ai-content-maker/.venv/Lib/site-packages/sympy/physics/optics/waves.py

341 lines
9.8 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
"""
This module has all the classes and functions related to waves in optics.
**Contains**
* TWave
"""
__all__ = ['TWave']
from sympy.core.basic import Basic
from sympy.core.expr import Expr
from sympy.core.function import Derivative, Function
from sympy.core.numbers import (Number, pi, I)
from sympy.core.singleton import S
from sympy.core.symbol import (Symbol, symbols)
from sympy.core.sympify import _sympify, sympify
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (atan2, cos, sin)
from sympy.physics.units import speed_of_light, meter, second
c = speed_of_light.convert_to(meter/second)
class TWave(Expr):
r"""
This is a simple transverse sine wave travelling in a one-dimensional space.
Basic properties are required at the time of creation of the object,
but they can be changed later with respective methods provided.
Explanation
===========
It is represented as :math:`A \times cos(k*x - \omega \times t + \phi )`,
where :math:`A` is the amplitude, :math:`\omega` is the angular frequency,
:math:`k` is the wavenumber (spatial frequency), :math:`x` is a spatial variable
to represent the position on the dimension on which the wave propagates,
and :math:`\phi` is the phase angle of the wave.
Arguments
=========
amplitude : Sympifyable
Amplitude of the wave.
frequency : Sympifyable
Frequency of the wave.
phase : Sympifyable
Phase angle of the wave.
time_period : Sympifyable
Time period of the wave.
n : Sympifyable
Refractive index of the medium.
Raises
=======
ValueError : When neither frequency nor time period is provided
or they are not consistent.
TypeError : When anything other than TWave objects is added.
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.optics import TWave
>>> A1, phi1, A2, phi2, f = symbols('A1, phi1, A2, phi2, f')
>>> w1 = TWave(A1, f, phi1)
>>> w2 = TWave(A2, f, phi2)
>>> w3 = w1 + w2 # Superposition of two waves
>>> w3
TWave(sqrt(A1**2 + 2*A1*A2*cos(phi1 - phi2) + A2**2), f,
atan2(A1*sin(phi1) + A2*sin(phi2), A1*cos(phi1) + A2*cos(phi2)), 1/f, n)
>>> w3.amplitude
sqrt(A1**2 + 2*A1*A2*cos(phi1 - phi2) + A2**2)
>>> w3.phase
atan2(A1*sin(phi1) + A2*sin(phi2), A1*cos(phi1) + A2*cos(phi2))
>>> w3.speed
299792458*meter/(second*n)
>>> w3.angular_velocity
2*pi*f
"""
def __new__(
cls,
amplitude,
frequency=None,
phase=S.Zero,
time_period=None,
n=Symbol('n')):
if time_period is not None:
time_period = _sympify(time_period)
_frequency = S.One/time_period
if frequency is not None:
frequency = _sympify(frequency)
_time_period = S.One/frequency
if time_period is not None:
if frequency != S.One/time_period:
raise ValueError("frequency and time_period should be consistent.")
if frequency is None and time_period is None:
raise ValueError("Either frequency or time period is needed.")
if frequency is None:
frequency = _frequency
if time_period is None:
time_period = _time_period
amplitude = _sympify(amplitude)
phase = _sympify(phase)
n = sympify(n)
obj = Basic.__new__(cls, amplitude, frequency, phase, time_period, n)
return obj
@property
def amplitude(self):
"""
Returns the amplitude of the wave.
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.optics import TWave
>>> A, phi, f = symbols('A, phi, f')
>>> w = TWave(A, f, phi)
>>> w.amplitude
A
"""
return self.args[0]
@property
def frequency(self):
"""
Returns the frequency of the wave,
in cycles per second.
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.optics import TWave
>>> A, phi, f = symbols('A, phi, f')
>>> w = TWave(A, f, phi)
>>> w.frequency
f
"""
return self.args[1]
@property
def phase(self):
"""
Returns the phase angle of the wave,
in radians.
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.optics import TWave
>>> A, phi, f = symbols('A, phi, f')
>>> w = TWave(A, f, phi)
>>> w.phase
phi
"""
return self.args[2]
@property
def time_period(self):
"""
Returns the temporal period of the wave,
in seconds per cycle.
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.optics import TWave
>>> A, phi, f = symbols('A, phi, f')
>>> w = TWave(A, f, phi)
>>> w.time_period
1/f
"""
return self.args[3]
@property
def n(self):
"""
Returns the refractive index of the medium
"""
return self.args[4]
@property
def wavelength(self):
"""
Returns the wavelength (spatial period) of the wave,
in meters per cycle.
It depends on the medium of the wave.
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.optics import TWave
>>> A, phi, f = symbols('A, phi, f')
>>> w = TWave(A, f, phi)
>>> w.wavelength
299792458*meter/(second*f*n)
"""
return c/(self.frequency*self.n)
@property
def speed(self):
"""
Returns the propagation speed of the wave,
in meters per second.
It is dependent on the propagation medium.
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.optics import TWave
>>> A, phi, f = symbols('A, phi, f')
>>> w = TWave(A, f, phi)
>>> w.speed
299792458*meter/(second*n)
"""
return self.wavelength*self.frequency
@property
def angular_velocity(self):
"""
Returns the angular velocity of the wave,
in radians per second.
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.optics import TWave
>>> A, phi, f = symbols('A, phi, f')
>>> w = TWave(A, f, phi)
>>> w.angular_velocity
2*pi*f
"""
return 2*pi*self.frequency
@property
def wavenumber(self):
"""
Returns the wavenumber of the wave,
in radians per meter.
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.optics import TWave
>>> A, phi, f = symbols('A, phi, f')
>>> w = TWave(A, f, phi)
>>> w.wavenumber
pi*second*f*n/(149896229*meter)
"""
return 2*pi/self.wavelength
def __str__(self):
"""String representation of a TWave."""
from sympy.printing import sstr
return type(self).__name__ + sstr(self.args)
__repr__ = __str__
def __add__(self, other):
"""
Addition of two waves will result in their superposition.
The type of interference will depend on their phase angles.
"""
if isinstance(other, TWave):
if self.frequency == other.frequency and self.wavelength == other.wavelength:
return TWave(sqrt(self.amplitude**2 + other.amplitude**2 + 2 *
self.amplitude*other.amplitude*cos(
self.phase - other.phase)),
self.frequency,
atan2(self.amplitude*sin(self.phase)
+ other.amplitude*sin(other.phase),
self.amplitude*cos(self.phase)
+ other.amplitude*cos(other.phase))
)
else:
raise NotImplementedError("Interference of waves with different frequencies"
" has not been implemented.")
else:
raise TypeError(type(other).__name__ + " and TWave objects cannot be added.")
def __mul__(self, other):
"""
Multiplying a wave by a scalar rescales the amplitude of the wave.
"""
other = sympify(other)
if isinstance(other, Number):
return TWave(self.amplitude*other, *self.args[1:])
else:
raise TypeError(type(other).__name__ + " and TWave objects cannot be multiplied.")
def __sub__(self, other):
return self.__add__(-1*other)
def __neg__(self):
return self.__mul__(-1)
def __radd__(self, other):
return self.__add__(other)
def __rmul__(self, other):
return self.__mul__(other)
def __rsub__(self, other):
return (-self).__radd__(other)
def _eval_rewrite_as_sin(self, *args, **kwargs):
return self.amplitude*sin(self.wavenumber*Symbol('x')
- self.angular_velocity*Symbol('t') + self.phase + pi/2, evaluate=False)
def _eval_rewrite_as_cos(self, *args, **kwargs):
return self.amplitude*cos(self.wavenumber*Symbol('x')
- self.angular_velocity*Symbol('t') + self.phase)
def _eval_rewrite_as_pde(self, *args, **kwargs):
mu, epsilon, x, t = symbols('mu, epsilon, x, t')
E = Function('E')
return Derivative(E(x, t), x, 2) + mu*epsilon*Derivative(E(x, t), t, 2)
def _eval_rewrite_as_exp(self, *args, **kwargs):
return self.amplitude*exp(I*(self.wavenumber*Symbol('x')
- self.angular_velocity*Symbol('t') + self.phase))