ai-content-maker/.venv/Lib/site-packages/sympy/physics/quantum/tests/test_grover.py

93 lines
3.6 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.matrices.dense import Matrix
from sympy.physics.quantum.represent import represent
from sympy.physics.quantum.qapply import qapply
from sympy.physics.quantum.qubit import IntQubit
from sympy.physics.quantum.grover import (apply_grover, superposition_basis,
OracleGate, grover_iteration, WGate)
def return_one_on_two(qubits):
return qubits == IntQubit(2, qubits.nqubits)
def return_one_on_one(qubits):
return qubits == IntQubit(1, nqubits=qubits.nqubits)
def test_superposition_basis():
nbits = 2
first_half_state = IntQubit(0, nqubits=nbits)/2 + IntQubit(1, nqubits=nbits)/2
second_half_state = IntQubit(2, nbits)/2 + IntQubit(3, nbits)/2
assert first_half_state + second_half_state == superposition_basis(nbits)
nbits = 3
firstq = (1/sqrt(8))*IntQubit(0, nqubits=nbits) + (1/sqrt(8))*IntQubit(1, nqubits=nbits)
secondq = (1/sqrt(8))*IntQubit(2, nbits) + (1/sqrt(8))*IntQubit(3, nbits)
thirdq = (1/sqrt(8))*IntQubit(4, nbits) + (1/sqrt(8))*IntQubit(5, nbits)
fourthq = (1/sqrt(8))*IntQubit(6, nbits) + (1/sqrt(8))*IntQubit(7, nbits)
assert firstq + secondq + thirdq + fourthq == superposition_basis(nbits)
def test_OracleGate():
v = OracleGate(1, lambda qubits: qubits == IntQubit(0))
assert qapply(v*IntQubit(0)) == -IntQubit(0)
assert qapply(v*IntQubit(1)) == IntQubit(1)
nbits = 2
v = OracleGate(2, return_one_on_two)
assert qapply(v*IntQubit(0, nbits)) == IntQubit(0, nqubits=nbits)
assert qapply(v*IntQubit(1, nbits)) == IntQubit(1, nqubits=nbits)
assert qapply(v*IntQubit(2, nbits)) == -IntQubit(2, nbits)
assert qapply(v*IntQubit(3, nbits)) == IntQubit(3, nbits)
assert represent(OracleGate(1, lambda qubits: qubits == IntQubit(0)), nqubits=1) == \
Matrix([[-1, 0], [0, 1]])
assert represent(v, nqubits=2) == Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]])
def test_WGate():
nqubits = 2
basis_states = superposition_basis(nqubits)
assert qapply(WGate(nqubits)*basis_states) == basis_states
expected = ((2/sqrt(pow(2, nqubits)))*basis_states) - IntQubit(1, nqubits=nqubits)
assert qapply(WGate(nqubits)*IntQubit(1, nqubits=nqubits)) == expected
def test_grover_iteration_1():
numqubits = 2
basis_states = superposition_basis(numqubits)
v = OracleGate(numqubits, return_one_on_one)
expected = IntQubit(1, nqubits=numqubits)
assert qapply(grover_iteration(basis_states, v)) == expected
def test_grover_iteration_2():
numqubits = 4
basis_states = superposition_basis(numqubits)
v = OracleGate(numqubits, return_one_on_two)
# After (pi/4)sqrt(pow(2, n)), IntQubit(2) should have highest prob
# In this case, after around pi times (3 or 4)
iterated = grover_iteration(basis_states, v)
iterated = qapply(iterated)
iterated = grover_iteration(iterated, v)
iterated = qapply(iterated)
iterated = grover_iteration(iterated, v)
iterated = qapply(iterated)
# In this case, probability was highest after 3 iterations
# Probability of Qubit('0010') was 251/256 (3) vs 781/1024 (4)
# Ask about measurement
expected = (-13*basis_states)/64 + 264*IntQubit(2, numqubits)/256
assert qapply(expected) == iterated
def test_grover():
nqubits = 2
assert apply_grover(return_one_on_one, nqubits) == IntQubit(1, nqubits=nqubits)
nqubits = 4
basis_states = superposition_basis(nqubits)
expected = (-13*basis_states)/64 + 264*IntQubit(2, nqubits)/256
assert apply_grover(return_one_on_two, 4) == qapply(expected)