93 lines
3.6 KiB
Python
93 lines
3.6 KiB
Python
|
from sympy.functions.elementary.miscellaneous import sqrt
|
||
|
from sympy.matrices.dense import Matrix
|
||
|
from sympy.physics.quantum.represent import represent
|
||
|
from sympy.physics.quantum.qapply import qapply
|
||
|
from sympy.physics.quantum.qubit import IntQubit
|
||
|
from sympy.physics.quantum.grover import (apply_grover, superposition_basis,
|
||
|
OracleGate, grover_iteration, WGate)
|
||
|
|
||
|
|
||
|
def return_one_on_two(qubits):
|
||
|
return qubits == IntQubit(2, qubits.nqubits)
|
||
|
|
||
|
|
||
|
def return_one_on_one(qubits):
|
||
|
return qubits == IntQubit(1, nqubits=qubits.nqubits)
|
||
|
|
||
|
|
||
|
def test_superposition_basis():
|
||
|
nbits = 2
|
||
|
first_half_state = IntQubit(0, nqubits=nbits)/2 + IntQubit(1, nqubits=nbits)/2
|
||
|
second_half_state = IntQubit(2, nbits)/2 + IntQubit(3, nbits)/2
|
||
|
assert first_half_state + second_half_state == superposition_basis(nbits)
|
||
|
|
||
|
nbits = 3
|
||
|
firstq = (1/sqrt(8))*IntQubit(0, nqubits=nbits) + (1/sqrt(8))*IntQubit(1, nqubits=nbits)
|
||
|
secondq = (1/sqrt(8))*IntQubit(2, nbits) + (1/sqrt(8))*IntQubit(3, nbits)
|
||
|
thirdq = (1/sqrt(8))*IntQubit(4, nbits) + (1/sqrt(8))*IntQubit(5, nbits)
|
||
|
fourthq = (1/sqrt(8))*IntQubit(6, nbits) + (1/sqrt(8))*IntQubit(7, nbits)
|
||
|
assert firstq + secondq + thirdq + fourthq == superposition_basis(nbits)
|
||
|
|
||
|
|
||
|
def test_OracleGate():
|
||
|
v = OracleGate(1, lambda qubits: qubits == IntQubit(0))
|
||
|
assert qapply(v*IntQubit(0)) == -IntQubit(0)
|
||
|
assert qapply(v*IntQubit(1)) == IntQubit(1)
|
||
|
|
||
|
nbits = 2
|
||
|
v = OracleGate(2, return_one_on_two)
|
||
|
assert qapply(v*IntQubit(0, nbits)) == IntQubit(0, nqubits=nbits)
|
||
|
assert qapply(v*IntQubit(1, nbits)) == IntQubit(1, nqubits=nbits)
|
||
|
assert qapply(v*IntQubit(2, nbits)) == -IntQubit(2, nbits)
|
||
|
assert qapply(v*IntQubit(3, nbits)) == IntQubit(3, nbits)
|
||
|
|
||
|
assert represent(OracleGate(1, lambda qubits: qubits == IntQubit(0)), nqubits=1) == \
|
||
|
Matrix([[-1, 0], [0, 1]])
|
||
|
assert represent(v, nqubits=2) == Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]])
|
||
|
|
||
|
|
||
|
def test_WGate():
|
||
|
nqubits = 2
|
||
|
basis_states = superposition_basis(nqubits)
|
||
|
assert qapply(WGate(nqubits)*basis_states) == basis_states
|
||
|
|
||
|
expected = ((2/sqrt(pow(2, nqubits)))*basis_states) - IntQubit(1, nqubits=nqubits)
|
||
|
assert qapply(WGate(nqubits)*IntQubit(1, nqubits=nqubits)) == expected
|
||
|
|
||
|
|
||
|
def test_grover_iteration_1():
|
||
|
numqubits = 2
|
||
|
basis_states = superposition_basis(numqubits)
|
||
|
v = OracleGate(numqubits, return_one_on_one)
|
||
|
expected = IntQubit(1, nqubits=numqubits)
|
||
|
assert qapply(grover_iteration(basis_states, v)) == expected
|
||
|
|
||
|
|
||
|
def test_grover_iteration_2():
|
||
|
numqubits = 4
|
||
|
basis_states = superposition_basis(numqubits)
|
||
|
v = OracleGate(numqubits, return_one_on_two)
|
||
|
# After (pi/4)sqrt(pow(2, n)), IntQubit(2) should have highest prob
|
||
|
# In this case, after around pi times (3 or 4)
|
||
|
iterated = grover_iteration(basis_states, v)
|
||
|
iterated = qapply(iterated)
|
||
|
iterated = grover_iteration(iterated, v)
|
||
|
iterated = qapply(iterated)
|
||
|
iterated = grover_iteration(iterated, v)
|
||
|
iterated = qapply(iterated)
|
||
|
# In this case, probability was highest after 3 iterations
|
||
|
# Probability of Qubit('0010') was 251/256 (3) vs 781/1024 (4)
|
||
|
# Ask about measurement
|
||
|
expected = (-13*basis_states)/64 + 264*IntQubit(2, numqubits)/256
|
||
|
assert qapply(expected) == iterated
|
||
|
|
||
|
|
||
|
def test_grover():
|
||
|
nqubits = 2
|
||
|
assert apply_grover(return_one_on_one, nqubits) == IntQubit(1, nqubits=nqubits)
|
||
|
|
||
|
nqubits = 4
|
||
|
basis_states = superposition_basis(nqubits)
|
||
|
expected = (-13*basis_states)/64 + 264*IntQubit(2, nqubits)/256
|
||
|
assert apply_grover(return_one_on_two, 4) == qapply(expected)
|