zero:
|
||
|
return arg
|
||
|
elif not arg0.is_infinite:
|
||
|
return self.func(arg0)
|
||
|
else:
|
||
|
return self
|
||
|
|
||
|
|
||
|
class Chi(TrigonometricIntegral):
|
||
|
r"""
|
||
|
Cosh integral.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
This function is defined for positive $x$ by
|
||
|
|
||
|
.. math:: \operatorname{Chi}(x) = \gamma + \log{x}
|
||
|
+ \int_0^x \frac{\cosh{t} - 1}{t} \mathrm{d}t,
|
||
|
|
||
|
where $\gamma$ is the Euler-Mascheroni constant.
|
||
|
|
||
|
We have
|
||
|
|
||
|
.. math:: \operatorname{Chi}(z) = \operatorname{Ci}\left(e^{i \pi/2}z\right)
|
||
|
- i\frac{\pi}{2},
|
||
|
|
||
|
which holds for all polar $z$ and thus provides an analytic
|
||
|
continuation to the Riemann surface of the logarithm.
|
||
|
By lifting to the principal branch we obtain an analytic function on the
|
||
|
cut complex plane.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Chi
|
||
|
>>> from sympy.abc import z
|
||
|
|
||
|
The $\cosh$ integral is a primitive of $\cosh(z)/z$:
|
||
|
|
||
|
>>> Chi(z).diff(z)
|
||
|
cosh(z)/z
|
||
|
|
||
|
It has a logarithmic branch point at the origin:
|
||
|
|
||
|
>>> from sympy import exp_polar, I, pi
|
||
|
>>> Chi(z*exp_polar(2*I*pi))
|
||
|
Chi(z) + 2*I*pi
|
||
|
|
||
|
The $\cosh$ integral behaves somewhat like ordinary $\cosh$ under
|
||
|
multiplication by $i$:
|
||
|
|
||
|
>>> from sympy import polar_lift
|
||
|
>>> Chi(polar_lift(I)*z)
|
||
|
Ci(z) + I*pi/2
|
||
|
>>> Chi(polar_lift(-1)*z)
|
||
|
Chi(z) + I*pi
|
||
|
|
||
|
It can also be expressed in terms of exponential integrals:
|
||
|
|
||
|
>>> from sympy import expint
|
||
|
>>> Chi(z).rewrite(expint)
|
||
|
-expint(1, z)/2 - expint(1, z*exp_polar(I*pi))/2 - I*pi/2
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
Si: Sine integral.
|
||
|
Ci: Cosine integral.
|
||
|
Shi: Hyperbolic sine integral.
|
||
|
Ei: Exponential integral.
|
||
|
expint: Generalised exponential integral.
|
||
|
E1: Special case of the generalised exponential integral.
|
||
|
li: Logarithmic integral.
|
||
|
Li: Offset logarithmic integral.
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://en.wikipedia.org/wiki/Trigonometric_integral
|
||
|
|
||
|
"""
|
||
|
|
||
|
_trigfunc = cosh
|
||
|
_atzero = S.ComplexInfinity
|
||
|
|
||
|
@classmethod
|
||
|
def _atinf(cls):
|
||
|
return S.Infinity
|
||
|
|
||
|
@classmethod
|
||
|
def _atneginf(cls):
|
||
|
return S.Infinity
|
||
|
|
||
|
@classmethod
|
||
|
def _minusfactor(cls, z):
|
||
|
return Chi(z) + I*pi
|
||
|
|
||
|
@classmethod
|
||
|
def _Ifactor(cls, z, sign):
|
||
|
return Ci(z) + I*pi/2*sign
|
||
|
|
||
|
def _eval_rewrite_as_expint(self, z, **kwargs):
|
||
|
return -I*pi/2 - (E1(z) + E1(exp_polar(I*pi)*z))/2
|
||
|
|
||
|
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
||
|
arg = self.args[0].as_leading_term(x, logx=logx, cdir=cdir)
|
||
|
arg0 = arg.subs(x, 0)
|
||
|
|
||
|
if arg0 is S.NaN:
|
||
|
arg0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+')
|
||
|
if arg0.is_zero:
|
||
|
c, e = arg.as_coeff_exponent(x)
|
||
|
logx = log(x) if logx is None else logx
|
||
|
return log(c) + e*logx + EulerGamma
|
||
|
elif arg0.is_finite:
|
||
|
return self.func(arg0)
|
||
|
else:
|
||
|
return self
|
||
|
|
||
|
|
||
|
###############################################################################
|
||
|
#################### FRESNEL INTEGRALS ########################################
|
||
|
###############################################################################
|
||
|
|
||
|
class FresnelIntegral(Function):
|
||
|
""" Base class for the Fresnel integrals."""
|
||
|
|
||
|
unbranched = True
|
||
|
|
||
|
@classmethod
|
||
|
def eval(cls, z):
|
||
|
# Values at positive infinities signs
|
||
|
# if any were extracted automatically
|
||
|
if z is S.Infinity:
|
||
|
return S.Half
|
||
|
|
||
|
# Value at zero
|
||
|
if z.is_zero:
|
||
|
return S.Zero
|
||
|
|
||
|
# Try to pull out factors of -1 and I
|
||
|
prefact = S.One
|
||
|
newarg = z
|
||
|
changed = False
|
||
|
|
||
|
nz = newarg.extract_multiplicatively(-1)
|
||
|
if nz is not None:
|
||
|
prefact = -prefact
|
||
|
newarg = nz
|
||
|
changed = True
|
||
|
|
||
|
nz = newarg.extract_multiplicatively(I)
|
||
|
if nz is not None:
|
||
|
prefact = cls._sign*I*prefact
|
||
|
newarg = nz
|
||
|
changed = True
|
||
|
|
||
|
if changed:
|
||
|
return prefact*cls(newarg)
|
||
|
|
||
|
def fdiff(self, argindex=1):
|
||
|
if argindex == 1:
|
||
|
return self._trigfunc(S.Half*pi*self.args[0]**2)
|
||
|
else:
|
||
|
raise ArgumentIndexError(self, argindex)
|
||
|
|
||
|
def _eval_is_extended_real(self):
|
||
|
return self.args[0].is_extended_real
|
||
|
|
||
|
_eval_is_finite = _eval_is_extended_real
|
||
|
|
||
|
def _eval_is_zero(self):
|
||
|
return self.args[0].is_zero
|
||
|
|
||
|
def _eval_conjugate(self):
|
||
|
return self.func(self.args[0].conjugate())
|
||
|
|
||
|
as_real_imag = real_to_real_as_real_imag
|
||
|
|
||
|
|
||
|
class fresnels(FresnelIntegral):
|
||
|
r"""
|
||
|
Fresnel integral S.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
This function is defined by
|
||
|
|
||
|
.. math:: \operatorname{S}(z) = \int_0^z \sin{\frac{\pi}{2} t^2} \mathrm{d}t.
|
||
|
|
||
|
It is an entire function.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import I, oo, fresnels
|
||
|
>>> from sympy.abc import z
|
||
|
|
||
|
Several special values are known:
|
||
|
|
||
|
>>> fresnels(0)
|
||
|
0
|
||
|
>>> fresnels(oo)
|
||
|
1/2
|
||
|
>>> fresnels(-oo)
|
||
|
-1/2
|
||
|
>>> fresnels(I*oo)
|
||
|
-I/2
|
||
|
>>> fresnels(-I*oo)
|
||
|
I/2
|
||
|
|
||
|
In general one can pull out factors of -1 and $i$ from the argument:
|
||
|
|
||
|
>>> fresnels(-z)
|
||
|
-fresnels(z)
|
||
|
>>> fresnels(I*z)
|
||
|
-I*fresnels(z)
|
||
|
|
||
|
The Fresnel S integral obeys the mirror symmetry
|
||
|
$\overline{S(z)} = S(\bar{z})$:
|
||
|
|
||
|
>>> from sympy import conjugate
|
||
|
>>> conjugate(fresnels(z))
|
||
|
fresnels(conjugate(z))
|
||
|
|
||
|
Differentiation with respect to $z$ is supported:
|
||
|
|
||
|
>>> from sympy import diff
|
||
|
>>> diff(fresnels(z), z)
|
||
|
sin(pi*z**2/2)
|
||
|
|
||
|
Defining the Fresnel functions via an integral:
|
||
|
|
||
|
>>> from sympy import integrate, pi, sin, expand_func
|
||
|
>>> integrate(sin(pi*z**2/2), z)
|
||
|
3*fresnels(z)*gamma(3/4)/(4*gamma(7/4))
|
||
|
>>> expand_func(integrate(sin(pi*z**2/2), z))
|
||
|
fresnels(z)
|
||
|
|
||
|
We can numerically evaluate the Fresnel integral to arbitrary precision
|
||
|
on the whole complex plane:
|
||
|
|
||
|
>>> fresnels(2).evalf(30)
|
||
|
0.343415678363698242195300815958
|
||
|
|
||
|
>>> fresnels(-2*I).evalf(30)
|
||
|
0.343415678363698242195300815958*I
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
fresnelc: Fresnel cosine integral.
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://en.wikipedia.org/wiki/Fresnel_integral
|
||
|
.. [2] https://dlmf.nist.gov/7
|
||
|
.. [3] https://mathworld.wolfram.com/FresnelIntegrals.html
|
||
|
.. [4] https://functions.wolfram.com/GammaBetaErf/FresnelS
|
||
|
.. [5] The converging factors for the fresnel integrals
|
||
|
by John W. Wrench Jr. and Vicki Alley
|
||
|
|
||
|
"""
|
||
|
_trigfunc = sin
|
||
|
_sign = -S.One
|
||
|
|
||
|
@staticmethod
|
||
|
@cacheit
|
||
|
def taylor_term(n, x, *previous_terms):
|
||
|
if n < 0:
|
||
|
return S.Zero
|
||
|
else:
|
||
|
x = sympify(x)
|
||
|
if len(previous_terms) > 1:
|
||
|
p = previous_terms[-1]
|
||
|
return (-pi**2*x**4*(4*n - 1)/(8*n*(2*n + 1)*(4*n + 3))) * p
|
||
|
else:
|
||
|
return x**3 * (-x**4)**n * (S(2)**(-2*n - 1)*pi**(2*n + 1)) / ((4*n + 3)*factorial(2*n + 1))
|
||
|
|
||
|
def _eval_rewrite_as_erf(self, z, **kwargs):
|
||
|
return (S.One + I)/4 * (erf((S.One + I)/2*sqrt(pi)*z) - I*erf((S.One - I)/2*sqrt(pi)*z))
|
||
|
|
||
|
def _eval_rewrite_as_hyper(self, z, **kwargs):
|
||
|
return pi*z**3/6 * hyper([Rational(3, 4)], [Rational(3, 2), Rational(7, 4)], -pi**2*z**4/16)
|
||
|
|
||
|
def _eval_rewrite_as_meijerg(self, z, **kwargs):
|
||
|
return (pi*z**Rational(9, 4) / (sqrt(2)*(z**2)**Rational(3, 4)*(-z)**Rational(3, 4))
|
||
|
* meijerg([], [1], [Rational(3, 4)], [Rational(1, 4), 0], -pi**2*z**4/16))
|
||
|
|
||
|
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
||
|
from sympy.series.order import Order
|
||
|
arg = self.args[0].as_leading_term(x, logx=logx, cdir=cdir)
|
||
|
arg0 = arg.subs(x, 0)
|
||
|
|
||
|
if arg0 is S.ComplexInfinity:
|
||
|
arg0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+')
|
||
|
if arg0.is_zero:
|
||
|
return pi*arg**3/6
|
||
|
elif arg0 in [S.Infinity, S.NegativeInfinity]:
|
||
|
s = 1 if arg0 is S.Infinity else -1
|
||
|
return s*S.Half + Order(x, x)
|
||
|
else:
|
||
|
return self.func(arg0)
|
||
|
|
||
|
def _eval_aseries(self, n, args0, x, logx):
|
||
|
from sympy.series.order import Order
|
||
|
point = args0[0]
|
||
|
|
||
|
# Expansion at oo and -oo
|
||
|
if point in [S.Infinity, -S.Infinity]:
|
||
|
z = self.args[0]
|
||
|
|
||
|
# expansion of S(x) = S1(x*sqrt(pi/2)), see reference[5] page 1-8
|
||
|
# as only real infinities are dealt with, sin and cos are O(1)
|
||
|
p = [S.NegativeOne**k * factorial(4*k + 1) /
|
||
|
(2**(2*k + 2) * z**(4*k + 3) * 2**(2*k)*factorial(2*k))
|
||
|
for k in range(0, n) if 4*k + 3 < n]
|
||
|
q = [1/(2*z)] + [S.NegativeOne**k * factorial(4*k - 1) /
|
||
|
(2**(2*k + 1) * z**(4*k + 1) * 2**(2*k - 1)*factorial(2*k - 1))
|
||
|
for k in range(1, n) if 4*k + 1 < n]
|
||
|
|
||
|
p = [-sqrt(2/pi)*t for t in p]
|
||
|
q = [-sqrt(2/pi)*t for t in q]
|
||
|
s = 1 if point is S.Infinity else -1
|
||
|
# The expansion at oo is 1/2 + some odd powers of z
|
||
|
# To get the expansion at -oo, replace z by -z and flip the sign
|
||
|
# The result -1/2 + the same odd powers of z as before.
|
||
|
return s*S.Half + (sin(z**2)*Add(*p) + cos(z**2)*Add(*q)
|
||
|
).subs(x, sqrt(2/pi)*x) + Order(1/z**n, x)
|
||
|
|
||
|
# All other points are not handled
|
||
|
return super()._eval_aseries(n, args0, x, logx)
|
||
|
|
||
|
|
||
|
class fresnelc(FresnelIntegral):
|
||
|
r"""
|
||
|
Fresnel integral C.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
This function is defined by
|
||
|
|
||
|
.. math:: \operatorname{C}(z) = \int_0^z \cos{\frac{\pi}{2} t^2} \mathrm{d}t.
|
||
|
|
||
|
It is an entire function.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import I, oo, fresnelc
|
||
|
>>> from sympy.abc import z
|
||
|
|
||
|
Several special values are known:
|
||
|
|
||
|
>>> fresnelc(0)
|
||
|
0
|
||
|
>>> fresnelc(oo)
|
||
|
1/2
|
||
|
>>> fresnelc(-oo)
|
||
|
-1/2
|
||
|
>>> fresnelc(I*oo)
|
||
|
I/2
|
||
|
>>> fresnelc(-I*oo)
|
||
|
-I/2
|
||
|
|
||
|
In general one can pull out factors of -1 and $i$ from the argument:
|
||
|
|
||
|
>>> fresnelc(-z)
|
||
|
-fresnelc(z)
|
||
|
>>> fresnelc(I*z)
|
||
|
I*fresnelc(z)
|
||
|
|
||
|
The Fresnel C integral obeys the mirror symmetry
|
||
|
$\overline{C(z)} = C(\bar{z})$:
|
||
|
|
||
|
>>> from sympy import conjugate
|
||
|
>>> conjugate(fresnelc(z))
|
||
|
fresnelc(conjugate(z))
|
||
|
|
||
|
Differentiation with respect to $z$ is supported:
|
||
|
|
||
|
>>> from sympy import diff
|
||
|
>>> diff(fresnelc(z), z)
|
||
|
cos(pi*z**2/2)
|
||
|
|
||
|
Defining the Fresnel functions via an integral:
|
||
|
|
||
|
>>> from sympy import integrate, pi, cos, expand_func
|
||
|
>>> integrate(cos(pi*z**2/2), z)
|
||
|
fresnelc(z)*gamma(1/4)/(4*gamma(5/4))
|
||
|
>>> expand_func(integrate(cos(pi*z**2/2), z))
|
||
|
fresnelc(z)
|
||
|
|
||
|
We can numerically evaluate the Fresnel integral to arbitrary precision
|
||
|
on the whole complex plane:
|
||
|
|
||
|
>>> fresnelc(2).evalf(30)
|
||
|
0.488253406075340754500223503357
|
||
|
|
||
|
>>> fresnelc(-2*I).evalf(30)
|
||
|
-0.488253406075340754500223503357*I
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
fresnels: Fresnel sine integral.
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://en.wikipedia.org/wiki/Fresnel_integral
|
||
|
.. [2] https://dlmf.nist.gov/7
|
||
|
.. [3] https://mathworld.wolfram.com/FresnelIntegrals.html
|
||
|
.. [4] https://functions.wolfram.com/GammaBetaErf/FresnelC
|
||
|
.. [5] The converging factors for the fresnel integrals
|
||
|
by John W. Wrench Jr. and Vicki Alley
|
||
|
|
||
|
"""
|
||
|
_trigfunc = cos
|
||
|
_sign = S.One
|
||
|
|
||
|
@staticmethod
|
||
|
@cacheit
|
||
|
def taylor_term(n, x, *previous_terms):
|
||
|
if n < 0:
|
||
|
return S.Zero
|
||
|
else:
|
||
|
x = sympify(x)
|
||
|
if len(previous_terms) > 1:
|
||
|
p = previous_terms[-1]
|
||
|
return (-pi**2*x**4*(4*n - 3)/(8*n*(2*n - 1)*(4*n + 1))) * p
|
||
|
else:
|
||
|
return x * (-x**4)**n * (S(2)**(-2*n)*pi**(2*n)) / ((4*n + 1)*factorial(2*n))
|
||
|
|
||
|
def _eval_rewrite_as_erf(self, z, **kwargs):
|
||
|
return (S.One - I)/4 * (erf((S.One + I)/2*sqrt(pi)*z) + I*erf((S.One - I)/2*sqrt(pi)*z))
|
||
|
|
||
|
def _eval_rewrite_as_hyper(self, z, **kwargs):
|
||
|
return z * hyper([Rational(1, 4)], [S.Half, Rational(5, 4)], -pi**2*z**4/16)
|
||
|
|
||
|
def _eval_rewrite_as_meijerg(self, z, **kwargs):
|
||
|
return (pi*z**Rational(3, 4) / (sqrt(2)*root(z**2, 4)*root(-z, 4))
|
||
|
* meijerg([], [1], [Rational(1, 4)], [Rational(3, 4), 0], -pi**2*z**4/16))
|
||
|
|
||
|
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
||
|
from sympy.series.order import Order
|
||
|
arg = self.args[0].as_leading_term(x, logx=logx, cdir=cdir)
|
||
|
arg0 = arg.subs(x, 0)
|
||
|
|
||
|
if arg0 is S.ComplexInfinity:
|
||
|
arg0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+')
|
||
|
if arg0.is_zero:
|
||
|
return arg
|
||
|
elif arg0 in [S.Infinity, S.NegativeInfinity]:
|
||
|
s = 1 if arg0 is S.Infinity else -1
|
||
|
return s*S.Half + Order(x, x)
|
||
|
else:
|
||
|
return self.func(arg0)
|
||
|
|
||
|
def _eval_aseries(self, n, args0, x, logx):
|
||
|
from sympy.series.order import Order
|
||
|
point = args0[0]
|
||
|
|
||
|
# Expansion at oo
|
||
|
if point in [S.Infinity, -S.Infinity]:
|
||
|
z = self.args[0]
|
||
|
|
||
|
# expansion of C(x) = C1(x*sqrt(pi/2)), see reference[5] page 1-8
|
||
|
# as only real infinities are dealt with, sin and cos are O(1)
|
||
|
p = [S.NegativeOne**k * factorial(4*k + 1) /
|
||
|
(2**(2*k + 2) * z**(4*k + 3) * 2**(2*k)*factorial(2*k))
|
||
|
for k in range(n) if 4*k + 3 < n]
|
||
|
q = [1/(2*z)] + [S.NegativeOne**k * factorial(4*k - 1) /
|
||
|
(2**(2*k + 1) * z**(4*k + 1) * 2**(2*k - 1)*factorial(2*k - 1))
|
||
|
for k in range(1, n) if 4*k + 1 < n]
|
||
|
|
||
|
p = [-sqrt(2/pi)*t for t in p]
|
||
|
q = [ sqrt(2/pi)*t for t in q]
|
||
|
s = 1 if point is S.Infinity else -1
|
||
|
# The expansion at oo is 1/2 + some odd powers of z
|
||
|
# To get the expansion at -oo, replace z by -z and flip the sign
|
||
|
# The result -1/2 + the same odd powers of z as before.
|
||
|
return s*S.Half + (cos(z**2)*Add(*p) + sin(z**2)*Add(*q)
|
||
|
).subs(x, sqrt(2/pi)*x) + Order(1/z**n, x)
|
||
|
|
||
|
# All other points are not handled
|
||
|
return super()._eval_aseries(n, args0, x, logx)
|
||
|
|
||
|
|
||
|
###############################################################################
|
||
|
#################### HELPER FUNCTIONS #########################################
|
||
|
###############################################################################
|
||
|
|
||
|
|
||
|
class _erfs(Function):
|
||
|
"""
|
||
|
Helper function to make the $\\mathrm{erf}(z)$ function
|
||
|
tractable for the Gruntz algorithm.
|
||
|
|
||
|
"""
|
||
|
@classmethod
|
||
|
def eval(cls, arg):
|
||
|
if arg.is_zero:
|
||
|
return S.One
|
||
|
|
||
|
def _eval_aseries(self, n, args0, x, logx):
|
||
|
from sympy.series.order import Order
|
||
|
point = args0[0]
|
||
|
|
||
|
# Expansion at oo
|
||
|
if point is S.Infinity:
|
||
|
z = self.args[0]
|
||
|
l = [1/sqrt(pi) * factorial(2*k)*(-S(
|
||
|
4))**(-k)/factorial(k) * (1/z)**(2*k + 1) for k in range(n)]
|
||
|
o = Order(1/z**(2*n + 1), x)
|
||
|
# It is very inefficient to first add the order and then do the nseries
|
||
|
return (Add(*l))._eval_nseries(x, n, logx) + o
|
||
|
|
||
|
# Expansion at I*oo
|
||
|
t = point.extract_multiplicatively(I)
|
||
|
if t is S.Infinity:
|
||
|
z = self.args[0]
|
||
|
# TODO: is the series really correct?
|
||
|
l = [1/sqrt(pi) * factorial(2*k)*(-S(
|
||
|
4))**(-k)/factorial(k) * (1/z)**(2*k + 1) for k in range(n)]
|
||
|
o = Order(1/z**(2*n + 1), x)
|
||
|
# It is very inefficient to first add the order and then do the nseries
|
||
|
return (Add(*l))._eval_nseries(x, n, logx) + o
|
||
|
|
||
|
# All other points are not handled
|
||
|
return super()._eval_aseries(n, args0, x, logx)
|
||
|
|
||
|
def fdiff(self, argindex=1):
|
||
|
if argindex == 1:
|
||
|
z = self.args[0]
|
||
|
return -2/sqrt(pi) + 2*z*_erfs(z)
|
||
|
else:
|
||
|
raise ArgumentIndexError(self, argindex)
|
||
|
|
||
|
def _eval_rewrite_as_intractable(self, z, **kwargs):
|
||
|
return (S.One - erf(z))*exp(z**2)
|
||
|
|
||
|
|
||
|
class _eis(Function):
|
||
|
"""
|
||
|
Helper function to make the $\\mathrm{Ei}(z)$ and $\\mathrm{li}(z)$
|
||
|
functions tractable for the Gruntz algorithm.
|
||
|
|
||
|
"""
|
||
|
|
||
|
|
||
|
def _eval_aseries(self, n, args0, x, logx):
|
||
|
from sympy.series.order import Order
|
||
|
if args0[0] != S.Infinity:
|
||
|
return super(_erfs, self)._eval_aseries(n, args0, x, logx)
|
||
|
|
||
|
z = self.args[0]
|
||
|
l = [factorial(k) * (1/z)**(k + 1) for k in range(n)]
|
||
|
o = Order(1/z**(n + 1), x)
|
||
|
# It is very inefficient to first add the order and then do the nseries
|
||
|
return (Add(*l))._eval_nseries(x, n, logx) + o
|
||
|
|
||
|
|
||
|
def fdiff(self, argindex=1):
|
||
|
if argindex == 1:
|
||
|
z = self.args[0]
|
||
|
return S.One / z - _eis(z)
|
||
|
else:
|
||
|
raise ArgumentIndexError(self, argindex)
|
||
|
|
||
|
def _eval_rewrite_as_intractable(self, z, **kwargs):
|
||
|
return exp(-z)*Ei(z)
|
||
|
|
||
|
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
||
|
x0 = self.args[0].limit(x, 0)
|
||
|
if x0.is_zero:
|
||
|
f = self._eval_rewrite_as_intractable(*self.args)
|
||
|
return f._eval_as_leading_term(x, logx=logx, cdir=cdir)
|
||
|
return super()._eval_as_leading_term(x, logx=logx, cdir=cdir)
|
||
|
|
||
|
def _eval_nseries(self, x, n, logx, cdir=0):
|
||
|
x0 = self.args[0].limit(x, 0)
|
||
|
if x0.is_zero:
|
||
|
f = self._eval_rewrite_as_intractable(*self.args)
|
||
|
return f._eval_nseries(x, n, logx)
|
||
|
return super()._eval_nseries(x, n, logx)
|